KR101459817B1 - A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same - Google Patents

A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same Download PDF

Info

Publication number
KR101459817B1
KR101459817B1 KR1020120002330A KR20120002330A KR101459817B1 KR 101459817 B1 KR101459817 B1 KR 101459817B1 KR 1020120002330 A KR1020120002330 A KR 1020120002330A KR 20120002330 A KR20120002330 A KR 20120002330A KR 101459817 B1 KR101459817 B1 KR 101459817B1
Authority
KR
South Korea
Prior art keywords
cyp
cya
expression vector
polynucleotide encoding
transformant
Prior art date
Application number
KR1020120002330A
Other languages
Korean (ko)
Other versions
KR20130081394A (en
Inventor
윤여준
반연희
안은영
한규범
Original Assignee
이화여자대학교 산학협력단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단, 서울대학교산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020120002330A priority Critical patent/KR101459817B1/en
Publication of KR20130081394A publication Critical patent/KR20130081394A/en
Application granted granted Critical
Publication of KR101459817B1 publication Critical patent/KR101459817B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 세베키아 베니하나로부터 유래된 신규한 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP), 상기 CYP를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체, 상기 형질전환체를 이용하여 상기 CYP를 생산하는 방법, 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터, 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체 및 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체를 이용하여 4-(γ-hydroxy)-CyA를 생산하는 방법에 관한 것이다. 본 발명의 수산화된 사이클로스포린 A의 생산방법을 이용하면, 종래의 방법보다 4-(γ-hydroxy)-CyA를 높은 효율로 생산할 수 있으므로, 다양한 발모제의 개발 및 생산에 널리 활용될 수 있을 것이다.The present invention relates to a novel cytochrome P450 hydroxylase (CYP) derived from Sebecia bennyone, a polynucleotide encoding said CYP, an expression vector comprising said polynucleotide, A method for producing the CYP using the transformant, an expression vector comprising the polynucleotide encoding the CYP and the electron transfer enzyme, the polynucleotide encoding the CYP and the electron transferase (Γ-hydroxy) -CyA is produced by using a transformant into which an expression vector for CYP and an expression vector containing the polynucleotide encoding an electron transfer enzyme is introduced . Using the method of producing the hydroxylated cyclosporin A of the present invention, 4- (γ-hydroxy) -CyA can be produced at a higher efficiency than the conventional method, and thus it can be widely used for the development and production of various hair growth agents.

Description

신규한 사이토크롬 P450 수산화효소 및 이를 이용한 수산화된 사이클로스포린 A의 생산방법{A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same}A novel cytochrome P450 hydroxylase and a method for producing the hydroxylated cyclosporin A using the cytochrome P450 hydroxylase and a process for preparing the hydroxylated cyclosporin A,

본 발명은 신규한 사이토크롬 P450 수산화효소 및 이를 이용한 수산화된 사이클로스포린 A의 생산방법에 관한 것으로, 보다 구체적으로 본 발명은 세베키아 베니하나로부터 유래된 신규한 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP), 상기 CYP를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체, 상기 형질전환체를 이용하여 상기 CYP를 생산하는 방법, 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터, 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체 및 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체를 이용하여 4-(γ-hydroxy)-CyA를 생산하는 방법에 관한 것이다.
The present invention relates to a novel cytochrome P450 hydroxylase, and a process for producing the hydroxylated cyclosporin A using the cytochrome P450 hydroxylase. More particularly, the present invention relates to a novel cytochrome P450 hydroxylase derived from Sebecia bennyana ), A polynucleotide encoding the CYP, an expression vector containing the polynucleotide, a transformant into which the expression vector has been introduced, a method of producing the CYP using the transformant, a method of producing the CYP and an electron transfer enzyme A transformant into which an expression vector containing each of the polynucleotides encoding the CYP and the electronic transcription enzyme is introduced, and a polynucleotide encoding a polynucleotide encoding the CYP and the electron transfer enzyme (Γ-hydroxy) -Cy A < / RTI >

인체의 모발은 약 10 만 내지 15 만 개 정도이며, 각각의 모발은 서로 다른 주기를 가지며 성장기(anagen), 퇴행기(catagen), 휴지기(telogen)를 거쳐 성장, 탈락한다. 이러한 주기는 3∼6 년에 걸쳐 반복되는데 그 결과 일일 평균 50내지 100 개의 모발이 정상적으로 탈락하게 된다. 일반적으로 탈모증이라 함은 이러한 주기 중에서 성장기의 모발 비율이 짧아지고 퇴행기 또는 휴지기의 모발이 많아져 비정상 적으로 모발이 탈락하는 숫자가 많아지는 것을 일컫는다.The human hair has about 100,000 to 150,000 hairs, and each hair has a different cycle and grows through anagen, catagen, and telogen. This cycle repeats over 3 to 6 years, resulting in an average of 50 to 100 hairs per day dropping normally. In general, alopecia refers to the increase in the number of abnormal hair loss due to shortening of hair growth rate in the growing period and increasing number of hair in the retrogressive or resting period among these cycles.

탈모의 원인으로는 혈액순환 불량설, 남성호르몬 작용 과잉설, 피지 분비 과잉설, 과산화물, 세균 등에 의한 두피 기능 저하설, 유전적 요인, 노화, 스트레스 등이 논의되어 왔었다. 그러나 현재까지 탈모에 관한 명확한 원인은 밝혀져 있지 않으며, 최근 들어 식생활의 변화, 사회환경 등에 의한 스트레스의 증가 등으로 탈모로 고민하는 인구가 늘어나고 있는 추세이고 그 연령 또한 낮아지고 있으며, 여성의 탈모 인구도 늘어나고 있는 실정이다.The causes of hair loss have been discussed, such as poor blood circulation, hyperhidrosis, excessive secretion of sebum, peroxidation, hypofunction of the scalp, genetic factors, aging, and stress. However, the cause of hair loss has not been clarified to date. Recently, the number of people who are suffering from hair loss due to changes in dietary habits and stress due to social environment is increasing, and the age is also lowered. It is increasing.

이러한 탈모증의 치료나 예방에 있어서 현재까지 가장 널리 사용되는 제제는 미녹시딜 함유 제제로서, 현재까지 미국 FDA의 승인을 받은 두 가지 발모제 성분 중의 하나이다. 미녹시딜은 혈압강하의 목적으로 개발된 고혈압 치료제이었지만 사용상의 부작용으로 발모 현상이 나타나면서 현재에는 발모제로 더 유명한 약물이 되었다. 미녹시딜의 발모 작용기전에 대해서는 정확히 밝혀져 있지는 않지만, 혈관 확장 효과를 통한 혈류량 증가로 모근에 영양을 공급하여 모발 성장을 촉진하는 것으로 생각되고 있다.In the treatment and prevention of such alopecia, the most widely used formulations to date are minoxidil-containing preparations, which are one of two FDA approved hair growth agents to date. Minoxidil was a hypertension remedy developed for the purpose of lowering the blood pressure, but it became a more famous drug as a hair growth drug because of the side effects caused by side effects. Minoxidil is not exactly known before, but it is thought to promote hair growth by supplying nutrients to hair follicles by increasing blood flow through vasodilating effect.

이밖에 최근에 발매가 시작된 머크(Merck)사의 프로페시아(Propecia) 주성분인 피나스테라이드(finasteride)는 남성호르몬 테스토스테론이 더 강력한 형태의 남성호르몬인 디히드로테스토스테론으로 전환되는 것을 억제한다. 1997년 12월 남성형 탈모증의 치료제로 1 ㎎ 타블렛이 FDA로부터 사용 승인을 받아 현재 시판 중으로, 임상결과 유의할 만한 효과를 나타내는 것으로 판명되었으나 일부 남성 기능 억제 부작용도 보고되고 있다(J. Am. Acad. Dermatol., 1998; 39; 578∼589). 그러나 이 약물 또한 미녹시딜과 같이 임상효과가 그다지 탁월하지 못하고 부작용에 대한 우려 때문에 좀 더 우수한 발모제 탐색연구가 활발히 진행되고 있다.In addition, finasteride, a major component of Merck's Propecia, which has recently been launched, inhibits the conversion of male hormone testosterone to the more potent male hormone dihydrotestosterone. In December 1997, a 1 mg tablet was approved by the FDA for the treatment of male alopecia, and it is currently on the market and has been shown to have significant effects on clinical results, but some male function inhibitory adverse effects have also been reported (J. Am. Acad. Dermatol ., 1998; 39; 578-589). However, this drug is not as excellent as minoxidil, and clinical research is actively pursued for better hair growth due to concerns about side effects.

한편, 사이클로스포린 류는 대표적인 면역 억제제인 동시에 바이러스, 진균, 원생동물을 억제하는 효과 및 부작용으로 신장독성, 간독성, 고혈압, 치주조직 비대, 발모효과 등 다양한 생리효과를 갖고 있다(Advances in Pharmacol., 1996; 35; 114∼246 및 Drug Safety, 1994; 10; 310∼317). 그 중 대표적인 사이클로스포린 A(Cyclosporin A, CyA)는 11개의 아미노산이 환상으로 결합된 올리고 펩타이드로서 장기이식 환자들의 거부반응을 치료하기 위한 강력한 면역억제제이며, 부작용으로 신장독성, 간 독성, 고혈압, 치주조직 비대, 발모효과 등의 다양한 생리효과를 가지고 있다. CyA는 불완전 균류인 토포클라디움 인플라툼 (Toypocladium inflatum)을 호기성 상태에서 액체배양 할 경우에 생성되는 24가지의 구조적으로 유사한 대사물질들 (사이클로스포린 A에서 Z까지) 가운데 가장 많이 생성되는 물질이다. CyA와 그 유사물들은 사이클로스포린 신데테이즈 (Cyclosporin Synthetase)라는 다기능 단일 효소에 의해서 11개의 아미노산이 순서대로 활성화되고, N-메틸레이션(N-methylation)되고, 펩티드결합을 형성하는 Non-ribosomal 기작으로 생합성된다.On the other hand, cyclosporins are a typical immunosuppressive agent and have various physiological effects such as renal toxicity, hepatotoxicity, hypertension, periodontal hypertrophy, and hair growth effect due to the effect of inhibiting viruses, fungi and protozoans and side effects (Advances in Pharmacol., 1996 ; 35: 114-246 and Drug Safety, 1994; 10: 310-317). Cyclosporin A (CyA) is a cyclic oligopeptide of cyclosporin A (CyA). It is a powerful immunosuppressive agent for treating the rejection of organ transplant patients. It has the potential to cause kidney toxicity, liver toxicity, hypertension, Hypertrophy, and hair growth effects. CyA is the most abundant of the 24 structurally similar metabolites (cyclosporin A to Z) that are produced when an incomplete fungus, Toypocladium inflatum, is cultured under aerobic conditions. CyA and its analogs are activated by a multifunctional single enzyme called Cyclosporin Synthetase, which in turn activates 11 amino acids, N-methylation, and is a non-ribosomal mechanism to form peptide bonds. do.

CyA의 여러 부작용 중에서 체모의 과대성장 부작용을 이용한 발모제로서의 개발 가능성이 그동안 여러 연구에 의해 수행되어 왔다. 그 중에는 동물 발모실험, 인간원형 탈모증, 인간 남성형 탈모증, 화학요법에 의한 탈모 동물에서 탈모억제 효과 등에 대한 광범위한 연구가 수행되었고, 마우스 등판 실험 결과로 비교한다면 시판되고 있는 미녹시딜보다 약 100 배 정도 우수한 효과를 보여주고 있다.Among the various side effects of CyA, the possibility of development as a hair growth agent using the side effect of hair growth over a long period of time has been performed by various studies. Among them, extensive studies have been carried out on animal hair growth experiments, human alopecia areata, human male alopecia, and alopecia suppression effects in hairless animals by chemotherapy. Respectively.

CyA는 다양한 세균과 진균류 등에 의한 생물전환을 통해 다양한 유도체로 전환된다. 희귀 방선균인 세베키아 베니하나(Sebekia benihana)에 의해 4번 위치에 수산기가 부가된 형태의 유도체(4-(γ-hydroxy)-CyA, 4-(γ-hydroxy)-4-N-demethyl-CyA, Di-4,6-(γ-hydroxy)-CyA 등)로 전환됨이 확인되었는데(한국공개특허 제2004-88593호), 이 중 상기 4-(γ-hydroxy)-CyA는 CyA가 가지고 있는 면역억제 활성이 감소되고, 발모효과는 그대로 유지된다고 알려져 있다(한국등록특허 제316604호). 이러한 반응은 상기 균주에서 발현되는 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP)와 전자전이효소에 의하여 수행되는 것으로 알려져 있는데, 상기 CYP는 식물, 박테리아, 동물, 고세균 등의 자연계의 모든 생물 종에서 발현되는 헴(heme)을 포함한 헤모프로테인(hemoprotein)의 일종으로서, 상기 헴에 포함된 철 이온이 일산화탄소(CO)와 결합 시 450㎚에서 특징적인 흡광을 나타내고, 생체내의 다양한 산화 반응을 촉매 하는 효소로 알려져 있다. 현재까지 연구된 바에 의하면, 세베키아 베니하나에서 발현되는 CYP는 5종(CYP501, CYP502, CYP503, CYP504 및 CYP506)이 존재하는 것으로 알려져 있고, 이들 효소의 활성을 이용하여 세베키아 베니하나에서 4-(γ-hydroxy)-CyA로 전환되는 것으로 얼려져 있으나, 상기 전환수율이 낮아서 산업적으로 이용하기가 어렵다는 문제점이 있었다.
CyA is converted to various derivatives by bioconversion by various bacteria and fungi. (Γ-hydroxy) -CyA, 4- (γ-hydroxy) -4-N-demethyl-CyA in the form of a hydroxyl group added at position 4 by Sebekia benihana , a rare actinomycete (Γ-hydroxy) -CyA (Korean Patent Laid-Open Publication No. 2004-88593). Among these, 4- (γ-hydroxy) It is known that the inhibitory activity is reduced and the hair growth effect is maintained (Korean Patent No. 316604). Such a reaction is known to be carried out by cytochrome P450 hydroxylase (CYP) and an electron transferase expressed in the above-mentioned strain. The CYP is known to be effective in all kinds of organisms such as plants, bacteria, As a kind of hemoprotein containing expressed heme, iron ions contained in the heme exhibit characteristic absorption at 450 nm when bound to carbon monoxide (CO), and enzymes that catalyze various oxidation reactions in vivo . It is known that five CYPs (CYP501, CYP502, CYP503, CYP504, and CYP506) are expressed in Sebecia bennyana, and the activity of these enzymes is known to be 4- (? -hydroxy) -CyA, but the conversion yield is low and it is difficult to use it industrially.

이러한 배경하에서, 본 발명자들은 미생물에 의한 CyA의 생물전환시 수산화 효율을 향상시키는 방법을 개발하기 위하여 예의 연구노력한 결과, CyA의 수산화를 매개하는 신규한 효소단백질을 발굴하고, 상기 효소단백질을 전자전이 효소와 함께 발현시키도록 변이된 형질전환체를 사용할 경우, CyA의 수산화 효율을 향상시킬 수 있음을 확인하고, 본 발명을 완성하였다.
Under these circumstances, the inventors of the present invention have made extensive efforts to develop a method for improving the hydroxylation efficiency during the biotransformation of CyA by microorganisms, and as a result, they have discovered a novel enzyme protein mediating the hydroxylation of CyA, It was confirmed that the use of the transformant mutated to be expressed together with the enzyme can improve the hydroxyl efficiency of CyA, and the present invention has been completed.

본 발명의 하나의 목적은 CyA의 수산화를 매개하는 신규한 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP)를 제공하는 것이다.One object of the present invention is to provide a novel cytochrome P450 hydroxylase (CYP) mediating the hydroxylation of CyA.

본 발명의 다른 목적은 상기 CYP를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding said CYP.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공하는 것이다.It is still another object of the present invention to provide an expression vector comprising the polynucleotide.

본 발명의 또 다른 목적은 상기 발현벡터가 도입된 형질전환체를 제공하는 것이다.It is still another object of the present invention to provide a transformant into which the above expression vector has been introduced.

본 발명의 또 다른 목적은 상기 형질전환체를 이용하여 상기 CYP를 생산하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing the CYP using the transformant.

본 발명의 또 다른 목적은 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터를 제공하는 것이다.It is still another object of the present invention to provide an expression vector comprising the respective polynucleotides encoding the CYP and the electron transfer enzyme.

본 발명의 또 다른 목적은 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체를 제공하는 것이다.It is still another object of the present invention to provide a transformant into which an expression vector containing each polynucleotide encoding the CYP and the electron transfer enzyme is introduced.

본 발명의 또 다른 목적은 상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체를 이용하여 4-(γ-hydroxy)-CyA를 생산하는 방법을 제공하는 것이다.
Yet another object of the present invention is to provide a method for producing 4- (γ-hydroxy) -CyA by using a transformant into which an expression vector containing each polynucleotide encoding the CYP and the electron transfer enzyme is introduced will be.

상기 본 발명의 목적을 달성하기 위한 일 실시양태로서, 본 발명은 사이클로스포린 A(Cyclosporin A, CyA)의 수산화를 매개하는 신규한 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP)를 제공한다.
In one embodiment of the present invention, the present invention provides a novel cytochrome P450 hydroxylase (CYP) mediating the hydroxylation of cyclosporin A (CyA).

본 발명자들은 CyA를 수산화시켜서 면역억제활성이 감소된 유도체(4-(γ-hydroxy)-CyA)를 생산할 수 있는 방선균의 일종인 세베키아 베니하나(Sebekia benihana)로 부터 상기 CyA를 수산화시킬 수 있는 신규한 효소단백질을 규명하고자 하였다. 이를 위하여, 상기 균주의 게놈 DNA를 분석하여 공지된 5종 이외의 신규한 CYP를 코딩하는 유전자를 스크리닝하고자 하였다. 그 결과, 총 16종의 신규한 CYP(CYP001 내지 CYP016)를 코딩하는 것으로 예상되는 유전자를 발굴하고, 이들 중에서 4-(γ-hydroxy)-CyA의 생산에 관여하는 CYP를 코딩하는 유전자를 스크리닝한 결과, CYP008이 결실된 S. benihana 균주에서는 4-(γ-hydroxy)-CyA의 발현량이 야생형 균주의 것보다도 감소됨을 확인하였으므로, 상기 CYP008이 CyA를 수산화시킬 수 있는 활성을 나타냄을 알 수 있었다(실시예 1).
The present inventors have found that CyA can be hydrolyzed from Sebekia benihana , which is a kind of actinomycetes capable of producing a derivative (4- (γ-hydroxy) -CyA) having reduced immunosuppressive activity by hydrolyzing CyA And to clarify novel enzyme proteins. For this purpose, genomic DNA of the strain was analyzed to screen for genes encoding novel CYPs other than the five known CYPs. As a result, a gene expected to encode a total of 16 new CYPs (CYP001 to CYP016) was identified, and a gene coding for CYP involved in the production of 4- (γ-hydroxy) -CyA was screened As a result, it was confirmed that the expression amount of 4- (γ-hydroxy) -CyA was decreased in the S. benihana strain in which CYP008 was deleted, as compared with that of the wild-type strain, and thus CYP008 was found to be capable of hydroxylating CyA Example 1).

본 발명의 용어 "사이클로스포린 A(Cyclosporin A, CyA)"란, 1개의 아미노산으로 구성된 사이클릭 펩타이드로서 아미노산의 구조에 따라 다양한 형태로 존재할 수 있으며, 하기의 화학식 1의 구조를 갖을 수 있는 화합물을 의미한다. 상기 CyA는 장기이식 후에 따르는 조직이식 거부반응을 억제하기 위한 면역억제제로서 사용되고, 부작용으로서 모발성장을 촉진시키는 활성을 나타낸다. 본 발명의 목적상 상기 CyA는 4-(γ-hydroxy)-CyA를 생산하기 위한 전구체로서 사용되나, 특별히 이에 제한되지는 않는다.
The term "Cyclosporin A (CyA)" according to the present invention is a cyclic peptide composed of one amino acid and may exist in various forms depending on the structure of the amino acid, and refers to a compound having the following structure do. The above-mentioned CyA is used as an immunosuppressant for suppressing tissue graft rejection following organ transplantation, and exhibits an activity of promoting hair growth as a side effect. For the purpose of the present invention, CyA is used as a precursor for producing 4- (γ-hydroxy) -CyA, but is not particularly limited thereto.

Figure 112012001920795-pat00001
Figure 112012001920795-pat00001

본 발명의 용어 "사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP)"란, 자연계의 모든 생물 종에서 발현되고, 다양한 산화반응을 촉매하며, 헴(heme)을 포함한 헤모프로테인의 일종을 의미하는데, 상기 헴에 포함된 철 이온이 일산화탄소(CO)와 결합할 경우에 450㎚의 특징적인 흡광을 나타내고, 폴리케타이드, 지방산, 비타민, 스테로이드 계열의 항생제 등을 비롯한 여러 종류의 화합물을 기질로 사용하는 것으로 알려져 있다. 본 발명의 목적상 상기 CYP는 CyA를 수산화시키는 반응을 수행하기 위하여 사용되며, 특별히 이에 제한되지 않으나, 바람직하게는 방선균 유래의 CYP가 될 수 있고, 보다 바람직하게는 세베키아 베니하나로부터 유래된 CYP501, CYP502, CYP503, CYP504, CYP506, 또는 본 발명에서 새로이 선별된 CYP001 내지 CYP016 중 어느 하나가 될 수 있으며, 가장 바람직하게는 세베키아 베니하나로부터 유래된 신규한 CYP008이 될 수 있다. 특히, 상기 신규한 CYP008은 특별히 이에 제한되지 않으나, 서열번호 1의 아미노산 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 아미노산 서열을 가지는 단백질일 수 있다. The term "Cytochrome P450 hydroxylase (CYP)" of the present invention refers to a species of hemoprotein expressed in all species of nature, catalyzes various oxidation reactions, and contains heme, When the iron ion contained in the heme is bonded to carbon monoxide (CO), it exhibits a characteristic absorption of 450 nm and uses various compounds such as polyketide, fatty acid, vitamin, steroid-based antibiotic, etc. as a substrate . For the purpose of the present invention, the CYP is used for carrying out a reaction to hydrolyze CyA, and is not particularly limited. Preferably, it is CYP derived from actinomycetes, more preferably CYP501 , CYP502, CYP503, CYP504, CYP506, or any of the newly selected CYP001 to CYP016 in the present invention, and most preferably a novel CYP008 derived from Sebecia bennyone. Particularly, the novel CYP008 is not particularly limited, but a protein having an amino acid sequence of SEQ ID NO: 1 or having an amino acid sequence having 70% or more, more preferably 80% or more, and more preferably 90% or more homology thereto .

본 발명의 용어 "상동성"이란, 단백질을 코딩하는 유전자의 염기 서열이나 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다.
The term "homology" of the present invention means a base sequence or a similar degree of an amino acid sequence of a gene encoding a protein. If the homology is sufficiently high, the expression product of the gene may have the same or similar activity.

상기 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 CYP008을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입되어 CYP008을 발현할 수 있는 형질전환체 및 상기 형질전환체를 이용하여 CYP008을 생산하는 방법을 제공한다.
In another aspect of the present invention, there is provided a method for producing a polynucleotide comprising the steps of: preparing a polynucleotide encoding CYP008, an expression vector comprising the polynucleotide, a transformant into which the expression vector is introduced to express CYP008, Lt; RTI ID = 0.0 > CYP008 < / RTI >

본 발명에서 제공하는 상기 신규한 CYP를 코딩하는 폴리뉴클레오티드는 특별히 이에 제한되지 않으나, 세베키아 베니하나 균주에서 유래된 폴리뉴클레오티드가 될 수 있는데, 바람직하게는 서열번호 2의 폴리뉴클레오티드 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 염기 서열을 가지는 폴리뉴클레오티드일 수 있으나, 특별히 이에 제한되지는 않는다.The polynucleotide encoding the novel CYP provided in the present invention is not particularly limited but may be a polynucleotide derived from Sebecia bennyone strain, preferably a polynucleotide sequence of SEQ ID NO: 2 or a polynucleotide having 70% Or more, more preferably 80% or more, and more preferably 90% or more homology with the nucleotide sequence shown in SEQ ID NO: 2, but is not particularly limited thereto.

본 발명의 용어 "발현벡터"란, 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함하고, 그 외에 시그널 펩타이드를 코드하는 DNA, 인핸서 서열, 원하는 유전자의 5'측 및 3'측의 비번역 영역, 선택마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수도 있다. 상기 발현 벡터는 표준적인 재조합 DNA 기술을 이용하여 제조 및 정제될 수 있다. 상기 발현 벡터의 종류는 원핵세포 및 진핵세포의 각종 숙주 세포에서 원하는 유전자를 발현하고, 원하는 단백질을 생산하는 기능을 하는 한 특별히 한정되지 않지만, 강력한 활성을 나타내는 프로모터와 강한 발현력을 보유하면서 자연 상태와 유사한 형태의 외래 단백질을 대량으로 생산할 수 있는 벡터가 바람직하다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ 벡터, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 바람직하게는 pDZ 벡터 등을 사용할 수 있다. 본 발명의 목적상 상기 발현벡터는 CYP008을 코딩하는 폴리뉴클레오티드를 포함하여, CyA의 수산화를 매개하는 CYP008을 발현시키기 위하여 사용될 수 있으나, 특별히 이에 제한되지는 않는다.
The term "expression vector" of the present invention means a DNA product containing a nucleotide sequence of a gene operably linked to a suitable regulatory sequence so as to be capable of expressing the gene of interest in a suitable host. The regulatory sequence includes a promoter capable of initiating transcription, an optional operator sequence for modulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence controlling the termination of transcription and translation, A DNA encoding a peptide, an enhancer sequence, a non-translated region on the 5 'side and a 3' side of a desired gene, a selective marker region, or a replicable unit. The expression vector can be prepared and purified using standard recombinant DNA techniques. The expression vector is not particularly limited as long as it expresses a desired gene in various host cells of prokaryotic and eukaryotic cells and produces a desired protein. However, the expression vector has a promoter that exhibits strong activity, A vector capable of producing a large amount of exogenous protein in a form similar to that of the wild type. Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in their natural or recombinant state. For example, pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A and Charon21A can be used as the phage vector or cosmid vector, and pDZ vector, pBR system, pUC system , pBluescriptII system, pGEM system, pTZ system, pCL system, pET system and the like can be used. The usable vector is not particularly limited, and known expression vectors can be used. Preferably a pDZ vector or the like can be used. For purposes of the present invention, the expression vector can be used to express CYP008 mediating the hydroxylation of CyA, including, but not limited to, a polynucleotide encoding CYP008.

본 발명에서 용어, "형질전환체"는 하나 이상의 목적 단백질을 암호화하는 유전자를 갖는 벡터가 숙주세포에 도입되어 목적 단백질을 발현시키도록 형질이 감염된 세포를 의미하며, 진핵세포, 원핵세포 등의 모든 세포가 될 수 있는데, 특별히 이에 제한되지 않으나, 대장균, 스트렙토미세스, 살모넬라 티피뮤리움 등의 박테리아 세포; 효모 세포; 피치아 파스토리스 등의 균류 세포; 드로조필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO, COS, NSO, 293, 보우 멜라노마 세포 등의 동물 세포; 또는 식물 세포가 될 수 있다.
As used herein, the term "transformant" means a cell in which a vector having a gene encoding at least one target protein is introduced into a host cell to infect the target protein to express the target protein, and all of eukaryotic cells and prokaryotic cells Cells, including, but not limited to, bacterial cells such as E. coli, Streptomyces, Salmonella typhimurium; Yeast cells; Fungal cells such as Pichia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NSO, 293, Bowmanella cells; Or plant cells.

본 발명에서 제공하는 CYP008을 생산하는 방법은 (ⅰ) 상기 형질전환체를 배양하여 배양물을 수득하는 단계; 및 (ⅱ) 상기 배양물로부터 CYP008을 회수하는 단계를 포함한다.
The method for producing CYP008 provided by the present invention comprises the steps of (i) culturing the transformant to obtain a culture; And (ii) recovering CYP008 from the culture.

상기 본 발명의 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체 및 상기 형질전환체를 이용하여 4-(γ-hydroxy)-CyA를 생산하는 방법을 제공하는 것이다.
In another embodiment of the present invention, the present invention provides an expression vector comprising a polynucleotide encoding CYP and an electron transfer enzyme, a transformant into which the expression vector is introduced, (? -Hydroxy) -CyA is produced by using the above method.

본 발명자들은 세베키아 베니하나로부터 유래된 신규한 CYP인 CYP008이 CyA의 수산화를 매개할 수 있는지를 확인하기 위하여, 두개의 수산화 효소(CTY506 및 CYP008)를 코딩하는 유전자와 3세트의 전자전이 효소를 코딩하는 유전자를 조합하여 포함하는 발현벡터(pYJ1621, pYJ1623, pYJ1625)를 제작하고(실시예 2), 상기 제작된 각 발현벡터를 세베키아 베니하나에 도입하여 형질전환체(YJ405, YJ407, YJ409)를 제작하였으며(실시예 3), 이들 형질전환체에 목적하는 수산화 효소를 코딩하는 유전자와 전자전이 효소를 코딩하는 유전자가 정상적으로 도입되었는지의 여부를 확인하고(실시예 4, 5, 6), 이들 제작된 각각의 형질전환체를 액체배지 또는 고체배지에서 배양한 결과, 야생형 세베키아 베니하나보다 4-(γ-hydroxy)-CyA을 1.1 내지 1.8배의 높은 함량으로 생산할 수 있음을 확인하였다(실시예 7, 8).
In order to confirm whether CYP008, a novel CYP derived from Sebecia benny 1, could mediate the hydroxylation of CyA, the present inventors used a gene coding for two hydroxylases (CTY506 and CYP008) and three sets of electronic transfer enzymes (YJ405, YJ407, YJ409) were prepared by introducing each of the prepared expression vectors into Sebecia bennyone (SEQ ID NO: 2), and the expression vectors (pYJ1621, pYJ1623 and pYJ1625) (Example 3), confirming whether or not the gene encoding the desired hydroxylase and the gene coding for the electron transfer enzyme were normally introduced into these transformants (Examples 4, 5 and 6), and these Each transformant was cultured in a liquid medium or a solid medium. As a result, it was confirmed that 4- (γ-hydroxy) -CyA can be produced at a content as high as 1.1 to 1.8 times higher than that of wild-type Sebecia bennyone It was (Examples 7,8).

본 발명의 용어 "전자전이 효소"란, 생체내 산화 또는 환원반응에 관여하는 효소에 보조인자인 NAD, NADP 등을 통하여 추진력(driving force)으로 사용되는 전자 또는 수소이온 등을 제공하는 효소를 의미한다. 통상적으로, 퓨티다레독신(putidaredoxin)과 퓨티다레독신 환원효소(putidaredoxin reductase), 페레독신(ferredoxin)과 페레독신 환원효소(ferredoxin reductase), 플라보독신(flavodoxin)과 플라보독신 환원효소(flavodoxin reductase) 등과 같이 두개의 단백질이 쌍을 이루어 형성된다. 본 발명의 목적상 상기 전자전이 효소는 CYP에 수소이온을 공급하여 CYP에 의하여 CyA를 수산화시키기 위한 추진력을 제공하는 데 사용된다.
The term "electron transfer enzyme " of the present invention refers to an enzyme that provides electrons or hydrogen ions used as driving force through NAD, NADP, etc., which are auxiliaries to enzymes involved in in vivo oxidation or reduction reactions . Typically, it is known that putidaredoxin and putidaredoxin reductase, ferredoxin and ferredoxin reductase, flavodoxin and flavodoxin reductase ) And the like are formed in pairs. For the purposes of the present invention, the above-described electron transfer enzyme is used to supply a hydrogen ion to CYP to provide a driving force for hydrolyzing CyA by CYP.

상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터는 상기 CYP를 코딩하는 폴리뉴클레오티드와 전자전이 효소를 코딩하는 폴리뉴클레오티드를 포함하도록 구성되는데, 특별히 이에 제한되지는 않으나, 상기 CYP를 코딩하는 폴리뉴클레오티드는 바람직하게는 1종 또는 2종 이상의 CYP를 코딩하는 폴리뉴클레오티가 연속적으로 연결되도록 구성될 수도 있고, 보다 바람직하게는 숙주세포로 사용되는 세베키아 베니하나로부터 유래된 다양한 CYP를 코딩하는 폴리뉴클레오티드를 조합하여 연속적으로 연결되도록 구성될 수도 있으며, 가장 바람직하게는 CYP506을 코딩하는 폴리뉴클레오티드와 CYP008을 코딩하는 폴리뉴클레오티드가 연속적으로 연결되도록 구성된 발현벡터를 사용함이 바람직하다. 아울러, 상기 전자전이 효소를 코딩하는 폴리뉴클레오티드는 상기 효소를 구성하는 두 개의 단백질(퓨티다레독신과 퓨티다레독신 환원효소, 페레독신과 페레독신 환원효소, 플라보독신과 플라보독신 환원효소 등)을 코딩하는 폴리뉴클레오티드가 연속적으로 연결되도록 구성될 수도 있고, 상기 전자전이 효소는 1종 또는 2종이상을 포함할 수도 있으나, 특별히 이에 제한되지는 않는다.
The expression vector comprising each of the polynucleotides encoding the CYP and the electron transfer enzyme is constructed to include the polynucleotide encoding the CYP and the polynucleotide encoding the electron transfer enzyme, May be constructed such that polynucleotides encoding one or more CYPs are continuously connected, and more preferably, a polynucleotide encoding a variety of polynucleotides derived from Sebecia vanilan, which is used as a host cell It is preferable to use an expression vector constructed such that a polynucleotide encoding CYP506 and a polynucleotide encoding CYP008 are continuously connected to each other, and most preferably, a polynucleotide encoding CYP008 and a polynucleotide encoding CYP008 are continuously connected. In addition, the polynucleotide encoding the above-described electrotransfer enzyme can be obtained by using two proteins (eg, futidaradoxine and futidarethoxyl reductase, ferredoxin and ferredoxin reductase, flavoboxin and flavoboxin reductase) May be constituted so that the polynucleotide encoding the enzyme is continuously connected, and the electron transfer enzyme may include one kind or two or more kinds, but is not particularly limited thereto.

상기 CYP 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터가 도입된 형질전환체는 특별히 이에 제한되지 않으나, 적어도 CyA를 수산화시킬 수 있는 숙주세포에 상기 발현벡터가 도입되어, 4-(γ-hydroxy)-CyA의 생산량을 증가시키도록 변이된 세포가 될 수 있고, 상기 CyA를 수산화시킬 수 있는 숙주세포는 특별히 이에 제한되지 않으나, 바람직하게는 CyA를 수산화시킬 수 있는 방선균류의 미생물이 될 수 있고, 보다 바람직하게는 CyA를 수산화시킬 수 있는 세베키아 속 미생물이 될 수 있으며, 가장 바람직하게는 CyA를 수산화시킬 수 있는 세베키아 베니하나가 될 수 있다.
The transformant into which the expression vector containing the respective polynucleotides encoding the CYP and the electron transfer enzyme is introduced is not particularly limited, but the expression vector is introduced into a host cell capable of hydrolyzing at least CyA, (γ-hydroxy) -CyA, and the host cell capable of hydrolyzing the CyA is not particularly limited, but is preferably a microorganism of actinomycetes capable of hydrolyzing CyA , More preferably can be a C. elegans microorganism capable of hydrolyzing CyA, and most preferably can be a Sebecia vanilla one capable of hydrolyzing CyA.

본 발명에서 제공하는 4-(γ-hydroxy)-CyA를 생산하는 방법은 (ⅰ) 사이토크롬 P450 수산화효소(CYP) 및 전자전이 효소를 코딩하는 각각의 폴리뉴클레오티드를 포함하는 발현벡터를 제작하는 단계; (ⅱ) 상기 제작된 발현벡터를 CyA를 수산화시킬 수 있는 숙주세포에 도입하여 형질전환체를 제작하는 단계; (ⅲ) 상기 형질전환체를 배양하여 배양물을 수득하는 단계; 및, (ⅳ) 상기 배양물로부터 4-(γ-hydroxy)-CyA를 회수하는 단계를 포함한다. The method for producing 4- (γ-hydroxy) -CyA provided by the present invention comprises the steps of: (i) preparing an expression vector containing each polynucleotide encoding cytochrome P450 hydroxylase (CYP) and an electron transfer enzyme ; (Ii) introducing the prepared expression vector into a host cell capable of hydrolyzing CyA to prepare a transformant; (Iii) culturing the transformant to obtain a culture; And (iv) recovering 4- (γ-hydroxy) -CyA from the culture.

이때, 상기 CYP는 특별히 이에 제한되지 않으나, 바람직하게는 세베키아 속 미생물 유래의 CYP가 될 수 있고, 보다 바람직하게는 세베키아 베니하나 유래의 CYP가 될 수 있으며, 가장 바람직하게는 세베키아 베니하나 유래의 CYP501, CYP502, CYP503, CYP504, CYP506, CYP008 및 이들의 조합이 될 수 있다. The CYP may be CYP derived from a microorganism of the genus Severobia, more preferably CYP derived from Sebecia bennyana, and most preferably, Derived CYP501, CYP502, CYP503, CYP504, CYP506, CYP008, and combinations thereof.

또한, 전자전이 효소는 특별히 이에 제한되지 않으나, P. putida 유래의 퓨티다레독신(putidaredoxin)과 퓨티다레독신 환원효소(putidaredoxin reductase), S. benihana 유래의 페레독신(ferredoxin)과 S. coelicolor A3(2) 유래의 페레독신 환원효소(ferredoxin reductase), E. coli 유래의 플라보독신(flavodoxin)과 플라보독신 환원효소(flavodoxin reductas) 등이 될 수 있다. In addition, the electron transfer enzyme is not limited to, but is not limited to, putidaredoxin and putidaredoxin reductase derived from P. putida , ferredoxin derived from S. benihana and S. coelicolor A3 2) ferredoxin reductase, flavoboxin from E. coli , and flavoboxin reductase.

바람직하게는, CYP로서 CYP506 및 CYP008을 포함하고 전자전이 효소로서 퓨티다레독신과 퓨티다레독신 환원효소를 포함하는 조합, CYP로서 CYP506 및 CYP008을 포함하고 전자전이 효소로서 페레독신과 페레독신 환원효소를 포함하는 조합, CYP로서 CYP506 및 CYP008을 포함하고 전자전이 효소로서 플라보독신과 플라보독신 환원효소를 포함하는 조합 등을 사용할 수 있으나, 특별히 이에 제한되지는 않는다.
Preferably, a combination comprising CYP506 and CYP008 as CYP and a combination of futidaradoxine and futidaradoxine reductase as electronic transfer enzymes, CYP506 and CYP008 as CYP, and ferretoxin and ferretoxin reductase as electronic transfer enzymes A combination including CYP506 and CYP008 as CYP, and a combination including Flavoxin and Flavobacterium Reducing Enzyme as electronic transfer enzymes, but the present invention is not limited thereto.

아울러, 상기 숙주세포는 특별히 이에 제한되지 않으나, CyA를 수산화시킬 수 있는 방선균류의 미생물이 될 수 있고, 보다 바람직하게는 CyA를 수산화시킬 수 있는 세베키아 속 미생물이 될 수 있으며, 가장 바람직하게는 CyA를 수산화시킬 수 있는 세베키아 베니하나가 될 수 있다. The host cell may be a microorganism of actinomycetes capable of hydrolyzing CyA, more preferably a microorganism of Sebecia which can hydrolyze CyA, and most preferably, It can be a Sebecia Benny one that can hydrolyze CyA.

상기 형질전환체의 배양은 특별히 이에 제한되지 않으나, 배지의 종류에 따라 액체배양, 고체배양 등의 방법으로 수행될 수 있고, 배지성분의 공급방법에 따라 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행됨이 바람직하고, 배양조건은 특별히 이에 제한되지 않으나, 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 적정 pH(pH 5 내지 9, 바람직하게는 pH 6 내지 8, 가장 바람직하게는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있으며, 배양온도는 20 내지 45℃, 바람직하게는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160시간 동안 배양함이 바람직하다. 상기 배양에 의하여 생산된 오르니틴은 배지중으로 분비되거나 세포내에 잔류할 수 있다.The culture of the transformant may be carried out by a method such as liquid culture or solid culture depending on the kind of medium, and may be carried out by a batch culture method, a continuous culture method, Culturing method and the like, and the culturing conditions are not particularly limited. However, the culture conditions are not particularly limited, but may be carried out by using a basic compound (e.g., sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g., phosphoric acid or sulfuric acid) 9, preferably pH 6 to 8, most preferably pH 6.8), and oxygen or an oxygen-containing gas mixture can be introduced into the culture to maintain aerobic conditions, and the incubation temperature can range from 20 to 45 ° C, Preferably 25 to < RTI ID = 0.0 > 40 C, < / RTI > and preferably about 10 to 160 hours. The ornithine produced by the above culture may be secreted into the medium or left in the cells.

아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알콜(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 질소 공급원으로는 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으며; 인 공급원으로서 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 기타 금속염(예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
In addition, the culture medium used may be a carbon source such as sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower seeds Alcohols such as glycerol and ethanol, and organic acids such as acetic acid, etc. may be used individually or in combination with one or more of the following: ; Examples of nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, juice, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, Ammonium nitrate) may be used individually or in combination; As the phosphorus source, potassium dihydrogenphosphate, dipotassium hydrogenphosphate and the corresponding sodium-containing salt may be used individually or in combination; Other metal salts such as magnesium sulfate or iron sulfate, amino acids and vitamins.

본 발명의 수산화된 사이클로스포린 A의 생산방법을 이용하면, 종래의 방법보다 4-(γ-hydroxy)-CyA를 높은 효율로 생산할 수 있으므로, 다양한 발모제의 개발 및 생산에 널리 활용될 수 있을 것이다.
Using the method of producing the hydroxylated cyclosporin A of the present invention, 4- (γ-hydroxy) -CyA can be produced at a higher efficiency than the conventional method, and thus it can be widely used for the development and production of various hair growth agents.

도 1은 4-(γ-hydroxy)-CyA를 생산하기 위한 발현벡터의 구성을 나타내는 개략도이다.
도 2는 S. benihana의 conjugation을 통한 형질 전환 방법을 나타내는 개략도이다.
도 3a는 발현벡터 pYJ1621에 포함된 목적하는 유전자(CYP506, CYP008, camAcamB)를 나타내는 개략도이고,
도 3b는 YJ405의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다.
도 3c는 YJ405의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다.
도 4a는 발현벡터 pYJ1623에 포함된 목적하는 유전자(CYP506, CYP008, FD506 및 SCO0681)를 나타내는 개략도이다.
도 4b는 YJ407의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다.
도 4c는 YJ407의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다.
도 5a는 발현벡터 pYJ1625에 포함된 목적하는 유전자(CYP506, CYP008, fldAfpr)를 나타내는 개략도이다.
도 5b는 YJ409의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다.
도 5c는 YJ409의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다.
도 6은 대조군의 균주에서 생산된 4-(γ-hydroxy)-CyA를 HPLC-ESI-MS로 분석한 결과이다.
도 7은 액체배양 방법으로 생산된 4-(γ-hydroxy)-CyA의 수산화율을 분석한 결과이다.
도 8은 고체배양 방법으로 생산된 4-(γ-hydroxy)-CyA의 수산화율을 분석한 결과이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing the construction of an expression vector for producing 4- (y-hydroxy) -CyA.
Figure 2 is a schematic diagram showing a transformation method through conjugation of S. benihana .
FIG. 3A is a schematic diagram showing the desired genes (CYP506, CYP008, camA and camB ) contained in the expression vector pYJ1621,
3B is an electrophoresis image showing the result of PCR amplification of genomic DNA of YJ405.
3C is an electrophoresis image showing the result of analysis of the genomic DNA of YJ405 by Southern blot hybridization method.
4A is a schematic diagram showing the desired genes (CYP506, CYP008, FD506 and SCO0681) contained in the expression vector pYJ1623.
4B is an electrophoresis image showing the result of PCR amplification of genomic DNA of YJ407.
4C is an electrophoresis image showing the result of analysis of the genomic DNA of YJ407 by Southern blot hybridization.
5A is a schematic diagram showing the desired genes (CYP506, CYP008, fldA and fpr ) contained in the expression vector pYJ1625.
5B is an electrophoresis image showing the result of PCR amplification of genomic DNA of YJ409.
5C is an electrophoresis image showing the result of analysis of genomic DNA of YJ409 by Southern blot hybridization method.
FIG. 6 shows the results of analysis of 4- (γ-hydroxy) -CyA produced in the strain of the control by HPLC-ESI-MS.
FIG. 7 shows the results of analysis of the water oxidation rate of 4- (γ-hydroxy) -CyA produced by the liquid culture method.
FIG. 8 shows the results of analyzing the water oxidation rate of 4- (γ-hydroxy) -CyA produced by the solid culture method.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

실시예Example 1: 사이클로스포린 A의 수산화를 매개하는  1: mediates the hydroxylation of cyclosporin A 신규한New CYPCYP 유전자의 선발 Selection of genes

사이클로스포린 A의 수산화율을 향상시키기 위하여, S. benihana(KTTC 9610)의 genome 분석을 통해 공지된 5종의 CYP 유전자 이외에 신규한 16종의 CYP 유전자를 선발하였다(표 1).
In order to improve the water oxidation rate of cyclosporin A, 16 novel CYP genes were selected in addition to five known CYP genes through the genome analysis of S. benihana (KTTC 9610) (Table 1).

S. benihana로부터 선발된 CYP 유전자CYP gene selected from S. benihana No.No. CYP nameCYP name DescriptionDescription 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
One
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CYP501
CYP502
CYP503
CYP504
CYP506
CYP001
CYP002
CYP003
CYP004
CYP005
CYP006
CYP007
CYP008
CYP009
CYP010
CYP011
CYP012
CYP013
CYP014
CYP015
CYP016
CYP501
CYP502
CYP503
CYP504
CYP506
CYP001
CYP002
CYP003
CYP004
CYP005
CYP006
CYP007
CYP008
CYP009
CYP010
CYP011
CYP012
CYP013
CYP014
CYP015
CYP016
Accession no. DI130758.1
Accession no. DI131915.1
Accession no. DI126285.1
Accession no. DI129591.1
Accession no. DI139785.1
Accession no. DI130758.1
Accession no. DI131915.1
Accession no. DI126285.1
Accession no. DI129591.1
Accession no. DI139785.1

상기 표 1에서 보듯이, 6번 내지 21번의 16종의 CYP 유전자를 선발하였고, 상기 선발된 유전자 중에서 사이클로스포린 A의 수산화를 매개할 수 있는 활성을 나타내는 단백질을 코딩하는 유전자를 선별하기 위하여, 상기 각 유전자를 결실시킨 변이주를 각각 제작하고, 이들 각각의 변이주로부터 발현되는 수산화된 사이클로스포린 A(4-(γ-hydroxy)-CyA)의 발현량을 측정한 다음, 상기 4-(γ-hydroxy)-CyA의 발현량이 야생형 균주의 것보다도 감소된 균주를 선발한 결과, CYP008 유전자만이 사이클로스포린 A의 수산화를 매개할 수 있는 활성을 나타내는 단백질을 발현시킬 수 있음을 확인하였다.
As shown in Table 1, sixteen kinds of CYP genes from 6 to 21 were selected. Among the selected genes, in order to select a gene encoding a protein capable of mediating the hydroxylation of cyclosporin A, (Γ-hydroxy) -CyA) expressed in the respective mutant strains was measured, and then the amount of the 4- (γ-hydroxy) -CyA Of the wild type strains were selected. As a result, it was confirmed that only the CYP008 gene can express a protein that is capable of mediating the hydroxylation of cyclosporin A.

실시예Example 2: 4-(γ- 2: 4- (γ- hydroxyhydroxy )-) - CyACyA 를 생산하기 위한 발현벡터의 제작Lt; RTI ID = 0.0 >

상기 사이클로스포린 A에 대한 수산화 활성을 나타내는 단백질을 코딩하는 것으로 확인된 CYP008 유전자와 이미 수산화 활성이 입증된 CYP506 유전자(NCBI accession No.: DI139785.1)를 포함하고, 전자전이 활성을 나타내는 단백질을 코딩하는 유전자를 포함하는 발현벡터를 제작하였다. 이때, 사용된 전자전이 활성을 나타내는 단백질을 코딩하는 유전자로는 3개의 그룹을 사용하였는데, 1번 그룹은 P. putida 유래의 putidaredoxin 유전자인 camB와 putidaredoxin reductase인 camA 유전자를 사용하였고, 2번 그룹은 S. benihana의 CYP506 유전자의 3'-downstream에 존재하는 ferredoxin 유전자인 FD506S. coelicolor A3(2) 유래의 ferredoxin reductase 유전자인 SCO0681을 사용하였으며, 3번 그룹은 E. coli 유래의 flavodoxin인 fldA 유전자와 ferredoxin (flavodoxin) reductase인 fpr 유전자를 사용하였다.A CYP008 gene which has been confirmed to encode a protein exhibiting a hydroxylation activity to cyclosporin A and a CYP506 gene (NCBI accession No. DI139785.1) which has already proven its hydroxylation activity and which encodes a protein exhibiting an electron transfer activity Expression vector containing the gene was prepared. At this time, the electron transfer to the gene encoding a protein showing the activity were used for the three groups, 1 group was used camA gene, putidaredoxin gene camB and putidaredoxin reductase of P. putida origin, is one group 2 using was used as the ferredoxin gene of FD506 and S. coelicolor A3 (2) derived from the ferredoxin reductase gene, SCO0681 present in the 3'-downstream of CYP506 genes in S. benihana, No. 3 group of flavodoxin fldA gene of E. coli-derived And fpr gene, a ferredoxin (flavodoxin) reductase, were used.

상기 유전자들은 RBS(ribosome binding site)와 start codon 부터 stop codon까지의 염기서열이 포함되도록 PCR(polymerase chain reaction)을 수행함으로써 확보하였다. PCR에는 Tag 중합효소 (Genotech)를 사용 하였고, 사용한 프라이머는 CYP008 유전자를 증폭시키기 위한 서열번호 3 및 4의 프라이머, CYP506 유전자를 증폭시키기 위한 서열번호 5 및 6의 프라이머, camA 유전자를 증폭시키기 위한 서열번호 7 및 8의 프라이머, camB 유전자를 증폭시키기 위한 서열번호 9 및 10의 프라이머, FD506 유전자를 증폭시키기 위한 서열번호 11 및 12의 프라이머, SCO0681 유전자를 증폭시키기 위한 서열번호 13 및 14의 프라이머, fldA 유전자를 증폭시키기 위한 서열번호 15 및 16의 프라이머, 및 fpr 유전자를 증폭시키기 위한 서열번호 17 및 18의 프라이머를 사용하였고, 상기 각 프라이머의 염기서열은 표 2와 같다. PCR 증폭을 통해 얻은 각각의 유전자 단편은 EcoRI (또는 PacI)과 XbaI의 제한효소를 처리하여 pLitmus28 벡터에 클로닝을 하였다.
These genes were obtained by performing PCR (polymerase chain reaction) so as to include the RBS (ribosome binding site) and the start codon to the stop codon. The PCR primers used were the primers of SEQ ID NOs: 3 and 4 for amplifying the CYP008 gene, the primers of SEQ ID NOS: 5 and 6 for amplifying the CYP506 gene, the sequence for amplifying the camA gene No. 7 and 8 of the primer, SEQ ID NO: for amplifying camB genes 9 and 10 primers, SEQ ID NO: for amplifying FD506 genes 11 and 12 primers, SEQ ID NO: 13 and 14 primers for amplifying SCO0681 gene, fldA The primers of SEQ ID NOs: 15 and 16 for amplifying the genes and the primers of SEQ ID NOS: 17 and 18 for amplifying the fpr gene were used, and the nucleotide sequences of the primers are shown in Table 2. Each gene fragment obtained by PCR amplification was cloned into pLitmus28 vector by treatment with restriction enzymes EcoRI (or PacI) and XbaI.

각 유전자의 PCR용 프라이머 서열The PCR primer sequence of each gene 유전자gene 프라이머 종류Type of primer 염기서열(5'-3')The base sequence (5'-3 ') 서열번호SEQ ID NO: CYP008CYP008 정방향Forward TACGTAGAATTCACTAGTCCTCGCGCTGGTTTCATATACGTAGAATTCACTAGTCCTCGCGCTGGTTTCATA 33 역방향Reverse TCTAGAGGTTCAGCCGAGGGTGACTCTAGAGGTTCAGCCGAGGGTGAC 44 CYP506CYP506 정방향Forward TACGTAGAATTCACTAGTAGCGGAACGCGTAATATCTACGTAGAATTCACTAGTAGCGGAACGCGTAATATC 55 역방향Reverse TCTAGAATCCACTTCGAGTTCCATTCTAGAATCCACTTCGAGTTCCAT 66 camAcamA 정방향Forward TTAATTAAACTAGTATCGATACACATGGGAGTGCGTGCTAAGTGTTAATTAAACTAGTATCGATACACATGGGAGTGCGTGCTAAGTG 77 역방향Reverse TCTAGATTCAGGCACTACTCAGTTCAGCTTTCTAGATTCAGGCACTACTCAGTTCAGCTT 88 camBcamB 정방향Forward TTAATTAAACTAGTCATAGCGTGTGAGGATAAACAGATTTAATTAAACTAGTCATAGCGTGTGAGGATAAACAGAT 99 역방향Reverse TCTAGATTTACCATTGCCTATCGGGAACATCTAGATTTACCATTGCCTATCGGGAACA 1010 FD506FD506 정방향Forward GAATTCTACGTAACTAGTATGGAACTCGAAGTGGATGAATTCTACGTAACTAGTATGGAACTCGAAGTGGAT 1111 역방향Reverse TCTAGATCATGAAGGGTCCGCAGGCGATCTAGATCATGAAGGGTCCGCAGGCGA 1212 SCO0681SCO0681 정방향Forward GAATTCTACGTAACTAGTGATCTGTCACCGCTCGAAGAATTCTACGTAACTAGTGATCTGTCACCGCTCGAA 1313 역방향Reverse TCTAGATCAGGCGCCGCTCTCGCGGAGTCTAGATCAGGCGCCGCTCTCGCGGAG 1414 fldAfldA 정방향Forward GAATTCTACGTAACTAGTTTCAATAAGTTTCAAGAGGAATTCTACGTAACTAGTTTCAATAAGTTTCAAGAG 1515 역방향Reverse TCTAGATCAGGCATTGAGAATTTCGTC TCTAGATCAGGCATTGAGAATTTCGTC 1616 fprfpr 정방향Forward GAATTCTACGTAACTAGTAAGGCAAGTCAATCAAAAGAATTCTACGTAACTAGTAAGGCAAGTCAATCAAAA 1717 역방향Reverse TCTAGATTACCAGTAATGCTCCGCTGTTCTAGATTACCAGTAATGCTCCGCTGT 1818

상기 2개의 수산화 활성을 나타내는 단백질을 코딩하는 유전자와 3그룹의 전자전이 활성을 나타내는 단백질을 코딩하는 유전자를 조합하여 포함하는 각각의 발현벡터를 제작하였다(도 1). 도 1은 4-(γ-hydroxy)-CyA를 생산하기 위한 발현벡터의 구성을 나타내는 개략도이다. 도 1에서 보듯이, 각각 3개의 발현벡터에서 프로모터로서는 ermE를 사용하고, 수산화 활성을 나타내는 단백질을 코딩하는 유전자로는 CYP008 유전자와 CYP506 유전자를 순차적으로 연결한 것을 공통적으로 사용하였으며, 전자전이 활성을 나타내는 단백질을 코딩하는 각 그룹의 유전자와 함께 pLitmus28 벡터에서 조합한 뒤 이를 integration 벡터인 pSET152로 클로닝하여 사이클로스포린 A의 수산화를 위한 발현벡터를 제작하였다. 이때, 1번 그룹을 포함하는 발현벡터를 "pYJ1621"라 명명하고, 2번 그룹을 포함하는 발현벡터를 "pYJ1623"라 명명하였으며, 3번 그룹을 포함하는 발현벡터를 "pYJ1625"라 명명하였다. Each expression vector containing the gene encoding the protein exhibiting the two hydroxyl activities and the gene encoding the protein exhibiting the three groups of the electronic transition activity was prepared (FIG. 1). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing the construction of an expression vector for producing 4- (y-hydroxy) -CyA. As shown in Fig. 1, ermE was used as a promoter in three expression vectors, and CYP008 gene and CYP506 gene were sequentially linked as a gene encoding a protein exhibiting hydroxylation activity, Were synthesized in the pLitmus28 vector together with the genes of each group coding for the protein representing the protein and then cloned with the integration vector pSET152 to prepare an expression vector for the hydroxylation of cyclosporin A. At this time, the expression vector containing the first group was named "pYJ1621", the expression vector containing the second group was named "pYJ1623", and the expression vector containing the third group was named "pYJ1625".

아울러, 음성대조군으로서 상기 2개의 수산화 활성을 나타내는 단백질을 코딩하는 유전자만을 포함하고 전자전이 활성을 나타내는 단백질을 코딩하는 유전자를 포함하지 않는 발현벡터를 제작하고, 이를 "pYJ1627"이라 명명하였다.
As a negative control, an expression vector containing only the gene coding for the protein exhibiting the above two hydroxyl activities and not containing the gene coding for the protein exhibiting the electron transfer activity was prepared and named "pYJ1627".

실시예Example 3: 4-(γ- 3: 4- (γ- hydroxyhydroxy )-) - CyACyA 를 생산하기 위한 형질전환체의 제작Production of Transformants to Produce

먼저, 상기 실시예 2에서 제작된 각각의 발현벡터를 E. coli ET12567/pUZ8002에 도입하여 각각의 형질전환체를 수득하고, 이들 형질전환체를 LB 액체배지에 아프라마이신 25㎍/㎖을 넣고 37℃에서 12시간 배양한 후, 1㎖의 배양액을 50㎖의 LB 액체배지에 옮기고, 37℃에서 광학 밀도 (optical density, OD600)가 0.4-0.5가 될 때까지 배양하였다. 배양액을 원심분리한 후, 항생제가 없는 LB 액체배지로 두 번 세척을 하고 500㎕의 LB로 농축을 하였다. First, each of the expression vectors prepared in Example 2 was introduced into E. coli ET12567 / pUZ8002 to obtain transformants, and 25 μg / ml of apramycin was added to the LB liquid medium After culturing at 37 占 폚 for 12 hours, 1 ml of the culture was transferred to 50 ml of LB liquid medium and cultured at 37 占 폚 until the optical density (OD600) became 0.4-0.5. The culture was centrifuged, washed twice with LB liquid medium without antibiotics, and concentrated with 500 μl of LB.

한편, S. benihana spore 80㎕에 2xTY (trptone 0.16%, yeast extract 0.1%, NaCl 0.05%) 500㎕를 혼합한 뒤 원심분리하고 재현탁 한 후 50℃에서 10분 동안 열충격 (heat-shock)을 가하여, 균사액을 수득하였다.After mixing 500 μl of 2xTY (0.16% trptone, 0.1% yeast extract, 0.05% NaCl) in 80 μl of S. benihana spore, the mixture was centrifuged, resuspended, and heat shocked at 50 ° C for 10 minutes To obtain a mycelial liquid.

상기 각각의 E. coli 농축액 500㎕와 균사액 500㎕를 혼합하고, 이들 각각의 혼합물을 mISP4 고체배지(Difco ISP4 medium 3.7%, yeast extract 0.05% and tryptone 0.15%)에 도포한 다음, 30℃에서 18-20시간 동안 배양하였다. 상기 배양된 고체배지에 30㎕/㎖의 날리딕신산(nalidixic acid)과 30㎕/㎖의 아프라마이신을 도말하고, 15-20일 동안 추가로 배양한 다음, 항생제 저항성을 나타내는 각각의 colony를 선별하였다(도 2). 도 2는 S. benihana의 conjugation을 통한 형질 전환 방법을 나타내는 개략도이다.500 μl of each of the above E. coli concentrates and 500 μl of mycelia was mixed and each of the mixtures was applied to mISP4 solid medium (Difco ISP4 medium 3.7%, yeast extract 0.05% and tryptone 0.15%), And cultured for 18-20 hours. 30 μl / ml of nalidixic acid and 30 μl / ml of apramycin were plated on the cultured solid medium, further cultured for 15-20 days, and then each colony showing antibiotic resistance (Fig. 2). Figure 2 is a schematic diagram showing a transformation method through conjugation of S. benihana .

상기 발현벡터 pYJ1621가 도입된 형질전환체는 "YJ405"라 명명하고, 상기 발현벡터 pYJ1623이 도입된 형질전환체는 "YJ407"이라 명명하였으며, 상기 발현벡터 pYJ1625가 도입된 형질전환체는 "YJ409"라 명명하고, 음성대조군인 상기 발현벡터 pYJ1627이 도입된 형질전환체는 "YJ410"이라 명명하였다.
The transformant into which the expression vector pYJ1621 was introduced was named "YJ405", the transformant into which the expression vector pYJ1623 was introduced was named "YJ407", and the transformant into which the expression vector pYJ1625 was introduced was named "YJ409" , And the transformant to which the expression vector pYJ1627, which is a negative control, was introduced was named "YJ410 ".

실시예Example 4: 1번 그룹이 도입된 형질전환체의 검정 4: Assay of transformants into which group 1 was introduced

상기 방법으로 제작된 각각의 형질전환체 중에서, 1번 그룹을 포함하는 발현벡터 pYJ1621가 도입된 형질전환체 YJ405에 목적하는 유전자(CYP506, CYP008, camAcamB)가 정상적으로 도입되었는지의 여부를 PCR 방법과 southern blot hybridization 방법으로 각각 검정하였다.
Whether or not the desired gene (CYP506, CYP008, camA and camB ) was normally introduced into the transformant YJ405 into which the expression vector pYJ1621 containing the group 1 was introduced among the transformants prepared by the above method was determined by the PCR method And southern blot hybridization, respectively.

먼저, PCR 방법의 경우, YJ405의 genomic DNA를 주형으로 하고 상기 표 5에 개시된 각각의 프라이머를 이용하여 PCR을 수행하여 PCR 절편을 수득하고, 상기 수득한 PCR 절편을 전기영동하였다(도 3a 및 3b). 도 3a는 발현벡터 pYJ1621에 포함된 목적하는 유전자(CYP506, CYP008, camAcamB)를 나타내는 개략도이고, 도 3b는 YJ405의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다. 도 3b에서 보듯이, 상기 YJ405의 genomic DNA에는 1.3kb의 CYP8 유전자, 1.3kb의 CYP506 유전자, 1.3kb의 camA 유전자 및 0.3kb의 camB 유전자가 포함되어 있음을 확인하였다.
First, in the case of the PCR method, PCR was performed using the primers of YJ405 as the template and the primers shown in Table 5 to obtain PCR fragments, and the obtained PCR fragments were electrophoresed (FIGS. 3A and 3B ). FIG. 3A is a schematic diagram showing a target gene (CYP506, CYP008, camA and camB ) contained in the expression vector pYJ1621, and FIG. 3B is an electrophoresis image showing the result of PCR amplification of the genomic DNA of YJ405. As shown in Figure 3b, there genomic DNA of the YJ405 was confirmed that contains the gene of CYP8 1.3kb, 1.3kb of CYP506 gene, camA camB gene and genes of the 0.3kb 1.3kb.

다음으로, southern blot hybridization 방법의 경우, YJ405의 genomic DNA를 대상으로 CYP008의 유전자 및 CYP506 유전자인 약 2.8kb의 유전자 영역을 검출할 수 있는 프로브 1(서열번호 19)과 키트(DIG labeling과 detection kit, Roche)를 사용한 southern blot hybridization 방법을 수행하였다(도 3c). 도 3c는 YJ405의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다. 도 3c에서 보듯이, probe로 사용한 DNA 단편의 크기인 2.8kb의 band가 확인되어 재조합 균주 YJ405 내에 수산화 유전자 및 전자전이 유전자가 삽입되었음을 확인할 수 있었다.
Next, in case of southern blot hybridization, the genomic DNA of YJ405 was used as a probe for detection of CYP008 gene and CYP506 gene region of about 2.8 kb (SEQ ID NO: 19) and kit (DIG labeling and detection kit , Roche) (Figure 3c). 3C is an electrophoresis image showing the result of analysis of the genomic DNA of YJ405 by Southern blot hybridization method. As shown in FIG. 3C, a band of 2.8 kb, which is the size of the DNA fragment used as the probe, was confirmed and it was confirmed that the hydroxylated gene and the electron transfer gene were inserted into the recombinant strain YJ405.

실시예Example 5: 2번 그룹이 도입된 형질전환체의 검정 5: Assay of transformants into which group 2 was introduced

상기 방법으로 제작된 각각의 형질전환체 중에서, 2번 그룹을 포함하는 발현벡터 pYJ1623이 도입된 형질전환체 YJ407에 목적하는 유전자(CYP506, CYP008, FD506SCO0681)가 정상적으로 도입되었는지의 여부를 PCR 방법과 southern blot hybridization 방법으로 각각 검정하였다.
Whether or not the desired genes (CYP506, CYP008, FD506 and SCO0681 ) were normally introduced into the transformant YJ407 into which the expression vector pYJ1623 containing the second group among the transformants prepared by the above method was introduced was determined by the PCR method And southern blot hybridization, respectively.

먼저, PCR 방법의 경우, YJ407의 genomic DNA를 주형으로 하고 상기 표 5에 개시된 각각의 프라이머를 이용하여 PCR을 수행하여 PCR 절편을 수득하고, 상기 수득한 PCR 절편을 전기영동하였다(도 4a 및 4b). 도 4a는 발현벡터 pYJ1623에 포함된 목적하는 유전자(CYP506, CYP008, FD506SCO0681)를 나타내는 개략도이고, 도 4b는 YJ407의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다. 도 4b에서 보듯이, 상기 YJ407의 genomic DNA에는 1.3kb의 CYP8 유전자, 1.3kb의 CYP506 유전자, 0.2kb의 FD506 유전자 및 1.4kb의 SCO0681 유전자가 포함되어 있음을 확인하였다.
First, in the case of the PCR method, PCR was performed using the primers of YJ407 as the template and the primers shown in Table 5 to obtain PCR fragments, and the obtained PCR fragments were electrophoresed (FIGS. 4A and 4B ). FIG. 4A is a schematic diagram showing the target genes (CYP506, CYP008, FD506 and SCO0681 ) contained in the expression vector pYJ1623, and FIG. 4B is an electrophoresis image showing the result of PCR amplification of the genomic DNA of YJ407. As shown in FIG. 4b, is genomic DNA of the YJ407 was confirmed that contains the gene of CYP8 1.3kb, 1.3kb of CYP506 gene, FD506 SCO0681 gene and genes of the 1.4kb 0.2kb.

다음으로, southern blot hybridization 방법의 경우, YJ407의 genomic DNA를 대상으로 CYP008 유전자의 일부(제한효소 AscI 절단부위 이후), CYP506 유전자 및 FD506 유전자의 일부(제한효소 AscI 절단부위 이전)인 약 2.5kb의 유전자 영역을 검출할 수 있는 프로브 2(서열번호 20)와 키트(DIG labeling과 detection kit, Roche)를 사용한 southern blot hybridization 방법을 수행하였다(도 4c). 도 4c는 YJ407의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다. 도 4c에서 보듯이, probe로 사용한 DNA 단편의 크기인 2.5kb의 band가 확인되어 재조합 균주 YJ407 내에 수산화 유전자 및 전자전이 유전자가 삽입되었음을 확인할 수 있었다.
Next, in the case of southern blot hybridization, genomic DNA of YJ407 was amplified by PCR using a part of CYP008 gene (after restriction enzyme AscI cleavage site), CYP506 gene and a part of FD506 gene (transferring restriction enzyme AscI fragment) of about 2.5 kb Southern blot hybridization using a probe 2 (SEQ ID NO: 20) capable of detecting the gene region and a kit (DIG labeling and detection kit, Roche) was performed (FIG. 4C is an electrophoresis image showing the result of analysis of the genomic DNA of YJ407 by Southern blot hybridization. As shown in FIG. 4C, a band of 2.5 kb, which is the size of the DNA fragment used as the probe, was confirmed and it was confirmed that the hydroxylated gene and the electron transfer gene were inserted into the recombinant strain YJ407.

실시예Example 6: 3번 그룹이 도입된 형질전환체의 검정 6: Assay of transformants in which group 3 was introduced

상기 방법으로 제작된 각각의 형질전환체 중에서, 3번 그룹을 포함하는 발현벡터 pYJ1625가 도입된 형질전환체 YJ409에 목적하는 유전자(CYP506, CYP008, fldAfpr)가 정상적으로 도입되었는지의 여부를 PCR 방법과 southern blot hybridization 방법으로 각각 검정하였다.
Whether or not the desired gene (CYP506, CYP008, fldA and fpr ) was normally introduced into the transformant YJ409 into which the expression vector pYJ1625 containing the group 3 was introduced among the transformants prepared by the above method was determined by PCR And southern blot hybridization, respectively.

먼저, PCR 방법의 경우, YJ409의 genomic DNA를 주형으로 하고 상기 표 5에 개시된 각각의 프라이머를 이용하여 PCR을 수행하여 PCR 절편을 수득하고, 상기 수득한 PCR 절편을 전기영동하였다(도 5a 및 5b). 도 5a는 발현벡터 pYJ1625에 포함된 목적하는 유전자(CYP506, CYP008, fldAfpr)를 나타내는 개략도이고, 도 5b는 YJ409의 genomic DNA를 PCR 증폭시킨 결과를 나타내는 전기영동사진이다. 도 5b에서 보듯이, 상기 YJ409의 genomic DNA에는 1.3kb의 CYP8 유전자, 1.3kb의 CYP506 유전자, 0.5kb의 fldA 유전자 및 0.7kb의 fpr 유전자가 포함되어 있음을 확인하였다.
First, in the case of the PCR method, the PCR fragment was obtained by using the genomic DNA of YJ409 as a template and each of the primers described in Table 5 above, and the obtained PCR fragment was subjected to electrophoresis (FIGS. 5A and 5B ). FIG. 5A is a schematic diagram showing the target genes (CYP506, CYP008, fldA and fpr ) contained in the expression vector pYJ1625, and FIG. 5B is an electrophoresis image showing the result of PCR amplification of the genomic DNA of YJ409. As shown in FIG. 5b, is genomic DNA of the YJ409 was confirmed that contains the gene of CYP8 1.3kb, 1.3kb of CYP506 gene, fldA gene and the fpr gene of 0.7kb of 0.5kb.

다음으로, southern blot hybridization 방법의 경우, YJ409의 genomic DNA를 대상으로 CYP506 유전자의 일부(제한효소 NruI 절단부위 이후) 및 fldA 유전자의 일부(제한효소 SspI 절단부위 이전)인 약 1.9kb의 유전자 영역을 검출할 수 있는 프로브 3(서열번호 21)과 키트(DIG labeling과 detection kit, Roche)를 사용한 southern blot hybridization 방법을 수행하였다(도 5c). 도 5c는 YJ409의 genomic DNA를 southern blot hybridization 방법으로 분석한 결과를 나타내는 전기영동사진이다. 도 5c에서 보듯이, probe로 사용한 DNA 단편의 크기인 1.9kb의 band가 확인되어 재조합 균주 YJ409 내에 수산화 유전자 및 전자전이 유전자가 삽입되었음을 확인할 수 있었다.
Next, in the case of southern blot hybridization, the genomic DNA of YJ409 was used to amplify a gene region of about 1.9 kb, which is part of the CYP506 gene (after restriction enzyme NruI cleavage site) and part of the fldA gene (before restriction enzyme SspI cleavage site) Southern blot hybridization using probe 3 (SEQ ID NO: 21) and kit (DIG labeling and detection kit, Roche) was performed (FIG. 5C). 5C is an electrophoresis image showing the result of analysis of genomic DNA of YJ409 by Southern blot hybridization method. As shown in FIG. 5C, a band of 1.9 kb, which is the size of the DNA fragment used as the probe, was confirmed and it was confirmed that the hydroxylated gene and the electron transfer gene were inserted into the recombinant strain YJ409.

실시예Example 7: 액체배양 방법을 이용한 4-(γ- 7: Production of 4- (γ- hydroxyhydroxy )-) - CyACyA 의 생산Production of

상기 제작된 각 형질전환체를 액체배양 방법으로 배양하여 4-(γ-hydroxy)-CyA를 생산하고, 생산된 4-(γ-hydroxy)-CyA의 함량을 측정하였다.
Each of the transformants prepared above was cultured by a liquid culture method to produce 4- (γ-hydroxy) -CyA and the content of 4- (γ-hydroxy) -CyA produced was measured.

구체적으로, 상기 제작된 각 형질전환체를 아프라마이신 25㎍/㎖이 포함된 5㎖의 GSMY 액체배지(glucose 0.7%, soluble starch 0.75%, yeast extract 0.45%, malt extract 0.5%, calcium carbonate 0.005%)에 접종하고, 30℃에서 230rpm으로 진탕시키면서 3일동안 배양하였으며, 상기 각 배양물을 원심분리하여 각각의 균체를 수득하였다. 상기 수득한 각각의 균체 50㎎을 아프라마이신 25㎍/㎖이 포함된 50㎖의 GSMY 액체배지에 접종하고, 30℃에서 230rpm으로 진탕시키면서 2일동안 배양하였으며, 상기 각각의 배양물에 사이클로스포린 A 1.25㎎을 첨가한 다음, 동일한 조건하에서 3일동안 추가로 배양하였다. 배양이 종료되면, 배양물을 원심분리하여 각각의 균체를 수득하고, 이에 배양물 부피의 2배 부피의 에틸아세테이트를 가하여 12시간 동안 방치시켰으며, 이로부터 각각의 에틸아세테이트 층을 수득하였다. 상기 수득한 에틸아세테이트 층으로부터 용매를 제거하여 각각의 시료를 수득하고, 이를 200㎕의 메탄올에 용해시킨 것을 HPLC 및 HPLC-ESI-MS 분석용 시료로서 사용하였다. 이때, 대조군으로는 야생형 균주를 사용하였다.
Specifically, each of the transformants prepared above was inoculated into 5 ml of GSMY liquid medium (glucose 0.7%, soluble starch 0.75%, yeast extract 0.45%, malt extract 0.5%, calcium carbonate 0.005 %). The cells were cultured for 3 days while shaking at 30 DEG C at 230 rpm. Each of the cultures was centrifuged to obtain individual cells. 50 mg of each of the obtained cells was inoculated into 50 mL of GSMY liquid medium containing 25 mu g / mL of apramycin and cultured for 2 days while shaking at 30 DEG C at 230 rpm. To each of the cultures, cyclosporin A 1.25 mg was added and then further cultured for 3 days under the same conditions. When the cultivation was completed, the cultures were centrifuged to obtain respective microbial cells, and the microbial cells were allowed to stand for 12 hours by adding twice the volume of the culture volume of ethyl acetate, from which the respective ethyl acetate layers were obtained. The solvent was removed from the obtained ethyl acetate layer to obtain each sample, which was dissolved in 200 μl of methanol and used as a sample for HPLC and HPLC-ESI-MS analysis. At this time, a wild type strain was used as a control group.

HPLC(high performance liquid chromatography) 분석은, 기기(waters (Milford, MA) model 2690 separation module), 컬럼(Phenomenex 사의 Gemini 5u C18 110A, 250x4.60㎜, 5micron), 흡수 파장(210㎚), 펌프유속(1.00㎖/min), 펌프압력(50.0psi), 컬럼의 온도(50℃), 용매 A(25%의 메탄올), 용매 B(100%의 아세토나이트릴) 및 분석조건(0~4분 동안은 용매 B 40%, 5~20분 동안은 용매 B 61%, 21~40분 동안은 용매 B 100%, 45~60분 까지는 용매 B 40%)을 사용하여 수행하였다.
The HPLC (high performance liquid chromatography) analysis was performed using a device (waters (Milford, MA) model 2690 separation module), columns (Gemini 5u C18 110A, 250x4.60mm, 5micron from Phenomenex), absorption wavelength (100 mL / min), pump pressure (50.0 psi), column temperature (50 DEG C), solvent A (25% methanol), solvent B (100% acetonitrile) Solvent B 40% for 5-20 minutes, solvent B 100% for 21-40 minutes, solvent B 40% for 45-60 minutes).

HPLC-ESI-MS(HPLC-Electro Spray Ionization-mass spectrometry) 분석은, 기기(waters (Milford, MA) model 2690 separation module), 컬럼(XTetra® MS C18 3.5㎛, 2.1x50㎜), 용매 A(5mM 암모늄아세테이트 및 0.05% 아세트산 수용액), 용매 B(5mM 암모늄아세테이트 및 0.05% 아세트산이 용해된 80% 아세토나이트릴), 유속(0.22㎖/min), 분석 조건(0~40분 동안 용매 A 40%, 41~47분 동안 용매 A 5%, 48~60분까지는 용매 A 40%)을 사용하여 수행하였다. 상기 컬럼을 통과한 시료를 micromass((Baverly, MA) Quattro LC triple-tandem quadrupole mass spectrometer)를 통과시키고, 양이온 모드의 검출기에 적용하였다(도 6). 도 6은 대조군의 균주에서 생산된 4-(γ-hydroxy)-CyA를 HPLC-ESI-MS로 분석한 결과를 나타내는데, A는 HPLC-ESI-MS 크로마토그램을 나타내고, B는 ESI-MS 스펙트라를 나타낸다. 도 6에서 보듯이, 대조군인 S. benihana 야생형 균주에 의해 4-(γ-hydroxy)-CyA)가 생산될 뿐만 아니라, 수산화된 유도체 4번 methyl leucine 과 6번 methyl leucine 이 함께 수산화된 유도체(Di-4,6-(γ-hydroxy)-CyA)도 매우 소량으로 함께 생산됨을 확인하였다.
HPLC-Electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis was carried out using a device (waters (Milford, MA) model 2690 separation module), column (XTetra? MS C18 3.5 占 퐉, 2.1x50 mm) (40% solvent A for 0-40 min.), Solvent B (80% acetonitrile in which 5 mM ammonium acetate and 0.05% acetic acid were dissolved), flow rate (0.22 ml / min) 5% Solvent A for 41-47 minutes and 40% Solvent A for 48-60 minutes). The sample passed through the column was passed through a micromass (Baverly, MA) Quattro LC triple-tandem quadrupole mass spectrometer and applied to a cation mode detector (FIG. 6). FIG. 6 shows the results of HPLC-ESI-MS analysis of 4- (γ-hydroxy) -CyA produced in the control strain, wherein A represents HPLC-ESI-MS chromatogram and B represents ESI-MS spectra . As shown in FIG. 6, not only the 4- (γ-hydroxy) -CyA is produced by the S. benihana wild-type strain as a control group, but also the derivatives in which hydroxylated derivatives 4 methyl leucine and 6 methyl leucine are hydroxylated together -4,6- (γ-hydroxy) -CyA) were also produced in very small amounts.

상술한 바와 같이, HPLC 및 HPLC-ESI-MS 분석을 수행한 결과는 도 7에 나타내었다. 도 7은 액체배양 방법으로 생산된 4-(γ-hydroxy)-CyA의 수산화율을 분석한 결과로서, A는 4-(γ-hydroxy)-CyA의 HPLC 크로마토그램을 나타내고, B는 4-(γ-hydroxy)-CyA의 생산량과 수산화율을 각 형질전환체별로 비교한 결과를 나타내는 그래프이며, a는 4-(γ-hydroxy)-CyA를 나타내고, b는 CyA를 나타낸다.As described above, the results of HPLC and HPLC-ESI-MS analysis are shown in FIG. FIG. 7 shows the results of analysis of the water oxidation rate of 4- (γ-hydroxy) -CyA produced by a liquid culture method, wherein A represents an HPLC chromatogram of 4- (γ-hydroxy) -CyA and B represents 4- (γ-hydroxy) -CyA and a water oxidation rate of each transformant, wherein a represents 4- (γ-hydroxy) -CyA and b represents CyA.

상기 도 7에서 보듯이, 4-(γ-hydroxy)-CyA의 생산량을 비교하면, 대조군에서는 0.55㎎(생전환률 44%)이 생산되었고, 음성대조군인 형질전환체 YJ410에서는 0.56㎎(생전환률 45%)이 생산되었으며, 형질전환체 YJ405에서는 0.63㎎(생전환률 50%)이 생산되었으며, 형질전환체 YJ407에서는 0.61㎎(생전환률 49%)이 생산되었고, 형질전환체 YJ409에서는 0.84㎎(생전환률 67%)이 생산됨을 확인하였다. As shown in FIG. 7, when the production amount of 4- (γ-hydroxy) -CyA was compared, 0.55 mg (44%) of the production was produced in the control group and 0.56 mg 0.63 mg (50%) was produced in the transformant YJ405, 0.61 mg (49%) in the transformant YJ407, and 0.84 mg in the transformant YJ409 67%) were produced.

이처럼, 대조군과 수산화 효소만이 과발현되는 음성대조군(YJ410)을 비교하면 4-(γ-hydroxy)-CyA의 생산량에 별다른 차이를 나타내지 않음에 반하여, 전자전이 효소가 추가로 과발현되는 각 형질전환체(YJ405, YJ407 및 YJ409)는 1.1 내지 1.5배로 향상된 생산량으로 4-(γ-hydroxy)-CyA를 생산함을 확인하였다.As compared with the negative control (YJ410) in which only the control and the hydroxylase were overexpressed, the yield of 4- (γ-hydroxy) -CyA was not significantly different, (YJ405, YJ407 and YJ409) produced 4- (γ-hydroxy) -CyA with an improved yield of 1.1 to 1.5 times.

따라서, 4-(γ-hydroxy)-CyA의 생산량을 증대시키기 위하여는 전자전이 효소를 단독으로 또는 수산화 효소와 함께 과발현시켜야 함을 알 수 있었다.
Therefore, in order to increase the production of 4- (γ-hydroxy) -CyA, it was found that the electron transfer enzyme should be overexpressed alone or together with hydroxylase.

실시예Example 8: 고체배양 방법을 이용한 4-(γ- 8: Production of 4- (γ- hydroxyhydroxy )-) - CyACyA 의 생산Production of

상기 제작된 각 형질전환체를 고체배양 방법으로 배양하여 4-(γ-hydroxy)-CyA를 생산하고, 생산된 4-(γ-hydroxy)-CyA의 함량을 측정하였다.
Each of the transformants prepared above was cultured by a solid culture method to produce 4- (γ-hydroxy) -CyA and the content of 4- (γ-hydroxy) -CyA produced was measured.

구체적으로, 상기 제작된 각 형질전환체를 아프라마이신 25㎍/㎖이 포함된 5㎖의 GSMY 액체배지에 접종하고, 30℃에서 230rpm으로 진탕시키면서 3일동안 배양하였으며, 상기 각 배양물 20㎕을 1.25㎎의 사이클로스포린 A가 첨가된 GSMY 고체배지 50㎖에 도말하여 30℃에서 5일간 배양하였다. 배양이 종료되면, 상기 고체배지를 0.5-0.8㎜의 크기로 절단하고, 이에 메탄올을 가하여 추출한 다음, 진공건조기에 적용하여 농축하였다. 상기 메탄올 농축물에 혼합용매(물:에틸아세테이트=1:3, v/v)를 가하여 12시간 동안 방치시켰으며, 이로부터 각각의 에틸아세테이트 층을 수득하였다. 상기 수득한 에틸아세테이트 층으로부터 용매를 제거하여 각각의 시료를 수득하고, 이를 200㎕의 메탄올에 용해시킨 것을 HPLC 및 HPLC-ESI-MS 분석용 시료로서 사용하였다. 이때, 대조군으로는 야생형 균주를 사용하였다.
Specifically, each of the transformants prepared above was inoculated into 5 ml of GSMY liquid medium containing 25 占 퐂 / ml of apramycin, cultured for 3 days while shaking at 30 占 폚 at 230 rpm, and 20 占 퐇 of each of the cultures Was plated in 50 ml of GSMY solid medium supplemented with 1.25 mg of cyclosporin A and incubated at 30 ° C for 5 days. When the culture was completed, the solid medium was cut into a size of 0.5-0.8 mm, and methanol was added to extract it, followed by vacuum drying and concentration. To the methanol concentrate was added a mixed solvent (water: ethyl acetate = 1: 3, v / v) for 12 hours, from which the respective ethyl acetate layers were obtained. The solvent was removed from the obtained ethyl acetate layer to obtain each sample, which was dissolved in 200 μl of methanol and used as a sample for HPLC and HPLC-ESI-MS analysis. At this time, a wild type strain was used as a control group.

상기 시료를 사용한 HPLC 및 HPLC-ESI-MS 분석을 상기 실시예 7과 동일한 방법으로 수행하고, 그 결과는 도 8에 나타내었다. HPLC and HPLC-ESI-MS analysis using the sample were carried out in the same manner as in Example 7, and the results are shown in FIG.

도 8은 고체배양 방법으로 생산된 4-(γ-hydroxy)-CyA의 수산화율을 분석한 결과로서, A는 4-(γ-hydroxy)-CyA의 HPLC 크로마토그램을 나타내고, B는 4-(γ-hydroxy)-CyA의 생산량과 수산화율을 각 형질전환체별로 비교한 결과를 나타내는 그래프이며, a는 4-(γ-hydroxy)-CyA를 나타내고, b는 CyA를 나타낸다.FIG. 8 shows the results of analysis of the water oxidation rate of 4- (γ-hydroxy) -CyA produced by the solid culture method, wherein A represents HPLC chromatogram of 4- (γ-hydroxy) -CyA and B represents 4- (γ-hydroxy) -CyA and a water oxidation rate of each transformant, wherein a represents 4- (γ-hydroxy) -CyA and b represents CyA.

상기 도 8에서 보듯이, 4-(γ-hydroxy)-CyA의 생산량을 비교하면, 대조군에서는 0.55㎎(생전환률 44%)이 생산되었고, 음성대조군인 형질전환체 YJ410에서는 0.56㎎(생전환률 45%)이 생산되었으며, 형질전환체 YJ405에서는 0.69㎎(생전환률 55%)이 생산되었으며, 형질전환체 YJ407에서는 0.68㎎(생전환률 54%)이 생산되었고, 형질전환체 YJ409에서는 1.01㎎(생전환률 81%)이 생산됨을 확인하였다. As shown in FIG. 8, when the production amount of 4- (γ-hydroxy) -CyA was compared, 0.55 mg (44% of the total conversion rate) was produced in the control group and 0.56 mg in the negative control group YJ410 The transformant YJ405 produced 0.69 mg of the transformant YJ405 and the transformant YJ409 produced 1.01 mg of the transformant YJ407. 81%) was produced.

상기 실시예 7의 결과와 동일하게, 대조군과 수산화 효소만이 과발현되는 음성대조군(YJ410)을 비교하면 4-(γ-hydroxy)-CyA의 생산량에 별다른 차이를 나타내지 않음에 반하여, 전자전이 효소가 추가로 과발현되는 각 형질전환체(YJ405, YJ407 및 YJ409)는 1.2 내지 1.8배로 향상된 생산량으로 4-(γ-hydroxy)-CyA를 생산함을 확인하였다.As compared with the control group and the negative control group (YJ410) in which only the hydroxylase was overexpressed, the yield of 4- (γ-hydroxy) -CyA was not significantly different from the results of Example 7, Further over-expressed transformants (YJ405, YJ407 and YJ409) were found to produce 4- (γ-hydroxy) -CyA with an improved yield of 1.2 to 1.8 fold.

따라서, 4-(γ-hydroxy)-CyA의 생산량을 증대시키기 위하여는 전자전이 효소를 단독으로 또는 수산화 효소와 함께 과발현시켜야 함을 다시한번 알 수 있었다.
Therefore, it was once again shown that the electron transfer enzyme should be overexpressed alone or together with the hydroxylase to increase production of 4- (γ-hydroxy) -CyA.

<110> Ewha University-Industry Collaboration Foundation SNU R&DB FOUNDATION <120> A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same <130> PA111000/KR <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 394 <212> PRT <213> CYP008 <400> 1 Val Asn Ile Asp Leu Val Asp Gln Asp His Tyr Ala Thr Phe Gly Pro 1 5 10 15 Pro His Glu Gln Met Arg Trp Leu Arg Glu His Ala Pro Val Tyr Trp 20 25 30 His Glu Gly Glu Pro Gly Phe Trp Ala Val Thr Arg His Glu Asp Val 35 40 45 Val His Val Ser Arg His Ser Asp Leu Phe Ser Ser Ala Arg Arg Leu 50 55 60 Ala Leu Phe Asn Glu Met Pro Glu Glu Gln Arg Glu Leu Gln Arg Met 65 70 75 80 Met Met Leu Asn Gln Asp Pro Pro Glu His Thr Arg Arg Arg Ser Leu 85 90 95 Val Asn Arg Gly Phe Thr Pro Arg Thr Ile Arg Ala Leu Glu Gln His 100 105 110 Ile Arg Asp Ile Cys Asp Asp Leu Leu Asp Gln Cys Ser Gly Glu Gly 115 120 125 Asp Phe Val Thr Asp Leu Ala Ala Pro Leu Pro Leu Tyr Val Ile Cys 130 135 140 Glu Leu Leu Gly Ala Pro Val Ala Asp Arg Asp Lys Ile Phe Ala Trp 145 150 155 160 Ser Asn Arg Met Ile Gly Ala Gln Asp Pro Asp Tyr Ala Ala Ser Pro 165 170 175 Glu Glu Gly Gly Ala Ala Ala Met Glu Val Tyr Ala Tyr Ala Ser Glu 180 185 190 Leu Ala Ala Gln Arg Arg Ala Ala Pro Arg Asp Asp Ile Val Thr Lys 195 200 205 Leu Leu Gln Ser Asp Glu Asn Gly Glu Ser Leu Thr Glu Asn Glu Phe 210 215 220 Glu Leu Phe Val Leu Leu Leu Val Val Ala Gly Asn Glu Thr Thr Arg 225 230 235 240 Asn Ala Ala Ser Gly Gly Met Leu Thr Leu Phe Glu His Pro Asp Gln 245 250 255 Trp Asp Arg Leu Val Ala Asp Pro Ser Leu Ala Ala Thr Ala Ala Asp 260 265 270 Glu Ile Val Arg Trp Val Ser Pro Val Asn Leu Phe Arg Arg Thr Ala 275 280 285 Thr Ala Asp Leu Thr Leu Gly Gly Gln Gln Val Lys Ala Asp Asp Lys 290 295 300 Val Val Val Phe Tyr Ser Ser Ala Asn Arg Asp Ala Ser Val Phe Ser 305 310 315 320 Asp Pro Glu Val Phe Asp Ile Gly Arg Ser Pro Asn Pro His Ile Gly 325 330 335 Phe Gly Gly Gly Gly Ala His Phe Cys Leu Gly Asn His Leu Ala Lys 340 345 350 Leu Glu Leu Arg Val Leu Phe Glu Gln Leu Ala Arg Arg Phe Pro Arg 355 360 365 Met Arg Gln Thr Gly Glu Ala Arg Arg Leu Arg Ser Asn Phe Ile Asn 370 375 380 Gly Ile Lys Thr Leu Pro Val Thr Leu Gly 385 390 <210> 2 <211> 1185 <212> DNA <213> CYP008 <400> 2 gtgaacatcg acctcgtcga tcaggaccac tacgcgacct tcggcccccc gcacgagcag 60 atgcgctggc tgagagagca cgctcccgtc tactggcacg agggcgagcc gggattctgg 120 gccgtcaccc gccacgagga cgtcgtccac gtctcccgcc actccgacct gttctcctcc 180 gcgcgcaggc tcgccctgtt caacgagatg ccggaggagc agcgggagct gcagcggatg 240 atgatgctca accaggaccc gcccgagcac accagaaggc gctccctggt caaccgcggt 300 ttcaccccgc gcaccatccg cgcgctggag cagcacatcc gcgacatctg cgacgacctg 360 ctcgaccagt gctcaggcga aggagacttc gtcaccgacc tcgccgcgcc cctcccgctc 420 tacgtgatct gtgagctgct cggcgcgccc gtcgccgacc gcgacaagat cttcgcctgg 480 tccaaccgca tgatcggcgc ccaggacccc gactacgccg cctcaccgga ggagggcggc 540 gccgcggcca tggaggtcta cgcctacgcc tccgaactgg ccgcccagcg tcgcgccgcc 600 ccgcgcgacg acatcgtcac caagctcctc cagtccgacg agaacggcga gagcctgacg 660 gagaacgagt tcgagctctt cgtgctgctc ctcgtggtcg cgggcaacga gaccacccgt 720 aacgccgcct ccggcggcat gctcaccctc ttcgagcatc cggaccagtg ggacaggctg 780 gtcgccgacc cctccctcgc cgccacggcc gccgacgaga tcgtccgctg ggtctcgccg 840 gtgaacctct tccgccgtac ggcgacagcc gacctcaccc tgggcggaca gcaggtcaag 900 gccgacgaca aggtcgtggt cttctactcc tctgccaaca gggacgcgtc ggtcttctcc 960 gatccggagg tcttcgacat cggacggtct cccaacccgc acatcgggtt cggaggcgga 1020 ggcgcgcact tctgcctggg caaccatctg gccaagctcg agctgcgcgt actcttcgag 1080 cagctggcca ggaggttccc gcggatgcgg cagaccggcg aggcccgccg gttgcgctcg 1140 aacttcatca acggcatcaa gaccctcccc gtcaccctcg gctga 1185 <210> 3 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 tacgtagaat tcactagtcc tcgcgctggt ttcata 36 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tctagaggtt cagccgaggg tgac 24 <210> 5 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tacgtagaat tcactagtag cggaacgcgt aatatc 36 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tctagaatcc acttcgagtt ccat 24 <210> 7 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ttaattaaac tagtatcgat acacatggga gtgcgtgcta agtg 44 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tctagattca ggcactactc agttcagctt 30 <210> 9 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ttaattaaac tagtcatagc gtgtgaggat aaacagat 38 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tctagattta ccattgccta tcgggaaca 29 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gaattctacg taactagtat ggaactcgaa gtggat 36 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tctagatcat gaagggtccg caggcga 27 <210> 13 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gaattctacg taactagtga tctgtcaccg ctcgaa 36 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tctagatcag gcgccgctct cgcggag 27 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gaattctacg taactagttt caataagttt caagag 36 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tctagatcag gcattgagaa tttcgtc 27 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gaattctacg taactagtaa ggcaagtcaa tcaaaa 36 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tctagattac cagtaatgct ccgctgt 27 <210> 19 <211> 2822 <212> DNA <213> Artificial Sequence <220> <223> probe 1 <400> 19 ggatcctcta gtcctcgcgc tggtttcata ccctggcacc taccaagcgc ttgaccaagc 60 ccgaggtgac ggctcgtgaa catcgacctc gtcgatcagg accactacgc gaccttcggc 120 cccccgcacg agcagatgcg ctggctgaga gagcacgctc ccgtctactg gcacgagggc 180 gagccgggat tctgggccgt cacccgccac gaggacgtcg tccacgtctc ccgccactcc 240 gacctgttct cctccgcgcg caggctcgcc ctgttcaacg agatgccgga ggagcagcgg 300 gagctgcagc ggatgatgat gctcaaccag gacccgcccg agcacaccag aaggcgctcc 360 ctggtcaacc gcggtttcac cccgcgcacc atccgcgcgc tggagcagca catccgcgac 420 atctgcgacg acctgctcga ccagtgctca ggcgaaggag acttcgtcac cgacctcgcc 480 gcgcccctcc cgctctacgt gatctgtgag ctgctcggcg cgcccgtcgc cgaccgcgac 540 aagatcttcg cctggtccaa ccgcatgatc ggcgcccagg accccgacta cgccgcctca 600 ccggaggagg gcggcgccgc ggccatggag gtctacgcct acgcctccga actggccgcc 660 cagcgtcgcg ccgccccgcg cgacgacatc gtcaccaagc tcctccagtc cgacgagaac 720 ggcgagagcc tgacggagaa cgagttcgag ctcttcgtgc tgctcctcgt ggtcgcgggc 780 aacgagacca cccgtaacgc cgcctccggc ggcatgctca ccctcttcga gcatccggac 840 cagtgggaca ggctggtcgc cgacccctcc ctcgccgcca cggccgccga cgagatcgtc 900 cgctgggtct cgccggtgaa cctcttccgc cgtacggcga cagccgacct caccctgggc 960 ggacagcagg tcaaggccga cgacaaggtc gtggtcttct actcctctgc caacagggac 1020 gcgtcggtct tctccgatcc ggaggtcttc gacatcggac ggtctcccaa cccgcacatc 1080 gggttcggag gcggaggcgc gcacttctgc ctgggcaacc atctggccaa gctcgagctg 1140 cgcgtactct tcgagcagct ggccaggagg ttcccgcgga tgcggcagac cggcgaggcc 1200 cgccggttgc gctcgaactt catcaacggc atcaagaccc tccccgtcac cctcggctga 1260 acctctagta gcggaacgcg taatatcgcg actaaggagc tgacgtgacg gagcccccgt 1320 acaccgtgac cgcgctgccc accatgcgcc ctcccggctg cccgttcgac ccgcccgagg 1380 agttggcgca gctgcgcgag cagcacccac tcagcaggat ggtcttcccc gacgggcacg 1440 tcggctggct ggtgaccagt cacgccctgg ctcgcgcggt cgtggccgac ccccgcttca 1500 gctcgcggca cgagctcatg cactcgccgt tccctggggc catctcggcg gagaggccgc 1560 cgccggccgc gcccggcatg ttcatcggcg tcgatccgcc cgagcacacc cgctaccgca 1620 agctgctcac ggggaagttc accgtccgca ggatgcgcag tctcgccgcc cgcgtcgagg 1680 agatcaccgc cgagcacctg gacgccatgg agcggcaggg cccgcctgtg gacctggtgc 1740 aggcctacgc ccagcccgtc cccgcgctga tgatctgcga gctgctcggc gttccctacg 1800 ccgacaggga gttcttccag cgtcacgcgc tggcgctgaa caacttcgac gccgtccccg 1860 aggagcagta cgccgcctac gtcgcgctgc aggagtacct gcacgcgctg gtcctggcca 1920 aacgcgccac ccccaccgac gacctgctcg gcgatctcgc gcgcgaggag ctcaccgacg 1980 aggagctcac caacatcggg gttctgctgc tgggcgccgg gctcgacacc accgccaaca 2040 tgctcgcgct gggcaccttc gccctgctga gccaccccgg ccagctcgcc gccctgcgcg 2100 ccgacccggg cctcgccgac caggccgtcg aggagctgct gcgctacctg agcatcaccc 2160 acaccgggat acgggccgca ctggaggatg tcgagctgaa cggtcacgtg atcaaagcgg 2220 gggagagcgt cgccctctcg gcgcaggcgg ccaaccgcga ccctgagcgc ttcgccgacc 2280 ccgacactct cgacctgcac cgtcaggcca ccggacatct gagcttcggt cacggcgtcc 2340 accagtgcct cggccagcag ctggcccgcg tggagatgcg cgtcgccctt cccgcgctgg 2400 tcacccgttt cccgacgctg cggctggcca tatcctcagc agaggtgccg ctgcgcacca 2460 attccgacat ctacggcgtg caccggctcc cggtcgcgtg ggacaaggag tagccgatgg 2520 aactcgaagt ggattctagt gagctcggta ccagcccgac ccgagcacgc gccggcacgc 2580 ctggtcgatg tcggaccgga gttcgaggta cgcggcttgc aggtccagga aggggacgtc 2640 catgcgagtg tccgttcgag tggcggcttg cgcccgatgc tagtcgcggt tgatcggcga 2700 tcgcaggtgc acgcggtcga tcttgacggc tggcgagagg tgcggggagg atctgaccga 2760 cgcggtccac acgtggcacc gcgatgctgt tgtgggcaca atcgtgccgg ttggtaggat 2820 cc 2822 <210> 20 <211> 2460 <212> DNA <213> Artificial Sequence <220> <223> probe 2 <400> 20 ggcgcgcccg tcgccgaccg cgacaagatc ttcgcctggt ccaaccgcat gatcggcgcc 60 caggaccccg actacgccgc ctcaccggag gagggcggcg ccgcggccat ggaggtctac 120 gcctacgcct ccgaactggc cgcccagcgt cgcgccgccc cgcgcgacga catcgtcacc 180 aagctcctcc agtccgacga gaacggcgag agcctgacgg agaacgagtt cgagctcttc 240 gtgctgctcc tcgtggtcgc gggcaacgag accacccgta acgccgcctc cggcggcatg 300 ctcaccctct tcgagcatcc ggaccagtgg gacaggctgg tcgccgaccc ctccctcgcc 360 gccacggccg ccgacgagat cgtccgctgg gtctcgccgg tgaacctctt ccgccgtacg 420 gcgacagccg acctcaccct gggcggacag caggtcaagg ccgacgacaa ggtcgtggtc 480 ttctactcct ctgccaacag ggacgcgtcg gtcttctccg atccggaggt cttcgacatc 540 ggacggtctc ccaacccgca catcgggttc ggaggcggag gcgcgcactt ctgcctgggc 600 aaccatctgg ccaagctcga gctgcgcgta ctcttcgagc agctggccag gaggttcccg 660 cggatgcggc agaccggcga ggcccgccgg ttgcgctcga acttcatcaa cggcatcaag 720 accctccccg tcaccctcgg ctgaacctct agtagcggaa cgcgtaatat cgcgactaag 780 gagctgacgt gacggagccc ccgtacaccg tgaccgcgct gcccaccatg cgccctcccg 840 gctgcccgtt cgacccgccc gaggagttgg cgcagctgcg cgagcagcac ccactcagca 900 ggatggtctt ccccgacggg cacgtcggct ggctggtgac cagtcacgcc ctggctcgcg 960 cggtcgtggc cgacccccgc ttcagctcgc ggcacgagct catgcactcg ccgttccctg 1020 gggccatctc ggcggagagg ccgccgccgg ccgcgcccgg catgttcatc ggcgtcgatc 1080 cgcccgagca cacccgctac cgcaagctgc tcacggggaa gttcaccgtc cgcaggatgc 1140 gcagtctcgc cgcccgcgtc gaggagatca ccgccgagca cctggacgcc atggagcggc 1200 agggcccgcc tgtggacctg gtgcaggcct acgcccagcc cgtccccgcg ctgatgatct 1260 gcgagctgct cggcgttccc tacgccgaca gggagttctt ccagcgtcac gcgctggcgc 1320 tgaacaactt cgacgccgtc cccgaggagc agtacgccgc ctacgtcgcg ctgcaggagt 1380 acctgcacgc gctggtcctg gccaaacgcg ccacccccac cgacgacctg ctcggcgatc 1440 tcgcgcgcga ggagctcacc gacgaggagc tcaccaacat cggggttctg ctgctgggcg 1500 ccgggctcga caccaccgcc aacatgctcg cgctgggcac cttcgccctg ctgagccacc 1560 ccggccagct cgccgccctg cgcgccgacc cgggcctcgc cgaccaggcc gtcgaggagc 1620 tgctgcgcta cctgagcatc acccacaccg ggatacgggc cgcactggag gatgtcgagc 1680 tgaacggtca cgtgatcaaa gcgggggaga gcgtcgccct ctcggcgcag gcggccaacc 1740 gcgaccctga gcgcttcgcc gaccccgaca ctctcgacct gcaccgtcag gccaccggac 1800 atctgagctt cggtcacggc gtccaccagt gcctcggcca gcagctggcc cgcgtggaga 1860 tgcgcgtcgc ccttcccgcg ctggtcaccc gtttcccgac gctgcggctg gccatatcct 1920 cagcagaggt gccgctgcgc accaattccg acatctacgg cgtgcaccgg ctcccggtcg 1980 cgtgggacaa ggagtagccg atggaactcg aagtggattc tagtgagctc ggtaccagcc 2040 cgacccgagc acgcgccggc acgcctggtc gatgtcggac cggagttcga ggtacgcggc 2100 ttgcaggtcc aggaagggga cgtccatgcg agtgtccgtt cgagtggcgg cttgcgcccg 2160 atgctagtcg cggttgatcg gcgatcgcag gtgcacgcgg tcgatcttga cggctggcga 2220 gaggtgcggg gaggatctga ccgacgcggt ccacacgtgg caccgcgatg ctgttgtggg 2280 cacaatcgtg ccggttggta ggatcctcta gtatggaact cgaagtggat cgcgagcgct 2340 gcatcggggc gggcatgtgc gcgctgaccg cccccgaggt cttcgaccag gacctcgacg 2400 acggcagggt gatgctgctg gattcgtcgc cgccccccgg gcaccaggcg aaggcgcgcc 2460 2460 <210> 21 <211> 1865 <212> DNA <213> Artificial Sequence <220> <223> probe 3 <400> 21 tcgcgactaa ggagctgacg tgacggagcc cccgtacacc gtgaccgcgc tgcccaccat 60 gcgccctccc ggctgcccgt tcgacccgcc cgaggagttg gcgcagctgc gcgagcagca 120 cccactcagc aggatggtct tccccgacgg gcacgtcggc tggctggtga ccagtcacgc 180 cctggctcgc gcggtcgtgg ccgacccccg cttcagctcg cggcacgagc tcatgcactc 240 gccgttccct ggggccatct cggcggagag gccgccgccg gccgcgcccg gcatgttcat 300 cggcgtcgat ccgcccgagc acacccgcta ccgcaagctg ctcacgggga agttcaccgt 360 ccgcaggatg cgcagtctcg ccgcccgcgt cgaggagatc accgccgagc acctggacgc 420 catggagcgg cagggcccgc ctgtggacct ggtgcaggcc tacgcccagc ccgtccccgc 480 gctgatgatc tgcgagctgc tcggcgttcc ctacgccgac agggagttct tccagcgtca 540 cgcgctggcg ctgaacaact tcgacgccgt ccccgaggag cagtacgccg cctacgtcgc 600 gctgcaggag tacctgcacg cgctggtcct ggccaaacgc gccaccccca ccgacgacct 660 gctcggcgat ctcgcgcgcg aggagctcac cgacgaggag ctcaccaaca tcggggttct 720 gctgctgggc gccgggctcg acaccaccgc caacatgctc gcgctgggca ccttcgccct 780 gctgagccac cccggccagc tcgccgccct gcgcgccgac ccgggcctcg ccgaccaggc 840 cgtcgaggag ctgctgcgct acctgagcat cacccacacc gggatacggg ccgcactgga 900 ggatgtcgag ctgaacggtc acgtgatcaa agcgggggag agcgtcgccc tctcggcgca 960 ggcggccaac cgcgaccctg agcgcttcgc cgaccccgac actctcgacc tgcaccgtca 1020 ggccaccgga catctgagct tcggtcacgg cgtccaccag tgcctcggcc agcagctggc 1080 ccgcgtggag atgcgcgtcg cccttcccgc gctggtcacc cgtttcccga cgctgcggct 1140 ggccatatcc tcagcagagg tgccgctgcg caccaattcc gacatctacg gcgtgcaccg 1200 gctcccggtc gcgtgggaca aggagtagcc gatggaactc gaagtggatt ctagtgagct 1260 cggtaccagc ccgacccgag cacgcgccgg cacgcctggt cgatgtcgga ccggagttcg 1320 aggtacgcgg cttgcaggtc caggaagggg acgtccatgc gagtgtccgt tcgagtggcg 1380 gcttgcgccc gatgctagtc gcggttgatc ggcgatcgca ggtgcacgcg gtcgatcttg 1440 acggctggcg agaggtgcgg ggaggatctg accgacgcgg tccacacgtg gcaccgcgat 1500 gctgttgtgg gcacaatcgt gccggttggt aggatcctct agtttcaata agtttcaaga 1560 ggttatttca ctcatggcta tcactggcat ctttttcggc agcgacaccg gtaataccga 1620 aaatatcgca aaaatgattc aaaaacagct tggtaaagac gttgccgatg tccatgacat 1680 tgcaaaaagc agcaaagaag atctggaagc ttatgacatt ctgctgctgg gcatcccaac 1740 ctggtattac ggcgaagcgc agtgtgactg ggatgacttc ttcccgactc tcgaagagat 1800 tgatttcaac ggcaaactgg ttgcgctgtt tggttgtggt gaccaggaag attacgccga 1860 atatt 1865 <110> Ewha University-Industry Collaboration Foundation          SNU R & DB FOUNDATION <120> A novel Cytochrome P450 hydroxylase and process preparing          hydroxylated Cyclosporin A employing the same <130> PA111000 / KR <160> 21 <170> Kopatentin 2.0 <210> 1 <211> 394 <212> PRT <213> CYP008 <400> 1 Val Asn Ile Asp Leu Val Asp Gln Asp His Tyr Ala Thr Phe Gly Pro   1 5 10 15 Pro His Glu Gln Met Arg Trp Leu Arg Glu His Ala Pro Val Tyr Trp              20 25 30 His Glu Gly Glu Pro Gly Phe Trp Ala Val Thr Arg His Glu Asp Val          35 40 45 Val His Val Ser Ser His Ser Asp Leu Phe Ser Ser Ala Arg Arg Leu      50 55 60 Ala Leu Phe Asn Glu Met Pro Glu Glu Gln Arg Glu Leu Gln Arg Met  65 70 75 80 Met Met Leu Asn Gln Asp Pro Pro Glu His Thr Arg Arg Arg Ser Leu                  85 90 95 Val Asn Arg Gly Phe Thr Pro Arg Thr Ile Arg Ala Leu Glu Gln His             100 105 110 Ile Arg Asp Ile Cys Asp Asp Leu Leu Asp Gln Cys Ser Gly Glu Gly         115 120 125 Asp Phe Val Thr Asp Leu Ala Ala Pro Leu Pro Leu Tyr Val Ile Cys     130 135 140 Glu Leu Leu Gly Ala Pro Val Ala Asp Arg Asp Lys Ile Phe Ala Trp 145 150 155 160 Ser Asn Arg Met Ile Gly Ala Gln Asp Pro Asp Tyr Ala Ala Ser Pro                 165 170 175 Glu Gly Gly Gly Ala Ala Glu Val Tyr Ala Tyr Ala Ser Glu             180 185 190 Leu Ala Ala Gln Arg Arg Ala Ala Pro Arg Asp Asp Ile Val Thr Lys         195 200 205 Leu Leu Gln Ser Asp Glu Asn Gly Glu Ser Leu Thr Glu Asn Glu Phe     210 215 220 Glu Leu Phe Val Leu Leu Le Val Val Ala Gly Asn Glu Thr Thr Arg 225 230 235 240 Asn Ala Ala Ser Gly Gly Met Leu Thr Leu Phe Glu His Pro Asp Gln                 245 250 255 Trp Asp Arg Leu Val Ala Asp Pro Ser Leu Ala Ala Thr Ala Ala Asp             260 265 270 Glu Ile Val Arg Trp Val Ser Pro Val Asn Leu Phe Arg Arg Thr Ala         275 280 285 Thr Ala Asp Leu Thr Leu Gly Gly Gln Gln Val Lys Ala Asp Asp Lys     290 295 300 Val Val Val Phe Tyr Ser Ser Ala Asn Arg Asp Ala Ser Val Phe Ser 305 310 315 320 Asp Pro Glu Val Phe Asp Ile Gly Arg Ser Pro Asn Pro His Ile Gly                 325 330 335 Phe Gly Gly Gly Gly Ala His Phe Cys Leu Gly Asn His Leu Ala Lys             340 345 350 Leu Glu Leu Arg Val Leu Phe Glu Gln Leu Ala Arg Arg Phe Pro Arg         355 360 365 Met Arg Gln Thr Gly Glu Ala Arg Arg Leu Arg Ser Asn Phe Ile Asn     370 375 380 Gly Ile Lys Thr Leu Pro Val Thr Leu Gly 385 390 <210> 2 <211> 1185 <212> DNA <213> CYP008 <400> 2 gtgaacatcg acctcgtcga tcaggaccac tacgcgacct tcggcccccc gcacgagcag 60 atgcgctggc tgagagagca cgctcccgtc tactggcacg agggcgagcc gggattctgg 120 gccgtcaccc gccacgagga cgtcgtccac gtctcccgcc actccgacct gttctcctcc 180 gcgcgcaggc tcgccctgtt caacgagatg ccggaggagc agcgggagct gcagcggatg 240 atgatgctca accaggaccc gcccgagcac accagaaggc gctccctggt caaccgcggt 300 ttcaccccgc gcaccatccg cgcgctggag cagcacatcc gcgacatctg cgacgacctg 360 ctcgaccagt gctcaggcga aggagacttc gtcaccgacc tcgccgcgcc cctcccgctc 420 tacgtgatct gtgagctgct cggcgcgccc gtcgccgacc gcgacaagat cttcgcctgg 480 tccaaccgca tgatcggcgc ccaggacccc gactacgccg cctcaccgga ggagggcggc 540 gccgcggcca tggaggtcta cgcctacgcc tccgaactgg ccgcccagcg tcgcgccgcc 600 ccgcgcgacg acatcgtcac caagctcctc cagtccgacg agaacggcga gagcctgacg 660 gagaacgagt tcgagctctt cgtgctgctc ctcgtggtcg cgggcaacga gaccacccgt 720 aacgccgcct ccggcggcat gctcaccctc ttcgagcatc cggaccagtg ggacaggctg 780 gtcgccgacc cctccctcgc cgccacggcc gccgacgaga tcgtccgctg ggtctcgccg 840 gtgaacctct tccgccgtac ggcgacagcc gacctcaccc tgggcggaca gcaggtcaag 900 gccgacgaca aggtcgtggt cttctactcc tctgccaaca gggacgcgtc ggtcttctcc 960 gatccggagg tcttcgacat cggacggtct cccaacccgc acatcgggtt cggaggcgga 1020 ggcgcgcact tctgcctggg caaccatctg gccaagctcg agctgcgcgt actcttcgag 1080 cagctggcca ggaggttccc gcggatgcgg cagaccggcg aggcccgccg gttgcgctcg 1140 aacttcatca acggcatcaa gaccctcccc gtcaccctcg gctga 1185 <210> 3 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 tacgtagaat tcactagtcc tcgcgctggt ttcata 36 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tctagaggtt cagccgaggg tgac 24 <210> 5 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tacgtagaat tcactagtag cggaacgcgt aatatc 36 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tctagaatcc acttcgagtt ccat 24 <210> 7 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ttaattaaac tagtatcgat acacatggga gtgcgtgcta agtg 44 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tctagattca ggcactactc agttcagctt 30 <210> 9 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ttaattaaac tagtcatagc gtgtgaggat aaacagat 38 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tctagattta ccattgccta tcgggaaca 29 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gaattctacg taactagtat ggaactcgaa gtggat 36 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tctagatcat gaagggtccg caggcga 27 <210> 13 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gaattctacg taactagtga tctgtcaccg ctcgaa 36 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tctagatcag gcgccgctct cgcggag 27 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gaattctacg taactagttt caataagttt caagag 36 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tctagatcag gcattgagaa tttcgtc 27 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gaattctacg taactagtaa ggcaagtcaa tcaaaa 36 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tctagattac cagtaatgct ccgctgt 27 <210> 19 <211> 2822 <212> DNA <213> Artificial Sequence <220> <223> probe 1 <400> 19 ggatcctcta gtcctcgcgc tggtttcata ccctggcacc taccaagcgc ttgaccaagc 60 ccgaggtgac ggctcgtgaa catcgacctc gtcgatcagg accactacgc gaccttcggc 120 cccccgcacg agcagatgcg ctggctgaga gagcacgctc ccgtctactg gcacgagggc 180 gagccgggat tctgggccgt cacccgccac gaggacgtcg tccacgtctc ccgccactcc 240 gacctgttct cctccgcgcg caggctcgcc ctgttcaacg agatgccgga ggagcagcgg 300 gagctgcagc ggatgatgat gctcaaccag gacccgcccg agcacaccag aaggcgctcc 360 ctggtcaacc gcggtttcac cccgcgcacc atccgcgcgc tggagcagca catccgcgac 420 atctgcgacg acctgctcga ccagtgctca ggcgaaggag acttcgtcac cgacctcgcc 480 gcgcccctcc cgctctacgt gatctgtgag ctgctcggcg cgcccgtcgc cgaccgcgac 540 cgccgcctca 600 ccggaggagg gcggcgccgc ggccatggag gtctacgcct acgcctccga actggccgcc 660 cagcgtcgcg ccgccccgcg cgacgacatc gtcaccaagc tcctccagtc cgacgagaac 720 ggcgagagcc tgacggagaa cgagttcgag ctcttcgtgc tgctcctcgt ggtcgcgggc 780 aacgagacca cccgtaacgc cgcctccggc ggcatgctca ccctcttcga gcatccggac 840 cagtgggaca ggctggtcgc cgacccctcc ctcgccgcca cggccgccga cgagatcgtc 900 cgctgggtct cgccggtgaa cctcttccgc cgtacggcga cagccgacct caccctgggc 960 ggacagcagg tcaaggccga cgacaaggtc gtggtcttct actcctctgc caacagggac 1020 gcgtcggtct tctccgatcc ggaggtcttc gacatcggac ggtctcccaa cccgcacatc 1080 gggttcggag gcggaggcgc gcacttctgc ctgggcaacc atctggccaa gctcgagctg 1140 cgcgtactct tcgagcagct ggccaggagg ttcccgcgga tgcggcagac cggcgaggcc 1200 cgccggttgc gctcgaactt catcaacggc atcaagaccc tccccgtcac cctcggctga 1260 acctctagta gcggaacgcg taatatcgcg actaaggagc tgacgtgacg gagcccccgt 1320 acaccgtgac cgcgctgccc accatgcgcc ctcccggctg cccgttcgac ccgcccgagg 1380 agttggcgca gctgcgcgag cagcacccac tcagcaggat ggtcttcccc gacgggcacg 1440 tcggctggct ggtgaccagt cacgccctgg ctcgcgcggt cgtggccgac ccccgcttca 1500 gctcgcggca cgagctcatg cactcgccgt tccctggggc catctcggcg gagaggccgc 1560 cgccggccgc gcccggcatg ttcatcggcg tcgatccgcc cgagcacacc cgctaccgca 1620 agctgctcac ggggaagttc accgtccgca ggatgcgcag tctcgccgcc cgcgtcgagg 1680 agatcaccgc cgagcacctg gacgccatgg agcggcaggg cccgcctgtg gacctggtgc 1740 aggcctacgc ccagcccgtc cccgcgctga tgatctgcga gctgctcggc gttccctacg 1800 ccgacaggga gttcttccag cgtcacgcgc tggcgctgaa caacttcgac gccgtccccg 1860 aggagcagta cgccgcctac gtcgcgctgc aggagtacct gcacgcgctg gtcctggcca 1920 aacgcgccac ccccaccgac gacctgctcg gcgatctcgc gcgcgaggag ctcaccgacg 1980 aggagctcac caacatcggg gttctgctgc tgggcgccgg gctcgacacc accgccaaca 2040 tgctcgcgct gggcaccttc gccctgctga gccaccccgg ccagctcgcc gccctgcgcg 2100 ccgacccggg cctcgccgac caggccgtcg aggagctgct gcgctacctg agcatcaccc 2160 acaccgggat acgggccgca ctggaggatg tcgagctgaa cggtcacgtg atcaaagcgg 2220 gggagagcgt cgccctctcg gcgcaggcgg ccaaccgcga ccctgagcgc ttcgccgacc 2280 ccgacactct cgacctgcac cgtcaggcca ccggacatct gagcttcggt cacggcgtcc 2340 accagtgcct cggccagcag ctggcccgcg tggagatgcg cgtcgccctt cccgcgctgg 2400 tcacccgttt cccgacgctg cggctggcca tatcctcagc agaggtgccg ctgcgcacca 2460 attccgacat ctacggcgtg caccggctcc cggtcgcgtg ggacaaggag tagccgatgg 2520 aactcgaagt ggattctagt gagctcggta ccagcccgac ccgagcacgc gccggcacgc 2580 ctggtcgatg tcggaccgga gttcgaggta cgcggcttgc aggtccagga aggggacgtc 2640 catgcgagtg tccgttcgag tggcggcttg cgcccgatgc tagtcgcggt tgatcggcga 2700 tcgcaggtgc acgcggtcga tcttgacggc tggcgagagg tgcggggagg atctgaccga 2760 cgcggtccac acgtggcacc gcgatgctgt tgtgggcaca atcgtgccgg ttggtaggat 2820 cc 2822 <210> 20 <211> 2460 <212> DNA <213> Artificial Sequence <220> <223> probe 2 <400> 20 ggcgcgcccg tcgccgaccg cgacaagatc ttcgcctggt ccaaccgcat gatcggcgcc 60 caggaccccg actacgccgc ctcaccggag gagggcggcg ccgcggccat ggaggtctac 120 gcctacgcct ccgaactggc cgcccagcgt cgcgccgccc cgcgcgacga catcgtcacc 180 aagctcctcc agtccgacga gaacggcgag agcctgacgg agaacgagtt cgagctcttc 240 gtgctgctcc tcgtggtcgc gggcaacgag accacccgta acgccgcctc cggcggcatg 300 ctcaccctct tcgagcatcc ggaccagtgg gacaggctgg tcgccgaccc ctccctcgcc 360 gccacggccg ccgacgagat cgtccgctgg gtctcgccgg tgaacctctt ccgccgtacg 420 gcgacagccg acctcaccct gggcggacag caggtcaagg ccgacgacaa ggtcgtggtc 480 ttctactcct ctgccaacag ggacgcgtcg gtcttctccg atccggaggt cttcgacatc 540 ggacggtctc ccaacccgca catcgggttc ggaggcggag gcgcgcactt ctgcctgggc 600 aaccatctgg ccaagctcga gctgcgcgta ctcttcgagc agctggccag gaggttcccg 660 cggatgcggc agaccggcga ggcccgccgg ttgcgctcga acttcatcaa cggcatcaag 720 accctccccg tcaccctcgg ctgaacctct agtagcggaa cgcgtaatat cgcgactaag 780 gagctgacgt gacggagccc ccgtacaccg tgaccgcgct gcccaccatg cgccctcccg 840 gctgcccgtt cgacccgccc gaggagttgg cgcagctgcg cgagcagcac ccactcagca 900 ggatggtctt ccccgacggg cacgtcggct ggctggtgac cagtcacgcc ctggctcgcg 960 cggtcgtggc cgacccccgc ttcagctcgc ggcacgagct catgcactcg ccgttccctg 1020 gggccatctc ggcggagagg ccgccgccgg ccgcgcccgg catgttcatc ggcgtcgatc 1080 cgcccgagca cacccgctac cgcaagctgc tcacggggaa gttcaccgtc cgcaggatgc 1140 gcagtctcgc cgcccgcgtc gaggagatca ccgccgagca cctggacgcc atggagcggc 1200 agggcccgcc tgtggacctg gtgcaggcct acgcccagcc cgtccccgcg ctgatgatct 1260 gcgagctgct cggcgttccc tacgccgaca gggagttctt ccagcgtcac gcgctggcgc 1320 tgaacaactt cgacgccgtc cccgaggagc agtacgccgc ctacgtcgcg ctgcaggagt 1380 acctgcacgc gctggtcctg gccaaacgcg ccacccccac cgacgacctg ctcggcgatc 1440 tcgcgcgcga ggagctcacc gacgaggagc tcaccaacat cggggttctg ctgctgggcg 1500 ccgggctcga caccaccgcc aacatgctcg cgctgggcac cttcgccctg ctgagccacc 1560 ccggccagct cgccgccctg cgcgccgacc cgggcctcgc cgaccaggcc gtcgaggagc 1620 tgctgcgcta cctgagcatc acccacaccg ggatacgggc cgcactggag gatgtcgagc 1680 tgaacggtca cgtgatcaaa gcgggggaga gcgtcgccct ctcggcgcag gcggccaacc 1740 gcgaccctga gcgcttcgcc gaccccgaca ctctcgacct gcaccgtcag gccaccggac 1800 atctgagctt cggtcacggc gtccaccagt gcctcggcca gcagctggcc cgcgtggaga 1860 tgcgcgtcgc ccttcccgcg ctggtcaccc gtttcccgac gctgcggctg gccatatcct 1920 cagcagaggt gccgctgcgc accaattccg acatctacgg cgtgcaccgg ctcccggtcg 1980 cgtgggacaa ggagtagccg atggaactcg aagtggattc tagtgagctc ggtaccagcc 2040 cgacccgagc acgcgccggc acgcctggtc gatgtcggac cggagttcga ggtacgcggc 2100 ttgcaggtcc aggaagggga cgtccatgcg agtgtccgtt cgagtggcgg cttgcgcccg 2160 atgctagtcg cggttgatcg gcgatcgcag gtgcacgcgg tcgatcttga cggctggcga 2220 gaggtgcggg gaggatctga ccgacgcggt ccacacgtgg caccgcgatg ctgttgtggg 2280 cacaatcgtg ccggttggta ggatcctcta gtatggaact cgaagtggat cgcgagcgct 2340 gcatcggggc gggcatgtgc gcgctgaccg cccccgaggt cttcgaccag gacctcgacg 2400 acggcagggt gatgctgctg gattcgtcgc cgccccccgg gcaccaggcg aaggcgcgcc 2460                                                                         2460 <210> 21 <211> 1865 <212> DNA <213> Artificial Sequence <220> <223> probe 3 <400> 21 tcgcgactaa ggagctgacg tgacggagcc cccgtacacc gtgaccgcgc tgcccaccat 60 gcgccctccc ggctgcccgt tcgacccgcc cgaggagttg gcgcagctgc gcgagcagca 120 cccactcagc aggatggtct tccccgacgg gcacgtcggc tggctggtga ccagtcacgc 180 cctggctcgc gcggtcgtgg ccgacccccg cttcagctcg cggcacgagc tcatgcactc 240 gccgttccct ggggccatct cggcggagag gccgccgccg gccgcgcccg gcatgttcat 300 cggcgtcgat ccgcccgagc acacccgcta ccgcaagctg ctcacgggga agttcaccgt 360 ccgcaggatg cgcagtctcg ccgcccgcgt cgaggagatc accgccgagc acctggacgc 420 catggagcgg cagggcccgc ctgtggacct ggtgcaggcc tacgcccagc ccgtccccgc 480 gctgatgatc tgcgagctgc tcggcgttcc ctacgccgac agggagttct tccagcgtca 540 cgcgctggcg ctgaacaact tcgacgccgt ccccgaggag cagtacgccg cctacgtcgc 600 gctgcaggag tacctgcacg cgctggtcct ggccaaacgc gccaccccca ccgacgacct 660 gctcggcgat ctcgcgcgcg aggagctcac cgacgaggag ctcaccaaca tcggggttct 720 gctgctgggc gccgggctcg acaccaccgc caacatgctc gcgctgggca ccttcgccct 780 gctgagccac cccggccagc tcgccgccct gcgcgccgac ccgggcctcg ccgaccaggc 840 cgtcgaggag ctgctgcgct acctgagcat cacccacacc gggatacggg ccgcactgga 900 ggatgtcgag ctgaacggtc acgtgatcaa agcgggggag agcgtcgccc tctcggcgca 960 ggcggccaac cgcgaccctg agcgcttcgc cgaccccgac actctcgacc tgcaccgtca 1020 ggccaccgga catctgagct tcggtcacgg cgtccaccag tgcctcggcc agcagctggc 1080 ccgcgtggag atgcgcgtcg cccttcccgc gctggtcacc cgtttcccga cgctgcggct 1140 ggccatatcc tcagcagagg tgccgctgcg caccaattcc gacatctacg gcgtgcaccg 1200 gctcccggtc gcgtgggaca aggagtagcc gatggaactc gaagtggatt ctagtgagct 1260 cggtaccagc ccgacccgag cacgcgccgg cacgcctggt cgatgtcgga ccggagttcg 1320 aggtacgcgg cttgcaggtc caggaagggg acgtccatgc gagtgtccgt tcgagtggcg 1380 gcttgcgccc gatgctagtc gcggttgatc ggcgatcgca ggtgcacgcg gtcgatcttg 1440 acggctggcg agaggtgcgg ggaggatctg accgacgcgg tccacacgtg gcaccgcgat 1500 gctgttgtgg gcacaatcgt gccggttggt aggatcctct agtttcaata agtttcaaga 1560 ggttatttca ctcatggcta tcactggcat ctttttcggc agcgacaccg gtaataccga 1620 aaatatcgca aaaatgattc aaaaacagct tggtaaagac gttgccgatg tccatgacat 1680 tgcaaaaagc agcaaagaag atctggaagc ttatgacatt ctgctgctgg gcatcccaac 1740 ctggtattac ggcgaagcgc agtgtgactg ggatgacttc ttcccgactc tcgaagagat 1800 tgatttcaac ggcaaactgg ttgcgctgtt tggttgtggt gaccaggaag attacgccga 1860 atatt 1865

Claims (17)

서열번호 1의 아미노산 서열로 이루어지고, 사이클로스포린 A(Cyclosporin A, CyA)의 수산화를 매개하는 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP).
Cytochrome P450 hydroxylase (CYP) comprising the amino acid sequence of SEQ ID NO: 1 and mediating the hydroxylation of Cyclosporin A (CyA).
제1항에 있어서,
세베키아 베니하나(Sebekia benihana)로부터 유래된 것인 사이토크롬 P450 수산화효소.
The method according to claim 1,
Cytochrome P450 hydroxylase derived from Sebekia benihana .
제1항의 사이토크롬 P450 수산화효소를 코딩하는 폴리뉴클레오티드.
A polynucleotide encoding the cytochrome P450 hydroxylase of claim 1.
제3항에 있어서,
서열번호 2의 염기서열로 이루어진 폴리뉴클레오티드.
The method of claim 3,
A polynucleotide comprising the nucleotide sequence of SEQ ID NO: 2.
제3항의 폴리뉴클레오티드를 포함하는 발현벡터.
An expression vector comprising the polynucleotide of claim 3.
제5항의 발현벡터가 도입되어 서열번호 1의 아미노산 서열로 이루어진 사이토크롬 P450 수산화효소를 발현하는 형질전환체.
A transformant expressing a cytochrome P450 hydroxylase comprising the amino acid sequence of SEQ ID NO: 1 by introducing the expression vector of claim 5.
(ⅰ) 제6항의 형질전환체를 배양하여 배양물을 수득하는 단계; 및
(ⅱ) 상기 배양물로부터 사이토크롬 P450 수산화효소(CYP)를 회수하는 단계를 포함하는, 사이토크롬 P450 수산화효소의 생산방법.
(I) culturing the transformant of claim 6 to obtain a culture; And
(Ii) recovering cytochrome P450 hydroxylase (CYP) from the culture.
(ⅰ) 서열번호 1의 아미노산 서열로 이루어진 사이토크롬 P450 수산화효소(Cytochrome P450 hydroxylase, CYP)를 코딩하는 폴리뉴클레오티드,
(ⅱ) CYP506을 코딩하는 폴리뉴클레오티드, 및
(ⅲ) 퓨티다레독신(putidaredoxin)과 퓨티다레독신 환원효소(putidaredoxin reductase) 세트, 페레독신(ferredoxin)과 페레독신 환원효소(ferredoxin reductase) 세트 및 플라보독신(flavodoxin)과 플라보독신 환원효소(flavodoxin reductase) 세트로 구성된 군으로부터 선택되는 1종 이상의 전자전이 효소를 코딩하는 폴리뉴클레오티드를 포함하는, 발현벡터.
(I) a polynucleotide encoding a cytochrome P450 hydroxylase (CYP) consisting of the amino acid sequence of SEQ ID NO: 1,
(Ii) a polynucleotide encoding CYP506, and
(Iii) a set of putidaredoxin and putidaredoxin reductase, a set of ferredoxin and ferredoxin reductase, a set of flavodoxin and flavonoxin reductase flavodoxin reductase) set, wherein the expression vector comprises a polynucleotide encoding at least one electronic transcription enzyme.
제8항에 있어서,
CYP로서 서열번호 1의 아미노산 서열로 이루어진 CYP 및 CYP506을 코딩하는 폴리뉴클레오티드를 포함하고, 전자전이 효소로서 퓨티다레독신과 퓨티다레독신 환원효소를 코딩하는 폴리뉴클레오티드를 포함하는 것인 발현벡터.
9. The method of claim 8,
1. An expression vector comprising CYP consisting of the amino acid sequence of SEQ ID NO: 1 as a CYP and a polynucleotide encoding a CYP506, and a polynucleotide encoding a porphyrinase and a porphyrinase reductase as electronic transcription enzymes.
제8항에 있어서,
CYP로서 서열번호 1의 아미노산 서열로 이루어진 CYP 및 CYP506을 코딩하는 폴리뉴클레오티드를 포함하고, 전자전이 효소로서 페레독신과 페레독신 환원효소를 코딩하는 폴리뉴클레오티드를 포함하는 것인 발현벡터.
9. The method of claim 8,
1. An expression vector comprising CYP consisting of the amino acid sequence of SEQ ID NO: 1 as the CYP and a polynucleotide encoding the CYP506, and comprising a polynucleotide encoding the ferredoxin and the ferredoxin reductase as the electron transfer enzyme.
제8항에 있어서,
CYP로서 서열번호 1의 아미노산 서열로 이루어진 CYP 및 CYP506을 코딩하는 폴리뉴클레오티드를 포함하고, 전자전이 효소로서 플라보독신과 플라보독신 환원효소를 코딩하는 폴리뉴클레오티드를 포함하는 것인 발현벡터.
9. The method of claim 8,
1. An expression vector comprising a polynucleotide encoding CYP and CYP506 consisting of the amino acid sequence of SEQ ID NO: 1 as a CYP, and a polynucleotide encoding a flavoboxin and a Flavobacterium reductase as an electronic transduction enzyme.
제8항의 발현벡터가 숙주세포에 도입되어 4-(γ-hydroxy)-CyA를 생산하는 형질전환체.
A transformant wherein the expression vector of claim 8 is introduced into a host cell to produce 4- (? -Hydroxy) -CyA.
제12항에 있어서,
상기 숙주세포는 내재적으로 사이클로스포린 A(CyA)를 수산화시킬 수 있는 것인 형질전환체.
13. The method of claim 12,
Wherein said host cell is capable of intrinsically hydrolyzing cyclosporin A (CyA).
제13항에 있어서,
상기 숙주세포는 세베키아 베니하나(Sebekia benihana)인 것인 형질전환체.
14. The method of claim 13,
Wherein said host cell is Sebekia benihana .
(ⅰ) 제8항의 발현벡터를 숙주세포에 도입하여 형질전환체를 제작하는 단계;
(ⅱ) 상기 형질전환체를 배양하여 배양물을 수득하는 단계; 및,
(ⅲ) 상기 배양물로부터 4-(γ-hydroxy)-CyA를 회수하는 단계를 포함하는, 4-(γ-hydroxy)-CyA의 생산방법.
(I) introducing the expression vector of claim 8 into a host cell to produce a transformant;
(Ii) culturing the transformant to obtain a culture; And
(Iii) recovering 4- (? -Hydroxy) -CyA from the culture.
제15항에 있어서,
상기 숙주세포는 내재적으로 사이클로스포린 A(CyA)를 수산화시킬 수 있는 것인 생산방법.
16. The method of claim 15,
Wherein the host cell is capable of intrinsically hydrolyzing cyclosporin A (CyA).
제15항에 있어서,
상기 배양은 고체배양 또는 액체배양에 의하여 수행되는 것인 생산방법.
16. The method of claim 15,
Wherein the culture is performed by solid culture or liquid culture.
KR1020120002330A 2012-01-09 2012-01-09 A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same KR101459817B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120002330A KR101459817B1 (en) 2012-01-09 2012-01-09 A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120002330A KR101459817B1 (en) 2012-01-09 2012-01-09 A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same

Publications (2)

Publication Number Publication Date
KR20130081394A KR20130081394A (en) 2013-07-17
KR101459817B1 true KR101459817B1 (en) 2014-11-17

Family

ID=48993090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120002330A KR101459817B1 (en) 2012-01-09 2012-01-09 A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same

Country Status (1)

Country Link
KR (1) KR101459817B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570473A (en) * 2018-04-11 2018-09-25 郑州师范学院 One iris cyclophilin CYP gene and its application
KR20210097435A (en) 2020-01-30 2021-08-09 선문대학교 산학협력단 Composition for the hydroxylation of fatty acids comprising CYP102A15 or CYP102A170
KR102398203B1 (en) 2020-11-16 2022-05-16 전남대학교 산학협력단 Novel oxygenase from fungi Podospora anserina S mat+ and method for preparing thereof
KR102398198B1 (en) 2020-11-16 2022-05-17 전남대학교 산학협력단 Novel oxygenase from fungi Daldinia and method for preparing thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716962B1 (en) 2015-08-26 2017-03-17 인하대학교 산학협력단 Novel cyclosporin specific hybrid hydroxylase constructed by domain swapping
GB2580879B (en) * 2018-11-27 2023-08-02 Hypha Discovery Ltd Biocatalytic techniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316604B1 (en) * 1999-11-19 2001-12-12 성재갑 Use of a nonimmunosuppressive cyclosporin A derivative for hair growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316604B1 (en) * 1999-11-19 2001-12-12 성재갑 Use of a nonimmunosuppressive cyclosporin A derivative for hair growth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570473A (en) * 2018-04-11 2018-09-25 郑州师范学院 One iris cyclophilin CYP gene and its application
CN108570473B (en) * 2018-04-11 2021-07-09 郑州师范学院 Phalaenopsis cyclophilin CYP gene and application thereof
KR20210097435A (en) 2020-01-30 2021-08-09 선문대학교 산학협력단 Composition for the hydroxylation of fatty acids comprising CYP102A15 or CYP102A170
KR102398203B1 (en) 2020-11-16 2022-05-16 전남대학교 산학협력단 Novel oxygenase from fungi Podospora anserina S mat+ and method for preparing thereof
KR102398198B1 (en) 2020-11-16 2022-05-17 전남대학교 산학협력단 Novel oxygenase from fungi Daldinia and method for preparing thereof

Also Published As

Publication number Publication date
KR20130081394A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
KR101459817B1 (en) A novel Cytochrome P450 hydroxylase and process for preparing hydroxylated Cyclosporin A employing the same
IL210795A (en) Pyripyropene a biosynthetic gene
US11072806B2 (en) Gadusol production
CN111527211A (en) Microorganism producing mycosporine-like amino acid and method for producing mycosporine-like amino acid using the same
FI117674B (en) Polypeptides Related to Streptogramin Biosynthesis, Nucleotide Sequences Encoding These Polypeptides, and Their Use
KR20060110865A (en) Dna participating in hydroxylation of macrolide compound
KR101602195B1 (en) Method for Production of Non-natural Antibiotic
WO1999061591A1 (en) ENDO-β-N-ACETYLGLUCOSAMINIDASE GENE
WO2006085535A1 (en) Method for producing biopterin using tetrahydrobiopterin biosynthesis enzyme
KR100702728B1 (en) Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
JP2022551000A (en) Biosynthesis of eriodictyol
CN112391300A (en) Silybum marianum-derived flavone 3 beta-hydroxylase and application of coenzyme thereof
CN115011572A (en) Preparation method of variant tetraisopentenyl-beta-curcumene cyclase and ambroxol
EP1448767B1 (en) Novel gene cluster of pederin biosynthesis genes
US20120058563A1 (en) Production of 2-keto-l-gulonic acid
EP2731435B1 (en) Uk-2 biosynthetic genes and method for improving uk-2 productivity using the same
KR20020022758A (en) Gene encoding cyclic lipopeptide acylase and expression of the same
CN110551739A (en) Pyrazolomycin biosynthesis gene cluster, recombinant bacterium and application thereof
EP1231266B1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
KR20020064788A (en) Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
EP1291417B1 (en) Novel (r)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
CN112322592B (en) CYP76B100 protein involved in alkannin biosynthesis, coding gene thereof and application thereof
BG106479A (en) Streptomyces avermitilis gene directing the ratio of b2:b1 avermectins
KR20140052303A (en) Method for increasing productivity of tricyclo compounds
KR101748678B1 (en) Method for increasing the productivity of glycopeptides compounds

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191015

Year of fee payment: 6