KR101457304B1 - Method of preparing high dielectric insulating material and insulating device using the same - Google Patents

Method of preparing high dielectric insulating material and insulating device using the same Download PDF

Info

Publication number
KR101457304B1
KR101457304B1 KR1020130119237A KR20130119237A KR101457304B1 KR 101457304 B1 KR101457304 B1 KR 101457304B1 KR 1020130119237 A KR1020130119237 A KR 1020130119237A KR 20130119237 A KR20130119237 A KR 20130119237A KR 101457304 B1 KR101457304 B1 KR 101457304B1
Authority
KR
South Korea
Prior art keywords
fluorine
acid
insulating material
ligand
dielectric constant
Prior art date
Application number
KR1020130119237A
Other languages
Korean (ko)
Inventor
이진균
지중휘
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020130119237A priority Critical patent/KR101457304B1/en
Application granted granted Critical
Publication of KR101457304B1 publication Critical patent/KR101457304B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

The present invention provides a method of manufacturing a high-dielectric insulating material which includes the steps of: introducing high-dielectric nanoparticles and high fluorinated carboxylic acid ligand into high fluorinated solvent to react with each other (first step); collecting the high-dielectric nanoparticles transposed to high fluorinated carboxylic acid ligand by acetone (second step); and removing remaining acetone (third step). Thus, a high-dielectric insulating material is provided to enable a solution process in high fluorinated solvent. The high-dielectric insulating material, which is in a state of solution dissolved in the high fluorinated solvent, may be used as an insulating device for a transistor or a solar cell through various printing schemes. In addition, the high fluorinated solvent does not damage chemically, physically and electrically an organic semiconductor layer formed at a lower portion of an dielectric layer, so that layers having a high quality can be laminated.

Description

고유전율 절연재료의 제조방법 및 상기 고유전율 절연재료를 이용한 절연소자{Method of preparing high dielectric insulating material and insulating device using the same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a high dielectric constant insulating material and an insulating device using the high dielectric constant insulating material,

본 발명은 고유전율 절연재료에 관한 것으로서, 보다 상세하게는 화학적 안정성이 뛰어난 용제에서 용액공정이 가능한 고유전율 절연재료의 제조방법에 관한 것이다.The present invention relates to a high-k insulating material, and more particularly, to a method of manufacturing a high-k insulating material capable of performing a solution process in a solvent having excellent chemical stability.

일반적으로, 반도체소자 또는 다층배선판 미세화, 고집적화, 고밀도화가 진행됨에 따라, 고유전율 절연재료가 요구되고 있다. 반도체소자 버퍼코트막, 또는 다층배선판 층간절연막으로 넓게 사용되는 것은, 실리콘 산화막, 실리콘 질화막, 플리이미드 수지 등이 사용되며 비유전율을 각각 4 ∼ 5, 7 ∼ 9, 3.5 ∼ 4 정도이다.In general, as semiconductor devices or multilayer wiring boards are miniaturized, highly integrated, and densified, high dielectric constant insulating materials are required. A silicon oxide film, a silicon nitride film, a polyimide resin, or the like is used widely as a semiconductor element buffer coat film or a multilayer wiring board interlayer insulating film. The relative dielectric constant is about 4 to 5, 7 to 9, and 3.5 to 4, respectively.

특히, 불소수지는, 고내열성, 고내약품성 등이 우수한 특성을 갖기 때문에, 불소 수지를 이용한 절연재료의 개발이 활발하다. 그러나 반도체소자 또는 다층배선판은, 배선금속이나 다른 무기계 절연막과의 복합체로, 그 제조공정 및 실장공정에서, 200 ∼ 450℃의 고온에 쐬이므로, 불소수지가 낮은 유리전이온도, 고온역에서의 유동성 또는 작은 탄성율, 및 높은 선팽창계수는, 소자 또는 배선판의 신뢰성저하를 일으키므로 절연재료의 사용이 어렵다.Particularly, since the fluororesin has excellent properties such as high heat resistance and high endurance, the development of insulating materials using fluororesins has been actively conducted. However, since the semiconductor element or the multilayer wiring board is a composite with a wiring metal or another inorganic insulating film and is exposed to a high temperature of 200 to 450 DEG C in the manufacturing process and the mounting process, the fluororesin has a low glass transition temperature, Or a small modulus of elasticity and a high coefficient of linear expansion cause the reliability of the device or the wiring board to be lowered, making it difficult to use an insulating material.

일본 공개특허공보 평6-340710에는, 트리아진고리 함유 불소계 중합체가 기재되어 있는데, 이 중합체의 박막을 갖는 전자물품이나 절연재료는 개시되어 있지 않다. Japanese Patent Application Laid-Open No. 6-340710 discloses a fluorine-containing polymer containing a triazine ring. However, an electronic article or an insulating material having a thin film of this polymer is not disclosed.

한편 대한민국 공개특허공보 제10-2006-0025788호에 따르면 상기한 바와 같은 불소 수지 또는 불소계 용제를 이용하여 주형산화막 및 회생산화막 패턴을 제거하고 린스 및 건조 공정을 진행하므로써, 하부전극들의 쓰러짐을 방지할 수 있으며, 보다 깨끗하고 빠르게 공정들을 진행할 수 있는 커패시터의 제조 방법에 대하여 개시하고 있다.According to Korean Patent Laid-Open Publication No. 10-2006-0025788, the mold oxide film and the regenerated oxide film pattern are removed using the fluororesin or the fluorine-based solvent, and the rinsing and drying process is performed to prevent the lower electrodes from falling down And discloses a method of manufacturing a capacitor that can process processes cleaner and faster.

그러나 전자기기의 대면적화 및 유연화에 대한 요구를 만족시키기 위해, 화학적 안정성이 뛰어난 불소계 용제를 사용하여 용액공정으로 제조되는 고유전율 절연재료는 개시된 바가 없으며, 불소계 용제에 용해되어 용액 상으로 다양한 전자재료에 인쇄 기법을 통하여 제조될 수 있는 가능한 고유전율 절연재료를 개발이 여전히 필요한 실정이다.However, in order to satisfy demands for large-sized and flexible electronic devices, a high-dielectric insulating material prepared by a solution process using a fluorine-based solvent having excellent chemical stability has not been disclosed, and it is dissolved in a fluorine- It is still necessary to develop a possible high dielectric constant insulating material which can be produced by a printing technique.

본 발명은, 고불소계 용제에서 용액공정이 가능한 고유전율 절연재료의 제조방법을 제공하며, 고유전율 절연재료를 이용한 절연소자를 제공하는데 그 목적이 있다.
An object of the present invention is to provide a method of manufacturing a high dielectric constant insulating material capable of performing a solution process in a high fluorine solvent and to provide an insulating element using a high dielectric constant insulating material.

본 발명은, 고불소계 용제에 고유전율 나노입자 및 고불소계 카르복실산 리간드를 넣고 반응시키는 단계(제1단계); 상기 반응 종료 후 아세톤으로 고불소계 카르복실산 리간드로 치환된 고유전율 나노입자를 회수하는 단계(제2단계); 및 잔여 아세톤을 제거하는 단계(제3단계)를 포함하는, 고유전율 절연재료의 제조방법을 제공한다.The present invention relates to a process for preparing a high fluorine-containing solvent by adding high-k nanoparticles and a high fluorine-containing carboxylic acid ligand to a high fluorine solvent (first step); Recovering the high-k nano-particles substituted with a high fluorine-containing carboxylic acid ligand with acetone (second step); And removing the remaining acetone (third step). The present invention also provides a method of manufacturing a high dielectric constant insulating material.

또한 상기 고불소계 용제 100 중량부에 대하여, 고유전율 나노입자 10 내지 20 중량부 및 고불소계 카르복실산 리간드 30 내지 60 중량부를 넣고 반응시키는 것을 특징으로 할 수 있다. And 10 to 20 parts by weight of high-dielectric constant nano-particles and 30 to 60 parts by weight of a high-fluorine-containing carboxylic acid ligand are added to 100 parts by weight of the high fluorine solvent.

또한 상기 고불소계 용제는 하이드로플로로에테르(hydrofluoroethers), 과불소화 탄소(Perfluorocarbon), 수불화탄소(hydrofluorocarbons) 및 불소화 방향족 용제(fluorinated aromatic solvents)로 이루어진 군에서 선택된 것을 특징으로 할 수 있다.The high fluorine-based solvent may be selected from the group consisting of hydrofluoroethers, perfluorocarbons, hydrofluorocarbons, and fluorinated aromatic solvents.

또한 고유전율 나노입자는, 산화하프늄(Hafnium oxide), 산화지르코늄(Zirconium oxide) 및 타이타늄산바륨(Barium titanate)에서 선택된 어느 하나인 것을 특징으로 할 수 있다.The high-permittivity nanoparticles may be any one selected from hafnium oxide, zirconium oxide, and barium titanate.

또한 상기 고불소계 카르복실산 리간드는, 에테르기를 가지며 불소 함량이 60 내지 64% 인 것을 특징으로 할 수 있다.The high fluorine-containing carboxylic acid ligand has an ether group and has a fluorine content of 60 to 64%.

또한 상기 고불소계 카르복실산 리간드는, 퍼플로오로-3,6,9-트리옥사트리데캐노익애시드(perfluoro-3,6,9-trioxatridecanoic acid), 퍼플로오로 포스포닉 애시드(perfluoro phosphonic acid), ( 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-헵타데카플루오로테트라데카노익액시드(7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanoic acid), 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말로닉액시드(2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)malonic acid), 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-헥사데카플루오로-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)테트라데카노익액시드(7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)tetradecanoic acid), 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플로오로도데실)-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-헥사데카플로오로도데실)말로닉 애시드 (2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-hexadecafluorododecyl)malonic acid), 퍼플로오로데카오닉 애시드(perfluorodecanoic acid) 및 퍼플로오로옥타데카오닉 애시드(perfluorooctadecanoic acid)로 이루어진 군에서 선택된 것을 특징으로 할 수 있다.The high fluorine-containing carboxylic acid ligand may be at least one of perfluoro-3,6,9-trioxatridecanoic acid, perfluoro phosphonic acid, , (7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanooic acid solution seeds (7,7, 12, 13, 13, 14, 14, 14-heptadecafluorotetradecanoic acid), 2- (5,5,6,6,7,7,8, 8,8,9,9,10,10,11,11,12,12,13,13,14,14,14- , 8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) malonic acid solution (2- (5, 5, 6, 6, 7, , 9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) malonic acid), 7,7,8,8,9,9,10,10,11,11,12,12,13 , 14,14,14-hexadecafluoro-2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-hepta (7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro-2- (5) -tetradecanoic < / RTI & , 5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) tetradecanoic acid), 2- (5,5,6,6, 7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) -2- (5,5,6,6, 7,7,8,8,9,9,10,10,11,12,12,12-hexadecafluorododecyl) malonic acid (2- (5,5,6,6,7,7- 8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) -2- (5,5,6,6,7,7,8,8,9,9,10, 10, 11, 12, 12, 12-hexadecafluorododecyl) malonic acid, perfluorodecanoic acid and perfluorooctadecanoic acid.

또한 고유전율 절연재료를 고불소계 용제에 용해시키고 박막성형하여 얻어진 절연소자를 제공한다.Also disclosed is an insulating device obtained by dissolving a high dielectric constant insulating material in a high fluorine solvent and performing thin film molding.

또한 상기 절연소자는 트랜지스터, 태양전지, 코팅제, 비휘발성 메모리, 플렉시블 디스플레이의 백플레인, 2차전지 전해질, 유연집적회로, 유연전자종이 디스플레이(display) 및 유연 스마트폰용 디스플레이로 이루어진 군에서 선택된 하나 이상에 적용되는 것을 특징으로 할 수 있다.The insulating device may also be at least one selected from the group consisting of transistors, solar cells, coatings, non-volatile memories, backplanes for flexible displays, secondary battery electrolytes, flexible integrated circuits, flexible electronic paper displays, It can be characterized that it is applied.

본 발명에 따른 고유전율 절연재료의 제조방법에 의하면, 고불소계 용제에서 용액공정이 가능한 고유전율 절연재료를 제공한다. 고불소계 용제에 용해된 용액 상태의 고유전율 절연재료는 다양한 인쇄기법을 통하여 트랜지스터, 태양전지 등의 절연소자로 이용할 수 있다. 또한 유전체층 하부에 형성되는 유기 반도체 층에 고불소계 용제가 화학적, 물리적, 전기적 손상을 입히지 않으므로 고품질의 층을 적층할 수 있다.According to the method of manufacturing a high dielectric constant insulating material according to the present invention, a high dielectric constant insulating material which can be subjected to a solution process in a high fluorine solvent is provided. The high dielectric constant insulating material dissolved in a high fluorine solvent can be used as an insulating element such as a transistor or a solar cell through various printing techniques. In addition, since a high fluorine-based solvent is not chemically, physically, or electrically damaged in the organic semiconductor layer formed under the dielectric layer, high-quality layers can be stacked.

도 1은 본 발명의 일실시예에 따른 박막 트랜지스터의 구성도,
도 2a는 하프늄 이소프로폭사이드 이소프로판올(hafnium isopropoxide isopropanol)과 하프늄 클로라이드(hafnium chloride)에 트리옥틸포스파인 옥사이드(trioctylphosphine oxide,TOPO)를 첨가하여 TOPO가 캡핑된 산화하프늄 나노입자를 합성하는 과정을 나타내는 모식도,
도 2b는 지르코늄 이소프로폭사이드 이소프로판올(Zirconium isopropoxide isopropanol)과 지르코늄 클로라이드(zirconium chloride) 첨가하여 TOPO가 캡핑된 산화지르코늄 나노입자를 합성하는 과정을 나타내는 모식도,
도 3은 산화하프늄 나노입자를 고불소계 용제에 분산시킨 고유전율 절연재료의 TEM 이미지,
도 4는 산화지르코늄 나노입자를 고불소계 용제에 분산시킨 고유전율 절연재료의 TEM 이미지,
도 5는 고불소계 용제에서 산화하프늄 나노입자를 둘러싸고 있는 리간드가 고불소계 카르복실산 리간드로 치환되는 과정을 나타내는 모식도,
도 6은 본 발명의 일실시예에 따른 고불소계 용제의 선-결합 구조식,
도 7은 본 발명의 일실시예에 따른 산화하프늄 나노입자로 제조된 고유전율 절연재료를 고불소계 용제 분산시킨 사진,
도 8은 본 발명의 일실시예에 따른 산화지르코늄 나노입자로 제조된 고유전율 절연재료를 고불소계 용제 분산시킨 사진,
도 9 및 도 10은 본 발명에 따른 절연소자의 유전율을 각각 측정하여 나타낸 그래프이다.
FIG. 1 is a configuration diagram of a thin film transistor according to an embodiment of the present invention,
2A shows a process of synthesizing TOPO-capped hafnium isopropoxide isopropanol and trioctylphosphine oxide (TOPO) in hafnium chloride to synthesize hafnium isopropoxide isopropanol and hafnium chloride, Also,
2B is a schematic view showing a process of synthesizing zirconium oxide nanoparticles in which TOPO is capped by adding zirconium isopropoxide isopropanol and zirconium chloride,
3 is a TEM image of a high dielectric constant insulating material in which hafnium oxide nanoparticles are dispersed in a high fluorine solvent,
4 is a TEM image of a high dielectric constant insulating material in which zirconium oxide nanoparticles are dispersed in a high fluorine solvent,
5 is a schematic diagram showing a process in which a ligand surrounding a hafnium oxide nanoparticle in a high fluorine solvent is substituted with a high fluorine-containing carboxylic acid ligand,
FIG. 6 is a graph showing the results of a pre-combination structural formula of a high fluorine-based solvent according to an embodiment of the present invention,
FIG. 7 is a photograph of a high fluorine solvent-dispersed high dielectric constant insulating material made of hafnium oxide nanoparticles according to an embodiment of the present invention,
FIG. 8 is a photograph of a high fluorine solvent-dispersed high dielectric constant insulating material made of zirconium oxide nanoparticles according to an embodiment of the present invention,
9 and 10 are graphs showing the dielectric constant of the insulating device according to the present invention, respectively.

본 발명은 고불소계 용제에 고유전율 나노입자 및 고불소계 카르복실산 리간드를 넣고 반응시키는 단계(제1단계); 상기 반응 종료 후 아세톤으로 고불소계 카르복실산 리간드로 치환된 고유전율 나노입자를 회수하는 단계(제2단계); 및 잔여 아세톤을 제거하는 단계(제3단계)를 포함하는, 고유전율 절연재료의 제조방법을 제공한다.The present invention relates to a process for preparing a high fluorine-containing solvent by reacting high-k nanoparticles and a high fluorine-containing carboxylic acid ligand in a high fluorine solvent (first step); Recovering the high-k nano-particles substituted with a high fluorine-containing carboxylic acid ligand with acetone (second step); And removing the remaining acetone (third step). The present invention also provides a method of manufacturing a high dielectric constant insulating material.

상기 고유전율 절연재료는 화학적 안정성이 뛰어난 고불소계 용제에서 용액공정이 가능하여 다양한 인쇄 기법을 통해 트랜지스터에 적용되는 절연소자를 제공할 수 있다.The high-k insulating material can be subjected to a solution process in a high-fluorine-based solvent excellent in chemical stability, thereby providing an insulating device applied to a transistor through various printing techniques.

상기 고불소계 용제 100 중량부에 대하여, 고유전율 나노입자 10 내지 20 중량부 및 고불소계 카르복실산 리간드 30 내지 60 중량부를 넣고 반응시킬 수 있다.  10 to 20 parts by weight of high-dielectric constant nano-particles and 30 to 60 parts by weight of a high-fluorine-based carboxylic acid ligand may be added to 100 parts by weight of the high fluorine solvent.

상기 고불소계용제는 하이드로플로로에테르(hydrofluoroethers), 과불소화 탄소(Perfluorocarbon), 수불화탄소(hydrofluorocarbons) 및 불소화 방향족 용제 (fluorinated aromatic solvents)로 이루어진 군에서 선택된 것을 특징으로 할 수 있다. The high fluorine-based solvent may be selected from the group consisting of hydrofluoroethers, perfluorocarbon, hydrofluorocarbons, and fluorinated aromatic solvents.

상기 HFE는 복합 유기 용제로써 낮은 점성, 높은 분자량 덕분에 상온에서 액체이고 따라서 고유전율 절연재료를 용액공정에 사용하기 위하여 상기 고유전율 절연재료의 용해성을 높이는 경우에는 상기 고유전율 절연재료를 상기 고불소계용제에 용해시켜 액상으로 제조할 수 있다.The HFE is a composite organic solvent which is liquid at room temperature due to its low viscosity and high molecular weight, and therefore, when the solubility of the high-dielectric insulating material is increased to use the high-dielectric insulating material in a solution process, the high- It may be dissolved in a solvent to form a liquid phase.

상기 고유전율 나노입자는 산화하프늄(Hafnium oxide), 산화지르코늄(Zirconium oxide) 및 타이타늄산바륨(Barium titanate)에서 선택된 어느 하나인 것을 특징으로 할 수 있다.The high-k component nanoparticles may be any one selected from hafnium oxide, zirconium oxide, and barium titanate.

상기 산화하프늄(Hafnium oxide)은 하프늄 이소프로폭사이드 이소프로판올(hafnium isopropoxide isopropanol)과 하프늄 클로라이드(hafnium chloride)에 트리옥틸포스파인 옥사이드(trioctylphosphine oxide, TOPO)를 첨가하여 트리옥틸포스핀 옥사이드가 캡핑된 산화하프늄 나노입자를 합성할 수 있다.The hafnium oxide may be prepared by adding trioctylphosphine oxide (TOPO) to hafnium isopropoxide isopropanol and hafnium chloride to form trioctylphosphine oxide-capped oxide Hafnium nanoparticles can be synthesized.

상기 산화지르코늄(Zirconium oxide)은 지르코늄 이소프로폭사이드 이소프로판올(Zirconium isopropoxide isopropanol)과 지르코늄 클로라이드(zirconium chloride) 첨가하여 TOPO가 캡핑된 산화지르코늄 나노입자를 합성할 수 있다.The zirconium oxide may be prepared by adding zirconium isopropoxide isopropanol and zirconium chloride to synthesize zirconium oxide nanoparticles in which TOPO is capped with zirconium isopropoxide isopropanol and zirconium chloride.

또한 상기 고불소계 카르복실산 리간드는 에테르기를 가지며 불소 함량이 60 내지 64% 인 것을 특징으로 할 수 있다.The high fluorine-containing carboxylic acid ligand may have an ether group and a fluorine content of 60 to 64%.

상기 고불소계 카르복실산 리간드는, 퍼플루오로-3,6,9-트리옥사트리데카노익액시드, 퍼플로오로 포스포닉 애시드, 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-헵타데카플루오로테트라데카노익액시드, 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말로닉액시드, 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-헥사데카플루오로-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)테트라데카노익액시드, 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플로오로도데실)-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-헥사데카플로오로도데실)말로닉 애시드, 퍼플로오로데카오닉 애시드 및 퍼플로오로옥타데카오닉 애시드로 이루어진 군에서 선택된 것을 특징으로 할 수 있다. The high fluorine-containing carboxylic acid ligand may be at least one selected from the group consisting of perfluoro-3,6,9-trioxatridecanoic acid solution, perfluorophosphonic acid, 7,7,8,8,9,9,10,10, 11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanoic acid solution juice, 2- (5,5,6,6,7,7,8,8,9,9 , 10,10,11,11,12,12,12-heptadecafluorododecyl) malonic acid liquid, 7,7,8,8,9,9,10,10,11,11,12,12, 13,14,14,14-hexadecafluoro-2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12- Heptadecafluorododecyl) tetradecanoic acid liquoride, 2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12- Heptadecafluorododecyl) -2- (5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-hexadecafluorododecyl) Malonic acid, perfluoroorecanoic acid, and perfluoro-octadecanoic acid.

상기 고유전율 나노입자 및 고불소계 카르복실산 리간드를 넣고 반응시키는 단계(제1단계)에서 상기 고유전율 나노입자와 상기 고불소계 리간드의 비율은 1 : 2 ~ 3 이며 바람직하게는 3인 것을 특징으로 할 수 있다. The ratio of the high-permittivity nanoparticle to the high-fluorine-containing ligand in the step of adding and reacting the high-permittivity nanoparticle and the high-fluorine-containing carboxylic acid ligand (step 1) is 1: 2 to 3, can do.

상기 고유전율 나노입자 및 고불소계 카르복실산 리간드를 넣고 반응시키는 단계(제1단계)에서는 상기 고유전율 나노입자 및 고불소계 카르복실산 리간드를 반응기에 넣고 질소 조건하에서 교반하여 진행할 수 있으며, 120 내지 130 ℃ 승온시키고, 3 내지 4 시간 동안 반응시킬 수 있다.In the step of adding and reacting the high-permittivity nanoparticle and the high-fluorine-containing carboxylic acid ligand (first step), the high-permittivity nanoparticle and the high fluorine-containing carboxylic acid ligand may be introduced into a reactor and stirred under nitrogen, The temperature may be raised to 130 ° C, and the reaction may be carried out for 3 to 4 hours.

상기 아세톤으로 고불소계 카르복실산 리간드로 치환된 고유전율 나노입자를 회수하는 단계는 상기 고불소계 카르복실산 리간드로 치환된 고유전율 나노입자를 회수한 이후에 정제하는 단계를 더 포함할 수 있다.The step of recovering the high-k rate nanoparticles substituted with the high fluorine-containing carboxylic acid ligand as the acetone may further include a step of recovering the high-k < th >

상기 고유전율 절연재료를 고불소계 용제에 용해시키고 박막성형하여 절연소자를 제조할 수 있다. 본 발명의 일실시예에 따른 박막 트랜지스터의 구성도를 도 1에 나타내었다. 액상으로 제조된 상기 고유전율 절연소자는 용액 공정이 가능하므로 전자 기기의 대면적화 및 유연화에 대응할 수 있으며, HFE와 같은 용제는 유전체층 하부에 형성되는 유기 반도체 층에 화학적, 물리적, 전기적 손상을 입히지 않으므로 고품질의 다층으로 적층 공정을 수행할 수 있다.
The high-k insulating material is dissolved in a high-fluorine-based solvent and thin-film-molded to manufacture an insulating device. FIG. 1 shows a configuration of a thin film transistor according to an embodiment of the present invention. Since the high-dielectric insulating device fabricated in a liquid phase can be subjected to a solution process, it is possible to cope with the enlargement and softening of electronic devices, and a solvent such as HFE does not cause chemical, physical, or electrical damage to the organic semiconductor layer formed under the dielectric layer It is possible to carry out the lamination process with high quality multilayer.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

<< 실시예Example 1>  1> 고유전율High permittivity 나노입자 제조 Nanoparticle manufacturing

1. 산화하프늄(Hafnium oxide) 나노입자의 제조1. Manufacture of hafnium oxide nanoparticles

하프늄 이소프록사이드 이소프로판올(Hafnium isopropoxide isopropanol, 2 mmol, 0.95 g), 하프늄 클로라이드(hafnium chloride, 2 mmol, 0.65 g) 및 트리옥틸포스파인 옥사이드(trioctylphosphine oxide, TOPO, 26 mmol, 10.0 g)를 반응용기에 투입하고 질소 조건하에 교반시켰다. Hafnium isopropoxide isopropanol (2 mmol, 0.95 g), hafnium chloride (2 mmol, 0.65 g) and trioctylphosphine oxide (TOPO, 26 mmol, 10.0 g) &Lt; / RTI &gt; and stirred under nitrogen.

반응용기를 빠르게 360℃까지 올리고 2시간 동안 빠르게 교반시켰다. 반응이 끝난 후에 60℃까지 온도를 낮추고 과량의 아세톤으로 하프니아(hafnia) 나노입자를 회수한 이후에 미반응 TOPO를 원심분리기를 통해 세척하였다.The reaction vessel was rapidly heated to 360 &lt; 0 &gt; C and stirred rapidly for 2 hours. After the reaction was completed, the temperature was lowered to 60 ° C., and hafnia nanoparticles were recovered with an excess of acetone, and unreacted TOPO was washed through a centrifuge.

산화하프늄 입자는 헥산에 분산되지 않으므로 TOPO를 첨가하여 반응을 진행하여, TOPO 캡핑된 산화하프늄 나노입자를 제조하였다. 상기 TOPO 캡핑된 산화하프늄 나노입자는 헥산에 분산이 가능하였다. Since the hafnium oxide particles were not dispersed in hexane, TOPO was added to carry out the reaction to prepare TOPO capped hafnium oxide nanoparticles. The TOPO capped hafnium oxide nanoparticles were dispersible in hexane.

소량의 헥산으로 분산된 나노입자를 회수 후 다시 아세톤으로 나노입자 회수 정제 과정을 실시하였다. The nanoparticles dispersed in a small amount of hexane were recovered and then recycled to acetone.

잔여 용제를 제거하여 산화하프늄(HfO2) 나노입자를 회수하였으며, 산화하프늄 나노입자의 수득율은 75 내지 80%이였다.
The residual solvent was removed to recover the hafnium oxide (HfO 2 ) nanoparticles, and the yield of the hafnium oxide nanoparticles was 75 to 80%.

2. 산화지르코늄(Hafnium oxide) 나노입자의 제조2. Manufacture of zirconium oxide (hafnium oxide) nanoparticles

지르코늄 이소프록사이드 이소프로판올(Zirconium isopropoxide isopropanol,2 mmol, 0.78 g), 지르코늄 클로라이드(zirconium chloride, 2.5 mmol, 0.583 g) 및 트리옥틸포스파인 옥사이드(trioctylphosphine oxide, 26mmol, 10.0g)를 반응용기에 투입하고 질소 조건하에 교반시켰다.Zirconium isopropoxide isopropanol (2 mmol, 0.78 g), zirconium chloride (2.5 mmol, 0.583 g) and trioctylphosphine oxide (26 mmol, 10.0 g) were charged into a reaction vessel And stirred under nitrogen.

반응용기를 빠르게 340℃까지 올리고 2시간 동안 빠르게 교반시켰다. 반응이 끝난 후에 60℃까지 온도를 낮추었다.The reaction vessel was rapidly heated to 340 ° C and stirred rapidly for 2 hours. After the reaction was completed, the temperature was lowered to 60 ° C.

과량의 아세톤으로 지르코니아(Zirconia) 나노입자를 회수하였다. 미반응 TOPO를 원심분리기를 통해 씻어주었다. Zirconia nanoparticles were recovered with excess acetone. Unreacted TOPO was washed through a centrifuge.

산화지르코늄 나노입자는 헥산에 분산되지 않으므로 TOPO를 첨가하여 반응을 진행하여, TOPO 캡핑된 산화지르코늄 나노입자를 제조하였다. 상기 TOPO 캡핑된 산화지르코늄 나노입자는 헥산에 분산이 가능하였다.Since the zirconium oxide nanoparticles were not dispersed in hexane, the reaction proceeded by adding TOPO to prepare TOPO-capped zirconium oxide nanoparticles. The TOPO-capped zirconium oxide nanoparticles were dispersible in hexane.

소량의 헥산으로 분산된 나노입자를 회수 후 다시 아세톤으로 나노입자 회수 정제 과정을 실시하였다. 잔여 용제를 제거하여 산화지르코늄(ZrO2) 나노입자를 회수하였다.The nanoparticles dispersed in a small amount of hexane were recovered and then recycled to acetone. The residual solvent was removed to recover zirconium oxide (ZrO 2 ) nanoparticles.

산화지르코늄 나노입자의 수득율은 75 내지 80%이였다.
The yield of zirconium oxide nanoparticles was 75 to 80%.

<< 실시예Example 2>  2> 고불소계High fluorine 카르복실산Carboxylic acid 리간드의Ligand 선정 selection

1. 리간드의 준비One. Preparation of Ligand

1) 퍼플로오로-3,6,9-트리옥사트리데카노익애시드1) Purpleoro-3,6,9-trioxatridecanoic acid

고유전율 나노입자의 리간드를 고불소계 카르복실산 리간드로 치환하기 위하여 리간드로 고불소계 카르복실산 리간드인 퍼플로오로-3,6,9-트리옥사트리데카노익애시드(perfluoro-3,6,9-trioxatridecanoic acid)를 플로오로캠(Fluorochem)에서 구매하여 사용하였다. In order to replace the ligand of the high-k nano-particle with the high-fluoric carboxylic acid ligand, perfluoro-3,6,9-trioxatridecanoic acid (perfluoro-3,6- 9-trioxatridecanoic acid) was purchased from Fluorochem and used.

리간드의 분산 안정성을 비교하기 위하여 추가적으로 다음의 리간드를 제조하였다.In order to compare the dispersion stability of the ligands, the following ligands were additionally prepared.

2) 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말론익액시드(리간드 6)2) 2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) malon juice seeds ( Ligand 6)

다음 반응식 1과 같이 리간드 6을 합성하였다. 즉, 100 cm3 둥근바닥 플라스크에 디에틸 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말로네이트(0.391 g, 0.6166 mmol), 10 cm3 증류된 에탄올(absolute EtOH)에 KOH (0.138g , 2.46 mmol)를 녹인 용액을 넣어 주었다. 질소 조건하에 80℃ 에서 약 6시간 동안 반응시켰다. 반응이 끝난 후 상온으로 온도를 낮추었다. 36% HCl 용액을 천천히 적가하여 pH를 2로 만든 후 증류수 30 cm3를 넣고, 에틸아세테이트를 넣어 추출한 후 Na2SO4를 통해 남아 있는 수분을 제거하여 리간드 6을 합성하였다. Ligand 6 was synthesized as shown in Scheme 1 below. That is, a 100 cm 3 round bottom flask was charged with diethyl 2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadeca (0.391 g, 0.6166 mmol) dissolved in 10 cm &lt; 3 &gt; of distilled ethanol (absolute EtOH) was added to a solution of 0.138 g (2.46 mmol) KOH. The reaction was carried out at 80 DEG C under nitrogen for about 6 hours. After the reaction was completed, the temperature was lowered to room temperature. 36% HCl solution was slowly added dropwise to adjust the pH to 2, 30 cm 3 of distilled water was added, extracted with ethyl acetate, and the remaining water was removed through Na 2 SO 4 to synthesize ligand 6.

[반응식 1][Reaction Scheme 1]

Figure 112013090637160-pat00001
Figure 112013090637160-pat00001

3) 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-헵타데카플루오로테트라데카노익액시드(리간드 7)3) 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanoic acid solution seed (ligand 7)

사기 반응식 1과 같이, 100 ㎤ 둥근 바닥 플라스크에 리간드 6을 디메틸포름아마이드(DMF)에 녹여 150℃의 온도에서 증류하여 갈색의 왁스 산물인 리간드 7을 합성하였다. As shown in Reaction Scheme 1, ligand 6 was dissolved in dimethylformamide (DMF) in a 100 cm 3 round bottom flask and distilled at a temperature of 150 ° C to synthesize a brown wax product, ligand 7.

4) 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말로익액시드-(2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로데실)말로익액시드(리간드 9)4) 2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) maloylate- (2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorodecyl) maloylate (ligand 9 )

다음 반응식 2와 같이 리간드 9를 합성하였다. 즉, 100 ㎤ 둥근 바닥 플라스크에 디에틸 2,2-비스(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실) 말로네이트(1.393 g), 13 ㎤ 증류된 에탄올(absolute EtOH)에 50% 수산화칼륨(KOH) 13 ㎤를 녹인 용액을 넣어 주었다. 질소 조건하에 80℃ 에서 24시간 동안 반응시켰다. 반응이 끝난 후 상온으로 온도를 낮추었다. 36% HCl 용액을 천천히 적가하여 pH 2로 만든 후 증류수 100 ㎤ 넣고, 에틸 아세테이트 100 ml를 넣어 리간드를 수득한 이후에 황산나트륨(Na2SO4)을 통해 남아 있는 수분을 제거하였다.Ligand 9 was synthesized as shown in Reaction Scheme 2 below. Namely, a 100 cm 3 round bottom flask was charged with diethyl 2,2-bis (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12- Heptadecafluorodecyl) malonate (1.393 g), and 13 cm 3 of 50% potassium hydroxide (KOH) dissolved in 13 cm 3 of distilled ethanol (absolute EtOH). The reaction was carried out at 80 DEG C under nitrogen for 24 hours. After the reaction was completed, the temperature was lowered to room temperature. 36% HCl solution was slowly added dropwise to pH 2, 100 ml of distilled water was added, and 100 ml of ethyl acetate was added to obtain a ligand. Then, remaining water was removed through sodium sulfate (Na 2 SO 4 ).

[반응식 2][Reaction Scheme 2]

Figure 112013090637160-pat00002
Figure 112013090637160-pat00002

5) 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-헥사데카플루오로-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)테트라데카노익액시드(리간드 10)5) 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro-2- (5,5,6,6, 7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) tetradecanoate solution (ligand 10)

상기 반응식 2와 같이, 100 ㎤ 둥근 바닥 플라스크에 리간드 9를 디메틸포름아마이드(DMF)에 녹여 150℃의 온도에서 증류하여 갈색의 왁스 산물인 리간드 10을 합성하였다.
As shown in Reaction Scheme 2, ligand 9 was dissolved in dimethylformamide (DMF) in a 100 cm 3 round bottom flask and distilled at 150 ° C to synthesize a brown wax product, ligand 10.

<< 실시예Example 3>  3> 고유전율High permittivity 나노입자의  Of nanoparticles 고불소계High fluorine 카르복실산Carboxylic acid 리간드로As a ligand 치환 substitution

1. 산화하프늄 표면개질 1. Hafnium oxide surface modification

고불소계 카르복실산 리간드인 퍼플루오로-3,6,9-트리옥사트리데카노익액시드(perfluoro-3,6,9-trioxatridecanoic acid) 3g 에 산화하프늄(HfO2) 나노입자 1g 을 투입하고, 고불소계 용제 HFE-7500(Hydrofluoro ether, 3M) 2ml를 첨가하여 질소 조건하에서 반응시켰다. 이때, 반응 온도는 130℃로 유지하였으며, 4시간 동안 반응 시켰다.1 g of hafnium oxide (HfO 2 ) nanoparticles was added to 3 g of perfluoro-3,6,9-trioxatridecanoic acid which is a high fluorine-based carboxylic acid ligand , And 2 ml of a high fluorine-based solvent HFE-7500 (Hydrofluoro ether, 3M) were added and reacted under a nitrogen atmosphere. At this time, the reaction temperature was maintained at 130 ° C. and the reaction was carried out for 4 hours.

반응 종료 후 상온으로 냉각하고, 원심분리기를 사용하여 과량의 아세톤으로 고불소계 카르복실산 리간드로 치환된 고유전율 나노재료(HfO2)를 회수하였다.After completion of the reaction, the reaction solution was cooled to room temperature, and a high-k rate nanomaterial (HfO 2 ) substituted with a high fluorine-containing carboxylic acid ligand with an excess of acetone was recovered using a centrifugal separator.

원심분리기를 사용하여 잔여 용제인 아세톤을 제거하고 고불소계 카르복실산 리간드로 치환된 산화하프늄(HfO2) 나노입자를 회수하였다. 이때 산화하프늄 나노입자의 수득율을 90 내지 95%이였다.
The remaining solvent, acetone, was removed using a centrifuge and hafnium oxide (HfO 2 ) nanoparticles substituted with a high fluorine-based carboxylic acid ligand were recovered. At this time, the yield of the hafnium oxide nanoparticles was 90 to 95%.

2. 산화지르코늄 표면개질2. Zirconium oxide surface modification

고불소계 리간드(perfluoro-3,6,9-trioxatridecanoic acid) 3g에 산화지르코늄(ZrO2) 나노입자 1g을 투입하고, 고불소계 용제 HFE-7500(Hydrofluoro ether, 3M) 2ml를 첨가하여 질소 조건하에서 반응시켰다. 이때, 반응 온도는 130℃로 유지하였고, 4시간 동안 반응시켰다. 1 g of zirconium oxide (ZrO 2 ) nanoparticles was added to 3 g of perfluoro-3,6,9-trioxatridecanoic acid, and 2 ml of a high fluorine solvent HFE-7500 (Hydrofluoro ether, 3M) . At this time, the reaction temperature was maintained at 130 ° C. and the reaction was carried out for 4 hours.

반응 종료 후 상온까지 냉각한 이후에 과량의 아세톤으로 고불소계로 치환된 고유전율 나노입자(ZrO2)를 회수하였다. After the completion of the reaction, the solution was cooled to room temperature, and then the high-k nano particles (ZrO 2 ), which was substituted with an excess of acetone and replaced with a high-fluorine system, was recovered.

원심분리기를 잔여 용제인 아세톤을 제거하고 고불소계로 치환된 산화지르코늄(ZrO2)를 수득하였다. 이때 산화지르코늄 나노입자의 수득율을 90 내지 95%이였다.
The remaining solvent, acetone, was removed from the centrifugal separator to obtain zirconium oxide (ZrO 2 ) substituted with high fluorine. At this time, the yield of the zirconium oxide nanoparticles was 90 to 95%.

<< 실시예Example 3>  3> 박막성형된Thin-film molded 절연소자의 제조 Manufacture of insulating devices

제조된 고유전율 절연재료 0.1g을 고불소계 용제 HFE-7500 1ml에 분산시켰다. 분산된 고유전율 절연재료는 액상으로 형성하였으며, 박막트랜지스터의 절연층으로 사용 가능 여부를 확인하기 위하여 유전율 측정용 절연소자를 제조하였다.0.1 g of the prepared high-dielectric insulating material was dispersed in 1 ml of a high fluorine-based solvent HFE-7500. Dispersed high - k insulating material was formed as a liquid phase, and an insulating device for measuring the dielectric constant was manufactured to check whether it could be used as an insulating layer of a thin film transistor.

용액공정으로 스핀코팅(Spin coating)을 실시하였으며, 가속시간을 1500rpm 으로 20초로 하고 1500rpm에서 20초 동안 스핀코팅을 실시하였다.
Spin coating was performed by a solution process. Spin coating was performed at 1500 rpm for 20 seconds at an acceleration time of 1500 rpm for 20 seconds.

<< 실험예Experimental Example 1>  1> 고유전율High permittivity 나노입자의 구조 Structure of nanoparticles

도 2a는 출발물질인 하프늄 이소프로폭사이드 이소프로판올(hafnium isopropoxide isopropanol)과 하프늄 클로라이드(hafnium chloride)에 TOPO를 첨가하여 TOPO가 캡핑된 산화하프늄 나노입자를 합성하는 과정을 나타내는 모식도이고, 도 2b는 지르코늄 이소프로폭사이드 이소프로판올(Zirconium isopropoxide isopropanol)과 지르코늄 클로라이드(zirconium chloride)에 TOPO를 첨가하여 TOPO가 캡핑된 산화지르코늄 나노입자를 합성하는 과정을 나타내는 모식도이다.FIG. 2A is a schematic view showing a process for synthesizing TOPO-capped hafnium oxide nanoparticles by adding TOPO to hafnium isopropoxide isopropanol and hafnium chloride as starting materials, and FIG. FIG. 3 is a schematic view showing a process of synthesizing TOPO-capped zirconium oxide nanoparticles by adding TOPO to zirconium isopropoxide isopropanol and zirconium chloride. FIG.

앞서 실시예에서 제조된 산화하프늄 나노입자와 산화지르코늄 나노입자를 확인하면 산화하프늄 및 산화지르코늄인 코어를 고불소계 리간드가 둘러싸고 있는 것을 확인하였다.
When the hafnium oxide nanoparticles and the zirconium oxide nanoparticles prepared in the above Examples were examined, it was confirmed that the high fluorine ligand surrounds the hafnium oxide and zirconium oxide core.

<< 실험예Experimental Example 2>  2> 고불소계High fluorine 리간드의Ligand 분산안정성 검토 Review dispersion stability

고불소계 리간드의 종류를 달리하는 경우에 고불소계 용제에 대한 분산안정성을 측정하였다.The dispersion stability of the high fluorine type solvent was measured when the type of high fluorine type ligand was varied.

입도분석기(ELS-Z)를 사용하여 나노입자 크기를 측정하고 10 내지 15㎚ 크기의 나노입자의 분포를 확인하였다. The size of the nanoparticles was measured using a particle size analyzer (ELS-Z) and the distribution of nanoparticles having a size of 10 to 15 nm was confirmed.

그 결과, 고불소계 체인이 1개 및 카르복실기 1개인 리간드 6과 리간드 7, 고불소계 체인이 2개 및 카르복실기 2개인 리간드 9와 고불소계 체인이 2개 및 카르복실기 1개인 리간드 10은 모두 시간이 지남에 따라 흰색 침전이 생성되었다. As a result, it was found that both the ligand 6 and the ligand 6 having one high fluorine chain and one carboxyl group, the ligand 9 having two high fluorine chains and the two high carboxyl groups, the two highly fluorinated chains and the ligand 10 having one carboxyl group were all dissolved over time Followed by a white precipitate.

상기 리간드 6, 리간드 7, 리간드9 및 리간드 10은 분산안정성이 떨어지는 것으로 나타난 반면, 퍼플로오로-3,6,9-트리옥사트리데카노익액시드는 3개월 이상 침전이 생성되지 않았으므로, 분산안정성이 증가하는 것으로 확인되었다.The ligand 6, the ligand 7, the ligand 9 and the ligand 10 appeared to have poor dispersion stability, whereas the precipitation of the perfluoro-3,6,9-trioxatridecanoic acid solution did not occur for 3 months or longer, .

고불소계 리간드로서 퍼플로오로-3,6,9-트리옥사트리데카노익액시드가 분상안정성이 높은 것으로 확인되었다.
As the fluorine-based ligand, it was confirmed that the perfluoro-3,6,9-trioxatridecanoate solution seed was superior in the powder stability.

<< 실험예Experimental Example 3>  3> 고불소계High fluorine 카르복실산Carboxylic acid 리간드로As a ligand 치환된  Substituted 고유전율High permittivity 절연재료의 특성  Characteristics of insulating materials

고유전율 나노입자의 다층 박막의 전체적인 층 구조 및 성분 분포를 확인하기 위하여 투과전자현미경(Transmission electron microscope, TEM, Philips-CM200)을 사용하여 제조된 고유전율 절연재료를 분석하였다. The high-k insulating material prepared using a transmission electron microscope (TEM, Philips-CM200) was analyzed to confirm the overall layer structure and component distribution of the multilayer thin film of the high-permittivity nanoparticles.

도 3은 산화하프늄 나노입자를 고불소계 용제에 분산시킨 고유전율 절연재료의 TEM 이미지이고, 도 4는 산화지르코늄 나노입자를 고불소계 용제에 분산시킨 고유전율 절연재료의 TEM 이미지로서, 이러한 도면을 통해 나노입자는 고불소계 용제에서 고르게 분산된 것을 확인하였다. FIG. 3 is a TEM image of a high dielectric constant insulating material in which hafnium oxide nanoparticles are dispersed in a high fluorine solvent, and FIG. 4 is a TEM image of a high dielectric constant insulating material in which zirconium oxide nanoparticles are dispersed in a high fluorine solvent. It was confirmed that the nanoparticles were uniformly dispersed in a high fluorine solvent.

도 5는 고불소계 용제에서 산화하프늄 나노입자를 둘러싸고 있는 리간드가 고불소계 카르복실산 리간드로 치환되는 과정을 나타내는 모식도이다. 산화하프늄 나노입자에 고불소계 카르복실산 리간드를 치환하면 상기 나노입자를 둘러싸고 있는 리간드는 에테르기를 가지면서 불소함량은 60 내지 64%로 증가되었다. 5 is a schematic diagram showing a process in which a ligand surrounding a hafnium oxide nanoparticle in a high fluorine solvent is substituted with a high fluorine-containing carboxylic acid ligand. When the hafnium oxide nanoparticles are substituted with a high fluorine-containing carboxylic acid ligand, the ligand surrounding the nanoparticles has an ether group and the fluorine content is increased to 60 to 64%.

도 6은 본 발명의 일실시예에 따른 고불소계 용제의 선-결합 구조식이다.FIG. 6 is a pre-combination structural formula of a high fluorine-based solvent according to an embodiment of the present invention.

도 7은 본 발명의 일실시예에 따른 산화하프늄 나노입자로 제조된 고유전율 절연재료를 고불소계 용제 분산시킨 사진이고, 도 8은 본 발명의 일실시예에 따른 산화지르코늄 나노입자로 제조된 고유전율 절연재료를 고불소계 용제 분산시킨 사진이다.FIG. 7 is a photograph of a high fluorine-based solvent dispersed in a high-dielectric insulating material made of hafnium oxide nanoparticles according to an embodiment of the present invention. FIG. This is a photograph in which a fluorine-based solvent is dispersed in a dielectric insulating material.

따라서, 고불소계 카르복실산 리간드로 치환되어 불소함량이 증가된 고유전율 나노입자는 고불소계 용제(HFE)에서 용해성이 증가되었다.
Thus, the high-k nanoparticles increased in fluorine content by being substituted with a high fluorine-containing carboxylic acid ligand showed increased solubility in a high fluorine-based solvent (HFE).

<< 실험예Experimental Example 4> 절연소자의 유전율 측정  4> Measurement of dielectric constant of insulating device

앞서 실시예에서 제조된 절연소자의 유전율을 측정하기 위하여 엘씨알 미터(LCR meter, Agilent 4284A)와 연결된 프로브(probe)를 양단 플레이트 전극에 연결하고 일정 레벨 이상(1V)의 전압을 걸어 주파수 대역별로 측정되는 캐퍼시턴스(capacitance)값을 기록하였다. Alpha-step(KLA-Tenco)을 이용해 절연소자의 박막두께를 측정하였으며, 마이트로스코프(microscope)를 이용해 적층구조로 만들어진 소자의 최상단부 전극의 면적을 실측하였다. In order to measure the dielectric constant of the insulating device fabricated in the previous example, a probe connected to an LCR meter (Agilent 4284A) was connected to both plate electrodes at a predetermined level (1 V) The measured capacitance values were recorded. The thin film thickness of the insulating device was measured using an Alpha-step (KLA-Tenco), and the area of the top electrode of the device made of a laminated structure was measured using an opto-microscope.

상기 세가지 값을 이용하여 유전율을 측정하였다.The dielectric constant was measured using the above three values.

도 9는 산화하프늄 나노입자가 분산된 고유전율 절연재료를 이용한 절연소자의 유전율을 측정하여 나타낸 그래프이고, 도 10은 산화지르코늄 나노입자가 분산된 고유전율 절연재료를 이용한 절연소자의 유전율을 측정하여 나타낸 그래프이다. FIG. 9 is a graph showing the dielectric constant of an insulating device using a high dielectric constant insulating material in which hafnium oxide nanoparticles are dispersed. FIG. 10 is a graph showing the dielectric constant of an insulating device using a high dielectric constant insulating material in which zirconium oxide nanoparticles are dispersed Fig.

각 절연소자의 유전율은 4 내지 4.5로 측정되었으며, 고유전율을 나타내는 것을 확인하였다.The dielectric constant of each insulating element was measured as 4 to 4.5, and it was confirmed that the dielectric constant exhibited a high dielectric constant.

종합하면, 고유전율 나노입자를 제조하고, 상기 고유전율 나노입자를 고불소계 카르복실산 리간드를 넣어 반응시켜서 나노입자를 둘러싸고 있는 리간드를 불소가 함유된 고불소계 카르복실산 리간드로 치환하였다.Taken together, the high-permittivity nanoparticles were prepared, and the high-fluorine-based carboxylic acid ligands were added to the reaction solution to react the ligands surrounding the nanoparticles with fluorine-containing high-fluorine carboxylic acid ligands.

상기 고유전율 나노입자를 고유전율 절연재료로 선택하여 고불소계 용제에 분산시키는 경우에는 리간드에 포함되는 고농도의 불소로 인하여 용해도가 증가되고 고불소계 용제에 분산된 고유전율 절연재료를 획득하였다.When the high-permittivity nano-particles are selected as a high-k insulating material and dispersed in a high-fluorine-based solvent, the high-concentration fluorine contained in the ligand increases the solubility and obtains a high-k insulating material dispersed in a high fluorine-based solvent.

상기 고유전율 절연재료는 용액공정이나 인쇄 기법에 사용되는 잉크로 사용될 수 있으며, 고불소계 용제는 유전체층 하부에 형성되는 반도체 층에 화학적, 물리적, 전기적 손상으로 가하지 않으므로, 고품질의 절연층 박막성형이 가능하였다.
The high dielectric insulating material can be used as an ink used in a solution process or a printing technique, and a high fluorine-based solvent does not cause chemical, physical, or electrical damage to the semiconductor layer formed under the dielectric layer. Respectively.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that such detail is solved by the person skilled in the art without departing from the scope of the invention. will be. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

100 : 알루미늄 200 : 유전율층
300 : Di-F-TESADT 310 : 드레인
320 : 소스 400 : 유리
100: Aluminum 200: Permittivity layer
300: Di-F-TESADT 310: Drain
320: source 400: glass

Claims (8)

고불소계 용제에 고유전율 나노입자 및 고불소계 카르복실산 리간드를 넣고 반응시키는 단계(제1단계);
상기 반응 종료 후 아세톤으로 고불소계 카르복실산 리간드로 치환된 고유전율 나노입자를 회수하는 단계(제2단계); 및
잔여 아세톤을 제거하는 단계(제3단계)
를 포함하는, 고유전율 절연재료의 제조방법.
Adding a high-fluorine-containing carboxylic acid ligand to the high-fluorine-containing solvent and reacting (step 1);
Recovering the high-k nano-particles substituted with a high fluorine-containing carboxylic acid ligand with acetone (second step); And
Step of removing residual acetone (third step)
Wherein the high dielectric constant insulating material has a high dielectric constant.
청구항 1에 있어서,
상기 고불소계 용제 100 중량부에 대하여, 고유전율 나노입자 10 내지 20 중량부 및 고불소계 카르복실산 리간드 30 내지 60 중량부를 넣고 반응시키는 것을 특징으로 하는, 고유전율 절연재료의 제조방법.
The method according to claim 1,
Wherein 10 to 20 parts by weight of high-dielectric constant nano-particles and 30 to 60 parts by weight of a high-fluorine-containing carboxylic acid ligand are added to 100 parts by weight of the high fluorine-based solvent.
청구항 1에 있어서, 상기 고불소계 용제는 하이드로플로로에테르, (hydrofluoroethers), 과불소화 탄소(Perfluorocarbon), 수불화탄소 (hydrofluorocarbons) 및 불소화 방향족 용제(fluorinated aromatic solvents)로 이루어진 군에서 선택된 것을 특징으로 하는, 고유전율 절연재료의 제조방법.
The method of claim 1, wherein the high fluorine-based solvent is selected from the group consisting of hydrofluoroethers, perfluorocarbon, hydrofluorocarbons, and fluorinated aromatic solvents. A method of manufacturing a high dielectric constant insulating material.
청구항 1에 있어서,
고유전율 나노입자는, 산화하프늄(Hafnium oxide), 산화지르코늄(Zirconium oxide) 및 타이타늄산바륨(Barium titanate)에서 선택된 어느 하나인 것을 특징으로 하는, 고유전율 절연재료의 제조방법.
The method according to claim 1,
Wherein the high dielectric constant nano particles are any one selected from hafnium oxide, zirconium oxide and barium titanate.
청구항 1에 있어서,
상기 고불소계 카르복실산 리간드는, 에테르기를 가지며 불소 함량이 60 내지 64%인 것을 특징으로 하는, 고유전율 절연재료의 제조방법.
The method according to claim 1,
Wherein the high fluorine-containing carboxylic acid ligand has an ether group and a fluorine content of 60 to 64%.
청구항 5에 있어서,
상기 고불소계 카르복실산 리간드는,
퍼플로오로-3,6,9-트리옥사트리데캐노익애시드(perfluoro-3,6,9-trioxatridecanoic acid), 퍼플로오로 포스포닉 애시드(perfluoro phosphonic acid), ( 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-헵타데카플루오로테트라데카노익액시드(7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanoic acid), 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)말로닉액시드(2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)malonic acid), 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-헥사데카플루오로-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플루오로도데실)테트라데카노익액시드(7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)tetradecanoic acid), 2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-헵타데카플로오로도데실)-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-헥사데카플로오로도데실)말로닉 애시드 (2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)-2-(5,5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-hexadecafluorododecyl)malonic acid), 퍼플로오로데카오닉 애시드(perfluorodecanoic acid) 및 퍼플로오로옥타데카오닉 애시드(perfluorooctadecanoic acid)로 이루어진 군에서 선택된 것을 특징으로 하는, 고유전율 절연재료의 제조방법.
The method of claim 5,
The high fluorine-containing carboxylic acid ligand may be,
Perfluoro-3,6,9-trioxatridecanoic acid, perfluoro phosphonic acid, (7, 7, 8, 8, 9,9,10,10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanooic acid solution seeds (7, 7, 8, 8, 9, 9, 10, 10,11,11,12,12,13,13,14,14,14-heptadecafluorotetradecanoic acid), 2- (5,5,6,6,7,7,8,8,9,9,10,10 , 11,11,12,12,12-heptadecafluorododecyl) malonic acid solution (2- (5,5,6,6,7,7,8,8,9,9,10,10,11 , 11,12,12,12-heptadecafluorododecyl) malonic acid), 7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) tetradecanoic &lt; / RTI &gt; solution (7,7,8,8,9,9,10,10,11,11,12,12,13,14,14,14-hexadecafluoro-2- (5,5,6,6,7,7 , 8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) tetradecanoic acid), 2- (5,5,6,6,7,7,8,8,9, 9,10,10,11,11,12,12,12-heptadecafluorododecyl) -2- (5,5,6,6,7,7,8,8,9,9,10,10 , 11,12,12,12-hexadecafluorodecane Decyl) malonic acid (2- (5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) -2- (5 , 5,6,6,7,7,8,8,9,9,10,10,11,12,12,12-hexadecafluorododecyl) malonic acid, perfluorodecanoic acid, and perfluorodecanoic acid, A perfluoroctadecanoic acid, and a perfluorooctadecanoic acid. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
청구항 1 내지 청구항 6 중 어느 한 항에 따른 고유전율 절연재료를 고불소계 용제에 용해시키고 박막성형하여 얻어진 절연소자.An insulating element obtained by dissolving the high-dielectric insulating material according to any one of claims 1 to 6 in a high-fluorine-based solvent and forming the thin film. 청구항 7에 있어서, 상기 절연소자는 트랜지스터, 태양전지, 코팅제, 비휘발성 메모리, 플렉시블 디스플레이의 백플레인, 2차전지 전해질, 유연집적회로, 유연전자종이 디스플레이 및 유연 스마트폰용 디스플레이로 이루어진 군에서 선택된 하나 이상에 적용되는 것을 특징으로 하는 절연소자.8. The method of claim 7, wherein the insulating element is selected from the group consisting of transistors, solar cells, coatings, non-volatile memories, backplanes of flexible displays, secondary battery electrolytes, flexible integrated circuits, flexible electronic paper displays, Is applied to the insulating layer.
KR1020130119237A 2013-10-07 2013-10-07 Method of preparing high dielectric insulating material and insulating device using the same KR101457304B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130119237A KR101457304B1 (en) 2013-10-07 2013-10-07 Method of preparing high dielectric insulating material and insulating device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130119237A KR101457304B1 (en) 2013-10-07 2013-10-07 Method of preparing high dielectric insulating material and insulating device using the same

Publications (1)

Publication Number Publication Date
KR101457304B1 true KR101457304B1 (en) 2014-11-03

Family

ID=52288451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130119237A KR101457304B1 (en) 2013-10-07 2013-10-07 Method of preparing high dielectric insulating material and insulating device using the same

Country Status (1)

Country Link
KR (1) KR101457304B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081803A (en) * 1998-04-15 1999-11-15 죤스 그레고리 B. Ferroelectric Thin Films and Solutions: Compositions and Methods
KR20070096255A (en) * 2006-03-21 2007-10-02 삼성전자주식회사 Method of forming capacitor
JP2010534739A (en) * 2007-07-27 2010-11-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous dispersion of conductive polymer containing inorganic nanoparticles
JP2011517468A (en) * 2008-03-19 2011-06-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composition and film made therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081803A (en) * 1998-04-15 1999-11-15 죤스 그레고리 B. Ferroelectric Thin Films and Solutions: Compositions and Methods
KR20070096255A (en) * 2006-03-21 2007-10-02 삼성전자주식회사 Method of forming capacitor
JP2010534739A (en) * 2007-07-27 2010-11-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous dispersion of conductive polymer containing inorganic nanoparticles
JP2011517468A (en) * 2008-03-19 2011-06-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composition and film made therefrom

Similar Documents

Publication Publication Date Title
JP6926475B2 (en) Ferroelectric memory elements, their manufacturing methods, memory cells using them, and wireless communication devices using them.
US8405069B2 (en) Printable thin-film transistors with high dielectric constant gate insulators and methods for producing same
KR20080040632A (en) Coated metal oxide nanoparticles and methods for producing same
Wang Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3+ PVDF) and ZnO radial nanostructures
Yu et al. A graphene hybrid material functionalized with POSS: Synthesis and applications in low-dielectric epoxy composites
Deetuam et al. Synthesis of well dispersed graphene in conjugated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry
US11499007B2 (en) Highly stretchable, transparent, and conductive polymer
TWI698035B (en) Field-effect transistor, method for manufacturing the same, and wireless communication device and commodity label using the above
US8945297B2 (en) Dielectric protective layer for a self-organizing monolayer (SAM)
Hussein et al. The impact of graphene nano-plates on the behavior of novel conducting polyazomethine nanocomposites
JP6908349B2 (en) Thin film containing cured product of composition and electronic device
CN106478952B (en) Composition, electronic device, thin film transistor, and capacitor
US10676488B2 (en) Multifunctional supramolecular hybrids encompassing hierarchical self-ordering of metal-organic framework nanoparticles and method of preparing same
US8724290B2 (en) Nanolithographic method of manufacturing an embedded passive device for a microelectronic application, and microelectronic device containing same
Zhang et al. 2D conductive MOF modified MXene nanosheets for poly (vinylidene fluoride) nanocomposite with high permittivity
TWI692028B (en) Etching mask, etching mask precursor, oxide layer manufacturing method and thin film transistor manufacturing method
Xiao et al. Significantly enhanced dielectric constant and breakdown strength in crystalline@ amorphous core-shell structured SrTiO3 nanocomposite thick films
KR101457304B1 (en) Method of preparing high dielectric insulating material and insulating device using the same
Taroata et al. High integration density capacitors directly integrated in a single copper layer of printed circuit boards
Jang et al. Strategic Customization of Polymeric Nanocomposites Modified by 2D Titanium Oxide Nanosheet for High‐k and Flexible Gate Dielectrics
US20150073101A1 (en) Method for preparing polymer-nanoparticles having core-shell structure by uniformly coating polymer on metal and inorganic particles, polymer-nanoparticles prepared thereby, and polymer-nanoparticle composite comprising same
KR102153604B1 (en) Composition for insulator and insulator and thin film transistor
KR101579384B1 (en) Preparing method of high dielectric material and diode device using the same
Klein et al. Covalently modified organic nanoplatelets and their use in polymer film capacitors with high dielectric breakdown and wide temperature operation
TWI743054B (en) Capacitor and circuit using the capacitor, their manufacturing method, and wireless communication device using the capacitor

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 5