KR101455720B1 - KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity - Google Patents

KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity Download PDF

Info

Publication number
KR101455720B1
KR101455720B1 KR1020120071675A KR20120071675A KR101455720B1 KR 101455720 B1 KR101455720 B1 KR 101455720B1 KR 1020120071675 A KR1020120071675 A KR 1020120071675A KR 20120071675 A KR20120071675 A KR 20120071675A KR 101455720 B1 KR101455720 B1 KR 101455720B1
Authority
KR
South Korea
Prior art keywords
xylosidase
present
gly
activity
enzyme
Prior art date
Application number
KR1020120071675A
Other languages
Korean (ko)
Other versions
KR20140004340A (en
Inventor
황인택
박노중
임희경
이기인
김달례
송하영
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020120071675A priority Critical patent/KR101455720B1/en
Publication of KR20140004340A publication Critical patent/KR20140004340A/en
Application granted granted Critical
Publication of KR101455720B1 publication Critical patent/KR101455720B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2485Xylan endo-1,3-beta-xylosidase (3.2.1.32), i.e. endo-1,3-beta-xylanase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01032Xylan endo-1,3-beta-xylosidase (3.2.1.32), i.e. endo-1-3-beta-xylanase
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 서열목록 제2서열에 기재된 아미노산 서열을 가지는 자일로시다아제(xylosidase)를 제공한다. 보다 상세하게는, 본 발명의 자일로시다아제는 다효소기능을 갖는다. 기존의 화학적 방법을 대체함으로써 폐기물 및 고가의 정제비용을 절감할 수 있으며, 우수한 자일란 분해활성을 나타내므로 사료 산업, 제지 및 세제 산업에서는 물론 섬유질계 바이오매스의 당화공정에 활용되어 석유 대체원료, 특수기능물질, 바이오 폴리머 등의 원료를 생산하는데 유용하게 사용될 수 있다.The present invention provides a xyloidase having an amino acid sequence set forth in Sequence Listing 2. More specifically, the xylosidase of the present invention has a multienzyme function. By replacing the existing chemical method, it is possible to reduce waste and expensive refining costs, and because it exhibits excellent xylan decomposition activity, it is utilized in the saccharification process of fibrous biomass as well as in the feed industry, paper and detergent industry, and is an alternative to petroleum replacement raw materials. It can be usefully used to produce raw materials such as functional materials and bio polymers.

Description

다효소기능을 가지는 신규 자일로시다아제 KRICT PXD2{KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity}New Xylosidase with Multi-Enzyme Function IRICT PXD2{KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity}

본 발명은 다효소기능을 가지는 신규 자일로시다아제 KRICT PXD2에 관한 것이다.
The present invention relates to a novel xylosidase KRICT PXD2 having a multienzyme function.

21세기를 살아가는 인류는 화석연료 대체자원 개발이라는 커다란 숙제를 해결하기 위하여 8개 분야의 재생에너지(태양열, 태양광발전, 바이오매스, 풍력, 소수력, 지열, 해양에너지 및 폐기물에너지)와 3개 분야의 신에너지(연료전지, 석탄액화가스화 및 수소에너지)로 지정하였다. 이들 중에서 바이오매스만이 유일한 탄소자원이기 때문에 바이오매스 원료를 이용하여 바이오연료와 화학원료를 생산하는 바이오리파이너리 공정을 개발하여야 한다. Humanity living in the 21st century has eight fields of renewable energy (solar heat, solar power, biomass, wind power, small hydro power, geothermal energy, marine energy, and waste energy) and three fields to solve the big task of developing fossil fuel alternative resources. Was designated as new energy (fuel cell, coal liquefied gasification and hydrogen energy). Of these, biomass is the only carbon resource, so biorefinery processes that produce biofuels and chemical raw materials using biomass raw materials must be developed.

자연계에 존재하는 자일란(xylan)은 바이오매스 건조 중량의 10-30%를 차지하는 매우 중요한 탄소원임에도 불구하고 현재까지 직접적인 이용이 불가능하였기 때문에 대부분이 폐자원으로 처리되는 실정이다. 자일란의 가수분해는 현재까지 화학적 방법으로 주로 이루어지고 있다. 화학적 방법에 의한 자일란의 분해방법은 섬유소계 바이오매스에 황산을 첨가하고 130℃에서 스팀으로 가압하여 분해하므로 많은 양의 에너지를 소모할 뿐만 아니라, 산 및 고온에 견딜 수 있는 고가의 생산장비가 필요하다. 또한, 이때 발생하는 과반응 산물 및 폐기물은 환경오염을 유발하거나 분리, 정제비용 등으로 인하여 전체 생산단가가 높아지게 된다. 이에 반하여 엔도자일라나아제(endoxylanase)와 베타-자일로시다아제(ß-xylosidase)는 자일란을 분해하는 효소시스템으로써 엔도자일라나아제는 자일란의 내부 골격을 끊어 자일로올리고당을 만들며 베타자이로시다아제는 자일로올리고당의 말단을 공격하여 자일로스를 생산한다. 이와 같은 생물학적 방법에 의한 자일란의 분해방법은 화학적 분해방법과 비교할 때 에너지의 소모가 적고 발생하는 폐기물 역시 소량일 뿐만 아니라 그 처리가 용이하기 때문에 경제적으로도 매우 유리하다. 그러나 이러한 자일라나아제 효소시스템의 문제점은 엔도자일라나아제 및 자일로시다아제의 효소 역가가 낮아 반응속도 및 분해율이 낮고, 기존에 알려진 효소들의 특성이 산업적으로 이용하기에 적합한 내열성, 내알카리성을 충분히 가지지 못하고 있고, 또한 우리나라의 경우에는 이들 효소를 전적으로 수입에 의존하고 있다는 점이다. 따라서 자일라나아제 시스템의 이용을 위해서는 이러한 문제점들의 해결이 필요하다. Although xylan, which exists in the natural world, is a very important carbon source, which accounts for 10-30% of the dry weight of biomass, it has not been directly available to date, so most are treated as waste resources. The hydrolysis of xylan has been mainly carried out by chemical methods to date. The method of decomposing xylan by chemical method adds sulfuric acid to fibrin-based biomass and decomposes by pressing with steam at 130℃, which consumes a large amount of energy and requires expensive production equipment capable of withstanding acid and high temperature. Do. In addition, the over-reaction products and wastes generated at this time cause environmental pollution or increase the overall production cost due to separation and purification costs. On the other hand, endoxylanase and beta-xylosidase are enzyme systems that break down xylan. Xyloligosaccharides are attacked at the ends to produce xylose. The method of decomposing xylan by the biological method is very economically economical because it consumes less energy and generates a small amount of waste compared to chemical decomposition method and is easy to process. However, the problem of the xylanase enzyme system is that the enzyme titer of endozylanase and xylosidase is low, so that the reaction rate and decomposition rate are low, and the properties of the known enzymes are sufficient for heat resistance and alkali resistance suitable for industrial use. They do not have it, and in Korea, these enzymes depend entirely on imports. Therefore, it is necessary to solve these problems in order to use the xylanase system.

이러한 문제점을 해결하기 위해서는 기본적으로 내알칼리성 및 내열성을 갖는 국산효소의 개발이 우선적으로 선행되어야 하며, 경제적인 자일로시다아제 생산을 위해서는 대량생산 시스템이 갖추어져야 할 것이다.
In order to solve this problem, basically, the development of a domestic enzyme having alkali resistance and heat resistance should be preceded first, and a mass production system should be equipped for economical xylosidase production.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Throughout this specification, a number of papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated by reference into this specification as a whole, and the level of the technical field to which the present invention pertains and the content of the present invention are more clearly described.

본 발명자들은 자연계에 존재하는 바이오매스 건조 중량의 10-30%를 차지하는 자일란(xylan)을 산업적으로 이용하기 위해 자일란의 분해방법을 개발하고자 노력하였다. 그 결과, 기존의 많은 에너지를 소모하는 화학적 방법을 대체할 수 있는 내열성 및 내알칼리성의 신규한 자일로시다아제(xylosidase)를 개발함으로써, 본 발명을 완성하였다. The present inventors tried to develop a method for decomposing xylan to industrially use xylan, which accounts for 10-30% of the dry weight of biomass present in nature. As a result, the present invention was completed by developing a novel xyllosidase having heat resistance and alkali resistance, which can replace the existing chemical method that consumes a lot of energy.

따라서, 본 발명의 목적은 자일로시다아제를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide xyloxidase.

본 발명의 다른 목적은 자일로시다아제를 코딩하는 핵산 분자를 제공하는 데 있다.Another object of the present invention is to provide a nucleic acid molecule encoding xylosidase.

본 발명의 또 다른 목적은 재조합 벡터를 제공하는 데 있다.Another object of the present invention is to provide a recombinant vector.

본 발명의 다른 목적은 형질전환된 세포를 제공하는데 있다.Another object of the present invention is to provide transformed cells.

본 발명의 또 다른 목적은 올리고사카라이드 또는 폴라사카라이드의 분해 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for decomposing oligosaccharides or polysaccharides.

본 발명의 다른 목적은 식품 내 자일란 가공용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for processing xylan in food.

본 발명의 또 다른 목적은 사료 첨가제용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for feed additives.

본 발명의 다른 목적은 제지공정용 조성물을 제공하는 데 있다.
Another object of the present invention is to provide a composition for a paper-making process.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 서열목록 제2서열에 기재된 아미노산 서열을 가지는 자일로시다아제(xylosidase)를 제공한다.
According to an aspect of the present invention, the present invention provides a xyloidase having an amino acid sequence set forth in Sequence Listing 2.

본 발명자들은 자연계에 존재하는 바이오매스 건조 중량의 10-30%를 차지하는 자일란(xylan)을 산업적으로 이용하기 위해 자일란의 분해방법을 개발하고자 노력하였다. 그 결과, 기존의 많은 에너지를 소모하는 화학적 방법을 대체할 수 있는 내열성 및 내알칼리성의 신규한 자일로시다아제(xylosidase)를 개발하였다.
The present inventors tried to develop a method for decomposing xylan to industrially use xylan, which accounts for 10-30% of the dry weight of biomass present in nature. As a result, a novel xylosidase has been developed that can replace the existing chemical method that consumes a lot of energy.

본 발명의 자일로시다아제는 상기한 아미노산 서열에 대하여 실질적인 동일성(substantial identity)을 나타내는 아미노산 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 아미노산 서열을 의미한다.The xyloxidase of the present invention is interpreted to also include an amino acid sequence showing substantial identity to the amino acid sequence described above. The above substantial identity is at least 80% when the amino acid sequence of the present invention is aligned with any other sequence as much as possible and the aligned sequence is analyzed using an algorithm commonly used in the art. Means an amino acid sequence that exhibits homology, more preferably at least 90% homology, and most preferably at least 95% homology.

본 발명의 바람직한 구현예에 따르면, 본 발명의 자일로시다아제는 35-45℃에서 최대 효소활성을 나타내고, 보다 바람직하게는 최적 온도는 37-43℃이며, 보다 더 바람직하게는 38-42℃이다.According to a preferred embodiment of the present invention, the xyloxidase of the present invention exhibits maximum enzymatic activity at 35-45°C, more preferably the optimum temperature is 37-43°C, even more preferably 38-42°C to be.

본 발명의 바람직한 구현예에 따르면, 본 발명의 자일로시다아제는 pH 3.5-10.5에서 최대 효소활성을 나타내고, 보다 바람직하게는 최적 pH 4.0-9.0이고, 보다 더 바람직하게는 pH 4.0-7.0, 보다 더욱 더 바람직하게는 pH 4.0-5.0이다.According to a preferred embodiment of the present invention, the xylosidase of the present invention exhibits maximum enzymatic activity at pH 3.5-10.5, more preferably optimal pH 4.0-9.0, even more preferably pH 4.0-7.0, more Even more preferably, it is pH 4.0-5.0.

본 발명의 바람직한 구현예에 따르면, 본 발명의 자일로시다아제는 3-5의 미카엘리스-멘텐 상수(MichaelisMenten constant, Km) 값, 보다 바람직하게는 3.8-4.3 값을 갖는다.
According to a preferred embodiment of the invention, the xylosidase of the invention has a value of 3-5 for the Michaelis-Menten constant ( Km ), more preferably a value of 3.8-4.3.

본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제2서열에 기재된 아미노산 서열을 가지는 자일로시다아제를 코딩하는 핵산 분자를 제공한다.According to another aspect of the present invention, the present invention provides a nucleic acid molecule encoding a xylosidase having the amino acid sequence set forth in Sequence Listing 2.

본 명세서에서 용어 “핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).As used herein, the term “nucleic acid molecule” has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acid molecules, are modified with natural nucleotides as well as sugar or base sites. Also includes analogues (Scheit, Nucleotide) Analogs , John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90:543-584 (1990)).

뉴클레오타이드에서의 변이는 단백질에서 변화를 가져오지 않는 것도 있다. 이러한 핵산은 기능적으로 균등한 코돈 또는 동일한 아미노산을 코딩하는 코돈(예를 들어, 코돈의 축퇴성에 의해, 아르기닌 또는 세린에 대한 코돈은 여섯 개이다), 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 핵산분자를 포함한다. Some mutations in nucleotides do not change in proteins. Such nucleic acids include functionally equivalent codons or codons that encode the same amino acid (e.g., by degeneracy of codons, there are six codons for arginine or serine), or codons that encode biologically equivalent amino acids It contains a nucleic acid molecule.

또한, 뉴클레오타이드에서의 변이가 자일로시다아제 자체에 변화를 가져올 수도 있다. 자일로시다아제의 아미노산에 변화를 가져오는 변이인 경우에도 본 발명의 자일로시다아제와 거의 동일한 활성을 나타내는 것이 얻어질 수 있다.In addition, mutations in the nucleotides can also lead to changes in the xylosidase itself. Even in the case of a variation that causes a change in the amino acid of the xylosidase, one exhibiting almost the same activity as the xylosidase of the present invention can be obtained.

본 발명의 자일로시다아제에 포함될 수 있는 생물학적 기능 균등물은 본 발명의 자일로시다아제와 균등한 생물학적 활성을 발휘하는 아미노산 서열의 변이에 한정될 것이라는 것은 당업자에게 명확하다.It is clear to those skilled in the art that biological functional equivalents that may be included in the xyloxidase of the present invention will be limited to variations in the amino acid sequence that exerts equivalent biological activity with the xyloxidase of the present invention.

이러한 아미노산 변이는 아미노산 곁사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 곁사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 갖으며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 갖는다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다.These amino acid variations are made based on the relative similarity of amino acid side chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like. By analysis of the size, shape and type of amino acid side chain substituents, arginine, lysine and histidine are all positively charged residues; Alanine, glycine and serine have similar sizes; It can be seen that phenylalanine, tryptophan and tyrosine have similar shapes. Therefore, based on these considerations, arginine, lysine and histidine; Alanine, glycine and serine; And phenylalanine, tryptophan and tyrosine are biologically equivalent.

변이를 도입하는 데 있어서, 아미노산의 소수성 인덱스(hydropathic idex)가 고려될 수 있다. 각각의 아미노산은 소수성과 전하에 따라 소수성 인덱스가 부여되어 있다: 아이소루이신(+4.5); 발린(+4.2); 루이신(+3.8); 페닐알라닌(+2.8); 시스테인/시스타인(+2.5); 메티오닌(+1.9); 알라닌(+1.8); 글라이신(-0.4); 쓰레오닌(-0.7); 세린(-0.8); 트립토판(-0.9); 타이로신(-1.3); 프롤린(-1.6); 히스티딘(-3.2); 글루타메이트(-3.5); 글루타민(-3.5); 아스파르테이트(-3.5); 아스파라긴(-3.5); 라이신(-3.9); 및 아르기닌(-4.5).In introducing mutations, the hydrophobic index of amino acids (hydropathic idex) can be considered. Each amino acid is assigned a hydrophobicity index according to hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine/cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); Tyrosine (-1.3); Proline (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9); And arginine (-4.5).

단백질의 상호적인 생물학적 기능(interactive biological function)을 부여하는 데 있어서 소수성 아미노산 인덱스는 매우 중요하다. 유사한 소수성 인덱스를 가지는 아미노산으로 치환하여야 유사한 생물학적 활성을 보유할 수 있다는 것은 공지된 사실이다. 소수성 인덱스를 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 소수성 인덱스 차이를 나타내는 아미노산 사이에 치환을 한다.The hydrophobic amino acid index is very important in conferring the protein's interactive biological function. It is well known that amino acids with similar hydrophobicity indexes must be replaced to retain similar biological activity. When introducing a variation with reference to the hydrophobic index, substitution is performed between amino acids showing hydrophobic index difference, preferably within ± 2, more preferably within ± 1, even more preferably within ± 0.5.

한편, 유사한 친수성 값(hydrophilicity value)을 가지는 아미노산 사이의 치환이 균등한 생물학적 활성을 갖는 단백질을 초래한다는 것도 잘 알려져 있다. 미국 특허 제4,554,101호에 개시된 바와 같이, 다음의 친수성 값이 각각의 아미노산 잔기에 부여되어 있다: 아르기닌(+3.0); 라이신(+3.0); 아스팔테이트(+3.0± 1); 글루타메이트(+3.0± 1); 세린(+0.3); 아스파라긴(+0.2); 글루타민(+0.2); 글라이신(0); 쓰레오닌(-0.4); 프롤린(-0.5 ± 1); 알라닌(-0.5); 히스티딘(-0.5); 시스테인(-1.0); 메티오닌(-1.3); 발린(-1.5); 루이신(-1.8); 아이소루이신(-1.8); 타이로신(-2.3); 페닐알라닌(-2.5); 트립토판(-3.4). On the other hand, it is also well known that substitutions between amino acids having similar hydrophilicity values result in proteins with equivalent biological activity. As disclosed in US Pat. No. 4,554,101, the following hydrophilicity values are assigned to each amino acid residue: arginine (+3.0); Lysine (+3.0); Asphaltate (+3.0±1); Glutamate (+3.0±1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-0.4); Proline (-0.5±1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoleucine (-1.8); Tyrosine (-2.3); Phenylalanine (-2.5); Tryptophan (-3.4).

친수성 값을 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 친수성 값 차이를 나타내는 아미노산 사이에 치환을 한다.When introducing a variation with reference to a hydrophilicity value, substitution is performed between amino acids showing a difference in hydrophilicity values of preferably within ± 2, more preferably within ± 1, even more preferably within ± 0.5.

분자의 활성을 전체적으로 변경시키지 않는 단백질에서의 아미노산 교환은 당해 분야에 공지되어 있다(H. Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.Amino acid exchange in proteins that do not alter the overall activity of the molecule is known in the art (H. Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). The most common exchanges are amino acid residues Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/ Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly.

상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명의 자일로시다아제 또는 이를 코딩하는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 예컨대 최소 98%의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv . Appl . Math . 2:482(1981); Needleman and Wunsch, J. Mol . Bio . 48:443(1970); Pearson and Lipman, Methods in Mol . Biol . 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc . Acids Res. 16:10881-90(1988); Huang et al., Comp . Appl . BioSci . 8:155-65(1992) and Pearson et al., Meth. Mol . Biol . 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST)(Altschul et al., J. Mol . Biol . 215:403-10(1990))은 NCBI(National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blastm, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 http://www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다.In view of the above-described variations with biologically equivalent activity, the xyloxidase of the present invention or a nucleic acid molecule encoding the same is interpreted to also include a sequence showing substantial identity with the sequence described in the sequence listing. The substantial identity above aligns the above-described sequence of the present invention with any other sequence as much as possible, and when the aligned sequence is analyzed using an algorithm commonly used in the art, for example, at least 98%. It means a sequence showing homology. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment can be found in Smith and Waterman, Adv . Appl . Math . 2:482 (1981) ; Needleman and Wunsch, J. Mol . Bio . 48:443 (1970); Pearson and Lipman, Methods in Mol . Biol . 24: 307-31 (1988); Higgins and Sharp, Gene 73:237-44 (1988); Higgins and Sharp, CABIOS 5:151-3 (1989); Corpet et al., Nuc . Acids Res. 16:10881-90 (1988); Huang et al., Comp . Appl . BioSci . 8:155-65 (1992) and Pearson et al., Meth. Mol . Biol . 24:307-31 (1994). NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol . Biol . 215:403-10 (1990)) can be accessed from the National Center for Biological Information (NCBI), etc., and blastp, blastm, It can be used in conjunction with sequence analysis programs such as blastx, tblastn and tblastx. The BLSAT can be accessed at http://www.ncbi.nlm.nih.gov/BLAST/. The sequence homology comparison method using this program can be found at http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html.

바람직하게는, 핵산 분자는 서열목록 제1서열에 기재된 뉴클레오타이드 서열을 가지는 것을 특징으로 하는 핵산 분자이다.
Preferably, the nucleic acid molecule is a nucleic acid molecule characterized by having the nucleotide sequence described in Sequence 1 of the Sequence Listing.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 핵산 분자를 포함하는 재조합 벡터를 제공한다.According to another aspect of the present invention, the present invention provides a recombinant vector comprising the nucleic acid molecule.

본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다. The vector system of the present invention can be constructed through various methods known in the art, and specific methods for this can be found in Sambrook et al., Molecular Cloning , A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001), which is incorporated herein by reference.

본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포를 숙주로 하여 구축될 수 있다. 본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다.The vectors of the present invention can typically be constructed as vectors for cloning or vectors for expression. In addition, the vector of the present invention can be constructed using prokaryotic cells as hosts. The vectors of the present invention can typically be constructed as vectors for cloning or vectors for expression.

예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, T7 프로모터, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pL λ프로모터, pR λ프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로머터 및 trp 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위(Yanofsky, C., J. Bacteriol ., 158:1018-1024(1984)) 그리고 파아지 λ의 좌향 프로모터(pL λ프로모터, Herskowitz, I. and Hagen, D., Ann . Rev . Genet ., 14:399-445(1980))가 조절 부위로서 이용될 수 있다.For example, when the vector of the present invention is an expression vector, and a prokaryotic cell is a host, a strong promoter (eg, T7 promoter, tac promoter, lac) that can progress transcription Promoter, lac UV5 promoter, lpp promoter, p L λ promoter, p R λ promoter, rac 5 promoter, amp promoter, recA promoter, SP6 promoter and trp promoter, etc.), ribosome binding sites and transcription/ It is common to include a translation termination sequence. When E. coli is used as a host cell, E. coli The promoter and operator site of the tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol . , 158:1018-1024 (1984)) and the phage λ leftward promoter (p L λ promoter, Herskowitz, I. and Hagen, D., . Ann Rev Genet, 14:. . 399-445 (1980)) may be used as a control region.

한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pIVEX, pSC101, ColE1, pBR322, pUC8/9, pHC79, pUC19, pET 등), 파지(예: λgt4λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스(예: SV40 등)를 조작하여 제작될 수 있다.On the other hand, vectors that can be used in the present invention include plasmids often used in the art (e.g., pIVEX, pSC101, ColE1, pBR322, pUC8/9, pHC79, pUC19, pET, etc.), phage (e.g., λgt4λB, λ-Charon , λΔz1 and M13) or a virus (eg, SV40, etc.).

한편, 본 발명의 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
On the other hand, the vector of the present invention, as a selection marker, includes antibiotic resistance genes commonly used in the art, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance to tetracycline.

본 발명의 다른 양태에 따르면, 상기 재조합 벡터에 의해 형질전환된 세포를 제공한다.According to another aspect of the present invention, cells transformed with the recombinant vector are provided.

본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21(DE3), E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.Host cells capable of continuously cloning and expressing the vector of the present invention in a stable manner are known in the art, and any host cell can be used. For example, E. coli JM109, E. coli Bacillus strains such as BL21(DE3), E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium Enterococci and strains such as Um, Ceratia Marcesons and various Pseudomonas species.

본 발명의 벡터를 숙주 세포 내로 운반하는 방법은, CaCl2 방법(Cohen, S.N. et al., Proc . Natl . Acac. Sci . USA, 9:2110-2114(1973)), 하나한 방법(Cohen, S.N. et al., Proc . Natl . Acac . Sci . USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol . Biol ., 166:557-580(1983)) 및 전기 천공 방법(Dower, W.J. et al., Nucleic . Acids Res ., 16:6127-6145(1988)) 등에 의해 실시될 수 있다. The method of transporting the vector of the present invention into a host cell includes a CaCl 2 method (Cohen, SN et al., Proc . Natl . Acac. Sci . USA , 9:2110-2114 (1973)), one method (Cohen, SN et al., Proc . Natl . Acac . Sci . USA , 9:2110-2114 (1973); and Hanahan, D., J. Mol . Biol . , 166:557-580 (1983)) and electroporation method (Dower, WJ et al., Nucleic . Acids Res . , 16:6127-6145 (1988).

숙주 세포 내로 주입된 벡터는 숙주 세포 내에서 발현될 수 있으며, 이러한 경우에는 다량의 자일로시다아제를 얻게 된다. 예를 들어, 상기 발현 벡터가 lac 프로모터를 포함하는 경우에는 숙주 세포에 IPTG를 처리하여 유전자 발현을 유도할 수 있다.The vector injected into the host cell can be expressed in the host cell, in which case a large amount of xylosidase is obtained. For example, when the expression vector includes the lac promoter, gene expression can be induced by treating the host cell with IPTG.

본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용한 숙주 세포는 E. coli (BL21)이다.
According to a preferred embodiment of the present invention, the host cell used in the present invention is E. coli (BL21).

본 발명의 또 다른 양태에 따르면. 본 발명의 자일로시다아제, 형질전환된 세포 또는 HPL-1 균주(KCTC11356BP)를 자일로오즈(xylose)-포함 올리고사카라이드 또는 폴리사카라이드, 아라비노오즈(arabinose)-포함 올리고사카라이드 또는 폴리사카라이드, 또는 글루코오즈(glucose)-포함 올리고사카라이드 또는 폴리사카라이드에 접촉시키는 단계를 포함하는 올리고사카라이드 또는 폴리사카라이드의 분해 방법을 제공한다.According to another aspect of the invention. Xylose-containing oligosaccharides or polysaccharides, arabinose-containing oligosaccharides or polysaccharides of the present invention include xylose, transformed cells or HPL-1 strains (KCTC11356BP). A method for decomposing oligosaccharides or polysaccharides comprising contacting a saccharide, or a glucose-containing oligosaccharide or polysaccharide.

본 명세서에서, 상기 ‘자일로오즈(xylose)-포함 올리고사카라이드 또는 폴리사카라이드’은 당업계에 공지된 다양한 자일로오스-포함 올리고사카라이드 또는 폴리사카라이드를 포함한다. 예를 들어, 자일로오스를 포함하는 다양한 올리고사카라이드 또는 폴리사카라이드는 자일란, 아라비노자일란(arabinoxylan), 헤미셀룰로오스(hemicellulose) 및 자일로피라노사이드(xylopyranoside)를 포함하나, 이에 한정되는 것은 아니다.In this specification, the'xylose-containing oligosaccharide or polysaccharide' includes various xylose-containing oligosaccharides or polysaccharides known in the art. For example, various oligosaccharides or polysaccharides including xylose include, but are not limited to, xylan, arabinoxylan, hemicellulose, and xylopyranoside. .

본 명세서에서, 상기 ‘아라비노오즈(arabinose)-포함 올리고사카라이드 또는 폴리사카라이드’은 당업계에 공지된 다양한 아라비노오즈-포함 올리고사카라이드 또는 폴리사카라이드를 포함한다. 예를 들어, 아라비노오즈-포함 올리고사카라이드 또는 폴리사카라이드는 헤미셀룰로오즈, 펙틴, 아라비난(arabinan), 아라비노자일란(arabinoxylan), 아라비노갈락탄(arabinogalactan) 및 아라비노퓨라노사이드(arabinofuranoside)를 포함하나, 이에 한정되는 것은 아니다.In the present specification, the'arabinose-containing oligosaccharide or polysaccharide' includes various arabinose-containing oligosaccharides or polysaccharides known in the art. For example, arabinose-containing oligosaccharides or polysaccharides include hemicellulose, pectin, arabinan, arabinoxylan, arabinogalactan, and arabinofuranoside. ), but is not limited thereto.

본 명세서에서, 상기 ‘글루코오즈(glucose)-포함 올리고사카라이드 또는 폴리사카라이드’은 당업계에 공지된 다양한 글루코오즈-포함 올리고사카라이드 또는 폴리사카라이드를 포함한다. 예를 들어, 글루코오즈-포함 올리고사카라이드 또는 폴리사카라이드는 전분(starch), 셀룰로오즈, 수크로오즈(sucrose), 락토오스(lactose) 및 글루코피라노사이드(glucopyranoside)를 포함하나, 이에 한정되는 것은 아니다.In the present specification, the'glucose-containing oligosaccharide or polysaccharide' includes various glucose-containing oligosaccharides or polysaccharides known in the art. For example, glucose-containing oligosaccharides or polysaccharides include, but are not limited to, starch, cellulose, sucrose, lactose and glucopyranoside. no.

바람직하게는, 상기 단계는 금속이온을 추가적으로 포함한다.Preferably, the step further comprises a metal ion.

본 발명의 바람직한 구현예에 따르면, Ca+2, Mn+2, Cu+2 또는 Zn+2를 추가적으로 포함하는 경우, 상기 자일로시다아제의 활성이 140-180% 증가한다.
According to a preferred embodiment of the present invention, when additionally including Ca +2 , Mn +2 , Cu +2 or Zn +2 , the activity of the xylosidase is increased by 140-180%.

본 발명의 다른 양태에 따르면, 본 발명의 자일로시다아제, 형질전환된 세포 또는 HPL-1 균주(KCTC11356BP)를 포함하는 식품 내 자일란 가공용 조성물을 포함한다.According to another aspect of the present invention, the composition for processing xylan in a food product comprising the xylosidase of the present invention, transformed cells, or HPL-1 strain (KCTC11356BP).

바람직하게는, 식품 재료의 연화 및 정제 효율개선, 점도감소 추출 및 여과 효율증대를 통한 품질향상에 활용될 수 있다.
Preferably, it can be used to improve the quality through softening and purification efficiency of food materials, extracting reduced viscosity and increasing filtration efficiency.

본 발명의 또 다른 양태에 따르면, 본 발명의 자일로시다아제, 형질전환된 세포 또는 HPL-1 균주(KCTC11356BP)를 포함하는 사료 첨가제용 조성물을 포함한다.According to another aspect of the present invention, the composition for feed additives comprising the xylosidase, transformed cell or HPL-1 strain (KCTC11356BP) of the present invention is included.

바람직하게는, 가축의 사료 비전분 탄수화물의 감소, 장내 점도개선, 단백질 및 전분의 소화흡수율 증대를 위해 사용할 수 있다.
Preferably, it can be used to reduce feed non-starch carbohydrates in livestock, improve intestinal viscosity, and increase digestion and absorption rates of proteins and starch.

본 발명의 다른 양태에 따르면, 본 발명의 자일로시다아제, 형질전환된 세포 또는 HPL-1 균주(KCTC11356BP)를 포함하는 제지공정용 조성물을 포함한다.According to another aspect of the present invention, the present invention comprises a composition for a papermaking process comprising the xylosidase, transformed cell or HPL-1 strain (KCTC11356BP).

바람직하게는, 제지공정의 생물학적 백화공정, 공정의 단축, 탈묵효과, 전분과 글루텐의 분리 및 화학연료생산에 사용할 수 있다.
Preferably, it can be used for biological whitening process of papermaking process, shortening process, deinking effect, separation of starch and gluten, and chemical fuel production.

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 다효소기능을 가지는 신규한 자일로시다아제를 제공한다. (a) The present invention provides a novel xylosidase having a multi-enzyme function.

(b) 본 발명의 자일로시다아제는 기존의 화학적 방법을 대체함으로써 폐기물 및 고가의 정제비용을 절감할 수 있다.(b) The xyloxidase of the present invention can reduce waste and expensive purification costs by replacing conventional chemical methods.

(c) 본 발명은 우수한 자일란 분해활성을 나타내므로 사료 산업, 제지 및 세제 산업에서는 물론 섬유질계 바이오매스의 당화공정에 활용되어 석유 대체원료, 특수기능물질, 바이오 폴리머 등의 원료를 생산하는데 유용하게 사용될 수 있다.
(c) Since the present invention exhibits excellent xylan decomposition activity, it is useful not only in the feed industry, papermaking and detergent industry, but also in the saccharification process of fibrous biomass, useful for producing raw materials such as petroleum substitute raw materials, special functional materials, bio polymers, etc. Can be used.

도 1은 페니바실러스(Paenibacillus) 속 HPL-1의 전자현미경 사진으로 1.1 ㎛의 세포 크기와 2.5 내지 4.0 ㎛의 세포길이를 갖는 막대형(rod)의 그람양성 간균을 나타낸다.
도 2는 1,248개 gDNA 라이브러리로부터 활성클론 선별 결과를 나타낸다.
도 3은 형질전환체로부터 자일로시다아제를 분리정제 후 활성을 나타낸다.
도 4는 온도에 따른 자일로시다아제 활성을 나타낸다.
도 6은 자일로시다아제 분리정제 후 효소반응속도(kinetics)를 나타낸다.
1 is an electron micrograph of HPL-1 of the genus Penibacillus , showing a gram-positive bacterium of a rod having a cell size of 1.1 μm and a cell length of 2.5 to 4.0 μm.
2 shows the results of screening for active clones from 1,248 gDNA libraries.
Figure 3 shows the activity after separation and purification of xylosidase from transformants.
Figure 4 shows the xylosidase activity according to temperature.
Figure 6 shows the enzyme reaction rate (kinetics) after separation and purification of xylosidase.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention more specifically, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

실시예Example 1: 균주 분리 및 균주 선별  1: Strain separation and strain selection

균주 분리Strain isolation

본 발명의 균주는 충북 옥천군 군서면에 위치한 장수풍뎅이 사육농장에서 채취한 토양시료로부터 본원발명의 균주를 분리하였다. 상기 토양의 표층으로부터 2-5 ㎝ 층에서 토양시료를 채취, 풍건 후 2 ㎜ 채를 통과시켜 토양을 정선하였다. 30 g 정선된 토양을 270 ㎖의 멸균된 생리식염수(NaCl 8.0 g/ℓ)에 현탁하여 진탕배양기(37℃, 200 rpm)로 약 20분 동안 진탕한 후 상온에 30분 정도 방치하여 굵은 토양입자 및 불순물 등을 바닥으로 침전되게 하였다. 상청액을 멸균된 용기로 옮겨 1차 희석액으로 하였다. 이것을 잘 교반한 후 10 ㎖을 취하고 이에 90 ㎖ 생리식염수를 첨가하여 2차 희석액 100 ㎖을 제조하고, 2차 희석액을 충분히 교반하면서 같은 방법으로 10 ㎖을 취하여 90 ㎖ 생리식염수를 첨가하고 3차 희석액 100 ㎖을 제조하였다. 이후 동일한 방법으로 6차 희석액까지 제조하였다. 균주 분리용 TSA(Tryptic Soy Agar, Difco Co.) 배지에 3, 4, 5 및 6차 희석액을 0.25 ㎖씩 3회 반복으로 분주한 후, 균일하게 도말하여 37℃ 평상 인큐베이터에서 2일 동안 배양 후 형성된 미생물의 콜로니를 선별하였다. 이때 콜로니의 모양, 크기, 색상 등의 여러 가지 요인을 고려하여 분리하고, 분리된 콜로니는 다시 TSA 배지에서 계대 배양하여 순수한 균주를 분리하였고 이것을 모균주로 사용하기 위해 -70℃에 보관하였다.
The strain of the present invention was isolated from the soil samples collected from the Jangsu scarab breeding farm located in Gunseo-myeon, Okcheon-gun, Chungbuk. Soil samples were collected from the 2-5 cm layer from the surface layer of the soil, and then dried and passed through 2 mm poles to select the soil. 30 g of selected soil was suspended in 270 ml of sterilized physiological saline (NaCl 8.0 g/l), shaken with a shake incubator (37°C, 200 rpm) for about 20 minutes, and then left at room temperature for about 30 minutes to coarse soil particles And impurities to precipitate to the bottom. The supernatant was transferred to a sterilized container and used as the primary dilution. After stirring well, 10 ml was taken, and 90 ml of physiological saline was added thereto to prepare 100 ml of the second dilution, and 10 ml was taken in the same manner while sufficiently stirring the second diluent, and 90 ml of physiological saline was added and the third dilution was performed. 100 ml was prepared. Thereafter, a sixth dilution was prepared in the same manner. After dispensing 3, 4, 5, and 6 dilutions of 3, 4, 5, and 6 dilutions into TSA (Tryptic Soy Agar, Difco Co.) medium for strain separation three times in duplicates, stir uniformly and incubate for 2 days in a 37°C normal incubator. Colonies of the formed microorganisms were selected. At this time, considering the various factors such as the shape, size, and color of the colonies, the separated colonies were subcultured again in TSA medium to isolate pure strains and stored at -70°C for use as a parent strain.

균주 선별Strain selection

순수하게 분리된 균주들 중에서 자일로시다아제 활성을 갖는 활성 균주 선별은 TSA 배지에 자작나무 자일란(Fluka Bio Chemika. Co.)이 0.5-1.0% 함유된 소프트 아가 더블 배지를 만들고 균주를 접종하여 하룻밤 배양한 후 다음날 Congo-red 염색법(Theater RM, PJ. Wood. Appl Environ Microbiol 43, 777-780, 1982; Beguin P. Analytical Biochemistry, 131(2):333-336, 1983)을 통해 배양된 콜로니 주변에 투명환(Halo)을 형성하는 균주 및 활성클론을 선별하였다. 선별된 균주의 자일란 분해능을 다시 한 번 측정하여 재현성을 확인하였고, 그 중 자일란 분해 능력이 가장 우수한 균주를 선발하여 자일로시다아제를 생산하는 미생물로 최종 선발하였다.Selection of active strains with xylosidase activity among purely isolated strains was made by inoculating strain with soft agar double medium containing 0.5-1.0% of birch xylan (Fluka Bio Chemika. Co.) in TSA medium overnight. The following day after cultivation , around the colonies cultured by Congo-red staining (Theater RM, PJ. Wood. Appl Environ Microbiol 43, 777-780, 1982; Beguin P. Analytical Biochemistry, 131(2):333-336, 1983) Strains and active clones forming a transparent ring (Halo) were selected. The xylan resolution of the selected strain was measured once again to confirm reproducibility, and among them, the strain having the best xylan decomposition ability was selected and finally selected as a microorganism producing xylosidase.

실시예 2: 균주 동정 Example 2: Identification of strain

본 발명자들은 상기 실시예 1에서 분리한 가장 높은 활성을 지닌 자일로시다아제를 생산하는 균주를 30℃에서 배양한 후 그람 염색(Gram Staining) 및 포자 염색(Spore Staining)을 실시한 결과, 포자를 생성하는 그람양성 간균으로 확인되었다. 전자현미경으로 그 형태를 관찰한 결과, 도 1에서 볼 수 있듯이 1.1 ㎛의 세포크기와 2.5 ㎛ 내지 4 ㎛의 세포길이를 갖는 막대형(rod)이었으며 편모를 가지지 않는 운동성이 없는 간균으로 나타났다. 또한, 상기 균주는 서열목록 제3서열로 기재되는 16S rRNA를 가지며, rRNA에 대한 상동성 분석 결과, 페니바실러스 속 페니바실러스 파비스포러스[Paenibacillus favisporus(GenBank 등록번호 AY308758)] 균주와 97.7%, 페니바실러스 파비스포러스[Paenibacillus favisporus(GenBank 등록번호 AY208751)]와 97.2%, 페니바실러스 파비스포러스 [Paenibacillus favisporus (GenBank 등록번호 EU798300)]와 97.1% 상동성이 있음을 확인하였기 때문에, 본 균주를 페니바실러스 속 HPL-1로 명명하였고, 한국생명공학연구원의 생명자원센터에 2008년 7월 17일자로 기탁하였으며, 기탁번호는 KCTC11365BP이다.
The present inventors cultured the strain producing the highest activity xylosidase isolated in Example 1 at 30° C., and then performed gram staining and spore staining, resulting in spores. Was confirmed as Gram-positive bacilli. As a result of observing the shape with an electron microscope, as shown in FIG. 1, it was a rod having a cell size of 1.1 µm and a cell length of 2.5 µm to 4 µm, and appeared to be a motility bacillus without flagella. In addition, the strain has a 16S rRNA described in the third sequence of the Sequence Listing, and homology analysis results for rRNA, Penicillus genus, Phenibacillus favisporus (Paenibacillus favisporus (GenBank accession number AY308758)) strain and 97.7%, Penicillus Since it was confirmed that it has homology with 97.2% of Pabisporus [Paenibacillus favisporus (GenBank registration number AY208751)] and Penicillus favisporus (Paenibacillus favisporus (GenBank registration number EU798300)), this strain was identified as HPL- in the genus Penicillus. Named 1, and deposited with the Korea Research Institute of Bioscience and Biotechnology's Life Resources Center on July 17, 2008, and the deposit number is KCTC11365BP.

실시예 3: 신규 자일로시다아제 분리Example 3: Isolation of new xylosidase

페니바실러스 균주의 유전자 라이브러리제작 및 활성검정Genetic library preparation and activity assay of Penicillus strains

본 발명자들은 상기 실시예 1 및 실시예 2에서 분리 동정한 페니바실러스 속 HPL-1 균주로부터 자일로시다아제 활성을 가지는 효소 단백질을 암호화하는 유전자를 분리하기 위하여 게놈 DNA를 추출 후 5 kb 이하 크기의 유전자 조각을 가지는 gDNA 라이브러리를 제작하였다. 라이브러리의 제작은 균주로부터 추출한 DNA를 무작위 절단방법을 통하여 1-6 kb 크기의 DNA 조각으로 제조하고, 아가로스 젤에서 전기영동으로 크기를 선발하여 원하는 5 kb 전후 크기의 DNA 조각을 수득하였다. 이를 pCB31 플라스미드 벡터에 삽입 후 E. coli DH10B 세포에 형질전환하였다. 이렇게 제작된 라이브러리 1,248개의 클론을 고상 또는 액상 조건에서 자일로시다아제 활성을 시험하였다.
The present inventors extracted the genomic DNA in order to separate the gene encoding the enzyme protein having xylosidase activity from the HPL-1 strain of the genus Penicillus identified in Examples 1 and 2, and having a size of 5 kb or less A gDNA library with gene fragments was constructed. In the preparation of the library, the DNA extracted from the strain was prepared as a DNA fragment of 1-6 kb size through a random cutting method, and the size was selected by electrophoresis on an agarose gel to obtain a DNA fragment having a desired size of about 5 kb. This was inserted into the pCB31 plasmid vector and transformed into E. coli DH10B cells. 1,248 clones of the library thus prepared were tested for xylosidase activity under solid or liquid conditions.

자일로시다아제Xylosidase 활성시험 Activity test

분리된 균주, 활성클론, 형질전환체 및 분리 정제된 효소 등의 자일로시다아제 활성(자일란 분해능력) 측정은 다음과 같은 2가지 방법 중 하나 또는 모두를 사용하였다. 첫 번째 방법은 고체배양 측정방법으로 LB 배지에 자작나무 자일란(Fluka Bio Chemika. Co.)이 0.5-1.0% 함유된 소프트 아가 더블 배지를 만들고 균주를 접종하여 하룻밤 배양한 후 다음날 콩고레드 염색법을 통해 배양된 콜로니 주변에 투명환(halo)을 형성하는 균주 및 활성클론을 선별하였다. 두 번째 방법은 액체배양 효소활성 측정방법으로 자일로시다아제 분석법을 사용하였고, 구체적으로는 10 ㎕ p-니트로페닐(Nitrophenyl) β-D-자일로피라노사이드(Xylopyranoside,100 mM) 및 90 ㎕ 인산칼륨버퍼(100 mM, pH 7.0)에 피니파실러스 종(Peanibacillus sp.) 라이브러리를 37℃, 2일 동안 배양한 후 초음파 분해한 100 ㎕ 효소용액을 혼합하였다. 40℃에 10분 동안 반응한 후 흡광도(400nm)를 측정하였다. 효소의 1 유니트(unit)는 1분 동안에 1 g의 자일로시다아제가 1 m㏖의 환원당(자일로스)을 생산하는 효소활성으로 정의하였다. 액체배양 및 고체배양 활성시험을 통하여 상위 1개 클론 Peani-PXD2를 선발하였다(도 2).
Measurement of xylosidase activity (xylan decomposition ability) of isolated strains, active clones, transformants, and separated and purified enzymes was performed using one or both of the following two methods. The first method is a solid culture measurement method. A soft agar double medium containing 0.5-1.0% of birch xylan (Fluka Bio Chemika. Co.) in LB medium was made, inoculated with a strain, incubated overnight, and then cultured through Congo Red staining the next day. Strains and active clones forming a halo around the colonies were selected. In the second method, a xylosidase assay was used as a method for measuring the enzyme activity of liquid culture, specifically 10 μl p-nitrophenyl β-D-xylopyranoside (100 mM) and 90 μl After culturing the Pinyphacilus sp. library at 37° C. for 2 days in a potassium phosphate buffer (100 mM, pH 7.0), 100 μl enzyme solution digested by sonication was mixed. After reacting at 40° C. for 10 minutes, absorbance (400 nm) was measured. One unit of enzyme was defined as an enzyme activity in which 1 g of xyloxidase produces 1 mmol of reducing sugar (xylose) in 1 minute. The top 1 clone Peani- PXD2 was selected through liquid culture and solid culture activity tests (FIG. 2).

자일로시다아제Xylosidase 활성클론 선발 및 유전자 분석 Active clone selection and genetic analysis

실시예 3의 ‘자일로시다아제 활성시험’에서 선발된 클론에 삽입된 절편 DNA의 염기서열을 분석하였다. 염기서열을 분석한 결과 플라스미드에 삽입된 DNA 절편의 크기는 4,795 bp(서열목록 제4서열)이었고, 이를 NCBI의 Blast P 및 Blast N 프로그램(//www.ncbi.nlm.nih.gov/)을 통해 암호화되어 있는 전사 해독틀(ORF, Open Reading Frame)을 분석하였다. 분석된 ORF 중 아미노산 100개 이상의 크기를 갖는 ORF 4개를 PXD2-O1, PXD2-O2, PXD2-O3 및 PXD2-O4 이라 명명하였다. 상기 ORF 중 유전자가 암호화하는 단백질의 상동성 검색결과 XylC와 86% 상동성을 가지는 PXD2-O1(서열목록 제2서열)을 표적으로 하여 그 염기서열을 바탕으로 NdeI(NEB)과 BamHI(NEB) 제한효소 인식부위를 첨가한 프라이머를 제작한 뒤 PCR 증폭 후 pGEM-T-Easy 벡터(Promega, 미국) 벡터에 삽입하여 재조합 플라스미드를 제작하였다.The nucleotide sequence of the fragment DNA inserted into the clone selected in the'Xylosidase Activity Test' of Example 3 was analyzed. As a result of analyzing the nucleotide sequence, the size of the DNA fragment inserted into the plasmid was 4,795 bp (SEQ ID NO: 4), and the NCBI's Blast P and Blast N programs (//www.ncbi.nlm.nih.gov/) were used. Through the analysis, an open reading frame (ORF) that has been encrypted was analyzed. Among the ORFs analyzed, four ORFs having a size of 100 amino acids or more were named PXD2-O1, PXD2-O2, PXD2-O3, and PXD2-O4. Based on the homology search result of the protein encoded by the gene among the ORFs, targets PXD2-O1 (sequence list 2nd sequence) having 86% homology to XylC, and based on the base sequence, Nde I (NEB) and Bam HI ( NEB) A primer was added with a restriction enzyme recognition site, and after PCR amplification, it was inserted into a pGEM-T-Easy vector (Promega, USA) vector to produce a recombinant plasmid.

구체적으로, 상기 재조합 플라스미드 주형 1 ng을 서열목록 제5서열(5'-ACATGCCATATGATGAAAAAACAAGGG-3')의 정방향 프라이머 및 서열목록 제6서열(5'-ACATGCGGATCCCTTACTCTAAAATAAACGAAG-3')의 역방향 프라이머로 구성된 프라이머쌍(10 p㏖)과 혼합한 뒤, PCR 증폭 조건은 PCR 프리믹스(GenetBio, 대한민국)를 사용하여 94℃에서 5분 동안의 변성(Denaturation)을 수행한 후 94℃에서 30초 동안 변성, 55℃에서 30초 동안 결합(Annealing) 및 72℃에서 2분 동안 연장(Extension)을 30회 반복한 후 마지막으로 72℃에서 7분 동안 연장으로 마무리하고 4℃에서 유지한 뒤 반응을 종결하였다. PCR을 통해 증폭된 산물을 GENCLEAN II 키트(Q-Biogene, 미국)를 사용하여 정제하였고, pGEM-T-Easy 벡터에 T4 리가아제(RBC, 대만)를 사용하여 재조합 DNA를 제조하였다. 상기 재조합 플라스미드를 E. coli JM109에 형질전환 시켜 유전자 형질전환 대장균을 제조하였다. 상기 형질전환 대장균을 LB 액체 배지에서 배양한 후 HiYield™ 플라스미드 미니 키트(RBC, 대만)를 사용하여 플라스미드 DNA를 추출하여 제한효소 NdeI(NEB, 영국) 및 BamHI(NEB, 영국)로 절단하였고, 이를 전기영동 하여 목적하는 DNA 절편이 삽입되어 있음을 확인하였다. 또한, 상기 형질전환 대장균을 실시예 3의 ‘자일로시다아제 활성시험’에서와 같이 액상의 조건에서 자일로시다아제 활성을 시험한 결과 자일로시다아제 활성을 보임을 확인하였다.Specifically, 1 ng of the recombinant plasmid template is a primer pair consisting of a forward primer of the fifth sequence (5'-ACATGCCATATGATGAAAAAACAAGGG-3') and a reverse primer of the sixth sequence (5'-ACATGCGGATCCCTTACTCTAAAATAAACGAAG-3') After mixing with 10 pmol), PCR amplification conditions were performed by denaturation at 94°C for 5 minutes using PCR premix (GenetBio, Korea), followed by denaturation at 94°C for 30 seconds, 55°C at 30°C. Annealing for 2 seconds and extension for 2 minutes at 72°C were repeated 30 times, finally, the extension was completed for 7 minutes at 72°C, and the reaction was terminated after maintaining at 4°C. The product amplified through PCR was purified using a GENCLEAN II kit (Q-Biogene, USA), and recombinant DNA was prepared using T4 ligase (RBC, Taiwan) for the pGEM-T-Easy vector. Genetically transformed E. coli was prepared by transforming the recombinant plasmid into E. coli JM109. After transforming the transformed E. coli in LB liquid medium, the plasmid DNA was extracted using HiYield™ plasmid mini kit (RBC, Taiwan) and cut with restriction enzymes Nde I (NEB, UK) and Bam HI (NEB, UK). , It was confirmed by electrophoresis that the desired DNA fragment was inserted. In addition, it was confirmed that the transformed Escherichia coli showed xyloxidase activity as a result of testing the xylosidase activity under liquid conditions as in the'xyloxidase activity test' of Example 3.

상기 형질전환 대장균의 목적 DNA 절편의 염기서열을 확인하여 서열목록 제1서열로 기재된 염기서열의 신규 자일로시다아제 유전자의 ORF를 재확인하였다(표 1).The base sequence of the target DNA fragment of the transformed E. coli was confirmed to confirm the ORF of the new xylosidase gene of the base sequence described in Sequence Listing 1 (Table 1).

Figure 112012052655099-pat00001
Figure 112012052655099-pat00001

자일로시다아제Xylosidase 과발현체Overexpression 제작( making( pIVEXpIVEX -- GSTGST -- PXD2PXD2 ))

상기 신규 자일로시다아제를 과발현하는 형질전환 대장균을 제작하기 위해, Peani-PXD2 플라스미드를 주형으로 하여 서열목록 제5서열 및 서열목록 제6서열을 이용하여 PCR을 수행하였다. PCR 반응액 및 반응조건은 상기 실시예 3의 ‘자일로시다아제 활성시험’과 동일하게 실시하였다. 증폭된 산물을 정제하여 NdeI(NEB) 및 BamHI(NEB)으로 절단한 후, 단백질 과발현벡터 pIVEX-GST(Roche, 스위스)에 삽입시켜 재조합 과발현 플라스미드를 제작하였고, 이를 E. coli BL21(RBC, 대만)에 형질전환하여 자일로시다아제 과발현 형질전환 대장균을 제작하였다. 제작된 형질전환 대장균을 배양하여 플라스미드 DNA 추출 후 상기 제한효소를 이용하여 절단한 뒤 전기영동을 통해 벡터와 목적 DNA가 성공적으로 재조합되었는지 확인하였고, 확인된 균체를 LB 액체 배지에서(암피실린 100mg/L 첨가) 18시간 동안 배양(37℃, 250 rpm, A600=1.0)한 후 새로운 LB 액체 배지에 재접종하여 A595 흡광도 값이 0.4-0.6일 때 1 mM IPTG를 처리하고 18℃에서 18시간 더 배양한 후 균체를 수확하였다. 수확한 균체를 현탁하여 초음파 분쇄한 후 10,000 g에서 원심분리를 실시하여 상청액과 침전물로 분리하였고, SDS-PAGE(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis)를 통하여 목적한 단백질이 상청액에 과발현됨과 분자량이 약 52 kD임을 확인하였다(도 3).
PCR was performed using the Peani- PXD2 plasmid as a template and using the fifth sequence of the sequence list and the sixth sequence of the sequence list to prepare a transformed E. coli that overexpresses the new xylose. PCR reaction solution and reaction conditions were carried out in the same manner as in the'xyloxidase activity test' of Example 3. The amplified product was purified, cut with Nde I (NEB) and Bam HI (NEB), and inserted into the protein overexpression vector pIVEX-GST (Roche, Switzerland) to produce a recombinant overexpression plasmid, which was E. coli BL21 (RBC) , Taiwan) to produce a transfected E. coli overexpressing xylosidase. The transformed E. coli was cultivated, extracted with plasmid DNA, and then cut using the restriction enzyme to confirm whether the vector and the target DNA were successfully recombined through electrophoresis, and the identified cells in LB liquid medium (ampicillin 100 mg/L Addition) After incubation for 18 hours (37°C, 250 rpm, A 600 =1.0), re-inoculation into fresh LB liquid medium to treat 1 mM IPTG when the A 595 absorbance value is 0.4-0.6 and further 18 hours at 18°C After cultivation, the cells were harvested. The harvested cells were suspended and ultrasonically crushed, followed by centrifugation at 10,000 g to separate into supernatant and sediment, and the desired protein was overexpressed in the supernatant through SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) and the molecular weight was weak. It was confirmed that it was 52 kD (Fig. 3).

자일로시다아제Xylosidase 활성발현 조건 분석 Analysis of active expression conditions

실시예 3의 ‘자일로시다아제 과발현체 제작’에서 제작한 신규 자일로시다아제 과발현 형질전환 대장균으로부터 과발현 및 분리된 자일로시다아제의 활성을 pH, 온도 및 금속이온별로 실시예 3의 ‘자일로시다아제 활성시험’의 방법으로 조사하였다. 반응용액의 pH 조절은 구연산(Citric acid) 완충용액으로 pH 3-7을, 인산(Phosphate) 완충용액으로 pH 6-8을, 글라이신/수산화나트륨(Glycine/NaOH) 완충용액으로 pH 8-11으로 수행하였다. 금속이온으로는 1 mM의 CaCl2, MgCl2, MgCl2, CuCl2, ZnCl2 또는 FeCl3 등을 첨가하여 자일로시다아제 활성에 미치는 영향을 조사하였고, 기타 NaCl, LiCl, KCl, NH4Cl, EDTA, 2-ME(2-Mercaptoethanol), DTT(Dithiothreitol) 또는 PMSF(Penylmethylsulfonyl fluoride) 등의 염을 첨가하여 자일로시다아제 활성발현에 미치는 영향을 조사하였다.' Xylosidase of Example 3 The overexpression and the activity of xylosidase overexpressed and isolated from the overexpressed transformed E. coli produced in'Overexpression Production ' by the method of'Xylosidase Activity Test' in Example 3 by pH, temperature and metal ion Was investigated. The pH of the reaction solution is adjusted to pH 3-7 with citric acid buffer, pH 6-8 with phosphoric acid buffer, and pH 8-11 with glycine/NaOH buffer. Was performed. As metal ions, 1 mM CaCl 2 , MgCl 2 , MgCl 2 , CuCl 2 , ZnCl 2 Or FeCl 3 was added to investigate the effect on xylosidase activity, and other NaCl, LiCl, KCl, NH 4 Cl, EDTA, 2-ME (2-Mercaptoethanol), DTT (Dithiothreitol) or PMSF (Penylmethylsulfonyl fluoride) ) Was added to investigate the effect on xyloxidase activity expression.

그 결과, 신규 자일로시다아제는 pH 4에서, 도 4에서 나타난 바와 같이 40℃에서 최대 활성을 나타내었다. 또한, 표 2에 나타난 바와 같이 1 mM의 Ca+2, Mn+2, Cu+2 또는 Zn+2 등의 중금속 또는 첨가물에 의해서 p-니트로페닐 β-D-자일로피라노사이드에 대한 자일로시다아제 활성이 각각 156, 178, 156 및 144%로 증가되었다.As a result, the novel xylosidase showed maximum activity at pH 4 and 40° C. as shown in FIG. 4. In addition, as shown in Table 2, 1 mM Ca +2 , Mn +2 , Cu +2 or Xylosidase activity on p-nitrophenyl β-D-xylpyranoside was increased to 156, 178, 156 and 144%, respectively, by heavy metals or additives such as Zn +2 .

첨가제additive 첨가제 농도에 따른 상대적 활성(%)Relative activity according to additive concentration (%) 1 mM1 mM 음성 대조군 Negative control 100 100 NaClNaCl 112 112 LiClLiCl 97 97 KClKCl 98 98 NH4ClNH4Cl 101 101 CaCl2 CaCl 2 156 156 MgCl2 MgCl 2 125 125 MnCl2 MnCl 2 178 178 CuSO4 CuSO 4 156 156 ZnSO4 ZnSO 4 144 144 FeCl3 FeCl 3 108 108 EDTAEDTA 115 115 2-ME2-ME 117 117 DTTDTT 106 106 PMSFPMSF 97 97

실시예Example 4: 신규  4: New 자일로시다아제의Xylosidase 대량 생산  massive production

서열목록 제2서열의 신규 자일로시다아제를 암호화하는 유전자(서열목록 제1서열)를 포함하는 pIVEX GST-xylosidase 재조합 벡터(Bioprogen Co., Ltd., 대한민국)를 대장균 BL21-Gold(DE)(Stratagene, 미국)에 형질전환 시킨 후 암피실린이 첨가(50 ㎍/㎖)된 액체배지(LB 25 g/L)에 접종하여 O.D.595 값이 0.4-0.6이 될 때까지 37℃에서 150 rpm의 조건으로 교반 배양하였다. 목표 단백질의 대장균 세포내 발현을 유도하기 위하여, 상기 현탁액에 IPTG(isopropyl-D-thiogalactoside)를 최종 농도 1 mM이 되도록 첨가한 후에 18℃에서 18시간 더 배양하였다. 배양액을 10,000 rpm에서 10분 동안 원심분리를 실시하여 회수한 침전물을 PBS로 2회 세척하였다. 세척된 침전물을 다시 PBS에 재현탁 후 초음파 파쇄기(Cosmo Bio Co., LTD)를 이용하여 균체를 파쇄한 후, 원심분리(12,000 rpm, 10분)하여 상청액을 회수하였다. 회수한 상청액 속의 자일로시다아제를 순수분리하기 위해 글루타치온에스-트렌스퍼레이즈 컬럼(GST binding resin column, Novagen)을 사용하였다. 이때 자일로시나아제의 순수분리는 준비된 상청액을 완충용액(Washing buffer solution ; 50 mM Tris-HCl, 100 mM NaCl; pH 7.0)으로 평형화된 글루타치온에스-트렌스퍼레이즈 컬럼(GST binding resin column, Novagen)에 부착 시킨 후, factor Xa 프로테아제(NEB, 영국)를 처리하고, 완충용액(50 mM Tris-HCl, 100 mM NaCl; pH 7.0)을 이용하여 순수분리하였다. 정제 단계에서 회수한 각각의 시료로부터 자일로시다아제 효소 활성을 측정 하였으며, 효소 활성 분획의 정제여부를 SDS-PAGE로 확인하였다. 단백질 함량은 브래드포드 방법(Bradford, Sigma Aldrich)을 이용하여 측정하였고, 표준 단백질로는 BSA(bovine serum albumin)를 사용하였다.The pIVEX GST-xylosidase recombinant vector (Bioprogen Co., Ltd., Korea) containing the gene encoding the new xylosidase of SEQ ID NO:2 (Bioprogen Co., Ltd., Republic of Korea) is coliform BL21-Gold(DE) ( Stratagene, USA), and then inoculated into a liquid medium (LB 25 g/L) with ampicillin added (50 µg/ml) and OD 595 The mixture was stirred and cultured at 37°C under conditions of 150 rpm until the value became 0.4-0.6. To induce intracellular expression of the target protein, IPTG (isopropyl-D-thiogalactoside) was added to the suspension to a final concentration of 1 mM, followed by further incubation at 18°C for 18 hours. The culture was centrifuged at 10,000 rpm for 10 minutes, and the recovered precipitate was washed twice with PBS. After resuspending the washed precipitate in PBS again, the cells were crushed using an ultrasonic crusher (Cosmo Bio Co., LTD), and then centrifuged (12,000 rpm, 10 minutes) to recover the supernatant. A glutathione-transferase column (GST binding resin column, Novagen) was used for pure separation of xyloxidase in the recovered supernatant. At this time, the pure separation of xylosease is a glutathione-transferase column (GST binding resin column, Novagen) equilibrated with the prepared supernatant with a washing buffer solution (50 mM Tris-HCl, 100 mM NaCl; pH 7.0). After attaching to, the factor Xa protease (NEB, UK) was treated and purified using a buffer solution (50 mM Tris-HCl, 100 mM NaCl; pH 7.0). Xylosidase enzyme activity was measured from each sample collected in the purification step, and the purification of the enzyme active fraction was confirmed by SDS-PAGE. Protein content was measured using the Bradford method (Bradford, Sigma Aldrich), and the standard protein was used as a BSA (bovine serum albumin).

그 결과, 글루타치온 레진 컬럼크로마토그래피 법으로 간편하게 다량의 자일로시다아제를 생산할 수 있었다. 또한 레진에 결합된 자일로시다아제 상태로도 자일로시다아제 활성이 변화되지 않는 특성을 보여주었기 때문에 효소고정화 방법을 통한 고효율 전환공정에 적용할 수 있음을 알 수 있다. 상기 방법에 의해 정제된 효소는 정제하기 전의 효소보다 5배 이상의 활성을 나타내었다. 효소활성은 40℃에서 pH 3.0, pH 4.0, pH 5.0, pH 6.0, pH 7.0, pH 8.0, pH 9.0, pH 10.0, 및 pH 11.0에서 각각 0.10, 15.15, 2.97, 3.79, 4.57, 2.44, 2.64, 1.48 및 0.19 units(1분당 1g의 효소가 생산하는 자일로스 mM 량)으로 나타내었다. As a result, glutathione resin column chromatography was able to easily produce a large amount of xylosidase. In addition, it can be seen that it can be applied to a high-efficiency conversion process through an enzyme immobilization method because it showed a characteristic that the xyloxidase activity does not change even in the state of xyloxidase bound to the resin. The enzyme purified by the above method showed 5 times more activity than the enzyme before purification. Enzyme activity is 0.10, 15.15, 2.97, 3.79, 4.57, 2.44, 2.64, 1.48 at pH 3.0, pH 4.0, pH 5.0, pH 6.0, pH 7.0, pH 8.0, pH 9.0, pH 11.0 at 40°C, respectively. And 0.19 units (myl xylose produced by 1 g of enzyme per minute).

특징적인 내용은 pH 4.0 및 40℃에서 p-니코페닐-β-D-자일로피라노사이드(p-nitrophenyl-β-D-xylopyranoside), p-니트로페닐(N)-α-L-아라비노퓨라노사이드(p-nitrophenyl(N)-α-L-arabinofuranoside), p-N-β-D-글루코피라노사이드(p-N-β-D-glucopyranoside) 및 p-N-β-D-셀로비오사이드(p-N-β-D-cellobioside) 등의 기질을 사용할 경우에도 당화활성을 나타내어 비활성 5, 12, 4 및 3 유닛을 나타내었다. 즉, 다기능효소로서의 활용을 기대할 수 있었다. 그러나 p-N-α-D-글루코피라노사이드(p-N-α-D-glucopyranoside), p-N-α-L-아라비노피라노사이드(p-N-α-L-arabinopyranoside), p-N-β-L-아라비노피라노사이드(p-N-β-L-arabinopyranoside), p-N-β-D-만노피라노사이드(p-N-β-D-mannopyranoside) 및 p-N-β-D-갈락토피라노사이드(p-N-β-D-galactopyranoside) 등에 대해서는 활성을 나타내지 않았다.Characteristic contents are p-nitrophenyl-β-D-xylopyranoside, p-nitrophenyl(N)-α-L-arabino at pH 4.0 and 40℃. Furanoside (p-nitrophenyl(N)-α-L-arabinofuranoside), pN-β-D-glucopyranoside and pN-β-D-cellobioside (pN When using a substrate such as -β-D-cellobioside), it showed saccharification activity, indicating 5, 12, 4 and 3 inactive units. That is, it could be expected to be used as a multifunctional enzyme. However, pN-α-D-glucopyranoside, pN-α-L-arabinopyranoside, pN-β-L-arabinopyranoside, pN-β-L-arabino Pyranoside (pN-β-L-arabinopyranoside), pN-β-D-mannopyranoside and pN-β-D-galactopyranoside (pN-β-D -galactopyranoside) and the like.

실시예Example 5: 대량생산된 신규  5: Mass-produced new 자일로시다아제의Xylosidase 효소 특성 Enzyme properties

효소의 특성을 알아보기 위하여 정제된 자일로시다아제를 시험관에 넣고 다양한 양의 p-니트로페닐-β-D-자일로피라노사이드를 포함하는 50 mM 인산칼륨 버퍼(Potassium phosphate buffer, pH 7.0)를 첨가하였다. 반응 혼합물을 40℃에서 10분 동안 반응시켜서 효소반응 속도(Hanes-woolf)를 조사하였다. In order to examine the properties of the enzyme, 50 ml of potassium phosphate buffer (pH 7.0) containing purified xyloxidase in a test tube and containing various amounts of p-nitrophenyl-β-D-xylpyranoside Was added. The reaction mixture was reacted at 40° C. for 10 minutes to investigate the enzyme reaction rate (Hanes-woolf).

그 결과, 도 6에서 나타난 바와 같이 자일란 기질에 대한 친화도 Km 값은 4.091이었고, 가수분해 산물은 대부분이 자일로스였다. 자작나무 자일란 이외의 자일란(너도밤나무, 귀리 등)에 대한 자일로시다아제 활성도 유사하였다.
As a result, as shown in FIG. 6, the affinity K m value for the xylan substrate was 4.091, and most of the hydrolysis products were xylose. Xylosidase activity against xylan (beech, oat, etc.) other than birch xylan was similar.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it is obvious that for those skilled in the art, this specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel Enzyme PXD2-01 Having Xylase Activity <130> PN120303 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 1425 <212> DNA <213> PXD2-01 <400> 1 atgatgaaaa aacaagggct aaacccctat ctcccatcgt gggaatacat acctgacgga 60 gaaccgtacg tttttaacga cagagtttat gtatatggct cgcatgaccg ctttaacgga 120 catgtgtttt gtttaaacga ctacgcttgc tggtcggcac ccgttaatga tctaggcgac 180 tggcggtatg agggcgtgat ctacaccaaa acggatgacc cgctaaatcc tgatggcagg 240 atgtgtcttt atgcgccgga cgtcaccgtc ggaccggatg gtcgttatta cctttactat 300 gtcctggata aggttccggt tgtttcggtt gccgtctgcg atacacctgc tggaaagtat 360 gaattttacg gatacgtaaa atacgcggac ggtacacgct tgggcgaaag agaaggagat 420 gagccccagt ttgatccggg tgtattgaca gaagggaaga agacctactt atataccggc 480 ttctgtgcac ccaaggataa atccagacat ggcgcaatgg ccacggtgct tggtgaagat 540 atgcttacca ttatggagga acctgtattt gtcgccccaa gtgaacctta cagtgcggga 600 agcgggtttg aagggcatga attttttgag gctccctcca tccgtaagaa gggtgatatt 660 tattatcttg tctattcatc gattgtaatg catgaattat gttatgcgac cagtaaattt 720 ccgacaaaag gcttcattta tcagggcgtc atcataagca acaatgatct tcacatcgat 780 tcctacaaac cggcggacaa gccgatgtat tatggcggta ataaccatgg cagcattgtg 840 gaaatgaacg atagatggtt cattttttat catcgccata ccaacggtac ggcttttagc 900 cggcagggct gcatcgaacc gatcgtcatt cgggaggatg gaacgattcc tcaagtggaa 960 atgacctctt gcggtcccaa tgacggcccg cttgtgggtc gcggtgaata ccacgcctat 1020 ttggcatgta atctgttctg taaagacgaa gaattgtata caggcggctt cggctcaggg 1080 gtatggatgg acagccgttt tccgaagatc acgcaggagg gaagagacgg ggacgaagag 1140 atcggataca tcgcaaacat gacagactcc gctactgccg gtttcaagta tttcgactgc 1200 caaggaatac gtaaggtgaa aatcaaagtg cgtggttatt gccagggcaa ctttgaaatt 1260 aaaacggctt gggacggccc ggctctcgga aaaataaccg ttaactttac aaatatatgg 1320 acggaatatt caacggatct cgtcattccg gatggcatac aggctctata ttttacgtac 1380 acaggcagag gaagtgcgga tctggcttcg tttattttag agtaa 1425 <210> 2 <211> 474 <212> PRT <213> PXD2-01 <400> 2 Met Met Lys Lys Gln Gly Leu Asn Pro Tyr Leu Pro Ser Trp Glu Tyr 1 5 10 15 Ile Pro Asp Gly Glu Pro Tyr Val Phe Asn Asp Arg Val Tyr Val Tyr 20 25 30 Gly Ser His Asp Arg Phe Asn Gly His Val Phe Cys Leu Asn Asp Tyr 35 40 45 Ala Cys Trp Ser Ala Pro Val Asn Asp Leu Gly Asp Trp Arg Tyr Glu 50 55 60 Gly Val Ile Tyr Thr Lys Thr Asp Asp Pro Leu Asn Pro Asp Gly Arg 65 70 75 80 Met Cys Leu Tyr Ala Pro Asp Val Thr Val Gly Pro Asp Gly Arg Tyr 85 90 95 Tyr Leu Tyr Tyr Val Leu Asp Lys Val Pro Val Val Ser Val Ala Val 100 105 110 Cys Asp Thr Pro Ala Gly Lys Tyr Glu Phe Tyr Gly Tyr Val Lys Tyr 115 120 125 Ala Asp Gly Thr Arg Leu Gly Glu Arg Glu Gly Asp Glu Pro Gln Phe 130 135 140 Asp Pro Gly Val Leu Thr Glu Gly Lys Lys Thr Tyr Leu Tyr Thr Gly 145 150 155 160 Phe Cys Ala Pro Lys Asp Lys Ser Arg His Gly Ala Met Ala Thr Val 165 170 175 Leu Gly Glu Asp Met Leu Thr Ile Met Glu Glu Pro Val Phe Val Ala 180 185 190 Pro Ser Glu Pro Tyr Ser Ala Gly Ser Gly Phe Glu Gly His Glu Phe 195 200 205 Phe Glu Ala Pro Ser Ile Arg Lys Lys Gly Asp Ile Tyr Tyr Leu Val 210 215 220 Tyr Ser Ser Ile Val Met His Glu Leu Cys Tyr Ala Thr Ser Lys Phe 225 230 235 240 Pro Thr Lys Gly Phe Ile Tyr Gln Gly Val Ile Ile Ser Asn Asn Asp 245 250 255 Leu His Ile Asp Ser Tyr Lys Pro Ala Asp Lys Pro Met Tyr Tyr Gly 260 265 270 Gly Asn Asn His Gly Ser Ile Val Glu Met Asn Asp Arg Trp Phe Ile 275 280 285 Phe Tyr His Arg His Thr Asn Gly Thr Ala Phe Ser Arg Gln Gly Cys 290 295 300 Ile Glu Pro Ile Val Ile Arg Glu Asp Gly Thr Ile Pro Gln Val Glu 305 310 315 320 Met Thr Ser Cys Gly Pro Asn Asp Gly Pro Leu Val Gly Arg Gly Glu 325 330 335 Tyr His Ala Tyr Leu Ala Cys Asn Leu Phe Cys Lys Asp Glu Glu Leu 340 345 350 Tyr Thr Gly Gly Phe Gly Ser Gly Val Trp Met Asp Ser Arg Phe Pro 355 360 365 Lys Ile Thr Gln Glu Gly Arg Asp Gly Asp Glu Glu Ile Gly Tyr Ile 370 375 380 Ala Asn Met Thr Asp Ser Ala Thr Ala Gly Phe Lys Tyr Phe Asp Cys 385 390 395 400 Gln Gly Ile Arg Lys Val Lys Ile Lys Val Arg Gly Tyr Cys Gln Gly 405 410 415 Asn Phe Glu Ile Lys Thr Ala Trp Asp Gly Pro Ala Leu Gly Lys Ile 420 425 430 Thr Val Asn Phe Thr Asn Ile Trp Thr Glu Tyr Ser Thr Asp Leu Val 435 440 445 Ile Pro Asp Gly Ile Gln Ala Leu Tyr Phe Thr Tyr Thr Gly Arg Gly 450 455 460 Ser Ala Asp Leu Ala Ser Phe Ile Leu Glu 465 470 <210> 3 <211> 1404 <212> RNA <213> HPL-1 16S rRNA <400> 3 tagagtttga tcatggctca ggacgaacgc tggcggcgtg cctaatacat gcaagtcgag 60 cggacttgat ggagagcttg ctctcctgat ggttagcggc ggacgggtga gtaacacgta 120 ggcaacctgc ctgcaagacc gggataaccc acggaaacgt gagctaatac cggatatctc 180 atttcctctc ctgagggaat gatgaaagac ggagcaatct gtcacttgcg gatgggcctg 240 cggcgcatta gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg tagccgacct 300 gagagggtga acggccacac tgggactgag acacggccca gactcctacg ggaggcagca 360 gtagggaatc ttccgcaatg ggcgaaagcc tgacggagca acgccgcgtg agtgatgaag 420 gttttcggat cgtaaagctc tgttgccagg gaagaacgtc cggtagagta actgctatcg 480 gagtgacggt acgtgagaag aaagccccgg ctaactacgt gccagcagcc gcggtaatac 540 gtagggggca agcgttgtcc ggaattattg ggcgtaaagc gcgcgcaggc ggtcatttaa 600 gtctggtgtt taaggccaag gctcaacctt ggttcgcact ggaaactggg tgacttgagt 660 gcagaagagg agagtggaat tccacgtgta gcggtgaaat gcgtagatat gtggaggaat 720 cnccagtggc gaaggcgact ctctgggctg taactgacgc tgaggcgcga aagcgtgggg 780 agcaaacagg attagatacc ctggtagtcc acgccgtaaa cgatgaatgc taggtgttag 840 gggtttcgat acccttggtg ccgaagttaa cacattaagc attccgcctg gggagtacgg 900 tcgcaagact gaaactcaaa ggaattgacg gggacccgca caagcagtgg agtatgtggt 960 ttaattcgaa gcaacgcgaa gaaccttacc aggtcttgac atccctctga ccggtctaga 1020 gatagacctt tccttcggga cagaggagac aggtggtgca tggttgtcgt cagctcgtgt 1080 cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct tgattttagt tgccagcact 1140 tcgggtgggc actctagaat gactgccggt gacaaaccgg aggaaggcgg ggatgacgtc 1200 aaatcatcat gccccttatg acctgggcta cacacgtact acaatggcca gtacaacggg 1260 aagcgaagcc gcgaggtgga gccaatccta tcaaagctgg tctcagttcg gattgcaggc 1320 tgcaactcgc ctgcatgaag tcggaattgc tagtaatcgc ggatcagcat gccgcggtga 1380 atacgttccc gggtcttgta caca 1404 <210> 4 <211> 4795 <212> DNA <213> Peani-PXD2 <400> 4 gtatcgataa gcttgatatt ttcgctggct aatccggcgg ttgcagccgt cattcccggt 60 gcaagtcgtc ctgagcggat tgcagaagac aaagctgcat tgaacacagt cattccggca 120 gctttctggg aagaaatgcg cgaacaaaaa ctggtagcac cccatgcacc gctgcctatc 180 gacatgaaat caatagggga gtaatgaaca tggcacatac ggctgtctgg cagttttacc 240 ccggcagggg tcagtgatca agaggctatt gatctgttcc atgggatcta tcaagacggc 300 ttagaggcat tacgacaagc atttttagat tgaagattta ataagtaaaa gaggcgtgta 360 tccgaggcga aatttgaact tggatacact cttttttttg ttcgctcaaa tacagaagcg 420 ttaataaaat atgcccaagt attatttgct gtgctcaagg ttcgaacttg tgggtcatat 480 catcctttcc ataaaagcag gaaagtgcat gaagcaagag gaatacatag acaaatcatc 540 aagctaagga ggtcatgaat tggcgtttcc gacacatatt gtatctgcag gcggtattgt 600 agaagatgga aagggaaata tccttttagt aaaagcgcat gacgacggtt gggtatatcc 660 tgggggaatc actgaagttg gcgaaaacct gatggatggc gtgatccgtg aaatcaaaga 720 ggaaagtgga atagacgcta cggttagcca tttaatcagt gtggtttcaa atacagcgat 780 ccataagtgg tatgacggtg taaccgatgt tcctacgaag gtcatgtttg atttcgtgtg 840 tacagccgtg gggggagagt tagcgacctc tgaggagacg agcgaatgca ggtgggttcc 900 caaagaaaat gttctggatt ggatcacctt acccgcaatc cgcatgcgct acgaagctta 960 tttgaacttt aacggctctg tgaattatat cgagtacgtt actgcaacaa cgtctgaatg 1020 tcaggttaaa ctgcaaagga agatgtagtt cgcttgtcac ctccaagaga tatgggttag 1080 gaaattttcg ctagcgtgaa ggcatattta aaggagtgaa cgtttatgat gaaaaaacaa 1140 gggctaaacc cctatctccc atcgtgggaa tacatacctg acggagaacc gtacgttttt 1200 aacgacagag tttatgtata tggctcgcat gaccgcttta acggacatgt gttttgttta 1260 aacgactacg cttgctggtc ggcacccgtt aatgatctag gcgactggcg gtatgagggc 1320 gtgatctaca ccaaaacgga tgacccgcta aatcctgatg gcaggatgtg tctttatgcg 1380 ccggacgtca ccgtcggacc ggatggtcgt tattaccttt actatgtcct ggataaggtt 1440 ccggttgttt cggttgccgt ctgcgataca cctgctggaa agtatgaatt ttacggatac 1500 gtaaaatacg cggacggtac acgcttgggc gaaagagaag gagatgagcc ccagtttgat 1560 ccgggtgtat tgacagaagg gaagaagacc tacttatata ccggcttctg tgcacccaag 1620 gataaatcca gacatggcgc aatggccacg gtgcttggtg aagatatgct taccattatg 1680 gaggaacctg tatttgtcgc cccaagtgaa ccttacagtg cgggaagcgg gtttgaaggg 1740 catgaatttt ttgaggctcc ctccatccgt aagaagggtg atatttatta tcttgtctat 1800 tcatcgattg taatgcatga attatgttat gcgaccagta aatttccgac aaaaggcttc 1860 atttatcagg gcgtcatcat aagcaacaat gatcttcaca tcgattccta caaaccggcg 1920 gacaagccga tgtattatgg cggtaataac catggcagca ttgtggaaat gaacgataga 1980 tggttcattt tttatcatcg ccataccaac ggtacggctt ttagccggca gggctgcatc 2040 gaaccgatcg tcattcggga ggatggaacg attcctcaag tggaaatgac ctcttgcggt 2100 cccaatgacg gcccgcttgt gggtcgcggt gaataccacg cctatttggc atgtaatctg 2160 ttctgtaaag acgaagaatt gtatacaggc ggcttcggct caggggtatg gatggacagc 2220 cgttttccga agatcacgca ggagggaaga gacggggacg aagagatcgg atacatcgca 2280 aacatgacag actccgctac tgccggtttc aagtatttcg actgccaagg aatacgtaag 2340 gtgaaaatca aagtgcgtgg ttattgccag ggcaactttg aaattaaaac ggcttgggac 2400 ggcccggctc tcggaaaaat aaccgttaac tttacaaata tatggacgga atattcaacg 2460 gatctcgtca ttccggatgg catacaggct ctatatttta cgtacacagg cagaggaagt 2520 gcggatctgg cttcgtttat tttagagtaa gccgcccgcc cgggaaccag cttcccaaaa 2580 aaatacgcaa gcagttccga gcattttccg gaactgcttt ttggtttgtg tgatctttta 2640 atgataaagc catggaggcc gagtattaaa aaatgacaac gctttcttaa aaatgttggc 2700 ttacgagcag atgggtcaag aggatagact agcaataaag gaggagcgca tatggatttg 2760 gatgcacagt ttacgagaac tgcggatcac ggtggtcagc agcaccaatt atggaagcgg 2820 ttcaaaaaac aaaaagtact gcatgtattt gtaggactgg gtatgatctt tctgctgatt 2880 ttctcgtaca cgccgatgtt cggtattctt atggcgttta aagactacag tatttcaaat 2940 ggtattaagg ggatctttac cagcgagtgg gtcggtttga gatatttcga tgaattcatc 3000 catgattatc agtttgccac gattgtacgc aacacgcttg tcctgagctt attgaaggtc 3060 attttcgctt ttcccgcacc gattttgctt gcgatcctgt tgaatgaagt gaaaaatatg 3120 gcgttcaagc gattcgttca gacgatcagc tacctgccgc attttatttc ctgggttgtt 3180 gtcgtcggag tatcctacgc cttcctgtct gcggatgttg gcatggttaa ccgggccctg 3240 gtcgaaaccg ggctgattga caaaccgctc aacattttga cgagtccgaa ctatttctgg 3300 gggcttgccg tcggcagtgc aatttggaag gaaatgggct ggtggacgat catcttcctg 3360 gccgccatca cggggattaa tccttcgctt tacgaagctg ccgagatgga tggtgccgga 3420 aggctggcac ggatccgata tatcacactt ccgggaatca gaggaacgat cgtcgtcgtg 3480 ctggtgttga ccattggcag tattctcgga ggcggcctgg tcggctccaa cttcgaacaa 3540 gcctacttat acggcaacag tattaacaat ccgacatcgg aaattgttca gacgtacgca 3600 ttcaaggttg gtctgagtga cgggcgattc tcctacgcgg cagcaatcga tctcattcag 3660 tccgtcatct ccgtcatttt gatattttcc agtaacttca ttgccaagcg ggtgtcaggg 3720 tcaagcttat tctaaaaagg agggctggtg gtgcttaaga gccaaagaca gaaggatgtt 3780 atttttgaca gctttattta catcatgttg tttatattga tgctcatcat gctgtatcca 3840 ttctattatg tattcatcgc ctcgtttaac aaaggctccg atacgctcct gggaggcatt 3900 tatttgtggc cacgaaacgt aactctggaa aactataaaa tttttctgga agatccgaag 3960 tggtatcgag cctttttggt cacggttgcc cggacgatat cgggtacggc attgggactg 4020 ctgctgacaa gcctggtcgc ttacgccctt tcacaccgtg atttgttgtt cagcaaaacg 4080 tattttacgg tcatcatttt cgcgatgtac ttttccggcg gattgattcc ttattatgtt 4140 gtgctgcgct cgatcggatt gcttaattca tttgcagtgt acatcgtgcc gtccatgctc 4200 aacacgtttt tcctgctcat tgccatctcg ttcttccgcg aaatcccggg cgaactgaaa 4260 gaatcggcgc atatcgacgg cgctggcgaa ctcaagatct tttttcggat catcctgccg 4320 gtctcgacgc cggtactcgc cacgatggcg ttatttatgg gcgtcggcca atggaattca 4380 tggctggact ccgcctattt cgtgcaatcg gaaaacttgc gaacgcttac cttccggatg 4440 atggaagtga tcaacaagag caacacgccg ctggattcca ttgccgtagc aaacagtgcc 4500 tcggcttcgg ccggagtgac gagcttctcg ctgcaggtga cggcgatggt catctccatc 4560 gtgccgatca tatgcgtata cccgtttttg caaaaatatt ttgtgcatgg aattatgtta 4620 ggatctgtga aagggtaaat cgttgtttct atatttaacc gcttacatta aaataccagt 4680 aaatccattg gaggggtaca cttgaaaaca atcaagagct ataagctgct cgctgcggca 4740 ctgtctgcga tcgaattcct gcagcccggg ggatccacta gttctagagc ggccg 4795 <210> 5 <211> 27 <212> DNA <213> foward primer <400> 5 acatgccata tgatgaaaaa acaaggg 27 <210> 6 <211> 33 <212> DNA <213> reverse primer <400> 6 acatgcggat cccttactct aaaataaacg aag 33 <110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel Enzyme PXD2-01 Having Xylase Activity <130> PN120303 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 1425 <212> DNA <213> PXD2-01 <400> 1 atgatgaaaa aacaagggct aaacccctat ctcccatcgt gggaatacat acctgacgga 60 gaaccgtacg tttttaacga cagagtttat gtatatggct cgcatgaccg ctttaacgga 120 catgtgtttt gtttaaacga ctacgcttgc tggtcggcac ccgttaatga tctaggcgac 180 tggcggtatg agggcgtgat ctacaccaaa acggatgacc cgctaaatcc tgatggcagg 240 atgtgtcttt atgcgccgga cgtcaccgtc ggaccggatg gtcgttatta cctttactat 300 gtcctggata aggttccggt tgtttcggtt gccgtctgcg atacacctgc tggaaagtat 360 gaattttacg gatacgtaaa atacgcggac ggtacacgct tgggcgaaag agaaggagat 420 gagccccagt ttgatccggg tgtattgaca gaagggaaga agacctactt atataccggc 480 ttctgtgcac ccaaggataa atccagacat ggcgcaatgg ccacggtgct tggtgaagat 540 atgcttacca ttatggagga acctgtattt gtcgccccaa gtgaacctta cagtgcggga 600 agcgggtttg aagggcatga attttttgag gctccctcca tccgtaagaa gggtgatatt 660 tattatcttg tctattcatc gattgtaatg catgaattat gttatgcgac cagtaaattt 720 ccgacaaaag gcttcattta tcagggcgtc atcataagca acaatgatct tcacatcgat 780 tcctacaaac cggcggacaa gccgatgtat tatggcggta ataaccatgg cagcattgtg 840 gaaatgaacg atagatggtt cattttttat catcgccata ccaacggtac ggcttttagc 900 cggcagggct gcatcgaacc gatcgtcatt cgggaggatg gaacgattcc tcaagtggaa 960 atgacctctt gcggtcccaa tgacggcccg cttgtgggtc gcggtgaata ccacgcctat 1020 ttggcatgta atctgttctg taaagacgaa gaattgtata caggcggctt cggctcaggg 1080 gtatggatgg acagccgttt tccgaagatc acgcaggagg gaagagacgg ggacgaagag 1140 atcggataca tcgcaaacat gacagactcc gctactgccg gtttcaagta tttcgactgc 1200 caaggaatac gtaaggtgaa aatcaaagtg cgtggttatt gccagggcaa ctttgaaatt 1260 aaaacggctt gggacggccc ggctctcgga aaaataaccg ttaactttac aaatatatgg 1320 acggaatatt caacggatct cgtcattccg gatggcatac aggctctata ttttacgtac 1380 acaggcagag gaagtgcgga tctggcttcg tttattttag agtaa 1425 <210> 2 <211> 474 <212> PRT <213> PXD2-01 <400> 2 Met Met Lys Lys Gln Gly Leu Asn Pro Tyr Leu Pro Ser Trp Glu Tyr   1 5 10 15 Ile Pro Asp Gly Glu Pro Tyr Val Phe Asn Asp Arg Val Tyr Val Tyr              20 25 30 Gly Ser His Asp Arg Phe Asn Gly His Val Phe Cys Leu Asn Asp Tyr          35 40 45 Ala Cys Trp Ser Ala Pro Val Asn Asp Leu Gly Asp Trp Arg Tyr Glu      50 55 60 Gly Val Ile Tyr Thr Lys Thr Asp Asp Pro Leu Asn Pro Asp Gly Arg  65 70 75 80 Met Cys Leu Tyr Ala Pro Asp Val Thr Val Gly Pro Asp Gly Arg Tyr                  85 90 95 Tyr Leu Tyr Tyr Val Leu Asp Lys Val Pro Val Val Ser Val Ala Val             100 105 110 Cys Asp Thr Pro Ala Gly Lys Tyr Glu Phe Tyr Gly Tyr Val Lys Tyr         115 120 125 Ala Asp Gly Thr Arg Leu Gly Glu Arg Glu Gly Asp Glu Pro Gln Phe     130 135 140 Asp Pro Gly Val Leu Thr Glu Gly Lys Lys Thr Tyr Leu Tyr Thr Gly 145 150 155 160 Phe Cys Ala Pro Lys Asp Lys Ser Arg His Gly Ala Met Ala Thr Val                 165 170 175 Leu Gly Glu Asp Met Leu Thr Ile Met Glu Glu Pro Val Phe Val Ala             180 185 190 Pro Ser Glu Pro Tyr Ser Ala Gly Ser Gly Phe Glu Gly His Glu Phe         195 200 205 Phe Glu Ala Pro Ser Ile Arg Lys Lys Gly Asp Ile Tyr Tyr Leu Val     210 215 220 Tyr Ser Ser Ile Val Met His Glu Leu Cys Tyr Ala Thr Ser Lys Phe 225 230 235 240 Pro Thr Lys Gly Phe Ile Tyr Gln Gly Val Ile Ile Ser Asn Asn Asp                 245 250 255 Leu His Ile Asp Ser Tyr Lys Pro Ala Asp Lys Pro Met Tyr Tyr Gly             260 265 270 Gly Asn Asn His Gly Ser Ile Val Glu Met Asn Asp Arg Trp Phe Ile         275 280 285 Phe Tyr His Arg His Thr Asn Gly Thr Ala Phe Ser Arg Gln Gly Cys     290 295 300 Ile Glu Pro Ile Val Ile Arg Glu Asp Gly Thr Ile Pro Gln Val Glu 305 310 315 320 Met Thr Ser Cys Gly Pro Asn Asp Gly Pro Leu Val Gly Arg Gly Glu                 325 330 335 Tyr His Ala Tyr Leu Ala Cys Asn Leu Phe Cys Lys Asp Glu Glu Leu             340 345 350 Tyr Thr Gly Gly Phe Gly Ser Gly Val Trp Met Asp Ser Arg Phe Pro         355 360 365 Lys Ile Thr Gln Glu Gly Arg Asp Gly Asp Glu Glu Ile Gly Tyr Ile     370 375 380 Ala Asn Met Thr Asp Ser Ala Thr Ala Gly Phe Lys Tyr Phe Asp Cys 385 390 395 400 Gln Gly Ile Arg Lys Val Lys Ile Lys Val Arg Gly Tyr Cys Gln Gly                 405 410 415 Asn Phe Glu Ile Lys Thr Ala Trp Asp Gly Pro Ala Leu Gly Lys Ile             420 425 430 Thr Val Asn Phe Thr Asn Ile Trp Thr Glu Tyr Ser Thr Asp Leu Val         435 440 445 Ile Pro Asp Gly Ile Gln Ala Leu Tyr Phe Thr Tyr Thr Gly Arg Gly     450 455 460 Ser Ala Asp Leu Ala Ser Phe Ile Leu Glu 465 470 <210> 3 <211> 1404 <212> RNA <213> HPL-1 16S rRNA <400> 3 tagagtttga tcatggctca ggacgaacgc tggcggcgtg cctaatacat gcaagtcgag 60 cggacttgat ggagagcttg ctctcctgat ggttagcggc ggacgggtga gtaacacgta 120 ggcaacctgc ctgcaagacc gggataaccc acggaaacgt gagctaatac cggatatctc 180 atttcctctc ctgagggaat gatgaaagac ggagcaatct gtcacttgcg gatgggcctg 240 cggcgcatta gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg tagccgacct 300 gagagggtga acggccacac tgggactgag acacggccca gactcctacg ggaggcagca 360 gtagggaatc ttccgcaatg ggcgaaagcc tgacggagca acgccgcgtg agtgatgaag 420 gttttcggat cgtaaagctc tgttgccagg gaagaacgtc cggtagagta actgctatcg 480 gagtgacggt acgtgagaag aaagccccgg ctaactacgt gccagcagcc gcggtaatac 540 gtagggggca agcgttgtcc ggaattattg ggcgtaaagc gcgcgcaggc ggtcatttaa 600 gtctggtgtt taaggccaag gctcaacctt ggttcgcact ggaaactggg tgacttgagt 660 gcagaagagg agagtggaat tccacgtgta gcggtgaaat gcgtagatat gtggaggaat 720 cnccagtggc gaaggcgact ctctgggctg taactgacgc tgaggcgcga aagcgtgggg 780 agcaaacagg attagatacc ctggtagtcc acgccgtaaa cgatgaatgc taggtgttag 840 gggtttcgat acccttggtg ccgaagttaa cacattaagc attccgcctg gggagtacgg 900 tcgcaagact gaaactcaaa ggaattgacg gggacccgca caagcagtgg agtatgtggt 960 ttaattcgaa gcaacgcgaa gaaccttacc aggtcttgac atccctctga ccggtctaga 1020 gatagacctt tccttcggga cagaggagac aggtggtgca tggttgtcgt cagctcgtgt 1080 cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct tgattttagt tgccagcact 1140 tcgggtgggc actctagaat gactgccggt gacaaaccgg aggaaggcgg ggatgacgtc 1200 aaatcatcat gccccttatg acctgggcta cacacgtact acaatggcca gtacaacggg 1260 aagcgaagcc gcgaggtgga gccaatccta tcaaagctgg tctcagttcg gattgcaggc 1320 tgcaactcgc ctgcatgaag tcggaattgc tagtaatcgc ggatcagcat gccgcggtga 1380 atacgttccc gggtcttgta caca 1404 <210> 4 <211> 4795 <212> DNA <213> Peani-PXD2 <400> 4 gtatcgataa gcttgatatt ttcgctggct aatccggcgg ttgcagccgt cattcccggt 60 gcaagtcgtc ctgagcggat tgcagaagac aaagctgcat tgaacacagt cattccggca 120 gctttctggg aagaaatgcg cgaacaaaaa ctggtagcac cccatgcacc gctgcctatc 180 gacatgaaat caatagggga gtaatgaaca tggcacatac ggctgtctgg cagttttacc 240 ccggcagggg tcagtgatca agaggctatt gatctgttcc atgggatcta tcaagacggc 300 ttagaggcat tacgacaagc atttttagat tgaagattta ataagtaaaa gaggcgtgta 360 tccgaggcga aatttgaact tggatacact cttttttttg ttcgctcaaa tacagaagcg 420 ttaataaaat atgcccaagt attatttgct gtgctcaagg ttcgaacttg tgggtcatat 480 catcctttcc ataaaagcag gaaagtgcat gaagcaagag gaatacatag acaaatcatc 540 aagctaagga ggtcatgaat tggcgtttcc gacacatatt gtatctgcag gcggtattgt 600 agaagatgga aagggaaata tccttttagt aaaagcgcat gacgacggtt gggtatatcc 660 tgggggaatc actgaagttg gcgaaaacct gatggatggc gtgatccgtg aaatcaaaga 720 ggaaagtgga atagacgcta cggttagcca tttaatcagt gtggtttcaa atacagcgat 780 ccataagtgg tatgacggtg taaccgatgt tcctacgaag gtcatgtttg atttcgtgtg 840 tacagccgtg gggggagagt tagcgacctc tgaggagacg agcgaatgca ggtgggttcc 900 caaagaaaat gttctggatt ggatcacctt acccgcaatc cgcatgcgct acgaagctta 960 tttgaacttt aacggctctg tgaattatat cgagtacgtt actgcaacaa cgtctgaatg 1020 tcaggttaaa ctgcaaagga agatgtagtt cgcttgtcac ctccaagaga tatgggttag 1080 gaaattttcg ctagcgtgaa ggcatattta aaggagtgaa cgtttatgat gaaaaaacaa 1140 gggctaaacc cctatctccc atcgtgggaa tacatacctg acggagaacc gtacgttttt 1200 aacgacagag tttatgtata tggctcgcat gaccgcttta acggacatgt gttttgttta 1260 aacgactacg cttgctggtc ggcacccgtt aatgatctag gcgactggcg gtatgagggc 1320 gtgatctaca ccaaaacgga tgacccgcta aatcctgatg gcaggatgtg tctttatgcg 1380 ccggacgtca ccgtcggacc ggatggtcgt tattaccttt actatgtcct ggataaggtt 1440 ccggttgttt cggttgccgt ctgcgataca cctgctggaa agtatgaatt ttacggatac 1500 gtaaaatacg cggacggtac acgcttgggc gaaagagaag gagatgagcc ccagtttgat 1560 ccgggtgtat tgacagaagg gaagaagacc tacttatata ccggcttctg tgcacccaag 1620 gataaatcca gacatggcgc aatggccacg gtgcttggtg aagatatgct taccattatg 1680 gaggaacctg tatttgtcgc cccaagtgaa ccttacagtg cgggaagcgg gtttgaaggg 1740 catgaatttt ttgaggctcc ctccatccgt aagaagggtg atatttatta tcttgtctat 1800 tcatcgattg taatgcatga attatgttat gcgaccagta aatttccgac aaaaggcttc 1860 atttatcagg gcgtcatcat aagcaacaat gatcttcaca tcgattccta caaaccggcg 1920 gacaagccga tgtattatgg cggtaataac catggcagca ttgtggaaat gaacgataga 1980 tggttcattt tttatcatcg ccataccaac ggtacggctt ttagccggca gggctgcatc 2040 gaaccgatcg tcattcggga ggatggaacg attcctcaag tggaaatgac ctcttgcggt 2100 cccaatgacg gcccgcttgt gggtcgcggt gaataccacg cctatttggc atgtaatctg 2160 ttctgtaaag acgaagaatt gtatacaggc ggcttcggct caggggtatg gatggacagc 2220 cgttttccga agatcacgca ggagggaaga gacggggacg aagagatcgg atacatcgca 2280 aacatgacag actccgctac tgccggtttc aagtatttcg actgccaagg aatacgtaag 2340 gtgaaaatca aagtgcgtgg ttattgccag ggcaactttg aaattaaaac ggcttgggac 2400 ggcccggctc tcggaaaaat aaccgttaac tttacaaata tatggacgga atattcaacg 2460 gatctcgtca ttccggatgg catacaggct ctatatttta cgtacacagg cagaggaagt 2520 gcggatctgg cttcgtttat tttagagtaa gccgcccgcc cgggaaccag cttcccaaaa 2580 aaatacgcaa gcagttccga gcattttccg gaactgcttt ttggtttgtg tgatctttta 2640 atgataaagc catggaggcc gagtattaaa aaatgacaac gctttcttaa aaatgttggc 2700 ttacgagcag atgggtcaag aggatagact agcaataaag gaggagcgca tatggatttg 2760 gatgcacagt ttacgagaac tgcggatcac ggtggtcagc agcaccaatt atggaagcgg 2820 ttcaaaaaac aaaaagtact gcatgtattt gtaggactgg gtatgatctt tctgctgatt 2880 ttctcgtaca cgccgatgtt cggtattctt atggcgttta aagactacag tatttcaaat 2940 ggtattaagg ggatctttac cagcgagtgg gtcggtttga gatatttcga tgaattcatc 3000 catgattatc agtttgccac gattgtacgc aacacgcttg tcctgagctt attgaaggtc 3060 attttcgctt ttcccgcacc gattttgctt gcgatcctgt tgaatgaagt gaaaaatatg 3120 gcgttcaagc gattcgttca gacgatcagc tacctgccgc attttatttc ctgggttgtt 3180 gtcgtcggag tatcctacgc cttcctgtct gcggatgttg gcatggttaa ccgggccctg 3240 gtcgaaaccg ggctgattga caaaccgctc aacattttga cgagtccgaa ctatttctgg 3300 gggcttgccg tcggcagtgc aatttggaag gaaatgggct ggtggacgat catcttcctg 3360 gccgccatca cggggattaa tccttcgctt tacgaagctg ccgagatgga tggtgccgga 3420 aggctggcac ggatccgata tatcacactt ccgggaatca gaggaacgat cgtcgtcgtg 3480 ctggtgttga ccattggcag tattctcgga ggcggcctgg tcggctccaa cttcgaacaa 3540 gcctacttat acggcaacag tattaacaat ccgacatcgg aaattgttca gacgtacgca 3600 ttcaaggttg gtctgagtga cgggcgattc tcctacgcgg cagcaatcga tctcattcag 3660 tccgtcatct ccgtcatttt gatattttcc agtaacttca ttgccaagcg ggtgtcaggg 3720 tcaagcttat tctaaaaagg agggctggtg gtgcttaaga gccaaagaca gaaggatgtt 3780 atttttgaca gctttattta catcatgttg tttatattga tgctcatcat gctgtatcca 3840 ttctattatg tattcatcgc ctcgtttaac aaaggctccg atacgctcct gggaggcatt 3900 tatttgtggc cacgaaacgt aactctggaa aactataaaa tttttctgga agatccgaag 3960 tggtatcgag cctttttggt cacggttgcc cggacgatat cgggtacggc attgggactg 4020 ctgctgacaa gcctggtcgc ttacgccctt tcacaccgtg atttgttgtt cagcaaaacg 4080 tattttacgg tcatcatttt cgcgatgtac ttttccggcg gattgattcc ttattatgtt 4140 gtgctgcgct cgatcggatt gcttaattca tttgcagtgt acatcgtgcc gtccatgctc 4200 aacacgtttt tcctgctcat tgccatctcg ttcttccgcg aaatcccggg cgaactgaaa 4260 gaatcggcgc atatcgacgg cgctggcgaa ctcaagatct tttttcggat catcctgccg 4320 gtctcgacgc cggtactcgc cacgatggcg ttatttatgg gcgtcggcca atggaattca 4380 tggctggact ccgcctattt cgtgcaatcg gaaaacttgc gaacgcttac cttccggatg 4440 atggaagtga tcaacaagag caacacgccg ctggattcca ttgccgtagc aaacagtgcc 4500 tcggcttcgg ccggagtgac gagcttctcg ctgcaggtga cggcgatggt catctccatc 4560 gtgccgatca tatgcgtata cccgtttttg caaaaatatt ttgtgcatgg aattatgtta 4620 ggatctgtga aagggtaaat cgttgtttct atatttaacc gcttacatta aaataccagt 4680 aaatccattg gaggggtaca cttgaaaaca atcaagagct ataagctgct cgctgcggca 4740 ctgtctgcga tcgaattcct gcagcccggg ggatccacta gttctagagc ggccg 4795 <210> 5 <211> 27 <212> DNA <213> foward primer <400> 5 acatgccata tgatgaaaaa acaaggg 27 <210> 6 <211> 33 <212> DNA <213> reverse primer <400> 6 acatgcggat cccttactct aaaataaacg aag 33

Claims (8)

서열목록 제2서열에 기재된 아미노산 서열로 이루어진 자일로시다아제(xylosidase).
Xylosidase consisting of the amino acid sequence set forth in Sequence Listing 2nd Sequence.
서열목록 제2서열에 기재된 아미노산 서열로 이루어진 자일로시다아제(xylosidase)를 코딩하는 핵산 분자.
A nucleic acid molecule encoding a xylosidase consisting of the amino acid sequence set forth in SEQ ID NO:2.
상기 제 2 항의 핵산 분자를 포함하는 재조합 벡터.
A recombinant vector comprising the nucleic acid molecule of claim 2.
상기 제 3 항의 재조합 벡터에 의해 형질전환된 세포.
Cells transformed with the recombinant vector of claim 3.
상기 제 1 항의 자일로시다아제(xylosidase) 또는 상기 제 4 항의 형질전환된 세포를 자일로오즈(xylose)-포함 올리고사카라이드 또는 폴리사카라이드, 아라비노오즈(arabinose)-포함 올리고사카라이드 또는 폴리사카라이드, 또는 글루코오즈(glucose)-포함 올리고사카라이드 또는 폴리사카라이드에 접촉시키는 단계를 포함하는 올리고사카라이드 또는 폴리사카라이드의 분해 방법.
The xylose-comprising oligosaccharide or polysaccharide, arabinose-comprising oligosaccharide or poly of the xylose-containing oligosaccharide of claim 1 or the transformed cell of claim 4 A method for degrading an oligosaccharide or polysaccharide comprising contacting a saccharide, or a glucose-containing oligosaccharide or polysaccharide.
상기 제 1 항의 자일로시다아제(xylosidase) 또는 상기 제 4 항의 형질전환된 세포를 포함하는 식품 내 자일란 가공용 조성물.
A composition for processing xylan in a food product comprising the xylosidase of claim 1 or the transformed cell of claim 4.
상기 제 1 항의 자일로시다아제(xylosidase) 또는 상기 제 4 항의 형질전환된 세포를 포함하는 사료첨가제용 조성물.
A composition for feed additives comprising the xylosidase of claim 1 or the transformed cell of claim 4.
상기 제 1 항의 자일로시다아제(xylosidase) 또는 상기 제 4 항의 형질전환된 세포를 포함하는 제지공정용 조성물.A composition for a paper-making process comprising the xylosidase of claim 1 or the transformed cell of claim 4.
KR1020120071675A 2012-07-02 2012-07-02 KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity KR101455720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120071675A KR101455720B1 (en) 2012-07-02 2012-07-02 KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120071675A KR101455720B1 (en) 2012-07-02 2012-07-02 KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity

Publications (2)

Publication Number Publication Date
KR20140004340A KR20140004340A (en) 2014-01-13
KR101455720B1 true KR101455720B1 (en) 2014-11-03

Family

ID=50140344

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120071675A KR101455720B1 (en) 2012-07-02 2012-07-02 KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity

Country Status (1)

Country Link
KR (1) KR101455720B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030845A2 (en) * 2010-08-30 2012-03-08 Novozymes A/S Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030845A2 (en) * 2010-08-30 2012-03-08 Novozymes A/S Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biochem J., Vol. 321, Pages 375-381 (1997.01.15.) *

Also Published As

Publication number Publication date
KR20140004340A (en) 2014-01-13

Similar Documents

Publication Publication Date Title
US20210010040A1 (en) D-Lactate Dehydrogenase, Engineered Strain Containing D-Lactate Dehydrogenase and Construction Method and Use of Engineered Strain
US9902983B2 (en) Agarooligosaccharide hydrolase and method for producing 3,6-anhydro-L-galactose and galactose from agarose by using same
KR101018790B1 (en) A Paenibacillus sp. HPL-001 strain for producing xylanase and a xylanase produced thereby and a producing method thereof
KR20220139351A (en) Modified Microorganisms and Methods for Improved Production of Ectoins
Liu et al. KfoE encodes a fructosyltransferase involved in capsular polysaccharide biosynthesis in Escherichia coli K4
KR101455720B1 (en) KRICT PXD2 Enzyme Having Multifunctional β-D-xylosidase Activity
CN111394374A (en) Cellulase gene gk2691 for encoding cellulase family GH30 and application thereof
JP6476891B2 (en) Cellulase production method
KR101091152B1 (en) A Paenibacillus sp. HPL-002 strain for producing xylanase and an alkalic xylanase produced thereby and a producing method thereof
WO2016175202A1 (en) Heat-resistant xylanase
KR101454889B1 (en) Novel Enzyme β-D-xylosidases KRICT PXD4 Having Xylolytic Activity
CN106148307B (en) A kind of application of alkali protease and its encoding gene and they
CN108456667B (en) A kind of application of zytase and its encoding gene and they
KR20190020597A (en) Expression system for producing amylosucrase and method of producing turanose using the same
KR20140111848A (en) A Novel Cellulase from Metagenomic Resources and Method for Preparing the Same
CN107109447A (en) Pre-processed by using buffer solution and improve the method that monose produces yield in agar
KR101480855B1 (en) Novel Enzyme Endoglucanase KRICT PC-001
Wang et al. The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose
KR101338475B1 (en) NOVEL ENZYME GLUCOSIDASE KRICT PGDβ4
US8956842B2 (en) Paenibacillus sp. HPL-3 strain producing xylanase having heat-resistance, a wide range of optimum pH and high activity, a novel xylanase separated from the strain, and a method for mass-production of the same using the transformant originated from the strain
KR101834493B1 (en) A novel β-Mannosidase and producing method thereof
KR101219518B1 (en) A Paenibacillus sp.HPL-003 strain for producing xylanase and an thermostable,wide pH spectrum,and highly active xylanase produced thereby and a transgenic mass-producing method thereof
KR101347685B1 (en) Novel microorganism, oligoalginate lyase isolated therefrom, method for saccharifying oligoalginates using the same
KR102166572B1 (en) Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
WO2007100101A1 (en) Aspartate aminotransferase gene and method for production of l-phosphinothricin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6