KR101444821B1 - Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same - Google Patents
Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same Download PDFInfo
- Publication number
- KR101444821B1 KR101444821B1 KR20130040566A KR20130040566A KR101444821B1 KR 101444821 B1 KR101444821 B1 KR 101444821B1 KR 20130040566 A KR20130040566 A KR 20130040566A KR 20130040566 A KR20130040566 A KR 20130040566A KR 101444821 B1 KR101444821 B1 KR 101444821B1
- Authority
- KR
- South Korea
- Prior art keywords
- waste
- mgo
- refractory
- carbon
- hot
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims description 12
- 239000011819 refractory material Substances 0.000 claims abstract description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 40
- 229910052799 carbon Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000011863 silicon-based powder Substances 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 238000004898 kneading Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- UPKIHOQVIBBESY-UHFFFAOYSA-N magnesium;carbanide Chemical compound [CH3-].[CH3-].[Mg+2] UPKIHOQVIBBESY-UHFFFAOYSA-N 0.000 claims description 5
- 239000011823 monolithic refractory Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000007670 refining Methods 0.000 claims 1
- 230000005611 electricity Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000003628 erosive effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- RWDBMHZWXLUGIB-UHFFFAOYSA-N [C].[Mg] Chemical compound [C].[Mg] RWDBMHZWXLUGIB-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/03—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
- C04B35/04—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
Description
본 발명은 전로, 전기로 등에 사용되는 열간 보수용 부정형 내화재에 관한 것으로서, 보다 상세하게는 폐내화물을 이용하여 제조된 열간 보수용 MgO-C계 부정형 내화재에 관한 것이다.
The present invention relates to a monolithic refractory for hot repair used in a converter, an electric furnace, and the like, and more particularly, to a MgO-C monolithic refractory for hot repair manufactured using a waste refractory.
현재 전로, 전기로, 래들 등에 사용되고 발생하는 폐내화물 특히, 폐마그카본(MgO-C) 연와는 분쇄 처리되며, 이때 발생되는 입도 10㎜이상의 입도품은 슬래그 조제재로 활용되고 있다. 그러나, 상기 입도가 10㎜이하인 입도품의 경우에는 전량 매립하여 폐기되고 있다.
Currently, pulverized refractories, especially waste activated carbon (MgO-C), which are used in electric converters, electric furnaces, ladles, etc., are crushed, and granulated products having a particle size of 10 mm or more are utilized as slag preparation. However, in the case of granular articles having a particle size of 10 mm or less, the entire amount is buried and discarded.
이렇게 폐기되는 폐내화물은 그 처리비용 발생하고, 이를 매립하는 과정에서 토양오염 및 수질오염과 같은 환경오염을 발생시키는 문제가 있다. 따라서, 이러한 문제를 해결하기 위해서, 폐내화물을 재활용할 수 있는 방법에 관심이 집중되고 있다.
The disposal of such waste refractories causes the disposal cost of the refuse, which causes environmental pollution such as soil pollution and water pollution during landfilling. Therefore, in order to solve such a problem, attention is focused on a method of recycling the waste refractory.
한편, 폐내화물을 이용한 선행기술로는 특허문헌 1 및 2가 있다. 특허문헌 1은 폐마그카본 내화물을 이용한 내화조성물에 관한 것으로서, 폐마그카본을 원료로 사용하지만, 탑 사이즈(Top size)가 3㎜로 제한되며, 액상 페놀레진 바인더를 사용하는 고로 노체의 유계 압입용 보수재에 관한 것이다. 상기 특허문헌 1은 입도를 너무 한정하고 있으며, 액상 페놀레진 바인더를 사용하는 점에서, 그 활용성이 높지 않다. 특허문헌 2는 폐내화물을 이용한 전기로용 조제재와 이를 제조하는 방법에 관한 것으로서, 그러나, 상기 특허문헌 2에서는 조제재로 사용하기 위한 조성을 요구하는 점에서 이하에서 설명하는 본 발명과는 원료 구성 및 목적이 무관한 기술이다.
On the other hand, Patent Documents 1 and 2 are known prior arts using waste refractories. Patent Literature 1 relates to a refractory composition using a waste mica carbon refractory, wherein waste magic carbon is used as a raw material, but the top size is limited to 3 mm, and when a liquid press phenolic resin binder is used, . The above Patent Document 1 limits the particle size too much, and the applicability thereof is not high because a liquid phenolic resin binder is used. Patent Document 2 relates to a furnace for electric furnace using waste refractory and a method for manufacturing the furnace refractory. However, since the composition for use as a conditioning material is required in Patent Document 2, The purpose is irrelevant technology.
본 발명의 일측면은 내화재의 제조비용을 절감하고, 패내화물의 자원 재활용을 통해 환경오염의 부담을 줄일 수 있는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재와 이를 제조하는 방법을 제공하고자 하는 것이다.
An aspect of the present invention is to provide a MgO-C type amorphous refractory material for hot repair using a waste refractory which can reduce the manufacturing cost of refractory materials and reduce the burden of environmental pollution through recycling of refractory materials and a method of manufacturing the same .
본 발명은 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%, 나머지는 불가피한 불순물로 이루어지는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재를 제공한다.
The present invention relates to a method for producing a pulverized coal comprising at least 70 wt% of waste mag carbon (MgO-C), 1 to 10 wt% of an Al-based metal, 1 to 10 wt% of an Si- The present invention provides an MgO-C type amorphous refractory material for hot repair using a refractory.
또한, 본 발명은 폐마그카본(MgO-C)을 준비하는 단계;The present invention also relates to a method for manufacturing a semiconductor device, comprising the steps of: preparing a waste mag carbon (MgO-C);
상기 폐마그카본(MgO-C)에 Al계 금속, Si계 분말 및 Fe계 금속을 혼합하여 혼합물을 제조하는 단계; 및Mixing the waste magnesium carbon (MgO-C) with an Al-based metal, a Si-based powder and an Fe-based metal to prepare a mixture; And
상기 혼합물을 혼련하는 단계Kneading the mixture
를 포함하며, 상기 혼합은 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%의 비율로 혼합되는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법을 제공한다.
Wherein the mixing is performed in a ratio of 70 wt% or more of waste MgO-C, 1 to 10 wt% of an Al-based metal, 1 to 10 wt% of an Si-based powder, and 1 to 10 wt% The present invention provides a method for manufacturing a MgO-C type amorphous refractory material for hot repair using a waste refractory.
본 발명에서 의하면, 종래 매립되어 폐기되던 폐내화물 특히 입도가 10㎜ 이하인 폐마그카본(MgO-C) 내화물을 사용하여 전기로 열간 보수용 부정형 내화재를 개발함으로서, 재료비 절감 및 폐기물의 재활용을 통한 경제적 이익과 친환경적 이익을 동시에 얻을 수 있는 장점이 있다. 특히 본 발명은 입도가 낮은 폐마그카본을 사용하더라도, 우수한 강도와 산화에 대한 침식 저항을 확보하여, 열간 보수용 부정형 내화재로 사용할 수 있는 장점이 있다.
According to the present invention, by developing a refractory material for hot repair of electric furnace by using a waste refractory which has been buried and discarded, particularly, a waste magic carbon (MgO-C) refractory having a particle size of 10 mm or less, Profit and environmentally friendly benefits at the same time. Particularly, the present invention is advantageous in that even when waste magnesium carbide having a low particle size is used, excellent strength and erosion resistance against oxidation are ensured and can be used as a monolithic refractory for hot repair.
본 발명의 발명자는 입도가 작은 폐내화물 특히, 폐마그카본을 이를 열간 보수용 내화재로 사용하기 위해 깊이 연구한 결과, 이와 같은 폐내화물은 보수용 내화재로 사용되기에는 그 강도가 미흡하고, 전기로에서 사용되는 경우의 침식율과 같은 내용성이 미흡하다는 것을 인지하게 되었다. The inventors of the present invention have intensively studied a waste refractory having a small particle size, in particular, waste carbon, for use as a refractory for hot repairing. As a result, such a waste refractory has insufficient strength to be used as a refractory for repair, It is recognized that there is insufficient content such as erosion rate when used.
이에 대해 깊이 연구한 결과, 상기 폐마그카본은 그 자체가 열간에서 경화하기 어렵고, 분말카본(F.C, Fixed Carbon)을 포함하고 있어, 소성강도 및 열간강도가 저하되기 때문이라는 결론을 얻을 수 있었다. 이에 본 발명자는 이러한 문제를 해결하고자 본 발명을 도출하게 되었다.
As a result of intensive researches, it was concluded that the waste magic carbon itself hardly hardens in hot state and contains powdered carbon (FC, Fixed Carbon), so that the plastic strength and hot strength are lowered. Accordingly, the present inventor has derived the present invention to solve such a problem.
이하, 본 발명에 대해 상세히 설명한다. 먼저, 본 발명의 열간 보수용 MgO-C계 부정형 내화재에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail. First, the MgO-C monolithic refractory for hot-working according to the present invention will be described in detail.
본 발명의 내화재는 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%, 나머지는 불가피한 불순물로 이루어진다.
The refractory material of the present invention is a refractory material comprising 70 wt% or more of waste magnesium (MgO-C), 1 to 10 wt% of Al metal, 1 to 10 wt% of Si powder, 1 to 10 wt% of Fe metal, .
상기 폐마그카본은 전로, 전기로, 래들 등에서 사용 후 발생하는 폐마그카본 연와로부터 얻어지는 것이다. 상기 폐마그카본은 중량%로, MgO: 50~70%, SiO2: 3~10%, Fe2O3: 10~20%, Al2O3: 10~20%, CaO: 3~10%, 분말카본: 3~10%, 나머지는 불가피한 불순물을 포함한다. 하기 표 1은 상기 폐마그카본의 일예를 성분분석한 결과이다.
The waste magic carbon is obtained from waste mag carbon fibers generated after use in a converter, an electric furnace or a ladle. The waste Marg carbon is in weight%, MgO: 50 ~ 70% , SiO 2: 3 ~ 10%, Fe 2 O 3: 10 ~ 20%, Al 2 O 3: 10 ~ 20%, CaO: 3 ~ 10% , Powdered carbon: 3 to 10%, and the remainder contains unavoidable impurities. Table 1 below shows the result of analyzing the components of the waste mag carbon.
한편, 상기 폐마그카본은 입도가 10㎜이하인 것이 바람직하다. 폐마그카본 중 입도가 10㎜가 초과하는 것은 슬래그 조제재로 활용이 가능하기 때문에, 현재 매립으로 폐기되는 폐마그카본을 활용하여, 비용절감 및 환경오염의 방지를 위해서는 폐마그카본 입도가 10㎜ 이하인 것을 사용하는 것이 바람직하다.On the other hand, the waste mag carbon preferably has a particle size of 10 mm or less. In order to reduce costs and to prevent environmental pollution, waste magnesium carbide particle size is 10 mm or more in order to utilize waste mag- Or less.
상기 폐마그카본의 함량은 70중량% 이상인 것이 바람직하다. 상기 페마그카본이 70중량% 미만에서는 내화재로서의 충분한 역할을 하기 곤란하므로, 페마그카본이 70중량% 이상인 것이 바람직하다.
The content of the waste magic carbon is preferably 70 wt% or more. When the pemma carbon content is less than 70% by weight, it is difficult to sufficiently serve as a refractory material. Therefore, it is preferable that the pemma carbon content is 70% by weight or more.
상기 폐마그카본 이외에 Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%을 포함한다. 입도가 10㎜ 이하인 폐마그카본은 그 자체가 열간에서 경화되기 어렵고, 경화제를 첨가하여 사용하더라도 상기 표 1에 나타난 바와 같이, 분말카본(F.C)이 함유되어 있어 열간에서 산화되어 소성강도 및 열간강도가 저하되는 특성을 가지고 있다. 이를 해결하기 위해서 금속계 바인더를 첨가한다. 상기 금속계 바인더로서 Al계 금속, Si계 분말, Fe계 금속을 첨가한다.
1 to 10% by weight of an Al-based metal, 1 to 10% by weight of an Si-based powder, and 1 to 10% by weight of an Fe-based metal. The waste mag carbon having a particle size of 10 mm or less is hardly hardened by itself, and even when used with the addition of a hardening agent, as shown in Table 1, it contains powdered carbon (FC) Is lowered. To solve this problem, a metal binder is added. As the metal-based binder, an Al-based metal, Si-based powder, and Fe-based metal are added.
상기 Al계 금속과 Si계 분말은 산화를 방지하는 역할을 하며, Fe계 금속은 초기의 열간강도를 증가시키는 역할을 한다. 상기 Al계 금속은 산화 방지제로서 우수한 효과를 갖는다. 따라서, 산화 방지를 위해서, Al계 금속만 첨가하는 것이 가능하나, Si계 분말을 첨가하는 경우에 보다 우수한 산화방지 효과를 확보할 수 있고, Al계 금속의 경우 폭발위험 등의 안정성 및 경제성을 고려할 때, Si계 분말을 함께 첨가하는 것이 바람직하다.
The Al-based metal and the Si-based powder serve to prevent oxidation, and the Fe-based metal serves to increase the initial hot strength. The Al-based metal has an excellent effect as an antioxidant. Therefore, it is possible to add only the Al-based metal for prevention of oxidation, but it is possible to secure a more excellent antioxidative effect in the case of adding the Si-based powder and to consider the stability and economical efficiency such as explosion risk in the case of the Al- , It is preferable to add the Si-based powder together.
본 발명에서 상기 폐마그카본은 열간에서 사용시 카본 성분이 산화되어 매트릭스(matrix)가 붕괴되고, 강도가 급격하게 저하되는데, 상기 Al계 금속과 Si계 분말이 카본보다 먼저 산화되어, Al2O3, SiO2 등 안정한 산화물을 형성하고, 상기 카본과 결합하여 높은 강도를 가지는 화합물을 생성하게 된다. 이러한 효과를 얻기 위해서, 상기 Al계 금속과 Si계 분말은 각각 1중량%이상 포함하는 것이 바람직하다. 다만, 10중량%를 초과한 과다 첨가시에는 첨가에 따른 효과의 상승이 기대되지 않으며, 경제적으로 바람직하지 않다.
The waste Marg carbon in the present invention, when using a carbon component in a hot is oxidized collapse the matrix (matrix), there is the intensity abruptly decreased, is that the Al-based metal and a Si-based powder before oxidation than carbon, Al 2 O 3 , SiO 2 , and the like, and is bonded to the carbon to produce a compound having a high strength. In order to obtain such effects, it is preferable that the Al-based metal and the Si-based powder each contain 1% by weight or more. However, when it exceeds 10% by weight, an increase in the effect due to the addition is not expected, which is economically undesirable.
한편, 상기 Fe계 금속은 약 1000℃ 부근에서 원료간 소결 및 결합을 촉진하여 부족한 열간강도를 보완하는 역할을 한다. 따라서, 상기 Fe의 금속의 함량이 1중량% 미만이 경우에는 상기 역할을 기대하기 어려우며, 10중량%를 초과한 과다 첨가시 저융물 물질의 과다 생성으로 내용성 저하의 문제가 있으므로, 10중량%를 초과하지 않는 것이 바람직하다.
On the other hand, the Fe-based metal promotes sintering and bonding between the raw materials at about 1000 ° C to compensate for insufficient hot strength. Therefore, when the content of the metal of Fe is less than 1 wt%, it is difficult to expect the above-mentioned role. When over 10 wt% is added, Is not exceeded.
상기 Al계 및 Si계 분말은 입도가 0.15㎜ 이하이고 순도 90~99% 이상인 금속 Al 분말 및 Si 분말인 것이 바람직하며, 상기 순도가 높을수록 우수한 효과를 가질 수 있다. 한편, 상기 Fe계 금속의 예로는 산화철(예를 들어 Fe2O3) 분말이 사용될 수 있다.
The Al-based and Si-based powders are preferably metal Al powder and Si powder having a particle size of 0.15 mm or less and a purity of 90 to 99% or more, and the higher the purity is, the better the effect can be obtained. On the other hand, an iron oxide (for example, Fe 2 O 3 ) powder can be used as an example of the Fe-based metal.
이하, 본 발명의 내화재를 제조하는 방법에 대해 상세히 설명한다.Hereinafter, a method of manufacturing the refractory material of the present invention will be described in detail.
본 발명의 제조방법은 폐마그카본(MgO-C)을 준비하는 단계;The manufacturing method of the present invention comprises the steps of preparing a waste mag carbon (MgO-C);
상기 혼련된 폐마그카본에 Al계 금속, Si계 분말 및 Fe계 금속을 혼합하여 혼합물을 제조하는 단계; 및Mixing an Al-based metal, a Si-based powder and an Fe-based metal into the kneaded waste mag carbon; And
상기 혼합물을 혼련하는 단계를 포함한다.
And kneading the mixture.
상기 혼합시, 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%의 비율로 혼합하는 것이 바람직하다.
It is preferable to mix at least 70 wt% of waste MgO-C, 1 to 10 wt% of Al-based metal, 1 to 10 wt% of Si-based powder, and 1 to 10 wt% of Fe- Do.
상기 혼합물에 대해 혼련을 행한다. 상기 혼련은 재료 내의 물질을 골고루 분산시키기 위해 행하는 것으로서, 상기 혼련은 8~10분 동안 행하는 것이 바람직하다. 상기 혼련과정이 8분보다 적으면, 상기 페마그카본과 금속간의 고른 분산이 이루어지지 않으며, 10분을 초과하는 경우에는 더이상의 혼련의 효과를 확보하기 곤란하므로, 경제적으로 바람직하지 않다.
The mixture is kneaded. The kneading is performed to evenly disperse the materials in the material, and the kneading is preferably performed for 8 to 10 minutes. If the kneading process is less than 8 minutes, the uniform dispersion of the pemma carbon and the metal is not achieved, and if it exceeds 10 minutes, it is difficult to secure the effect of further kneading, which is economically undesirable.
한편, 상기 페마그카본을 준비한 후, 사전 혼련을 행하는 것이 보다 바람직할 수 있다. 전술한 바와 같이, 상기 페마그카본은 MgO, SiO2, Fe2O3, Al2O3, CaO, 분말카본 등이 혼합된 것으로서, 상기 사전 혼련을 통해, 이후 금속과의 혼합과정에서 미분사이에 보다 좋은 분산효과를 확보할 수 있다. 상기 사전 혼련은 그 효과를 위해서, 2분 이상 행하는 것이 바람직하며, 5분을 초과하지 않는 것이 바람직하다.
On the other hand, it is more preferable to carry out the pre-kneading after preparing the above-mentioned pemma carbon. As described above, the above-mentioned pemma carbon is a mixture of MgO, SiO 2 , Fe 2 O 3 , Al 2 O 3 , CaO, powdered carbon, and the like. Through the pre-kneading, A better dispersion effect can be secured. The pre-kneading is preferably performed for 2 minutes or more for the effect, preferably not exceeding 5 minutes.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하고자 하는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail. The following examples are for the understanding of the present invention only and are not intended to limit the present invention.
(실시예)(Example)
폐마그카본 연와를 10㎜의 입도로 분쇄한 후, 이를 하기 표 2의 조성으로 금속 바인더를 첨가하고, 혼련하여 내화재를 제조하였다.The waste mag carbon wool was ground to a particle size of 10 mm, and then a metal binder was added to the composition shown in Table 2 below and kneaded to prepare a refractory material.
이렇게 제조된 내화재를 40×40×40㎜ 크기의 몰드에 충진한 후 환원분위기에서 1000℃에서의 열간강도, 500℃에서 3시간 후 소성강도 및 1000℃에서 3시간 후 소성강도를 측정하여 그 결과를 표 3에 나타내었으며, 고주파 유도로에 상기 내화재를 시공하여 열처리한 후 침식율을 측정하여 그 결과를 표 3에 함께 나타내었다.
The refractory material thus prepared was filled in a mold having a size of 40 × 40 × 40 mm, and then the hot strength at 1000 ° C. in a reducing atmosphere, the plasticity strength after 3 hours at 500 ° C. and the plasticity strength after 3 hours at 1000 ° C. were measured Are shown in Table 3. The refractory material was applied to the high-frequency induction furnace, and heat treatment was performed. The erosion rate was measured and the results are shown in Table 3.
(입도 10㎜이하)Waste MAG carbon
(Particle size 10 mm or less)
1500℃×3HrsErosion rate (%)
1500 ° C x 3Hrs
상기 표 3의 결과에서 알 수 있듯이, 본 발명의 폐마그카본과 금속 바인더의 함량이 만족하는 발명예는 열간강도, 소성강도 및 침식율과 같은 내용성이 우수한 것을 확인할 수 있다.As can be seen from the results of Table 3, the inventive example satisfying the content of the waste mag carbon and the metal binder of the present invention is excellent in the properties such as hot strength, plastic strength and erosion rate.
그러나, 금속 바인더의 함량이 너무 적은 비교예 1이나, 일부 바인더가 첨가되지 않은 비교예 2 내지 4의 경우에는 강도와 내용성이 크게 감소하는 문제가 있고, 바인더의 함량이 너무 많은 경우에는 강도 측면은 우수하나, 내용성이 크게 저하되는 문제가 있었다.
However, in the case of Comparative Example 1 in which the content of the metal binder is too small or Comparative Examples 2 to 4 in which some binders are not added, there is a problem that strength and solubility are greatly reduced. When the content of the binder is too large, But there is a problem that the content is greatly deteriorated.
Claims (7)
A hot refining treatment using a waste refractory comprising at least 70 wt% of waste mag carbon (MgO-C), 1 to 10 wt% of metal Al, 1 to 10 wt% of Si powder, 1 to 10 wt% of iron oxide, MgO-C type amorphous refractories.
상기 폐마그카본(MgO-C)은 중량%로, MgO: 50~70%, SiO2: 3~10%, Fe2O3: 10~20%, Al2O3: 10~20%, CaO: 3~10%, 분말카본: 3~10%, 나머지는 불가피한 불순물을 포함하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재.
The method according to claim 1,
The waste Marg carbon (MgO-C) is in weight%, MgO: 50 ~ 70% , SiO 2: 3 ~ 10%, Fe 2 O 3: 10 ~ 20%, Al 2 O 3: 10 ~ 20%, CaO : 3 to 10%, powdered carbon: 3 to 10%, and the rest are MgO-C type refractory materials for hot repair using a waste refractory containing inevitable impurities.
상기 폐마그카본(MgO-C)의 입도는 10㎜ 이하인 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재.
The method according to claim 1,
The MgO-C type amorphous refractory material for hot repair using a waste refractory having a particle size of 10 mm or less of the waste magnesium carbide (MgO-C).
상기 폐마그카본(MgO-C)에 금속 Al, Si계 분말 및 산화철을 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 혼련하는 단계
를 포함하며, 상기 혼합은 폐마그카본(MgO-C) 70중량% 이상, 금속 Al 1~10중량%, Si계 분말 1~10중량%, 산화철 1~10중량%의 비율로 혼합되는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
Preparing waste magnesium carbide (MgO-C);
Mixing the waste mag carbon (MgO-C) with metal Al, Si-based powder and iron oxide to prepare a mixture; And
Kneading the mixture
Wherein the mixture is a mixture of at least 70 wt% of waste MgO-C, 1 to 10 wt% of metal Al, 1 to 10 wt% of Si-based powder, and 1 to 10 wt% A method for manufacturing a MgO-C monolithic refractory material for hot repair using a high-
폐마그카본(MgO-C)을 준비한 후, 사전 혼련을 행하는 단계를 더 포함하는 페내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 4,
Further comprising the step of preliminarily kneading the waste magic carbon (MgO-C) prepared beforehand. The method of manufacturing the MgO-C type amorphous refractory for hot working using the refractory material.
상기 혼련은 8~10분 동안 행하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 4,
Wherein the kneading is performed for 8 to 10 minutes using a waste refractory.
상기 사전 혼련은 2~5분 동안 행하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 5,
Wherein the pre-kneading is performed for 2 to 5 minutes using a waste refractory material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130040566A KR101444821B1 (en) | 2013-04-12 | 2013-04-12 | Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130040566A KR101444821B1 (en) | 2013-04-12 | 2013-04-12 | Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101444821B1 true KR101444821B1 (en) | 2014-09-26 |
Family
ID=51761212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130040566A KR101444821B1 (en) | 2013-04-12 | 2013-04-12 | Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101444821B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112321304A (en) * | 2020-11-03 | 2021-02-05 | 湖南湘钢瑞泰科技有限公司 | Aluminum carbon lower nozzle waste repairing mass |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990015969A (en) * | 1997-08-12 | 1999-03-05 | 이구택 | Coated lead for prevention of back oxidation and its manufacturing method and usage |
KR20030053125A (en) * | 2001-12-22 | 2003-06-28 | 주식회사 포스코 | The refractory material composed by using magnesia carbon brick |
JP2006265687A (en) | 2005-03-25 | 2006-10-05 | Sumitomo Metal Ind Ltd | Method for manufacturing sintered ore using magnesium oxide-containing refractory |
KR20110124661A (en) * | 2010-05-11 | 2011-11-17 | (주)포스코켐텍 | Method for regenerating waste mgo-c refractories |
-
2013
- 2013-04-12 KR KR20130040566A patent/KR101444821B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990015969A (en) * | 1997-08-12 | 1999-03-05 | 이구택 | Coated lead for prevention of back oxidation and its manufacturing method and usage |
KR20030053125A (en) * | 2001-12-22 | 2003-06-28 | 주식회사 포스코 | The refractory material composed by using magnesia carbon brick |
JP2006265687A (en) | 2005-03-25 | 2006-10-05 | Sumitomo Metal Ind Ltd | Method for manufacturing sintered ore using magnesium oxide-containing refractory |
KR20110124661A (en) * | 2010-05-11 | 2011-11-17 | (주)포스코켐텍 | Method for regenerating waste mgo-c refractories |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112321304A (en) * | 2020-11-03 | 2021-02-05 | 湖南湘钢瑞泰科技有限公司 | Aluminum carbon lower nozzle waste repairing mass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3090992B1 (en) | Refractory batch | |
CN101143795B (en) | Tamping material | |
KR101105437B1 (en) | Method for regenerating waste MgO-C refractories | |
CN103588494A (en) | Sliding brick and preparation method thereof | |
CN108863414B (en) | High-performance magnesia carbon brick and preparation method thereof | |
CN100369865C (en) | Periclase-silicon carbide-carbon composite materials and method for preparing same | |
CN103553619A (en) | Titanium carbide and vanadium carbide composite material as well as production method and application thereof | |
CN1786202A (en) | Composite carbon containing pellet | |
CN104276829A (en) | Stemming for inhibiting splashing of iron notch | |
KR101444821B1 (en) | Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same | |
KR20080088338A (en) | Composition for scrap alternative material produced by mill-scale, briquet and metal reduction method | |
CN104844239A (en) | Environmental-friendly magnesia carbon brick and production method thereof | |
CN102276271A (en) | Preparation method of normal temperature solidified magnesium carbon brick | |
CN106866126A (en) | A kind of corundum spinelle refractory brick and preparation method thereof | |
KR101123418B1 (en) | Silicon-carbon-iron based briquet for iron melt and the method of forming a solid thereof | |
KR101288962B1 (en) | Lightweight aggregate containing slag and method for manufacturing the same | |
KR101123494B1 (en) | Composition of Silicon-carbon-iron based briquet for iron melt | |
CN107573037A (en) | A kind of RH refining furnaces magnesia-spinel brick and preparation method thereof | |
KR101659437B1 (en) | Ceramic block having improved heat resistance and fire resistance | |
KR20120074049A (en) | Refractory compositions of plug for tap hole of converter using by waste refractory | |
KR101693524B1 (en) | Reductant for production of silicon or ferrosilicon, and method for manufacturing the same | |
KR101602334B1 (en) | METHOD FOR REGENERATING REFRACTORIES CONTAINING Al4C3 | |
TW201412678A (en) | Method for manufacturing tap hole clay for blast furnace | |
KR101705231B1 (en) | REFRACTORY COMPOSITIONS OF HIGH STRENGTH PLUG FOR TAP HOLE OF CONVERTER USING BY WASTE Mg-Cr BRICK | |
JP3723093B2 (en) | Manufacturing method of high corrosion resistance refractory material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |