KR101444821B1 - Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same - Google Patents

Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same Download PDF

Info

Publication number
KR101444821B1
KR101444821B1 KR20130040566A KR20130040566A KR101444821B1 KR 101444821 B1 KR101444821 B1 KR 101444821B1 KR 20130040566 A KR20130040566 A KR 20130040566A KR 20130040566 A KR20130040566 A KR 20130040566A KR 101444821 B1 KR101444821 B1 KR 101444821B1
Authority
KR
South Korea
Prior art keywords
waste
mgo
refractory
carbon
hot
Prior art date
Application number
KR20130040566A
Other languages
Korean (ko)
Inventor
김철의
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR20130040566A priority Critical patent/KR101444821B1/en
Application granted granted Critical
Publication of KR101444821B1 publication Critical patent/KR101444821B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a unshaped refractory for thermal-repairing and, more specifically, to a Mg-O-C-based unshaped refractory for thermal-repairing manufactured by using waste refractories. According to the present invention, the economical and environmentally friendly benefits can be obtained at the same time by providing the unshaped refractory for thermal-repairing with electricity by using MgO-C refractories.

Description

폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재 및 그 제조방법{UNSHAPED REFRACTORY FOR HOT-REFAIRING USING WASTE REFRACTORY AND METHOD FOR AMNUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory material for MgO-

본 발명은 전로, 전기로 등에 사용되는 열간 보수용 부정형 내화재에 관한 것으로서, 보다 상세하게는 폐내화물을 이용하여 제조된 열간 보수용 MgO-C계 부정형 내화재에 관한 것이다.
The present invention relates to a monolithic refractory for hot repair used in a converter, an electric furnace, and the like, and more particularly, to a MgO-C monolithic refractory for hot repair manufactured using a waste refractory.

현재 전로, 전기로, 래들 등에 사용되고 발생하는 폐내화물 특히, 폐마그카본(MgO-C) 연와는 분쇄 처리되며, 이때 발생되는 입도 10㎜이상의 입도품은 슬래그 조제재로 활용되고 있다. 그러나, 상기 입도가 10㎜이하인 입도품의 경우에는 전량 매립하여 폐기되고 있다.
Currently, pulverized refractories, especially waste activated carbon (MgO-C), which are used in electric converters, electric furnaces, ladles, etc., are crushed, and granulated products having a particle size of 10 mm or more are utilized as slag preparation. However, in the case of granular articles having a particle size of 10 mm or less, the entire amount is buried and discarded.

이렇게 폐기되는 폐내화물은 그 처리비용 발생하고, 이를 매립하는 과정에서 토양오염 및 수질오염과 같은 환경오염을 발생시키는 문제가 있다. 따라서, 이러한 문제를 해결하기 위해서, 폐내화물을 재활용할 수 있는 방법에 관심이 집중되고 있다.
The disposal of such waste refractories causes the disposal cost of the refuse, which causes environmental pollution such as soil pollution and water pollution during landfilling. Therefore, in order to solve such a problem, attention is focused on a method of recycling the waste refractory.

한편, 폐내화물을 이용한 선행기술로는 특허문헌 1 및 2가 있다. 특허문헌 1은 폐마그카본 내화물을 이용한 내화조성물에 관한 것으로서, 폐마그카본을 원료로 사용하지만, 탑 사이즈(Top size)가 3㎜로 제한되며, 액상 페놀레진 바인더를 사용하는 고로 노체의 유계 압입용 보수재에 관한 것이다. 상기 특허문헌 1은 입도를 너무 한정하고 있으며, 액상 페놀레진 바인더를 사용하는 점에서, 그 활용성이 높지 않다. 특허문헌 2는 폐내화물을 이용한 전기로용 조제재와 이를 제조하는 방법에 관한 것으로서, 그러나, 상기 특허문헌 2에서는 조제재로 사용하기 위한 조성을 요구하는 점에서 이하에서 설명하는 본 발명과는 원료 구성 및 목적이 무관한 기술이다.
On the other hand, Patent Documents 1 and 2 are known prior arts using waste refractories. Patent Literature 1 relates to a refractory composition using a waste mica carbon refractory, wherein waste magic carbon is used as a raw material, but the top size is limited to 3 mm, and when a liquid press phenolic resin binder is used, . The above Patent Document 1 limits the particle size too much, and the applicability thereof is not high because a liquid phenolic resin binder is used. Patent Document 2 relates to a furnace for electric furnace using waste refractory and a method for manufacturing the furnace refractory. However, since the composition for use as a conditioning material is required in Patent Document 2, The purpose is irrelevant technology.

한국 공개특허공보 2003-0053125호Korean Patent Publication No. 2003-0053125 한국 공개특허공보 2009-0093005호Korean Patent Publication No. 2009-0093005

본 발명의 일측면은 내화재의 제조비용을 절감하고, 패내화물의 자원 재활용을 통해 환경오염의 부담을 줄일 수 있는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재와 이를 제조하는 방법을 제공하고자 하는 것이다.
An aspect of the present invention is to provide a MgO-C type amorphous refractory material for hot repair using a waste refractory which can reduce the manufacturing cost of refractory materials and reduce the burden of environmental pollution through recycling of refractory materials and a method of manufacturing the same .

본 발명은 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%, 나머지는 불가피한 불순물로 이루어지는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재를 제공한다.
The present invention relates to a method for producing a pulverized coal comprising at least 70 wt% of waste mag carbon (MgO-C), 1 to 10 wt% of an Al-based metal, 1 to 10 wt% of an Si- The present invention provides an MgO-C type amorphous refractory material for hot repair using a refractory.

또한, 본 발명은 폐마그카본(MgO-C)을 준비하는 단계;The present invention also relates to a method for manufacturing a semiconductor device, comprising the steps of: preparing a waste mag carbon (MgO-C);

상기 폐마그카본(MgO-C)에 Al계 금속, Si계 분말 및 Fe계 금속을 혼합하여 혼합물을 제조하는 단계; 및Mixing the waste magnesium carbon (MgO-C) with an Al-based metal, a Si-based powder and an Fe-based metal to prepare a mixture; And

상기 혼합물을 혼련하는 단계Kneading the mixture

를 포함하며, 상기 혼합은 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%의 비율로 혼합되는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법을 제공한다.
Wherein the mixing is performed in a ratio of 70 wt% or more of waste MgO-C, 1 to 10 wt% of an Al-based metal, 1 to 10 wt% of an Si-based powder, and 1 to 10 wt% The present invention provides a method for manufacturing a MgO-C type amorphous refractory material for hot repair using a waste refractory.

본 발명에서 의하면, 종래 매립되어 폐기되던 폐내화물 특히 입도가 10㎜ 이하인 폐마그카본(MgO-C) 내화물을 사용하여 전기로 열간 보수용 부정형 내화재를 개발함으로서, 재료비 절감 및 폐기물의 재활용을 통한 경제적 이익과 친환경적 이익을 동시에 얻을 수 있는 장점이 있다. 특히 본 발명은 입도가 낮은 폐마그카본을 사용하더라도, 우수한 강도와 산화에 대한 침식 저항을 확보하여, 열간 보수용 부정형 내화재로 사용할 수 있는 장점이 있다.
According to the present invention, by developing a refractory material for hot repair of electric furnace by using a waste refractory which has been buried and discarded, particularly, a waste magic carbon (MgO-C) refractory having a particle size of 10 mm or less, Profit and environmentally friendly benefits at the same time. Particularly, the present invention is advantageous in that even when waste magnesium carbide having a low particle size is used, excellent strength and erosion resistance against oxidation are ensured and can be used as a monolithic refractory for hot repair.

본 발명의 발명자는 입도가 작은 폐내화물 특히, 폐마그카본을 이를 열간 보수용 내화재로 사용하기 위해 깊이 연구한 결과, 이와 같은 폐내화물은 보수용 내화재로 사용되기에는 그 강도가 미흡하고, 전기로에서 사용되는 경우의 침식율과 같은 내용성이 미흡하다는 것을 인지하게 되었다. The inventors of the present invention have intensively studied a waste refractory having a small particle size, in particular, waste carbon, for use as a refractory for hot repairing. As a result, such a waste refractory has insufficient strength to be used as a refractory for repair, It is recognized that there is insufficient content such as erosion rate when used.

이에 대해 깊이 연구한 결과, 상기 폐마그카본은 그 자체가 열간에서 경화하기 어렵고, 분말카본(F.C, Fixed Carbon)을 포함하고 있어, 소성강도 및 열간강도가 저하되기 때문이라는 결론을 얻을 수 있었다. 이에 본 발명자는 이러한 문제를 해결하고자 본 발명을 도출하게 되었다.
As a result of intensive researches, it was concluded that the waste magic carbon itself hardly hardens in hot state and contains powdered carbon (FC, Fixed Carbon), so that the plastic strength and hot strength are lowered. Accordingly, the present inventor has derived the present invention to solve such a problem.

이하, 본 발명에 대해 상세히 설명한다. 먼저, 본 발명의 열간 보수용 MgO-C계 부정형 내화재에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail. First, the MgO-C monolithic refractory for hot-working according to the present invention will be described in detail.

본 발명의 내화재는 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%, 나머지는 불가피한 불순물로 이루어진다.
The refractory material of the present invention is a refractory material comprising 70 wt% or more of waste magnesium (MgO-C), 1 to 10 wt% of Al metal, 1 to 10 wt% of Si powder, 1 to 10 wt% of Fe metal, .

상기 폐마그카본은 전로, 전기로, 래들 등에서 사용 후 발생하는 폐마그카본 연와로부터 얻어지는 것이다. 상기 폐마그카본은 중량%로, MgO: 50~70%, SiO2: 3~10%, Fe2O3: 10~20%, Al2O3: 10~20%, CaO: 3~10%, 분말카본: 3~10%, 나머지는 불가피한 불순물을 포함한다. 하기 표 1은 상기 폐마그카본의 일예를 성분분석한 결과이다.
The waste magic carbon is obtained from waste mag carbon fibers generated after use in a converter, an electric furnace or a ladle. The waste Marg carbon is in weight%, MgO: 50 ~ 70% , SiO 2: 3 ~ 10%, Fe 2 O 3: 10 ~ 20%, Al 2 O 3: 10 ~ 20%, CaO: 3 ~ 10% , Powdered carbon: 3 to 10%, and the remainder contains unavoidable impurities. Table 1 below shows the result of analyzing the components of the waste mag carbon.

성분ingredient MgOMgO SiO2 SiO 2 Fe2O3 Fe 2 O 3 Al2O3 Al 2 O 3 CaOCaO 분말카본(F.C)Powder Carbon (F.C) 기타(Ig-loss 등)Others (Ig-loss, etc.) 함량(중량%)Content (% by weight) 63.0463.04 5.915.91 12.6212.62 6.256.25 3.163.16 6.66.6 7.347.34

한편, 상기 폐마그카본은 입도가 10㎜이하인 것이 바람직하다. 폐마그카본 중 입도가 10㎜가 초과하는 것은 슬래그 조제재로 활용이 가능하기 때문에, 현재 매립으로 폐기되는 폐마그카본을 활용하여, 비용절감 및 환경오염의 방지를 위해서는 폐마그카본 입도가 10㎜ 이하인 것을 사용하는 것이 바람직하다.On the other hand, the waste mag carbon preferably has a particle size of 10 mm or less. In order to reduce costs and to prevent environmental pollution, waste magnesium carbide particle size is 10 mm or more in order to utilize waste mag- Or less.

상기 폐마그카본의 함량은 70중량% 이상인 것이 바람직하다. 상기 페마그카본이 70중량% 미만에서는 내화재로서의 충분한 역할을 하기 곤란하므로, 페마그카본이 70중량% 이상인 것이 바람직하다.
The content of the waste magic carbon is preferably 70 wt% or more. When the pemma carbon content is less than 70% by weight, it is difficult to sufficiently serve as a refractory material. Therefore, it is preferable that the pemma carbon content is 70% by weight or more.

상기 폐마그카본 이외에 Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%을 포함한다. 입도가 10㎜ 이하인 폐마그카본은 그 자체가 열간에서 경화되기 어렵고, 경화제를 첨가하여 사용하더라도 상기 표 1에 나타난 바와 같이, 분말카본(F.C)이 함유되어 있어 열간에서 산화되어 소성강도 및 열간강도가 저하되는 특성을 가지고 있다. 이를 해결하기 위해서 금속계 바인더를 첨가한다. 상기 금속계 바인더로서 Al계 금속, Si계 분말, Fe계 금속을 첨가한다.
1 to 10% by weight of an Al-based metal, 1 to 10% by weight of an Si-based powder, and 1 to 10% by weight of an Fe-based metal. The waste mag carbon having a particle size of 10 mm or less is hardly hardened by itself, and even when used with the addition of a hardening agent, as shown in Table 1, it contains powdered carbon (FC) Is lowered. To solve this problem, a metal binder is added. As the metal-based binder, an Al-based metal, Si-based powder, and Fe-based metal are added.

상기 Al계 금속과 Si계 분말은 산화를 방지하는 역할을 하며, Fe계 금속은 초기의 열간강도를 증가시키는 역할을 한다. 상기 Al계 금속은 산화 방지제로서 우수한 효과를 갖는다. 따라서, 산화 방지를 위해서, Al계 금속만 첨가하는 것이 가능하나, Si계 분말을 첨가하는 경우에 보다 우수한 산화방지 효과를 확보할 수 있고, Al계 금속의 경우 폭발위험 등의 안정성 및 경제성을 고려할 때, Si계 분말을 함께 첨가하는 것이 바람직하다.
The Al-based metal and the Si-based powder serve to prevent oxidation, and the Fe-based metal serves to increase the initial hot strength. The Al-based metal has an excellent effect as an antioxidant. Therefore, it is possible to add only the Al-based metal for prevention of oxidation, but it is possible to secure a more excellent antioxidative effect in the case of adding the Si-based powder and to consider the stability and economical efficiency such as explosion risk in the case of the Al- , It is preferable to add the Si-based powder together.

본 발명에서 상기 폐마그카본은 열간에서 사용시 카본 성분이 산화되어 매트릭스(matrix)가 붕괴되고, 강도가 급격하게 저하되는데, 상기 Al계 금속과 Si계 분말이 카본보다 먼저 산화되어, Al2O3, SiO2 등 안정한 산화물을 형성하고, 상기 카본과 결합하여 높은 강도를 가지는 화합물을 생성하게 된다. 이러한 효과를 얻기 위해서, 상기 Al계 금속과 Si계 분말은 각각 1중량%이상 포함하는 것이 바람직하다. 다만, 10중량%를 초과한 과다 첨가시에는 첨가에 따른 효과의 상승이 기대되지 않으며, 경제적으로 바람직하지 않다.
The waste Marg carbon in the present invention, when using a carbon component in a hot is oxidized collapse the matrix (matrix), there is the intensity abruptly decreased, is that the Al-based metal and a Si-based powder before oxidation than carbon, Al 2 O 3 , SiO 2 , and the like, and is bonded to the carbon to produce a compound having a high strength. In order to obtain such effects, it is preferable that the Al-based metal and the Si-based powder each contain 1% by weight or more. However, when it exceeds 10% by weight, an increase in the effect due to the addition is not expected, which is economically undesirable.

한편, 상기 Fe계 금속은 약 1000℃ 부근에서 원료간 소결 및 결합을 촉진하여 부족한 열간강도를 보완하는 역할을 한다. 따라서, 상기 Fe의 금속의 함량이 1중량% 미만이 경우에는 상기 역할을 기대하기 어려우며, 10중량%를 초과한 과다 첨가시 저융물 물질의 과다 생성으로 내용성 저하의 문제가 있으므로, 10중량%를 초과하지 않는 것이 바람직하다.
On the other hand, the Fe-based metal promotes sintering and bonding between the raw materials at about 1000 ° C to compensate for insufficient hot strength. Therefore, when the content of the metal of Fe is less than 1 wt%, it is difficult to expect the above-mentioned role. When over 10 wt% is added, Is not exceeded.

상기 Al계 및 Si계 분말은 입도가 0.15㎜ 이하이고 순도 90~99% 이상인 금속 Al 분말 및 Si 분말인 것이 바람직하며, 상기 순도가 높을수록 우수한 효과를 가질 수 있다. 한편, 상기 Fe계 금속의 예로는 산화철(예를 들어 Fe2O3) 분말이 사용될 수 있다.
The Al-based and Si-based powders are preferably metal Al powder and Si powder having a particle size of 0.15 mm or less and a purity of 90 to 99% or more, and the higher the purity is, the better the effect can be obtained. On the other hand, an iron oxide (for example, Fe 2 O 3 ) powder can be used as an example of the Fe-based metal.

이하, 본 발명의 내화재를 제조하는 방법에 대해 상세히 설명한다.Hereinafter, a method of manufacturing the refractory material of the present invention will be described in detail.

본 발명의 제조방법은 폐마그카본(MgO-C)을 준비하는 단계;The manufacturing method of the present invention comprises the steps of preparing a waste mag carbon (MgO-C);

상기 혼련된 폐마그카본에 Al계 금속, Si계 분말 및 Fe계 금속을 혼합하여 혼합물을 제조하는 단계; 및Mixing an Al-based metal, a Si-based powder and an Fe-based metal into the kneaded waste mag carbon; And

상기 혼합물을 혼련하는 단계를 포함한다.
And kneading the mixture.

상기 혼합시, 폐마그카본(MgO-C) 70중량% 이상, Al계 금속 1~10중량%, Si계 분말 1~10중량%, Fe계 금속 1~10중량%의 비율로 혼합하는 것이 바람직하다.
It is preferable to mix at least 70 wt% of waste MgO-C, 1 to 10 wt% of Al-based metal, 1 to 10 wt% of Si-based powder, and 1 to 10 wt% of Fe- Do.

상기 혼합물에 대해 혼련을 행한다. 상기 혼련은 재료 내의 물질을 골고루 분산시키기 위해 행하는 것으로서, 상기 혼련은 8~10분 동안 행하는 것이 바람직하다. 상기 혼련과정이 8분보다 적으면, 상기 페마그카본과 금속간의 고른 분산이 이루어지지 않으며, 10분을 초과하는 경우에는 더이상의 혼련의 효과를 확보하기 곤란하므로, 경제적으로 바람직하지 않다.
The mixture is kneaded. The kneading is performed to evenly disperse the materials in the material, and the kneading is preferably performed for 8 to 10 minutes. If the kneading process is less than 8 minutes, the uniform dispersion of the pemma carbon and the metal is not achieved, and if it exceeds 10 minutes, it is difficult to secure the effect of further kneading, which is economically undesirable.

한편, 상기 페마그카본을 준비한 후, 사전 혼련을 행하는 것이 보다 바람직할 수 있다. 전술한 바와 같이, 상기 페마그카본은 MgO, SiO2, Fe2O3, Al2O3, CaO, 분말카본 등이 혼합된 것으로서, 상기 사전 혼련을 통해, 이후 금속과의 혼합과정에서 미분사이에 보다 좋은 분산효과를 확보할 수 있다. 상기 사전 혼련은 그 효과를 위해서, 2분 이상 행하는 것이 바람직하며, 5분을 초과하지 않는 것이 바람직하다.
On the other hand, it is more preferable to carry out the pre-kneading after preparing the above-mentioned pemma carbon. As described above, the above-mentioned pemma carbon is a mixture of MgO, SiO 2 , Fe 2 O 3 , Al 2 O 3 , CaO, powdered carbon, and the like. Through the pre-kneading, A better dispersion effect can be secured. The pre-kneading is preferably performed for 2 minutes or more for the effect, preferably not exceeding 5 minutes.

이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하고자 하는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail. The following examples are for the understanding of the present invention only and are not intended to limit the present invention.

(실시예)(Example)

폐마그카본 연와를 10㎜의 입도로 분쇄한 후, 이를 하기 표 2의 조성으로 금속 바인더를 첨가하고, 혼련하여 내화재를 제조하였다.The waste mag carbon wool was ground to a particle size of 10 mm, and then a metal binder was added to the composition shown in Table 2 below and kneaded to prepare a refractory material.

이렇게 제조된 내화재를 40×40×40㎜ 크기의 몰드에 충진한 후 환원분위기에서 1000℃에서의 열간강도, 500℃에서 3시간 후 소성강도 및 1000℃에서 3시간 후 소성강도를 측정하여 그 결과를 표 3에 나타내었으며, 고주파 유도로에 상기 내화재를 시공하여 열처리한 후 침식율을 측정하여 그 결과를 표 3에 함께 나타내었다.
The refractory material thus prepared was filled in a mold having a size of 40 × 40 × 40 mm, and then the hot strength at 1000 ° C. in a reducing atmosphere, the plasticity strength after 3 hours at 500 ° C. and the plasticity strength after 3 hours at 1000 ° C. were measured Are shown in Table 3. The refractory material was applied to the high-frequency induction furnace, and heat treatment was performed. The erosion rate was measured and the results are shown in Table 3.

구분(중량%)Category (% by weight) 폐마그카본
(입도 10㎜이하)
Waste MAG carbon
(Particle size 10 mm or less)
Al계 금속Al-based metal Si계 분말Si-based powder Fe계 금속Fe-based metal
발명예 1Inventory 1 9494 22 22 22 발명예 2Inventory 2 8282 66 66 66 발명예 3Inventory 3 7878 66 66 1010 비교예 1Comparative Example 1 97.597.5 0.50.5 0.50.5 0.50.5 비교예 2Comparative Example 2 9696 00 22 22 비교예 3Comparative Example 3 9696 22 00 22 비교예 4Comparative Example 4 9696 22 22 00 비교예 5Comparative Example 5 7373 66 66 1515

구분division 열간강도(kg/㎠)Hot Strength (kg / ㎠) 소성강도(kg/㎠)Plastic strength (kg / ㎠) 침식율(%)
1500℃×3Hrs
Erosion rate (%)
1500 ° C x 3Hrs
500℃×3Hrs500 ° C × 3 Hrs 1000℃×3Hrs1000 ° C × 3 Hrs 발명예 1Inventory 1 1010 1818 2020 55 발명예 2Inventory 2 1313 2020 2525 55 발명예 3Inventory 3 1515 2121 2727 99 비교예 1Comparative Example 1 33 33 55 99 비교예 2Comparative Example 2 44 55 99 1818 비교예 3Comparative Example 3 44 55 1010 1919 비교예 4Comparative Example 4 33 1One 22 1212 비교예 5Comparative Example 5 1919 2727 3535 3030

상기 표 3의 결과에서 알 수 있듯이, 본 발명의 폐마그카본과 금속 바인더의 함량이 만족하는 발명예는 열간강도, 소성강도 및 침식율과 같은 내용성이 우수한 것을 확인할 수 있다.As can be seen from the results of Table 3, the inventive example satisfying the content of the waste mag carbon and the metal binder of the present invention is excellent in the properties such as hot strength, plastic strength and erosion rate.

그러나, 금속 바인더의 함량이 너무 적은 비교예 1이나, 일부 바인더가 첨가되지 않은 비교예 2 내지 4의 경우에는 강도와 내용성이 크게 감소하는 문제가 있고, 바인더의 함량이 너무 많은 경우에는 강도 측면은 우수하나, 내용성이 크게 저하되는 문제가 있었다.
However, in the case of Comparative Example 1 in which the content of the metal binder is too small or Comparative Examples 2 to 4 in which some binders are not added, there is a problem that strength and solubility are greatly reduced. When the content of the binder is too large, But there is a problem that the content is greatly deteriorated.

Claims (7)

폐마그카본(MgO-C) 70중량% 이상, 금속 Al 1~10중량%, Si계 분말 1~10중량%, 산화철 1~10중량%, 나머지는 불가피한 불순물로 이루어지는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재.
A hot refining treatment using a waste refractory comprising at least 70 wt% of waste mag carbon (MgO-C), 1 to 10 wt% of metal Al, 1 to 10 wt% of Si powder, 1 to 10 wt% of iron oxide, MgO-C type amorphous refractories.
청구항 1에 있어서,
상기 폐마그카본(MgO-C)은 중량%로, MgO: 50~70%, SiO2: 3~10%, Fe2O3: 10~20%, Al2O3: 10~20%, CaO: 3~10%, 분말카본: 3~10%, 나머지는 불가피한 불순물을 포함하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재.
The method according to claim 1,
The waste Marg carbon (MgO-C) is in weight%, MgO: 50 ~ 70% , SiO 2: 3 ~ 10%, Fe 2 O 3: 10 ~ 20%, Al 2 O 3: 10 ~ 20%, CaO : 3 to 10%, powdered carbon: 3 to 10%, and the rest are MgO-C type refractory materials for hot repair using a waste refractory containing inevitable impurities.
청구항 1에 있어서,
상기 폐마그카본(MgO-C)의 입도는 10㎜ 이하인 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재.
The method according to claim 1,
The MgO-C type amorphous refractory material for hot repair using a waste refractory having a particle size of 10 mm or less of the waste magnesium carbide (MgO-C).
폐마그카본(MgO-C)을 준비하는 단계;
상기 폐마그카본(MgO-C)에 금속 Al, Si계 분말 및 산화철을 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 혼련하는 단계
를 포함하며, 상기 혼합은 폐마그카본(MgO-C) 70중량% 이상, 금속 Al 1~10중량%, Si계 분말 1~10중량%, 산화철 1~10중량%의 비율로 혼합되는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
Preparing waste magnesium carbide (MgO-C);
Mixing the waste mag carbon (MgO-C) with metal Al, Si-based powder and iron oxide to prepare a mixture; And
Kneading the mixture
Wherein the mixture is a mixture of at least 70 wt% of waste MgO-C, 1 to 10 wt% of metal Al, 1 to 10 wt% of Si-based powder, and 1 to 10 wt% A method for manufacturing a MgO-C monolithic refractory material for hot repair using a high-
청구항 4에 있어서,
폐마그카본(MgO-C)을 준비한 후, 사전 혼련을 행하는 단계를 더 포함하는 페내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 4,
Further comprising the step of preliminarily kneading the waste magic carbon (MgO-C) prepared beforehand. The method of manufacturing the MgO-C type amorphous refractory for hot working using the refractory material.
청구항 4에 있어서,
상기 혼련은 8~10분 동안 행하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 4,
Wherein the kneading is performed for 8 to 10 minutes using a waste refractory.
청구항 5에 있어서,
상기 사전 혼련은 2~5분 동안 행하는 폐내화물을 이용한 열간 보수용 MgO-C계 부정형 내화재의 제조방법.
The method of claim 5,
Wherein the pre-kneading is performed for 2 to 5 minutes using a waste refractory material.
KR20130040566A 2013-04-12 2013-04-12 Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same KR101444821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130040566A KR101444821B1 (en) 2013-04-12 2013-04-12 Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130040566A KR101444821B1 (en) 2013-04-12 2013-04-12 Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same

Publications (1)

Publication Number Publication Date
KR101444821B1 true KR101444821B1 (en) 2014-09-26

Family

ID=51761212

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130040566A KR101444821B1 (en) 2013-04-12 2013-04-12 Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same

Country Status (1)

Country Link
KR (1) KR101444821B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321304A (en) * 2020-11-03 2021-02-05 湖南湘钢瑞泰科技有限公司 Aluminum carbon lower nozzle waste repairing mass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990015969A (en) * 1997-08-12 1999-03-05 이구택 Coated lead for prevention of back oxidation and its manufacturing method and usage
KR20030053125A (en) * 2001-12-22 2003-06-28 주식회사 포스코 The refractory material composed by using magnesia carbon brick
JP2006265687A (en) 2005-03-25 2006-10-05 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore using magnesium oxide-containing refractory
KR20110124661A (en) * 2010-05-11 2011-11-17 (주)포스코켐텍 Method for regenerating waste mgo-c refractories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990015969A (en) * 1997-08-12 1999-03-05 이구택 Coated lead for prevention of back oxidation and its manufacturing method and usage
KR20030053125A (en) * 2001-12-22 2003-06-28 주식회사 포스코 The refractory material composed by using magnesia carbon brick
JP2006265687A (en) 2005-03-25 2006-10-05 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore using magnesium oxide-containing refractory
KR20110124661A (en) * 2010-05-11 2011-11-17 (주)포스코켐텍 Method for regenerating waste mgo-c refractories

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321304A (en) * 2020-11-03 2021-02-05 湖南湘钢瑞泰科技有限公司 Aluminum carbon lower nozzle waste repairing mass

Similar Documents

Publication Publication Date Title
EP3090992B1 (en) Refractory batch
CN101143795B (en) Tamping material
KR101105437B1 (en) Method for regenerating waste MgO-C refractories
CN103588494A (en) Sliding brick and preparation method thereof
CN108863414B (en) High-performance magnesia carbon brick and preparation method thereof
CN100369865C (en) Periclase-silicon carbide-carbon composite materials and method for preparing same
CN103553619A (en) Titanium carbide and vanadium carbide composite material as well as production method and application thereof
CN1786202A (en) Composite carbon containing pellet
CN104276829A (en) Stemming for inhibiting splashing of iron notch
KR101444821B1 (en) Unshaped refractory for hot-refairing using waste refractory and method for amnufacturing the same
KR20080088338A (en) Composition for scrap alternative material produced by mill-scale, briquet and metal reduction method
CN104844239A (en) Environmental-friendly magnesia carbon brick and production method thereof
CN102276271A (en) Preparation method of normal temperature solidified magnesium carbon brick
CN106866126A (en) A kind of corundum spinelle refractory brick and preparation method thereof
KR101123418B1 (en) Silicon-carbon-iron based briquet for iron melt and the method of forming a solid thereof
KR101288962B1 (en) Lightweight aggregate containing slag and method for manufacturing the same
KR101123494B1 (en) Composition of Silicon-carbon-iron based briquet for iron melt
CN107573037A (en) A kind of RH refining furnaces magnesia-spinel brick and preparation method thereof
KR101659437B1 (en) Ceramic block having improved heat resistance and fire resistance
KR20120074049A (en) Refractory compositions of plug for tap hole of converter using by waste refractory
KR101693524B1 (en) Reductant for production of silicon or ferrosilicon, and method for manufacturing the same
KR101602334B1 (en) METHOD FOR REGENERATING REFRACTORIES CONTAINING Al4C3
TW201412678A (en) Method for manufacturing tap hole clay for blast furnace
KR101705231B1 (en) REFRACTORY COMPOSITIONS OF HIGH STRENGTH PLUG FOR TAP HOLE OF CONVERTER USING BY WASTE Mg-Cr BRICK
JP3723093B2 (en) Manufacturing method of high corrosion resistance refractory material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee