JP3723093B2 - Manufacturing method of high corrosion resistance refractory material - Google Patents

Manufacturing method of high corrosion resistance refractory material Download PDF

Info

Publication number
JP3723093B2
JP3723093B2 JP2001122093A JP2001122093A JP3723093B2 JP 3723093 B2 JP3723093 B2 JP 3723093B2 JP 2001122093 A JP2001122093 A JP 2001122093A JP 2001122093 A JP2001122093 A JP 2001122093A JP 3723093 B2 JP3723093 B2 JP 3723093B2
Authority
JP
Japan
Prior art keywords
powder
weight
parts
refractory material
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122093A
Other languages
Japanese (ja)
Other versions
JP2002316868A (en
Inventor
武彦 平田
靖彦 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001122093A priority Critical patent/JP3723093B2/en
Publication of JP2002316868A publication Critical patent/JP2002316868A/en
Application granted granted Critical
Publication of JP3723093B2 publication Critical patent/JP3723093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却灰溶融炉、原子炉廃棄物溶融炉等の溶融スラグによる腐食が著しい耐火物に好適な高耐食性耐火物材の製造方法に関する。
【0002】
【従来の技術】
耐火物の耐食性は、数mm程度の粗大な粒子を結合しているバインダーと称される1mm以下の粒子からなる部分の耐食性に大きく依存している。従来の例えば、Cr23−MgO系耐火物では、このバインダー部分にCr23とMgOの混合物若しくはこれらが一部固溶した形の粒子が用いられていた。
このバインダー部分の耐食性は、Cr23とMgOの固溶体量に依存し、高い耐食性のためにはMgOが分子レベルで単独で存在しないバインダーとする必要がある。また、MgO粒界が溶融スラグにより選択的に腐食を受けるため粒界結合を強固にし、腐食を受け難くする必要がある。
従来の方法では、Cr23粉末およびMgO粉末を混合し、焼成をおこなっていた。この方法では、Cr23とMgOの固溶が十分に進まず、また粒界が溶融スラグに侵食されやすく、バインダーの耐食性が十分に向上しない問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、上記事情に対してなされたものであり、素材として均質であり、ごみ焼却灰溶融炉、原子炉廃棄物溶融炉等の溶融スラグによる腐食が著しい耐火物に好適な耐火物用バインダー材等の高耐食性耐火物材の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記事情のもとに、バインダー材としてCr23とMgOを混合して用いたバインダー材を製造する場合に、これらの素材の固溶促進のため助剤としてY23を用いることについて鋭意検討した。このY23は粒界エネルギーを下げることにより焼結に寄与するとともに粒界部分の選択的な腐食を抑制することに想到した。
【0005】
すなわち、本発明に係る高耐食性耐火物材の製造方法は、上記目的を達成するために、Cr23粉末100重量部に、MgO粉末を25重量部以上150重量部以下添加し、0.5重量部以上2重量部以下のY23粉末を添加したものを真空雰囲気中で1400℃を越え1700℃未満の温度で焼結することにより作製した焼結体を粉砕することより成ることを特徴とする。
【0006】
本発明に係る高耐食性耐火物材は、Y23粉末を0.5重量部以上1重量部以下添加したものを焼結、粉砕して製造することがさらに好適である。また、上記真空雰囲気は、10-20〜10-5atmの真空雰囲気が好適である。さらに、焼結温度は、1500℃を越え1700℃未満の温度がより好適である。
本発明の適用される高耐食性耐火物材としては、耐火物用バインダー材の他、骨材そのものを挙げることができる。
【0007】
【発明の実施の形態】
本発明では、Cr23粉末100重量部に、 MgO粉末を25重量部以上150重量部以下添加し、0.5重量部以上2重量部以下、好適には、0.5重量部以上1重量部以下のY23粉末を添加したものを調製する。
Cr23粉末としては、平均粒径0.1μm〜3μmのものが好適である。粒径が0.1μmであると粉末に著しい凝集が生じ、又粒径が3μm以上であると焼結性が低下するために緻密化しないからである。MgO粉末としては、平均粒径0.1μm〜3μmのものが好適である。
粒径が0.1μmであると粉末に著しい凝集が生じ、又粒径が3μm以上であると焼結性が低下するために緻密化しないからである。また、Y23粉末としては、平均粒径0.1μm〜3μmのものが好適である。
粒径がこの範囲外であると均質に分散することが困難となるからである。
【0008】
上記調製したものを例えばブタノール等のアルコール類、アセトン、キシレン、トルエンのような有機溶媒中で十分均質に混合する。
得られた混合物を乾燥し、例えば、圧力100kgf/cm2の一軸成形、圧力1000kgf/cm2の冷間静水圧成形を行って成形体を得る。
【0009】
そして、上記成形体を焼結する。焼結雰囲気については、一般にセラミックスは大気圧での焼結が普通であるが、本発明を実施するには真空雰囲気にする必要がある。
この理由は、大気圧ではCr23の酸化が進みCrO3となって焼結体内部で揮発及び他粒子との凝縮が行なわれるため、小さい粒子が粗大化し、焼結体の密度が低下するからである。すなわち、本発明では真空雰囲気、特に10-5atm以下とすることにより、Crイオンの酸化を防止して焼結体の密度を高く維持する。なお、真空度が著しく高くなって、特に10-20atm未満になるとCrイオンが還元されて金属クロムとなるおそれがあるため、真空度は10-20〜10-5atmが望ましい。なお、この真空度は、酸素分圧で表現している。
【0010】
本発明では、Cr23とMgOの合計に対して0.5重量部以上2重量部以下、好適には、0.5重量部以上1重量部以下のY23粉末を助剤として添加している。この助剤は、Cr23とMgOの固溶を促進することにより、これらの均一な混合を助け、粒界エネルギーを下げて焼結に寄与するとともに、粒界部分の選択的な腐食を抑制する。添加量が、0.5重量部未満であると 粒界エネルギーを十分に低下させる事が困難となるためであり、2重量部を越えるとY203の選択腐食が生じて耐食性が損なわれるためである。
【0011】
焼結温度は、原子の拡散速度を高めて焼結を容易にするためには、1400℃以上とすべきであるが、1700℃を超えた高温とすると逆に焼結密度が低下する傾向にあるので、1400℃を越え、1700℃未満が望ましい。なお、さらに好適には、1500℃を越え1700℃未満の温度である。
【0012】
本発明に係る高耐食性耐火物材は、焼結体を破砕することによって得られる。破砕方法は、ジョークラッシャー、インパクトクラッシャーおよびボールミルによって粒径が1000μm以下となるまで破砕するのが好適である。
【0013】
【実施例】
実施例1
本発明に係る高耐食性耐火物材としてバインダー材を調製した。また、従来法によるバインダー材も調製した。
本発明に係るバインダー材では、Cr23粉末として平均粒径0.2μmの粉末を用い、MgO粉末として0.3μmの粉末を用いた。Y23粉末として平均粒径0.3μmの粉末を用いた。また、従来法によるバインダー材として平均粒径0.2μmのCr23粉末と平均粒径0.25μmのMgO粉末を用いて本発明との比較を行った。
【0014】
Cr23粉末を100重量部とし、これにMgO粉末を100重量部となるよう秤量した粉末に、1重量部のY23粉末を添加し、有機溶媒中であるブチルアルコールで混合機を用いて120時間混合した。得られた混合物を80℃の真空乾燥機を用いて乾燥した。
この混合粉末圧力100kgf/cm2の一軸成形を行った後、圧力1000kgf/cm2の冷間静水圧加圧成形を行い成形を得た。この成形体を酸素分圧が10-8atmの雰囲気中1200℃〜1700℃で3時間焼結した。
【0015】
従来法によるバインダー材については、Cr23粉末100重量部に対してMgO粉末を100重量部となるよう添加しブチルアルコール中混合機を用いて120時間混合した。混合後80℃の真空乾燥機を用いて乾燥した後、上述と同一の方法で成形し、酸素分圧が10-8atmの真空中で3時間焼結を行った。
【0016】
本発明に係るバインダー材に用いられるCr23−MgO―Y23および従来法で焼結したCr23−MgOの焼結密度の焼結温度依存性を表1に示す、表1に示すように、本発明に係るバインダー材では、1400℃の焼結温度で95%以上の焼結密度が得られる。また、従来法によるバインダー材では1600℃の焼結温度で95%以上の焼結密度が得られる。この焼結密度の向上は、Cr23とMgOの固溶化に先立って必ず認められるもので、焼結密度が95%以上になることが、Cr23とMgOの十分な固溶化に必要である。
【0017】
【表1】

Figure 0003723093
【0018】
本発明に係るバインダー材を得るための、Y23粉末を1.0重量部添加したCr23−MgO焼結体の、内掛けで45重量部のSiO2、32.5重量部のCaO及び22.5重量部のAl23からなる溶融スラグ中の1600℃X1時間における腐食減量を表2に示す。表1には、比較として従来法で作製したCr23−MgO焼結体の、同様の組成の溶融スラグ中の1600℃X1時間における腐食減量も示している。
【0019】
【表2】
Figure 0003723093
【0020】
従来法に係るバインダー材に用いられる焼結体では、腐食減量が500μm程度となるのに対し、本発明に係るバインダー材に用いられる焼結体では、腐食減量は50μm程度となり高い耐食性を示す。Cr23とMgOの固溶が促進され、かつ、Y23の焼結助剤成分のスラグに対する耐食性が高いために、バインダー材の耐食性が向上していることが了解される。
【0021】
【発明の効果】
上記説明したところから明らかなように、本発明によれば、素材として均質であり、ごみ焼却灰溶融炉、原子炉廃棄物溶融炉等の溶融スラグによる腐食が著しい耐火物に好適な耐火物用バインダー材等の高耐食性耐火物材が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a highly corrosion-resistant refractory material suitable for a refractory that is significantly corroded by molten slag, such as a refuse incineration ash melting furnace and a nuclear reactor waste melting furnace.
[0002]
[Prior art]
The corrosion resistance of the refractory depends largely on the corrosion resistance of a portion made of particles of 1 mm or less called a binder that binds coarse particles of about several mm. In conventional Cr 2 O 3 —MgO refractories, for example, a mixture of Cr 2 O 3 and MgO in the binder portion or a particle in which these are partly dissolved has been used.
The corrosion resistance of the binder portion depends on the amount of solid solution of Cr 2 O 3 and MgO. For high corrosion resistance, it is necessary to use a binder in which MgO is not present alone at the molecular level. Further, since the MgO grain boundary is selectively corroded by the molten slag, it is necessary to strengthen the grain boundary bond and make it difficult to be corroded.
In the conventional method, Cr 2 O 3 powder and MgO powder are mixed and fired. In this method, there is a problem that the solid solution of Cr 2 O 3 and MgO does not advance sufficiently, the grain boundary is easily eroded by the molten slag, and the corrosion resistance of the binder is not sufficiently improved.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is a refractory binder suitable for refractories that are homogeneous as raw materials and that are significantly corroded by molten slag, such as refuse incineration ash melting furnaces, nuclear reactor waste melting furnaces, etc. It aims at providing the manufacturing method of highly corrosion-resistant refractory materials, such as materials.
[0004]
[Means for Solving the Problems]
In the case of producing a binder material using a mixture of Cr 2 O 3 and MgO as a binder material under the above circumstances, the present inventors use Y 2 as an auxiliary agent for promoting solid solution of these materials. The diligent study was conducted on the use of O 3 . This Y 2 O 3 was conceived to contribute to sintering by lowering the grain boundary energy and to suppress selective corrosion of the grain boundary part.
[0005]
That is, in order to achieve the above object, the method for producing a highly corrosion-resistant refractory material according to the present invention adds MgO powder to 25 parts by weight or more and 150 parts by weight or less to 100 parts by weight of Cr 2 O 3 powder. Crushing a sintered body produced by sintering a powder added with 5 to 2 parts by weight of Y 2 O 3 powder in a vacuum atmosphere at a temperature exceeding 1400 ° C. and less than 1700 ° C. It is characterized by.
[0006]
The highly corrosion-resistant refractory material according to the present invention is more preferably produced by sintering and pulverizing a material in which 0.5 to 1 part by weight of Y 2 O 3 powder is added. The vacuum atmosphere is preferably 10 −20 to 10 −5 atm. Furthermore, the sintering temperature is more preferably higher than 1500 ° C. and lower than 1700 ° C.
Examples of the high corrosion resistance refractory material to which the present invention is applied include aggregates in addition to binder materials for refractories.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, 25 parts by weight or more and 150 parts by weight or less of MgO powder is added to 100 parts by weight of Cr 2 O 3 powder, and 0.5 parts by weight or more and 2 parts by weight or less, preferably 0.5 parts by weight or more and 1 part by weight or less. preparing those obtained by adding the following Y 2 O 3 powder parts.
As the Cr 2 O 3 powder, those having an average particle diameter of 0.1 μm to 3 μm are suitable. This is because when the particle size is 0.1 μm, significant aggregation occurs in the powder, and when the particle size is 3 μm or more, the sinterability is lowered and the powder is not densified. As the MgO powder, those having an average particle diameter of 0.1 μm to 3 μm are suitable.
This is because when the particle size is 0.1 μm, significant aggregation occurs in the powder, and when the particle size is 3 μm or more, the sinterability is lowered and the powder is not densified. As the Y 2 O 3 powder, those having an average particle diameter of 0.1 μm to 3 μm are suitable.
It is because it will become difficult to disperse | distribute uniformly when a particle size is outside this range.
[0008]
The above-prepared product is sufficiently homogeneously mixed in an alcohol such as butanol, an organic solvent such as acetone, xylene and toluene.
The obtained mixture is dried and, for example, uniaxial molding at a pressure of 100 kgf / cm 2 and cold isostatic pressing at a pressure of 1000 kgf / cm 2 are performed to obtain a molded body.
[0009]
And the said molded object is sintered. As for the sintering atmosphere, ceramics are generally sintered at atmospheric pressure, but in order to carry out the present invention, a vacuum atmosphere is required.
The reason for this is that, at atmospheric pressure, Cr 2 O 3 oxidizes and becomes CrO 3 , which volatilizes and condenses with other particles inside the sintered body, so that small particles become coarse and the density of the sintered body decreases. Because it does. That is, in the present invention, by setting the vacuum atmosphere, particularly 10 −5 atm or less, the oxidation of Cr ions is prevented and the density of the sintered body is kept high. The degree of vacuum is preferably 10 −20 to 10 −5 atm, because when the degree of vacuum is extremely high, especially when it is less than 10 −20 atm, Cr ions may be reduced to metal chromium. This degree of vacuum is expressed by oxygen partial pressure.
[0010]
In the present invention, 0.5 to 2 parts by weight, preferably 0.5 to 1 part by weight of Y 2 O 3 powder is used as an auxiliary agent with respect to the total of Cr 2 O 3 and MgO. It is added. This auxiliary agent promotes the solid solution of Cr 2 O 3 and MgO, thereby helping to uniformly mix them, lowering the grain boundary energy and contributing to the sintering, and selectively corroding the grain boundary part. Suppress. This is because if the addition amount is less than 0.5 parts by weight, it is difficult to sufficiently reduce the grain boundary energy, and if it exceeds 2 parts by weight, selective corrosion of Y203 occurs and the corrosion resistance is impaired. .
[0011]
The sintering temperature should be 1400 ° C. or higher in order to increase the diffusion rate of atoms and facilitate the sintering, but if the temperature exceeds 1700 ° C., the sintering density tends to decrease. Therefore, it is desirable that the temperature be higher than 1400 ° C and lower than 1700 ° C. More preferably, the temperature is higher than 1500 ° C. and lower than 1700 ° C.
[0012]
The highly corrosion-resistant refractory material according to the present invention is obtained by crushing a sintered body. As a crushing method, it is preferable to crush until the particle size becomes 1000 μm or less by a jaw crusher, an impact crusher and a ball mill.
[0013]
【Example】
Example 1
A binder material was prepared as a highly corrosion resistant refractory material according to the present invention. A binder material by a conventional method was also prepared.
In the binder material according to the present invention, a powder having an average particle diameter of 0.2 μm was used as the Cr 2 O 3 powder, and a 0.3 μm powder was used as the MgO powder. A powder having an average particle size of 0.3 μm was used as the Y 2 O 3 powder. In addition, comparison was made with the present invention using a Cr 2 O 3 powder having an average particle size of 0.2 μm and an MgO powder having an average particle size of 0.25 μm as the binder material according to the conventional method.
[0014]
1 part by weight of Y 2 O 3 powder is added to 100 parts by weight of Cr 2 O 3 powder, and MgO powder is weighed to 100 parts by weight, and mixed with butyl alcohol in an organic solvent. For 120 hours. The obtained mixture was dried using a vacuum dryer at 80 ° C.
After uniaxial molding of the mixed powder pressure 100 kgf / cm 2, to obtain a molded perform cold isostatic pressing pressure 1000 kgf / cm 2. The molded body was sintered at 1200 ° C. to 1700 ° C. for 3 hours in an atmosphere having an oxygen partial pressure of 10 −8 atm.
[0015]
The binder material according to the conventional method, the added in butyl alcohol mixer to a MgO powder to 100 parts by weight were mixed for 120 hours with respect to the Cr 2 O 3 powder 100 parts by weight. After mixing, the mixture was dried using a vacuum dryer at 80 ° C., and then molded by the same method as described above, and sintered in a vacuum having an oxygen partial pressure of 10 −8 atm for 3 hours.
[0016]
The sintering temperature dependence of the sintered density of the Cr 2 O 3 -MgO-Y 2 O 3 and Cr 2 O 3 -MgO sintering was performed by conventional methods used in the binder material according to the present invention shown in Table 1, Table As shown in FIG. 1, the binder material according to the present invention provides a sintered density of 95% or more at a sintering temperature of 1400 ° C. Further, with a binder material according to the conventional method, a sintered density of 95% or more can be obtained at a sintering temperature of 1600 ° C. This improvement in sintered density is always recognized prior to the solid solution of Cr 2 O 3 and MgO, and a sintered density of 95% or more is sufficient for solid solution of Cr 2 O 3 and MgO. is necessary.
[0017]
[Table 1]
Figure 0003723093
[0018]
In order to obtain a binder material according to the present invention, a Cr 2 O 3 —MgO sintered body added with 1.0 part by weight of Y 2 O 3 powder, 45 parts by weight of SiO 2 , 32.5 parts by weight Table 2 shows the corrosion weight loss at 1600 ° C. for 1 hour in molten slag composed of CaO and 22.5 parts by weight of Al 2 O 3 . Table 1 also shows corrosion weight loss at 1600 ° C. for 1 hour in a molten slag having the same composition of a Cr 2 O 3 —MgO sintered body produced by a conventional method as a comparison.
[0019]
[Table 2]
Figure 0003723093
[0020]
In the sintered body used for the binder material according to the conventional method, the corrosion weight loss is about 500 μm, whereas in the sintered body used for the binder material according to the present invention, the corrosion weight loss is about 50 μm and exhibits high corrosion resistance. It is understood that the corrosion resistance of the binder material is improved because the solid solution of Cr 2 O 3 and MgO is promoted and the corrosion resistance to the slag of the sintering aid component of Y 2 O 3 is high.
[0021]
【The invention's effect】
As is apparent from the above description, according to the present invention, the material is homogeneous, and suitable for refractories suitable for refractories that are severely corroded by molten slag such as refuse incineration ash melting furnaces, nuclear reactor waste melting furnaces, etc. A highly corrosion-resistant refractory material such as a binder material is provided.

Claims (5)

Cr23粉末100重量部に、MgO粉末を25重量部以上150重量部以下添加し、0.5重量部以上2重量部以下のY23粉末を添加したものを真空雰囲気中で1400℃を越え1700℃未満の温度で焼結することにより作製した焼結体を粉砕することより成ることを特徴とする耐溶融スラグ性に優れる高耐食性耐火物材の製造方法。A mixture of 25 parts by weight or more and 150 parts by weight or less of MgO powder and 100 parts by weight of Cr 2 O 3 powder, and 0.5 to 2 parts by weight of Y 2 O 3 powder is added in a vacuum atmosphere to 1400 parts. A method for producing a highly corrosion-resistant refractory material excellent in melting slag resistance, comprising pulverizing a sintered body produced by sintering at a temperature exceeding 1 ° C and less than 1700 ° C. 23粉末を0.5重量部以上1重量部以下添加したものを焼結、粉砕することを特徴とする請求項の高耐食性耐火物材の製造方法。The method for producing a highly corrosion-resistant refractory material according to claim 1 , wherein Y 2 O 3 powder added in an amount of 0.5 to 1 part by weight is sintered and pulverized. 上記真空雰囲気を、10-20〜10-5atmの真空雰囲気としたことを特徴とする請求項1又は2の高耐食性耐火物材の製造方法。The method for producing a highly corrosion-resistant refractory material according to claim 1 or 2 , wherein the vacuum atmosphere is a vacuum atmosphere of 10 -20 to 10 -5 atm. 1500℃を越え1700℃未満の温度で焼結することにより作製した焼結体を粉砕することを特徴とする請求項1〜3のいずれかの高耐食性耐火物材の製造方法。The method for producing a highly corrosion-resistant refractory material according to any one of claims 1 to 3 , wherein the sintered body produced by sintering at a temperature exceeding 1500 ° C and less than 1700 ° C is pulverized. 上記高耐食性耐火物材が耐火物用バインダー材であることを特徴とする請求項1〜4のいずれかの高耐食性耐火物材の製造方法。The method for producing a high corrosion resistance refractory material according to any one of claims 1 to 4 , wherein the high corrosion resistance refractory material is a binder material for refractories.
JP2001122093A 2001-04-20 2001-04-20 Manufacturing method of high corrosion resistance refractory material Expired - Fee Related JP3723093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122093A JP3723093B2 (en) 2001-04-20 2001-04-20 Manufacturing method of high corrosion resistance refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122093A JP3723093B2 (en) 2001-04-20 2001-04-20 Manufacturing method of high corrosion resistance refractory material

Publications (2)

Publication Number Publication Date
JP2002316868A JP2002316868A (en) 2002-10-31
JP3723093B2 true JP3723093B2 (en) 2005-12-07

Family

ID=18971858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122093A Expired - Fee Related JP3723093B2 (en) 2001-04-20 2001-04-20 Manufacturing method of high corrosion resistance refractory material

Country Status (1)

Country Link
JP (1) JP3723093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982965A1 (en) * 2005-05-30 2008-10-22 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic product
US8105683B2 (en) * 2007-03-07 2012-01-31 General Electric Company Treated refractory material and methods of making
CN116161976B (en) * 2023-04-24 2023-07-07 淄博富邦元进耐火材料科技有限公司 Refractory material and preparation process thereof

Also Published As

Publication number Publication date
JP2002316868A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
EP2947060A1 (en) Magnesia-carbon brick
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JP3723093B2 (en) Manufacturing method of high corrosion resistance refractory material
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JP4166760B2 (en) Silicon iron nitride powder, manufacturing method thereof and refractory
JP3670885B2 (en) Refractory binder
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
KR20120074049A (en) Refractory compositions of plug for tap hole of converter using by waste refractory
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JP3031192B2 (en) Sliding nozzle plate refractories
Quackenbush et al. Sintering, properties and fabrication of Si3N4+ Y2O3 based ceramics
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JP2002020161A (en) Binder material for high corrosion-resistant refractory
JP3152558B2 (en) Particle-dispersed silicon nitride sintered body and method for producing the same
JP3662628B2 (en) Silicon nitride-based sintered body and method for producing the same
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JP2604820B2 (en) Refractory material
JP2720201B2 (en) Method for producing silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JP2613402B2 (en) Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same
CN117164340A (en) AlON and Al 2 O 3 -ZrO 2 Composite toughening phase, low-carbon magnesia carbon brick and preparation method thereof
JPH05294726A (en) Silicon carbide-based combined sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees