KR101442496B1 - Manufacturing method of single phased cis nanopowder - Google Patents

Manufacturing method of single phased cis nanopowder Download PDF

Info

Publication number
KR101442496B1
KR101442496B1 KR1020120117015A KR20120117015A KR101442496B1 KR 101442496 B1 KR101442496 B1 KR 101442496B1 KR 1020120117015 A KR1020120117015 A KR 1020120117015A KR 20120117015 A KR20120117015 A KR 20120117015A KR 101442496 B1 KR101442496 B1 KR 101442496B1
Authority
KR
South Korea
Prior art keywords
powder
cuinse
source
cis
raw material
Prior art date
Application number
KR1020120117015A
Other languages
Korean (ko)
Other versions
KR20140051501A (en
Inventor
신효순
여동훈
구신일
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020120117015A priority Critical patent/KR101442496B1/en
Publication of KR20140051501A publication Critical patent/KR20140051501A/en
Application granted granted Critical
Publication of KR101442496B1 publication Critical patent/KR101442496B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명에 의한 CIS 분말의 제조방법은 Cu 소스 분말과 In 소스 분말 및 Se 소스 분말로부터 조성식 CuInSe2에 따라 원료분말을 준비하는 단계와, 상기 원료분말과 솔벤트를 밀봉용기에 장입하고 기계화학적 방법으로 밀링함으로써 CuInSe2 분말을 합성하는 단계를 포함한다. 이때, 상기 솔벤트는 디에틸아민(diethylamine), 에탄올(ethanol), 메탄올(methanol), 톨루엔(toluene), 크실렌(xylene), 아세톤(acetone) 및 에틸렌디아민(ethylendiamine) 중의 하나 이상으로 될 수 있고, 상기 솔벤트의 량은 상기 Cu 소스 분말과 In 소스 분말 및 Se 소스 분말의 총량 대비 1~50wt%일 수 있다.The method for producing a CIS powder according to the present invention comprises the steps of preparing a raw material powder according to a composition formula CuInSe 2 from a Cu source powder, an In source powder and a Se source powder, loading the raw material powder and solvent into a sealing container, By milling CuInSe 2 And synthesizing the powder. At this time, the solvent may be one or more of diethylamine, ethanol, methanol, toluene, xylene, acetone, and ethylenediamine, The amount of the solvent may be 1 to 50 wt% based on the total amount of the Cu source powder, the In source powder and the Se source powder.

Description

단일상 CIS 나노분말의 제조방법 {MANUFACTURING METHOD OF SINGLE PHASED CIS NANOPOWDER}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a single-phase CIS nano-

본 발명은 태양전지의 광흡수층 소재로 유망한 CuInSe2 나노분말의 제조방법에 관한 것으로, 특히 단일상이면서도 균일한 나노분말을 얻을 수 있는 CuInSe2 나노분말의 제조방법에 관한 것이다.The present invention relates to a CuInSe 2 And more particularly, to a method for producing CuInSe 2 nano powder capable of obtaining a homogeneous nano powder even in a single phase.

현재 화합물 반도체를 이용한 태양전지에 있어서, 주목받는 광흡수층 소재로는 CuInSe2 (이하, "CIS")가 있다.In solar cells using compound semiconductors, attention is paid to CuInSe 2 (Hereinafter referred to as "CIS").

이러한 CIS계 광흡수층의 제조방법은 일반적으로 스퍼터링이나 증착 등 고진공 박막공정을 사용하는데, 이 경우 Cu, In, Se의 여러 다른 원소를 사용하기 때문에 대면적 형성이 어렵고 균일성이 떨어지며 제조단가가 높다는 단점이 있다.In general, a high-vacuum thin film process such as sputtering or vapor deposition is used to manufacture such a CIS-based light absorption layer. In this case, since various other elements of Cu, In, and Se are used, it is difficult to form a large area, There are disadvantages.

따라서, 이러한 단점을 해결하기 위해, 나노 CIS 분말을 이용한 페이스트나 잉크를 제작하여 CIS 후막을 제조한 후 이를 소결함으로써 치밀한 CIS 광전환 막을 얻는 시도가 있어왔다. 이러한 방법은 비진공 상태에서 공정이 이루어지기 때문에 제작단가가 싸고, 또한 조성이 모두 같은 입자를 이용하여 후막을 제조하므로 대면적화가 쉽고 공정이 단순하다는 장점이 있다.Therefore, in order to solve these drawbacks, attempts have been made to obtain a dense CIS light conversion film by preparing a paste or an ink using nano-CIS powder and sintering the paste after manufacturing the CIS thick film. This method is advantageous in that the process is performed in a non-vacuum state, and therefore, a manufacturing cost is low, and a thick film is manufactured using particles having the same composition.

그런데, 이렇게 CIS 광전변환 막을 후막으로 형성할 경우에는 CIS의 나노 크기 분말의 합성이 필요하며, 이를 위해 용매열(solvothermal) 법으로 합성하는 연구가 이루어지고 있다. 이러한 예로는 본 출원인의 국내특허 제10-1110214호(2012. 3. 13 공고) "태양전지용 광전변환막의 제조방법"과 본 출원인의 공개특허공보 제10-2012-0019235호(2012. 3. 6 공개) "단일상 CIGS 나노분말의 제조방법"이 있으며, 주로 I-III-VI족 화합물반도체인 Cu(In,Ga)Se2의 나노분말의 합성에 대한 것이다.However, when the CIS photovoltaic conversion film is formed as a thick film, it is necessary to synthesize a nano-sized powder of CIS. For this purpose, studies have been conducted by solvothermal method. Such an example is disclosed in Korean Patent No. 10-1110214 (published on Mar. 13, 2012), entitled " Method for manufacturing a photoelectric conversion film for a solar cell ", and Published Japanese Translation of PCT Application No. 10-2012-0019235 The present invention relates to the synthesis of nanopowders of Cu (In, Ga) Se 2 , which is an I-III-VI compound semiconductor mainly composed of a single-phase CIGS nanopowder.

그러나, 이러한 용매열법은 합성되는 분말의 양이 매우 적을 뿐만 아니라 200℃이상 온도에서 비교적 고압으로 합성해야 한다는 단점이 있기 때문에, 대량의 태양전지 제조공정에 적용하기에는 한계가 있다. However, such a solvent method has a disadvantage in that the amount of powder to be synthesized is very small, and that it must be synthesized at a relatively high pressure at a temperature of 200 ° C or higher. Therefore, there is a limit to apply to a large amount of solar cell manufacturing processes.

그 외의 방법으로는 기계화학적(mechanochemical) 방법이 최근 시도되고 있다(예를 들어, 국내특허 제10-0839541호(2008. 6. 19 공고) "기계화학적 방법에 의한 나노 크기의 비연계 압전세라믹 분말 합성방법"). 이러한 기계화학적 방법은 금속 원료를 밀링(milling) 용기에 넣고 산소와 반응하지 않게 불활성 기체인 질소 분위기에서 용기를 봉합하고 기계적 밀링을 실시함으로써 기계적 에너지에 의해 발생하는 큰 화학적 활성으로 인해 합성된 상(phase)이 형성되는 것을 가리킨다.Mechanochemical methods have been recently tried (see, for example, Korean Patent No. 10-0839541 (published on Jun. 19, 2008)). "Nano-sized non-ferroelectric piezoelectric ceramic powder Synthesis method "). Such a mechanochemical method involves placing a metal raw material in a milling vessel, sealing the vessel in an inert gas atmosphere of nitrogen and performing mechanical milling so that the synthesized phase phase is formed.

이러한 기계화학적 방법은 원료의 금속성이 강하므로 반응성과 전연성이 양호하여 합성에 유리하다. 그러나, 밀링 과정에서 분말이 용기의 벽에 점착하여 분말의 코팅이 일어나는 등 균일한 나노분말을 얻기가 힘들다는 문제가 있다. 또한, 이러한 코팅 등의 현상은 일부 원료가 균일하게 혼합되는 것을 방해하기 때문에 그 합성 자체도 전체적으로 균일성을 확보할 수가 없다.Such a mechanochemical method is advantageous in the synthesis because the raw material is strong in metallicity and is excellent in reactivity and ductility. However, there is a problem that it is difficult to obtain a uniform nano powder such as a powder is adhered to the wall of the container during the milling process and coating of the powder occurs. Further, such a phenomenon of coating or the like hinders uniform mixing of some raw materials, and thus the synthesis itself can not ensure uniformity as a whole.

이에, 본 발명은 균일한 상의 형성 및 나노분말의 합성이 가능하여 단일상의 균일한 CIS 분말을 얻을 수 있는 단일상 CIS 나노분말의 제조방법을 제공하기 위한 것이다.Accordingly, the present invention provides a method for producing a single-phase CIS nano powder capable of forming a homogeneous phase and synthesizing nano powder to obtain uniform CIS powder in a single phase.

이와 같은 목적을 달성하기 위한 본 발명에 의한 CIS 분말의 제조방법은 Cu 소스 분말과 In 소스 분말 및 Se 소스 분말로부터 조성식 CuInSe2에 따라 원료분말을 준비하는 단계와, 상기 원료분말과 솔벤트를 밀봉용기에 장입하고 기계화학적 방법으로 밀링함으로써 CuInSe2 분말을 합성하는 단계를 포함할 수 있다. In order to achieve the above object, the present invention provides a method for preparing a CIS powder, comprising the steps of: preparing a raw material powder according to a composition formula CuInSe 2 from a Cu source powder, an In source powder and a Se source powder; And milled by a mechanochemical method to obtain CuInSe 2 Lt; RTI ID = 0.0 > powder. ≪ / RTI >

이때, 상기 솔벤트는 디에틸아민(diethylamine), 에탄올(ethanol), 메탄올(methanol), 톨루엔(toluene), 크실렌(xylene), 아세톤(acetone) 및 에틸렌디아민(ethylendiamine) 중의 하나 이상으로 될 수 있다. 또한, 상기 솔벤트의 량은 상기 원료분말의 량 대비 1~50wt%일 수 있다. 또는, 상기 솔벤트의 량은 상기 원료분말의 량 대비 1~30wt%일 수 있다.At this time, the solvent may be one or more of diethylamine, ethanol, methanol, toluene, xylene, acetone, and ethylenediamine. The amount of the solvent may be 1 to 50 wt% based on the amount of the raw material powder. Alternatively, the amount of the solvent may be 1 to 30 wt% based on the amount of the raw material powder.

또한, 상기 밀링에는 쉐이커 밀(shaker mill), 유성밀(planetary mill) 및 어트리션밀(attrition mill) 중의 하나 이상이 사용될 수 있다. 또한, 상기 밀봉용기에는 불활성 기체가 더 장입될 수 있다.Also, at least one of a shaker mill, a planetary mill, and an attrition mill may be used for the milling. Further, an inert gas may be further charged into the sealed vessel.

또한, 상기 Cu 소스 분말은 Cu, CuF2, CuI, CuS, CuSe, CuTe Cu2S, Cu2Se 및 Cu2Te로 이루어진 군 중에서 선택된 하나 이상의 금속을 포함할 수 있다. 그리고, 상기 In 소스 분말은 In, InCl3, InN, InP, InSb, In2Se3 및 In2Te3로 이루어진 군 중에서 선택된 하나 이상의 금속을 포함할 수 있다. 그리고, 상기 Se 소스는 Se 소스 분말은 Se 금속을 포함할 수 있다.The Cu source powder may include at least one metal selected from the group consisting of Cu, CuF 2 , CuI, CuS, CuSe, CuTe Cu 2 S, Cu 2 Se and Cu 2 Te. The In source powder may include one or more metals selected from the group consisting of In, InCl 3 , InN, InP, InSb, In 2 Se 3 and In 2 Te 3 . And, the Se source powder may include a Se metal powder.

또한, 본 발명에 의한 CIS 분말의 제조방법은 상기 합성된 상기 CuInSe2 분말을 건조시켜 잔존하는 상기 솔벤트를 제거하는 단계를 더 포함할 수 있다.The method for producing CIS powder according to the present invention is characterized in that the synthesized CuInSe 2 And drying the powder to remove the remaining solvent.

본 발명에 의하면, 기계화학적 방법에 있어서 CIS 분말을 합성하면서도 부분적으로 습식밀링이 일어나도록 솔벤트를 일부 추가함으로써, 균일한 상의 형성 및 나노분말의 합성이 가능하여 균일한 단일상의 CIS 분말을 얻을 수 있다.According to the present invention, it is possible to form a homogeneous phase and synthesize nano powder by adding a part of solvent to partially wet milling while synthesizing CIS powder in a mechanochemical method, thereby obtaining a homogeneous single phase CIS powder .

도 1은 본 발명에 의한 CIS상 생성 메커니즘을 설명하는 모식도.
도 2는 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 유성밀을 이용하여 1시간 합성하여 상을 관찰한 X선 회절분석 결과.
도 3a~3e는 도 1과 동일하게 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 합성된 각 조성 분말입자의 전자현미경사진.
도 4는 도 2와 동일하게 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 합성된 각 조성 분말입자의 비표면적을 측정한 결과 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating a mechanism for generating a CIS phase according to the present invention. FIG.
FIG. 2 shows X-ray diffraction results obtained by synthesizing 1 hour of synthesis using a planetary mill while varying the amount of diethylamine added to the CIS raw material powder.
3A to 3E are electron micrographs of each composition powder particle synthesized while varying the amount of diethylamine added to the CIS raw material powder in the same manner as in FIG.
FIG. 4 is a graph showing the specific surface area of each synthesized powder particle while varying the amount of diethylamine added to the CIS raw material powder, as in FIG.

전술한 바와 같이, 기계화학적(mechanochemical) 방법은 금속 원료를 밀링(milling) 용기에 넣고 산소와 반응하지 않게 불활성 기체 분위기에서 용기를 봉합하고 기계적 밀링을 실시함으로써 기계적 에너지에 의해 발생하는 큰 화학적 활성으로 인해 합성된 상(phase)을 형성하는 제조방법이다.As described above, a mechanochemical method is a method in which a metal raw material is put into a milling vessel, the vessel is sealed in an inert gas atmosphere so as not to react with oxygen, and mechanical milling is performed to produce a large chemical activity Thereby forming a synthesized phase.

본 발명은 특히 CuInSe2 ("CIS")의 합성을 위하여 이용되는 기계화학적 방법의 경우 원료의 금속성이 강하여 부분적으로는 CIS 상이 쉽게 형성되지만, 상 형성과 동시에 원료와 합성된 CIS가 용기 표면에 코팅되면서 분말의 형상을 얻을 수 없을 뿐만 아니라 일부 원료가 균일하게 혼합되는 것을 방해하여 전체적인 상의 형성 및 상의 균일성을 확보할 수 없는 문제를 해결한다.The invention particularly CuInSe 2 ("CIS"), the CIS phase is formed partly because of the strong metallicity of the raw material. However, when the CIS is synthesized with the raw material, the shape of the powder is obtained And prevents the uniform mixing of some raw materials, thereby preventing the formation of an overall image and uniformity of the image.

이를 위하여, 본 발명에서는 상기 기계화학적 방법에 있어서 CIS 분말을 합성하면서도 부분적으로 습식밀링(wet milling)이 일어나도록 솔벤트를 일부 추가함으로써, 상기와 같은 문제를 해결할 수가 있다. 이를 위하여 솔벤트로서 디에틸아민(diethylamine), 에탄올(ethanol), 메탄올(methanol), 톨루엔(toluene), 크실렌(xylene), 아세톤(acetone) 및 에틸렌디아민(ethylendiamine) 중의 하나 이상이 밀링(milling) 시 첨가되어 부분적 습식밀링을 구현할 수 있다. 본 발명에 의하면, 특히 디에틸아민을 솔벤트로서 사용할 경우 상의 변화가 거의 없이 밀링이 이루어짐이 관찰되었는 바, 상기 나열한 솔벤트 중에서 디에틸아민이 특히 바람직하다. To this end, the present invention solves the above-mentioned problems by partially adding a solvent to partially wet mill the CIS powder while synthesizing the CIS powder in the mechanochemical method. For this purpose, at least one of diethylamine, ethanol, methanol, toluene, xylene, acetone, and ethylendiamine is used as a solvent in milling Can be added to achieve partial wet milling. According to the present invention, especially when diethylamine is used as a solvent, it is observed that milling takes place with little change in phase, and diethylamine is particularly preferable among the solvents listed above.

또한, 일반적으로 본 발명에 있어서, Cu 소스는 Cu, CuF2, CuI, CuS, CuSe, CuTe Cu2S, Cu2Se 및 Cu2Te로 이루어진 군 중의 하나 이상이, In 소스는 In, InCl3, InN, InP, InSb, In2Se3 및 In2Te3로 이루어진 군 중의 하나 이상이, 그리고 Se 소스는 Se가 각각 사용될 수 있다.Further, in general, the present invention, Cu source is at least one of the group consisting of Cu, CuF 2, CuI, CuS, CuSe, CuTe Cu 2 S, Cu 2 Se, and Cu 2 Te, In source, In, InCl 3 , InN, InP, InSb, In 2 Se 3 and In 2 Te 3 , and the Se source may be Se.

또한, 본 발명에 있어서 밀링시 첨가되는 상기 솔벤트는 매우 소량이어야 한다. 즉, 본 발명에 의한 기계화학적 방법은 기계적 밀링에 의해서 상이 합성되는 것이므로, 솔벤트가 소정량 이상으로 첨가되어 밀링시 기계적 에너지가 솔벤트에 의해 완충되어버리면, 상의 합성이 잘 이루어질 수 없기 때문이다. 이러한 현상은 도 1의 CIS상 생성 메커니즘을 설명하는 모식도로 설명된다.In addition, in the present invention, the solvent added at the time of milling should be very small. That is, since the mechanical chemical method according to the present invention synthesizes the phase by mechanical milling, when the solvent is added at a predetermined amount or more and the mechanical energy is milled by the solvent during the milling, the synthesis of the phase can not be performed well. This phenomenon is illustrated by a schematic diagram illustrating the CIS-based generation mechanism of FIG.

도 1을 참조하면, 전술한 소스 원료들의 기계화학적 밀링에 있어서 솔벤트가 첨가되지 않은 경우는(도 1의 "솔벤트 없음") 큰 입자가 형성되며 또한 분말입자가 밀링 용기 벽면에 점착되어 CIS 상이 형성되기는 하나 코팅 형태로 존재하므로, 이들이 나노분말 형태로 존재하기 어렵다. 뿐만 아니라, 그 중에 고립되어 반응에 참여하지 못하는 원료 원료가 남는 등 조성의 불균일 또한 발생한다. 그러나, 소량의 솔벤트가 첨가된 경우에는(도 1의 "솔벤트 소량") CIS 상이 잘 합성될 뿐 아니라 분쇄 공정 또한 양호하게 이루어질 수 있다. 한편, 솔벤트의 첨가량이 소정량을 초과하면(도 1의 "솔벤트 대량"), 합성이 충분히 일어나지 않고 불확실한 여러 상이 동시에 형성되며 형상은 분말 형상을 나타낸다. 이에 대해서는 실시예로서의 도 3a~3e를 참조하며 좀 더 상세히 하술한다.Referring to Figure 1, in the mechanochemical milling of the above-described source materials, large particles are formed (no " solvent free "in Figure 1) when solvent is not added and powder particles are adhered to the milling vessel walls to form a CIS phase But they are present in the form of a coating, so that they are difficult to exist in the form of nanopowder. In addition, unevenness of composition such as remaining raw material which can not participate in reaction is isolated. However, when a small amount of solvent is added ("Solvent Small Amount" in FIG. 1), not only the CIS phase is well synthesized but also the pulverization process can be performed well. On the other hand, when the addition amount of the solvent exceeds a predetermined amount ("solvent large amount" in Fig. 1), the synthesis does not sufficiently take place and various uncertain phases are formed at the same time. This will be described in more detail with reference to Figs. 3A to 3E as an embodiment.

또한, 본 발명에 의한 기계화학적 방법에서는 쉐이커 밀(shaker mill), 유성밀(planetary mill) 및 어트리션밀(attrition mill) 등을 사용할 수 있으며, 속도는 50~500 rpm 정도이다. 또한, 밀링시 불활성 기체 분위기로는 He, Ar, N2 등이 사용될 수 있다. 또한, 사용되는 볼은 세라믹 볼 및 금속 볼 중의 하나 이상을 사용할 수 있으며 자(jar) 총부피의 1~50vol%로 될 수 있다.Also, in the mechanical chemical method according to the present invention, a shaker mill, a planetary mill, and an attrition mill can be used, and the speed is about 50 to 500 rpm. Further, He, Ar, N 2 or the like may be used as the inert gas atmosphere in the milling. In addition, the used balls may use one or more of ceramic balls and metal balls, and may be 1 to 50 vol% of the total volume of jars.

도 2는 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 유성밀을 이용하여 1시간 합성하여 상을 관찰한 X선 회절분석 결과이다. 도 2를 참조하면, 디에틸아민의 첨가량이 임계량 30wt%를 초과하는 경우, CIS상이 거의 합성되지 않음이 관찰된다. 반면, 상기 임계량 이하일 경우에는 CIS상의 합성이 매우 균일하게 일어난 것을 X선 회절 결과로부터 확인할 수 있다. FIG. 2 shows X-ray diffraction results obtained by synthesizing 1 hour of synthesis using a planetary mill while varying the amount of diethylamine added to the CIS raw material powder. Referring to FIG. 2, when the addition amount of diethylamine exceeds the critical amount of 30 wt%, it is observed that the CIS phase is hardly synthesized. On the other hand, it can be confirmed from the X-ray diffraction results that the CIS phase synthesis occurred very uniformly when the amount is below the critical amount.

도 3a~3e는 도 2와 동일하게 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 합성된 각 조성 분말입자의 전자현미경사진으로서, 디에틸아민의 첨가량이 각각 도 3a는 7.5wt%, 도 3b는 15wt%, 도 3c는 22.5wt%, 도 3d는 30wt%, 도 3e는 37.5wt%일 때이다.3A to 3E are electron micrographs of each composition powder particle prepared by changing the addition amount of diethylamine relative to the CIS raw material powder as in FIG. 2, wherein the addition amounts of diethylamine were 7.5 wt% 3b is 15wt%, Figure 3c is 22.5wt%, Figure 3d is 30wt%, and Figure 3e is 37.5wt%.

도 3a~3e를 참조하면, 도 3a~3c의 경우 점차 합성된 CIS 분말의 크기가 작아지고 밀링이 일어난 것을 관찰할 수 있으며, 특히 도 3c의 경우에는 입경이 1㎛이하인 CIS 분말이 잘 합성되었음을 관찰할 수 있다. 그러나, 도 3d~3e의 경우 도 3a~3c와 비교할 때 입자의 형상이 좀 다른 느낌을 주며, 특히 도 3e의 경우에는 입자의 응집이 많이 나타나고 있다. 이는 금속성이 많이 남아있는 경우 응집에 영향을 줄 것으로 예상되며, 도 2의 X선 회절분석 결과에서와 마찬가지로 CIS 상이 합성되지 않아서 나타난 현상으로 판단된다. 3A to 3E, it can be seen that the sizes of the CIS powder gradually decreased and milling occurred in the case of FIGS. 3A to 3C. In particular, in FIG. 3C, CIS powder having a particle diameter of 1 μm or less was well synthesized Can be observed. However, in the case of Figs. 3d to 3e, the shapes of the particles are somewhat different from those of Figs. 3a to 3c, and particularly in Fig. 3e, there is a lot of agglomeration of the particles. This is expected to affect cohesion when a large amount of metallic remains, and it is considered that the CIS phase is not synthesized as in the X-ray diffraction analysis of FIG.

도 4는 도 2와 동일하게 CIS 원료분말 대비 디에틸아민의 첨가량을 변화시켜가며 합성된 각 조성 분말입자의 비표면적을 측정한 결과 그래프이다. FIG. 4 is a graph of the specific surface area of each synthesized powder particle while varying the amount of diethylamine added to the CIS raw material powder as in FIG. 2.

도 4를 참조하면, 분말입자의 비표면적은 솔벤트의 첨가량이 증가함에 따라 연속적으로 증가함을 볼 때, 솔벤트의 충분한 첨가가 전체적으로 밀링공정을 더 원활하게 하는 것으로 판단된다. 그러나, 솔벤트의 첨가량이 임계량을 초과하면, 전술한 바와 같이 기계적 에너지의 감소를 가져와서 합성이 충분히 일어나지 않는 현상을 나타낸다. 본 발명에 의하면, 솔벤트의 첨가량은 CIS 금속원료 량 대비 1~50wt%, 바람직하게는 1~30wt%이다. Referring to FIG. 4, the specific surface area of the powder particles is continuously increased with an increase in the amount of the solvent, and it is considered that sufficient addition of the solvent improves the milling process as a whole. However, when the addition amount of the solvent exceeds the critical amount, the reduction of the mechanical energy is caused as described above, so that the synthesis is not sufficiently performed. According to the present invention, the amount of the solvent added is 1 to 50 wt%, preferably 1 to 30 wt%, based on the amount of the CIS metal raw material.

이하, 본 발명의 바람직한 실시예를 상세히 설명한다. 다만, 본 발명이 하술하는 실시예는 본 발명의 전반적인 이해를 돕기 위하여 제공되는 것이며, 본 발명은 하기 실시예로만 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, it is to be understood that the present invention is not limited to the following examples, but the present invention is not limited thereto.

실시예Example

Cu (1.5g), In (2.7g), Se (1.87g)의 소스 원료 분말을 Ar 분위기의 글로브 박스에서 측량하였고, 45 cc 지르코니아 자에 측량된 소스 원료 분말과 60g의 지르코니아 볼 및 0.8 cc 에틸디아민 솔벤트를 장입하고 밀봉하였다. 그리고, 상기 밀봉된 자를 상기 글로브 박스에서 꺼낸 후, 유성밀에 상기 자를 넣고 200 rpm에서 4시간동안 밀링하였다. 밀링이 끝난 파우더는 볼과 분리한 후, 150℃에서 24시간 동안 건조하여 장입되었던 솔벤트를 제거하였다.The source material powders of Cu (1.5 g), In (2.7 g) and Se (1.87 g) were weighed in a glove box in an Ar atmosphere. The source material powders measured on a 45 cc zirconia substrate, 60 g of zirconia balls and 0.8 cc ethyl The diamine solvent was charged and sealed. Then, after the sealed object was taken out from the glove box, the object was put into a planetary mill and milled at 200 rpm for 4 hours. The milled powder was separated from the ball and dried at 150 ° C for 24 hours to remove the charged solvent.

이상과 같이 본 발명에 의하면, 기계화학적 방법에 있어서 CIS 분말을 합성하면서도 부분적으로 습식밀링이 일어나도록 솔벤트를 일부 추가함으로써, 1차입자의 입경이 30㎚~1㎛인 균일한 상의 형성 및 나노분말의 합성을 달성할 수가 있다.As described above, according to the present invention, by partially adding a solvent to partially wet mill the CIS powder while synthesizing the CIS powder in the mechanochemical method, it is possible to form a homogeneous phase having a primary particle size of 30 nm to 1 탆, Synthesis can be achieved.

이상, 상술된 본 발명의 구현예 및 실시예에 있어서, 조성분말의 평균입도, 분포 및 비표면적과 같은 분말특성과, 원료의 순도, 불순물 첨가량 및 열처리 조건에 따라 통상적인 오차범위 내에서 다소 변동이 있을 수 있음은 해당 분야에서 통상의 지식을 가진 자에게는 지극히 당연하다.In the above-described embodiments and examples of the present invention, the powder characteristics such as the average particle size, distribution and specific surface area of the composition powder, and the purity of the raw material, the amount of the impurity added, and the heat treatment conditions, It is quite natural for a person of ordinary skill in the field to have such a possibility.

아울러 본 발명의 바람직한 구현예 및 실시예는 예시의 목적을 위해 개시된 것이며, 해당 분야에서 통상의 지식을 가진 자라면 누구나 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이고, 이러한 수정, 변경, 부가 등은 특허청구범위에 속하는 것으로 보아야 한다.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the present invention and the advantages thereof, , Changes, additions, and the like are to be regarded as falling within the scope of the claims.

Claims (11)

Cu 소스 분말과 In 소스 분말 및 Se 소스 분말로부터 조성식 CuInSe2에 따른 원료분말을 준비하고, 상기 원료분말을 밀봉용기에 장입하여 기계화학적 방법으로 밀링함으로써 CuInSe2 분말을 합성하는 제조방법에 있어서,
상기 원료분말을 밀봉용기에 장입시, 부분적 습식밀링이 일어나도록 디에틸아민(diethylamine), 에탄올(ethanol), 메탄올(methanol), 톨루엔(toluene), 크실렌(xylene), 아세톤(acetone) 및 에틸렌디아민(ethylendiamine)으로 이루어진 군에서 선택된 하나 이상을 상기 원료분말의 량 대비 1~30wt%의 량으로 상기 밀봉용기에 함께 장입하는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
A manufacturing method of preparing a CuInSe 2 powder by preparing a raw material powder according to a composition formula CuInSe 2 from a Cu source powder, an In source powder and a Se source powder, charging the raw material powder into a sealing container, and milling the raw material powder by a mechanochemical method,
When the raw material powder is placed in a sealed container, it is preferably mixed with a solvent such as diethylamine, ethanol, methanol, toluene, xylene, acetone, and ethylenediamine and ethylendiamine in an amount of 1 to 30 wt.% based on the amount of the raw material powder. The method for producing CuInSe 2 powder according to claim 1,
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 밀링에는 쉐이커 밀(shaker mill), 유성밀(planetary mill) 및 어트리션밀(attrition mill) 중의 하나 이상이 사용되는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 1,
The milling, mill shaker (shaker mill), a planetary mill (planetary mill) and air tree syeonmil (attrition mill) method for producing a CuInSe 2 powder characterized in that at least one of use.
제1항에 있어서,
상기 밀봉용기에는 불활성 기체가 더 장입되는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 1,
Wherein an inert gas is further charged into the sealed vessel. ≪ RTI ID = 0.0 > 21. < / RTI >
제6항에 있어서,
상기 불활성 기체는 He, Ar 및 N2 중의 하나 이상인 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 6,
CuInSe 2 powder in the production method, characterized in that the inert gas is at least one of He, Ar and N 2.
제1항에 있어서,
상기 Cu 소스 분말은 Cu, CuF2, CuI, CuS, CuSe, CuTe Cu2S, Cu2Se 및 Cu2Te로 이루어진 군 중에서 선택된 하나 이상의 금속을 포함하는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 1,
The method of CuInSe 2 powder, characterized in that the Cu source powder contains a Cu, CuF 2, CuI, CuS , CuSe, at least one metal selected from the group consisting of a CuTe Cu 2 S, Cu 2 Se, and Cu 2 Te.
제1항에 있어서,
상기 In 소스 분말은 In, InCl3, InN, InP, InSb, In2Se3 및 In2Te3로 이루어진 군 중에서 선택된 하나 이상의 금속을 포함하는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 1,
In the source powder is In, InCl 3, InN, InP , InSb, method of producing a CuInSe 2 powder characterized in that it comprises at least one metal selected from the group consisting of In 2 Se 3, and In 2 Te 3.
제1항에 있어서,
상기 Se 소스는 Se 소스 분말은 Se 금속을 포함하는 것을 특징으로 하는 CuInSe2 분말의 제조방법.
The method according to claim 1,
The Se source, method of producing a CuInSe 2 powder, characterized in that the source of Se powder comprises a metal Se.
삭제delete
KR1020120117015A 2012-10-22 2012-10-22 Manufacturing method of single phased cis nanopowder KR101442496B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120117015A KR101442496B1 (en) 2012-10-22 2012-10-22 Manufacturing method of single phased cis nanopowder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120117015A KR101442496B1 (en) 2012-10-22 2012-10-22 Manufacturing method of single phased cis nanopowder

Publications (2)

Publication Number Publication Date
KR20140051501A KR20140051501A (en) 2014-05-02
KR101442496B1 true KR101442496B1 (en) 2014-09-29

Family

ID=50885142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120117015A KR101442496B1 (en) 2012-10-22 2012-10-22 Manufacturing method of single phased cis nanopowder

Country Status (1)

Country Link
KR (1) KR101442496B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638380B1 (en) * 2015-02-11 2016-07-11 영남대학교 산학협력단 Synthetic method of binary compound nano particle, binary compound nano ink using the same and manufacturing method of CIS thin film solar cell using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588604B1 (en) 2005-05-04 2006-06-14 한국에너지기술연구원 Method of making cu(inga)se2 nanopowders for absorber layer of solar cell
KR20120019235A (en) * 2010-08-25 2012-03-06 한국세라믹기술원 Manufacturing method of single phased cigs nanopowder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588604B1 (en) 2005-05-04 2006-06-14 한국에너지기술연구원 Method of making cu(inga)se2 nanopowders for absorber layer of solar cell
KR20120019235A (en) * 2010-08-25 2012-03-06 한국세라믹기술원 Manufacturing method of single phased cigs nanopowder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Arita, T., et al., ‘CuInSe2 films prepared by screen-printing and sintering method’, Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE, Page(s): 1650 - 1655 vol.2*
Arita, T., et al., 'CuInSe2 films prepared by screen-printing and sintering method', Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE, Page(s): 1650 - 1655 vol.2 *
Kaigawa, R., et al. "Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process." Thin solid films 517.7 (2009): 2184-2186 *

Also Published As

Publication number Publication date
KR20140051501A (en) 2014-05-02

Similar Documents

Publication Publication Date Title
US7838063B2 (en) Process for preparation of absorption layer of solar cell
Chang et al. Facile colloidal synthesis of quinary CuIn 1− x Ga x (S y Se 1− y) 2 (CIGSSe) nanocrystal inks with tunable band gaps for use in low-cost photovoltaics
Zhou et al. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating
KR101149474B1 (en) Preparation method of cis-based or czts-based colloidal solution by wet type ball milling process and method for preparing cis-based or czts-based compound thin film as an optical absorber layer of solar cell using the same
TW201217467A (en) Ink for manufacturing compound semiconductor film, compound semiconductor film made from the ink, solar cell provided with compound semiconductor film and manufacturing method of solar cell
Park et al. Solvent-free synthesis of Cu 2 ZnSnS 4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells
JP2012515708A (en) Selenization of precursor layers containing CuInS2 nanoparticles
JP6623192B2 (en) Cu2ZnSnS4 nanoparticles
Chen et al. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry
Dong et al. Colloidally stable selenium@ copper selenide core@ shell nanoparticles as selenium source for manufacturing of copper–indium–selenide solar cells
Latha et al. Solution based synthesis of Cu (In, Ga) Se 2 microcrystals and thin films
JP2011187920A (en) Method for producing compound semiconductor thin film, solar cell, and device for producing compound semiconductor thin film
Kim et al. Solvothermal synthesis and characterization of a CuInTe2 absorber for thin-film photovoltaics
KR101442496B1 (en) Manufacturing method of single phased cis nanopowder
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
Sun et al. Effects of selenization process on densification and microstructure of Cu (In, Ga) Se2 thin film prepared by doctor blading of CIGS nanoparticles
Zaghi et al. Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatment
JP2010177606A (en) Method for manufacturing compound semiconductor thin film, solar battery and coating for manufacturing compound semiconductor thin film
TWI595680B (en) Method for preparing copper indium gallium diselenide/disulfide (cigs) nanoparticles,cigs nanoparticles prepared by the process and photovoltaic device based on it
CN104781211A (en) Oxide sinter, sputtering target using same, and oxide film
JP5752624B2 (en) CZTS compound semiconductor manufacturing method
KR101454610B1 (en) Manufacturing method of single phased cigs powder
KR101519829B1 (en) Manufacturing method of single phased cigs powder
Kim et al. Preparation of precursor particles by cryogenic mechanical milling for the deposition of CuInS2 thin films
Liu et al. A Noninjection Reaction Route to CuInSe 2 Nanocrystals with Triethanolamine as the Complexing Agent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 5