KR101439669B1 - Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties - Google Patents

Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties Download PDF

Info

Publication number
KR101439669B1
KR101439669B1 KR1020120150134A KR20120150134A KR101439669B1 KR 101439669 B1 KR101439669 B1 KR 101439669B1 KR 1020120150134 A KR1020120150134 A KR 1020120150134A KR 20120150134 A KR20120150134 A KR 20120150134A KR 101439669 B1 KR101439669 B1 KR 101439669B1
Authority
KR
South Korea
Prior art keywords
weight
steel sheet
corrosion resistance
silane
composite resin
Prior art date
Application number
KR1020120150134A
Other languages
Korean (ko)
Other versions
KR20140080930A (en
Inventor
박노범
고경필
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120150134A priority Critical patent/KR101439669B1/en
Publication of KR20140080930A publication Critical patent/KR20140080930A/en
Application granted granted Critical
Publication of KR101439669B1 publication Critical patent/KR101439669B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

고형분 기준으로, 우레탄-아크릴 복합수지: 12~36중량%, 나노 실리케이트-아크릴 복합수지: 8~24중량% 및 무기계 내식제: 40~80중량%를 포함하는, 내식성 및 내가공흑화성이 우수한 코팅용액 조성물 및 상기 코팅용액 조성물로 코팅층을 형성한 코팅강판이 제공된다.
본 발명에 따르면, 용액안정성이 우수한 코팅용액 조성물 및 내식성, 내흑변성, 내가공흑화성, 전도성이 향상된 코팅강판을 제공할 수 있다.
And has excellent anticorrosion and intrinsic blackening resistance on the basis of the solid content, including urethane-acrylic composite resin of 12 to 36 wt%, nano-silicate-acrylic composite resin of 8 to 24 wt%, and inorganic corrosion inhibitor of 40 to 80 wt% There is provided a coating solution composition and a coated steel sheet on which a coating layer is formed by the coating solution composition.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a coating solution composition excellent in solution stability and a coated steel sheet improved in corrosion resistance, black degeneration, in-process blackening property and conductivity.

Description

내식성 및 내가공흑화성이 우수한 코팅용액 조성물 및 코팅 강판{COATING SOLUTION AND COATED STEEL SHEET HAVING SUPERIOR CORROSION-RESISTANCE AND TRIBOLOGICAL PROPERTIES}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating solution composition and a coated steel sheet which are excellent in corrosion resistance and in-process blackness,

본 발명은 아연도금강판 등에 이용되는 내식성 및 내가공흑화성이 우수한 코팅용액 조성물 및 코팅 강판이다.The present invention relates to a coating solution composition and a coated steel sheet excellent in corrosion resistance and in-process blackness used for a zinc-plated steel sheet and the like.

자동차 재료, 가전제품, 건축재료 등의 용도에 이용되는 아연도금 강판 및 아연계 합금도금 강판, 알루미늄 도금강판, 알루미늄계 합금도금강판, 냉연강판, 열연강판에 내식성 및 도장밀착성 등을 부여하기 위해 표면에 크롬을 주성분으로 하는 크로메이트 피막을 코팅하는 표면처리법이 종래기술로서 일반적으로 실시되고 있다. 주요 크로메이트 처리로서는 전해형 크로메이트와 도포형 크로메이트가 있으며, 이중에서 전해형 크로메이트 처리는 6가 크롬을 주성분으로 하고 그 외에 황산, 인산, 붕산 및 할로겐 등의 각종 음이온을 첨가한 처리액을 이용하여 금속판을 음극전해하는 방법이 일반적으로 실시되고 있다. 한편, 도포형 크로메이트 처리는 미리 6가 크롬의 일부를 3가로 환원한 용액에 무기 콜로이드, 무기 이온을 첨가한 처리액으로 하여, 금속판을 그 안에 침적하거나, 처리액을 금속판에 스프레이하는 방법이 일반적으로 실시되고 있다.
In order to impart corrosion resistance and paint adhesion to galvanized steel sheets and zinc-base alloy coated steel sheets, aluminum-plated steel sheets, aluminum-based alloy coated steel sheets, cold-rolled steel sheets and hot-rolled steel sheets used for automobile materials, And a chromate film containing chromium as a main component is coated on the surface of the chromate film. The main chromate treatment includes an electrolytic chromate and a coating type chromate. In the electrolytic chromate treatment, a treatment liquid containing hexavalent chromium as a main component and various anions such as sulfuric acid, phosphoric acid, boric acid, and halogen is added, To the cathode is generally carried out. On the other hand, as a coating type chromate treatment, a method in which a metal plate is immersed in a solution prepared by adding inorganic colloid and inorganic ions to a solution in which a part of hexavalent chromium is reduced in advance, or spraying a treatment liquid onto a metal plate .

이러한 방법들을 사용할 경우 크로메이트 처리액에 함유된 6가 크롬의 유독성으로 인해 작업환경 및 배수처리 등에서 다양한 대책을 필요로 하며, 상기 표면처리금속을 사용한 자동차, 가전, 건재 제품 등의 리사이클 및 폐기처리에 있어서도 인체 유해성과 환경오염 문제를 야기시키고 있다.
When these methods are used, toxicity of hexavalent chromium contained in the chromate treatment liquid necessitates various measures in the working environment and drainage treatment. In addition, the use of the above-mentioned surface treatment metals requires recycling and disposal of automobiles, household appliances, Causing human health hazards and environmental pollution problems.

따라서 각 철강사들은 6가 크롬을 함유하지 않으면서도 내식성 등을 비롯한 각종 요구 특성을 만족할 수 있는 크롬을 함유하지 않는 표면처리 강판을 개발하는데 주력하고 있다.
Therefore, each steelmaker is focused on developing chromium-free surface treated steel sheet which can satisfy various requirements including corrosion resistance without containing hexavalent chromium.

더불어, 도금강판의 도금층의 주원료인 아연가격이 급격히 상승하고 있기 때문에, 여러 철강사들을 중심으로 이러한 아연을 다른 원소로 대체하거나, 혹은 아연의 함량을 줄이거나, 도금부착량을 축소하는 연구가 지속적으로 이어지고 있다.
In addition, the price of zinc, which is the main material of the coated layer of plated steel, is rapidly rising. Therefore, research has been continuing to replace such zinc with other elements, or to reduce zinc content or reduce the amount of plating have.

그 대표적인 기술로서, ZAM(Zinc Aluminium-Magnesium)을 이용하는 기술이 제안되었다. 이러한 기술은 종래보다 아연을 소량 사용하고, 이를 대체하는 물질로서, 흔한 금속인 알루미늄이나 마그네슘을 도금층의 주성분으로 사용하고자 하는 방안이다. 이러한 합금도금강판의 경우 일정수준 이상의 내식성은 확보할 수 있으나, 조업성, 표면외관, 내고온고습성 및 용접성이 열위한 문제가 있다.
As a typical technique, a technique using Zinc Aluminum-Magnesium (ZAM) has been proposed. This technique is a method for using a small amount of zinc as a substitute material and using aluminum or magnesium, which is a common metal, as a main component of the plating layer. In the case of such an alloy-coated steel sheet, although corrosion resistance above a certain level can be secured, there is a problem that heat resistance, surface appearance, high temperature and high humidity resistance and weldability are heated.

그리고, 또 다른 방안으로서, 도금강판의 도금부착량을 줄이려는 기술이 제안되었다. 그러나, 도금부착량은 금속의 부식 방지와 장기 방청성에 큰 영향을 주는 인자이다. 따라서, 용융아연도금강판에서, 아연 도금부착량이 증가할수록 적청이 발생하는데 소요되는 시간 즉 내식성이 높아진다. 따라서 철강사들은 적청이 빨리 발생하는 내식성 저하 문제 때문에 아연도금 부착량을 줄이지 못하여 고가의 제조비가 책정되고 있는 실정이다.
As another method, a technique for reducing the amount of plating on the coated steel sheet has been proposed. However, the amount of plating adhesion is a factor that greatly affects corrosion prevention of metal and long-term rust-preventive property. Therefore, in the hot-dip galvanized steel sheet, the time required for the occurrence of redness increases, that is, the corrosion resistance increases as the amount of zinc plating increases. As a result, steelmakers can not reduce the amount of zinc plating due to the problem of corrosion resistance, which is caused by rapid redevelopment, resulting in a high production cost.

따라서, 아연도금량을 축소하고, Cr-함유 용액을 사용하지 않으면서도, 내식성을 보상해 줄 수 있는 기술이 필요하며, 제품을 심하게 가공할 경우에 대비하여 수지코팅층의 내가공흑화성을 향상시켜 아연도금층이 부식환경에 노출되는 것을 억제하는 연구가 필요한 시점이다.Therefore, there is a need for a technique capable of reducing the amount of zinc plating and compensating for corrosion resistance without using a Cr-containing solution, and in order to improve the processing blackness of the resin coating layer in preparation for severe processing of the product, It is necessary to study the inhibition of exposure of the plating layer to the corrosive environment.

본 발명은 아연도금량을 축소하여도 내식성(SST)이 하락되는 것을 보상해 줄 수 있고, 내가공흑화성을 향상시켜 아연도금량의 축소에 영향을 받지 않은 코팅조성물 및 이를 이용한 코팅강판을 제공하고자 한다.The present invention is to provide a coating composition which can compensate for a reduction in corrosion resistance (SST) even when the amount of zinc plating is reduced, and which is not affected by the reduction of the amount of zinc plating by improving the processing blackness, and a coated steel sheet using the same .

본 발명의 일 측면인 코팅용액 조성물은 고형분기준으로, 우레탄-아크릴 복합수지: 12~36중량%, 나노 실리케이트-아크릴 복합수지: 8~24중량% 및 무기계 내식제: 40~80중량%를 포함할 수 있다.
In one aspect of the present invention, the coating solution composition contains 12 to 36 wt% of a urethane-acrylic composite resin, 8 to 24 wt% of a nano-silicate-acrylic composite resin, and 40 to 80 wt% of an inorganic corrosion inhibitor, can do.

본 발명의 다른 측면인 코팅강판은 소지강판; 상기 소지강판 상에 형성된 아연계 도금층; 및 상기 도금층 상에 형성된 코팅층을 포함하며, 상기 코팅층은 상기 코팅용액 조성물에 의하여 형성된 것일 수 있다.Another aspect of the present invention is a coated steel sheet comprising: a base steel sheet; A zinc plated layer formed on the base steel sheet; And a coating layer formed on the plating layer, wherein the coating layer may be formed by the coating solution composition.

본 발명의 일 측면에 의하면, 유무기복합 코팅용액의 용액안정성을 향상시킬 수 있다. 이러한 코팅용액을 이용하여, 아연도금강판의 표면에 유무기복합 코팅층을 형성시킬 경우, 강판의 내식성, 내흑변성 및 내가공흑화성을 크게 향상시킬 수 있다.According to one aspect of the present invention, solution stability of the organic / inorganic composite coating solution can be improved. When such an organic or inorganic composite coating layer is formed on the surface of a galvanized steel sheet by using such a coating solution, the corrosion resistance, black degeneration and intumescent blackness of the steel sheet can be greatly improved.

도 1은 본 발명의 일 측면인 코팅강판의 내식성 확보 방안에 대한 모식도이다.FIG. 1 is a schematic view of a method for securing corrosion resistance of a coated steel sheet according to one aspect of the present invention.

본 발명자들은 도금강판의 내식성을 확보하기 위한 연구를 거듭한 결과, 유기계의 Barrier 효과와 무기계의 Rust inhibitor(방청제) 효과를 극대화하고, 무기계 내식제의 수용을 극대화할 수 있는 바인더 수지의 최적조합을 도출하여, 아연 도금층의 부착량을 감소시켰음에도 불구하고, 유무기 복합 코팅층을 강판의 일면 또는 양면에 형성시킴으로서, 내식성을 확보할 수 있음을 인지하고, 본 발명에 이르게 되었다. The inventors of the present invention have conducted studies to secure the corrosion resistance of the coated steel sheet, and as a result, found that the optimum combination of the binder resin capable of maximizing the barrier effect of the organic system and the effect of the inorganic rust inhibitor (corrosion inhibitor) And that the corrosion resistance can be secured by forming the inorganic or organic composite coating layer on one side or both sides of the steel sheet even though the adhesion amount of the zinc plating layer is reduced.

이하, 본 발명의 일측면인 코팅용액 조성물에 대하여 상세히 설명한다. 상기 코팅용액 조성물은 고형분을 기준으로, 우레탄-아크릴 복합수지: 12~36중량%, 나노 실리케이트-아크릴 복합수지: 8~24중량% 및 무기계 내식제: 40~80중량%를 포함할 수 있다.
Hereinafter, the coating solution composition according to one aspect of the present invention will be described in detail. The coating solution composition may contain 12 to 36 wt% of a urethane-acrylic composite resin, 8 to 24 wt% of a nano-silicate-acrylic composite resin, and 40 to 80 wt% of an inorganic corrosion inhibitor based on solid content.

유기계 수지로서 상기 우레탄-아크릴 복합수지 및 상기 나노 실리케이트-아크릴 복합수지가 총 20~60중량%으로 포함되고, 무기계 내식제는 40~80중량%가 포함된다. 여기서, 유기계 수지는 바인더 수지의 역할을 하며, 내식성 확보를 위한 무기계 내식제를 대량 수용할 수 있도록 설정된 것이다.
As the organic resin, the urethane-acrylic composite resin and the nano-silicate-acrylic composite resin are included in a total amount of 20 to 60 wt%, and the inorganic corrosion inhibitor is included in an amount of 40 to 80 wt%. Here, the organic resin serves as a binder resin and is set to accommodate a large amount of an inorganic corrosion inhibitor for securing corrosion resistance.

상기 각 성분의 수치 한정 이유를 설명하면 다음과 같다.
The reason for limiting the numerical values of the above components will be described as follows.

1) 우레탄-아크릴 복합수지: 12~36중량%1) urethane-acrylic composite resin: 12 to 36 wt%

본 발명에서 사용하는 우레탄-아크릴 복합수지는 2종류의 수지를 각각 합성하는 과정에서 동시에 혼합시켜 제조하였다. 즉, 각각 수지의 합성이 아직 완료되기 직전의 우레탄과 아크릴 에멀젼을 온도 80℃에서 TEA(트리에틸아민)를 첨가하면서 혼합한 복합수지로서, 치밀한 구조의 코팅층을 제공할 수 있다. 이 때, 상기 우레탄-아크릴 복합수지는 내식성과 내용제성을 확보하기 위해서, 12 중량% 이상 포함되는 것이 바람직하다. 다만, 상기 우레탄-아크릴 복합수지는 투입함량이 지나치게 많아도, 투입에 의한 물성향상 효과가 미미하므로, 그 상한은 36중량%로 제어하는 것이 바람직하다.
The urethane-acrylic composite resin used in the present invention was prepared by simultaneously mixing two kinds of resins in a process of synthesizing them. That is, as a composite resin obtained by mixing urethane and acrylic emulsion immediately before the completion of the synthesis of each resin is added at 80 ° C while adding TEA (triethylamine), a coating layer with a dense structure can be provided. At this time, the urethane-acrylic composite resin is preferably contained in an amount of 12 wt% or more to ensure corrosion resistance and solvent resistance. However, even if the amount of the urethane-acrylic composite resin is too large, the effect of improving the physical properties of the urethane-acrylic composite resin due to the addition is insignificant, and the upper limit is preferably controlled to be 36 wt%.

그리고, 상기 우레탄-아크릴 복합수지의 중량평균분자량(Mw)이 낮을수록 가교밀도가 조밀하지만 무기 내식제의 안정성이 열위될 수 있으므로, 중량평균분자량의 제어가 중요하다. 중량평균분자량이 40000 미만인 경우에는 무기 내식제가 침전될 수 있다. 반면에, 중량평균분자량이 90000을 초과하는 경우에는 내식성이 열화될 수 있다. 따라서, 상기 우레탄-아크릴 복합수지의 중량평균분자량은 40000~90000으로 제어하는 것이 바람직하다. 또한, 상기 중량평균분자량은 65000~70000으로 제어하는 것이 보다 바람직하며, 68000으로 제어하는 것이 가장 바람직하다.
The lower the weight-average molecular weight (Mw) of the urethane-acrylic composite resin is, the more dense the crosslinking density is, but the stability of the inorganic corrosion-resistant agent can be degraded. When the weight average molecular weight is less than 40,000, the inorganic corrosion inhibitor may be precipitated. On the other hand, when the weight average molecular weight exceeds 90000, the corrosion resistance may be deteriorated. Therefore, the weight average molecular weight of the urethane-acrylic composite resin is preferably controlled to 40,000 to 90,000. The weight average molecular weight is more preferably controlled to 65000 to 70000 and most preferably to 68000.

더불어, 하드 세그먼트(hard segment)를 구성하는 이소시아네이트(isocyanate)의 구성비 제어로 수지의 경질도를 확보하는 것이 바람직하다. 이를 위하여, 상기 우레탄-아크릴 복합수지의 중합시 NCO기와 OH기의 당량비가 1~3으로 제어하는 것이 바람직하다. 여기서, 상기 NCO/OH 당량비의 값이 1 미만인 경우에는 가공흑화성이 열위될 수 있다. 반면에, 상기 NCO/OH 당량비의 값이 3을 초과하는 경우에는 용액안정성 및 내식성이 열위될 수 있다. 더욱이, 이러한 효과를 확보하기 위하여 상기 NCO/OH 당량비의 값이 1.3~1.9로 제어하는 것이 보다 바람직하며, 1.6으로 제어하는 것이 가장 바람직하다.
In addition, it is desirable to secure the rigidity of the resin by controlling the composition ratio of isocyanate constituting the hard segment. For this purpose, it is preferable that the equivalent ratio of the NCO group and the OH group in the polymerization of the urethane-acrylic composite resin is controlled to 1 to 3. Here, if the value of the NCO / OH equivalence ratio is less than 1, the process blackening property may be degraded. On the other hand, when the value of the NCO / OH equivalent ratio is more than 3, the solution stability and corrosion resistance may be degraded. Further, in order to secure such an effect, the value of the NCO / OH equivalence ratio is more preferably controlled to 1.3 to 1.9, and most preferably to 1.6.

2) 나노 실리케이트-아크릴 복합수지: 8~24중량%2) Nanosilicate-acrylic composite resin: 8-24 wt%

본 발명에서 사용하는 나노 실리케이트-아크릴 복합수지는 아크릴 수지를 합성하는 과정에서 나노 실리케이트 내식제를 첨가하여 제조한 복합수지로서, 코팅강판의 내가공흑화성, 내식성 및 내약품성을 향상시키는 역할을 할 수 있다. 이 때, 상기 나노 실리케이트-아크릴 복합수지는 내가공흑화성과 내식성을 확보하기 위해서, 8 중량% 이상 포함되는 것이 바람직하다. 다만, 상기 실리케이트-아크릴 복합수지는 투입함량이 지나치게 많아도, 투입에 의한 물성향상 효과가 미미하므로, 그 상한은 24중량%로 제어하는 것이 바람직하다.
The nano-silicate-acrylic composite resin used in the present invention is a composite resin prepared by adding a nano-silicate anticorrosion agent in the process of synthesizing an acrylic resin, and serves to improve the intrinsic blackness, corrosion resistance and chemical resistance of the coated steel sheet . At this time, it is preferable that the nano-silicate-acrylic composite resin is contained in an amount of 8 wt% or more in order to ensure internal process blackening resistance and corrosion resistance. However, even if the amount of the silicate-acrylic composite resin to be added is too large, the effect of improving the physical properties of the silicate-acrylic composite resin due to the addition is insignificant, and the upper limit thereof is preferably controlled to 24 wt%.

또한, 상기 나노 실리케이트-아크릴 복합수지는 나노 실리케이트가 1.0~3.0중량%가 포함되는 것이 바람직하다. 상기 나노 실리케이트는 내식제의 효과를 발휘하기 위하여, 1.0 중량% 이상 포함하는 것이 바람직하다. 다만, 그 함량을 많이 투입하더라도 투입량 대비 상술한 효과의 향상 정도가 미미하고, 복합수지의 용액안정성이 열위해지므로 그 상한은 3.0 중량%로 제어하는 것이 바람직하다.
In addition, the nanosilicate-acrylic composite resin preferably contains 1.0 to 3.0% by weight of nanosilicate. In order to exhibit the effect of the corrosion-resistant agent, the nano-silicate preferably contains 1.0 wt% or more. However, even if a large amount of the additive is added, the degree of improvement of the above-mentioned effect is insignificant and the solution stability of the composite resin tends to be heated, so that the upper limit is preferably controlled to 3.0 wt%.

그리고, 상기 나노 실리케이트-아크릴 복합수지의 중량평균분자량(Mw)이 낮을수록 가교밀도가 조밀하지만 무기 내식제인 나노 실리케이트의 안정성이 열위될 수 있으므로, 중량평균분자량의 제어가 중요하다. 중량평균분자량이 80,000 미만인 경우에는 무기 내식제가 침전될 수 있다. 반면에, 중량평균분자량이 160,000을 초과하는 경우에는 내식성이 열화될 수 있다. 따라서, 상기 나노 실리케이트-아크릴 복합수지의 중량평균분자량은 80,000~160,000으로 제어하는 것이 바람직하다. 또한, 상기 중량평균분자량은 100,000~14,000으로 제어하는 것이 보다 바람직하다.
The lower the weight average molecular weight (Mw) of the nanosilicate-acrylic composite resin is, the more dense the cross-linked density is, but the stability of the nanosilicate as an inorganic corrosion-resistant agent can be degraded. If the weight average molecular weight is less than 80,000, the inorganic corrosion inhibitor may be precipitated. On the other hand, when the weight average molecular weight exceeds 160,000, corrosion resistance may be deteriorated. Therefore, the weight average molecular weight of the nanosilicate-acrylic hybrid resin is preferably controlled to 80,000 to 160,000. Further, the weight average molecular weight is more preferably controlled to 100,000 to 14,000.

3) 무기계 내식제: 40~80중량%3) Inorganic anticorrosion agent: 40 to 80 wt%

상기 무기계 내식제는 상기 코팅용액 조성물 전체 대비 실란A: 8~33 중량%, 실란B: 28~57중량%, 바나듐 포스페이트: 3~11중량%, 티오-우레아: 0.5~7중량%, Mg 산화물: 0.1~1.4중량%, 칼륨화합물 2.1~3.0중량%, 인산아연: 0.2~1.5중량%, 티타늄 카보네이트: 0.5~3.4중량% 및 Zr화합물: 0.5~4중량%, 실리카: 0.4~3중량% 중 1종 또는 2종 이상을 포함하는 것이 바람직하다. 여기서 상기 실란A 및 실란B은 실란의 종류에 따라서 구분되는 것으로서, 본 발명에서 다른 2종류의 실란을 포함하는 것을 나타내기 위하여 기재한 것이다.
The inorganic anticorrosion agent may be selected from the group consisting of 8 to 33% by weight of silane A, 28 to 57% by weight of silane B, 3 to 11% by weight of vanadium phosphate, 0.5 to 7% by weight of thio-urea, 0.1 to 1.4% by weight of potassium compound, 2.1 to 3.0% by weight of potassium compound, 0.2 to 1.5% by weight of zinc phosphate, 0.5 to 3.4% by weight of titanium carbonate and 0.5 to 4% by weight of Zr compound and 0.4 to 3% One or two or more. Herein, the silane A and silane B are classified according to the type of silane, and are described in order to indicate that the silane A and the silane B include two different silanes in the present invention.

실란A: 8~33 중량% Silane A: 8 to 33 wt%

실란화합물은 일반적으로 에폭시계, 클로로계, 아미노계, 아크릴계 등이 있는데, 본 발명에서는 에폭시계 실란을 적용하는 것이 용액안정성 측면에서 바람직하다. 여기서, 상기 에폭시계 실란은 감마 글리시독시프로필 트리에톡시실란(gamma glycidoxypropyl triethoxysilane), 감마 아미노프로필 트리에톡시실란(gamma aminopropyl triethoxysilane) 중 1종 또는 2종을 포함하는 것이 바람직하다. 투입되는 실란A의 함량은 내용제성과, 코팅층의 발수성을 고려하고, 충분한 소수성기를 확보하여 부식인자를 효과적으로 차단하기 위하여 8중량% 이상으로 제어하는 것이 바람직하다. 다만, 실란A의 함량이 너무 많아지면, 용액안정성이 저하될 수 있으며, 함량 증가에 따른 내식성 향상효과가 미미하므로, 그 함량의 상한은 33 중량%로 제어하는 것이 바람직하다. 단, 그 함량을 12~33중량%로 포함하는 것이 보다 더 바람직하다.
Silane compounds are generally epoxy-based, chloro-based, amino-based, acrylic-based, and the like. In the present invention, application of an epoxy silane is preferable from the viewpoint of solution stability. The epoxy silane may include at least one of gamma glycidoxypropyl triethoxysilane and gamma aminopropyl triethoxysilane. The epoxy silane may include at least one of gamma-aminopropyl triethoxysilane and gamma-aminopropyl triethoxysilane. The amount of silane A added is preferably controlled to 8 wt% or more in order to effectively block corrosive factors in consideration of the solvent resistance and water repellency of the coating layer and securing sufficient hydrophobic groups. However, if the content of silane A is too large, the solution stability may be deteriorated and the effect of improving the corrosion resistance with the increase of the content is insignificant. Therefore, the upper limit of the content is preferably controlled to 33 wt%. However, it is more preferable that the content thereof is 12 to 33% by weight.

실란B: 28~57중량% Silane B: 28 to 57 wt%

상기 실란B은 상술한 실란A과 다른 것으로서, 내식성을 극대화할 수 있다. 상기 내식성 향상을 위하여 상기 실란B은 28 중량% 이상 포함되는 것이 바람직하다. 용액안정성과 투입량 대비 내식성 향상효과를 고려하여 그 상한은 57 중량%로 제어하는 것이 바람직하다. 그리고, 상기 실란B은 비닐계 실란, 에폭시계 실란 및 알콕시계 실란 중 1종 또는 2종 이상을 포함하는 것이 바람직하다.
The silane B is different from the silane A described above and can maximize the corrosion resistance. In order to improve the corrosion resistance, the silane B is preferably contained in an amount of 28 wt% or more. The upper limit of the solution stability is preferably controlled to 57% by weight in consideration of the effect of improving the corrosion resistance with respect to the amount of the solution. The silane B preferably contains at least one of vinyl silane, epoxy silane and alkoxy silane.

바나듐 포스페이트: 3~11중량% Vanadium phosphate: 3-11 wt%

상기 코팅용액은 내식성 향상을 위하여, 바나듐 포스페이트를 3 중량% 이상 포함한다. 고온 및 고습 분위기에서 강판의 외관이 검게 변하는 흑변현상이 발생할 수 있으므로, 그 함량의 상한은 11 중량%로 제어하는 것이 바람직하다.
The coating solution contains at least 3% by weight of vanadium phosphate for the purpose of improving corrosion resistance. It is preferable to control the upper limit of the content to be 11% by weight since the appearance of the steel sheet may change to black under high temperature and high humidity atmospheres.

티오-우레아: 0.5~7중량%, Thio-urea: 0.5 to 7% by weight,

티오-우레아의 경우 수지, 의약품 등을 만들 때 쓰이는 유기화합물 형태로서 본 발명에서는 경화 촉진제로 사용되어 0.5% 이하에서는 효과가 거의 나타나지 않으며, 그 이상의 함량에서는 코팅층의 경화에 소요되는 시간을 단축시키는 효과가 있으나, 너무 많아지면 용액 안정성이 감소되어 그 상한을 7 중량%로 제한하는 것이 바람직하다.
In the case of thio-urea, it is used as a curing accelerator in the present invention. In the case of thio-urea, it is an organic compound used for making resins, medicines and the like. However, when the amount is too large, the solution stability is reduced, and the upper limit thereof is preferably limited to 7% by weight.

마그네슘 화합물: 0.1~1.4중량%Magnesium compound: 0.1 to 1.4 wt%

상기 마그네슘 화합물은 내흑변성 향상을 위하여 포함된다. 여기서, 상기 마그네슘 화합물은 마그네슘옥사이드, 마그네슘하이드록사이드, 마그네슘카보네이트, 마그네슘스테아레이트, 및 마그네슘에폭사이드, 마그네슘시트레이트 중 1종 또는 2종이상을 포함하는 것이 바람직하다. 또한, 마그네슘 화합물은 내흑변성 효과를 확보하기 위하여 0.1 중량% 이상 포함하는 것이 바람직하다. 지나치게 그 함량이 많은 경우에는 용액안정성이 저하되는 단점이 있으므로 그 상한은 1.4 중량%로 제어하는 것이 바람직하다.
The magnesium compound is included for improving the weathering resistance. The magnesium compound preferably includes one or more of magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium stearate, magnesium epoxide, and magnesium citrate. The magnesium compound is preferably contained in an amount of 0.1% by weight or more in order to ensure a weathering effect. When the content is excessively high, the solution stability is disadvantageously deteriorated. Therefore, the upper limit is preferably controlled to 1.4 wt%.

칼슘 화합물: 2.1~3.0중량% Calcium compound: 2.1 to 3.0 wt%

상기 칼슘 화합물은 내흑변성을 향상시키기 위하여 포함된다. 여기서, 상기 칼슘 화합물은 칼슘옥사이드, 칼슘하이드록사이드, 칼슘카보네이트, 칼슘스테아레이트, 칼슘시트레이트, 칼슘하이드라이드, 칼슘카바이드, 칼슘퍼옥사이드, 및 칼슘아세테이트 중 1종 또는 2종이상을 포함하는 것이 바람직하다. 또한, 칼슘화합물은 내흑변성 효과를 확보하기 위하여 2.1 중량% 이상 포함하는 것이 바람직하다. 지나치게 그 함량이 많은 경우에는 용액안정성이 저하되는 단점이 있으므로 그 상한은 3.0 중량%로 제어하는 것이 바람직하다.
The calcium compound is included to improve the weathering resistance. Here, the calcium compound may include one or more of calcium oxide, calcium hydroxide, calcium carbonate, calcium stearate, calcium citrate, calcium hydride, calcium carbide, calcium peroxide, and calcium acetate desirable. The calcium compound is preferably contained in an amount of not less than 2.1% by weight in order to ensure a weathering effect. If the content is excessively large, the solution stability is disadvantageously deteriorated. Therefore, the upper limit is preferably controlled to 3.0 wt%.

인산아연: 0.2~1.5중량%Zinc phosphate: 0.2 to 1.5 wt%

인산아연은 내식성 향상을 위한 보조 첨가제로 포함된다. 여기서, 상기 인산아연의 함량은 내식성 확보를 위하여 0.2중량% 이상으로 제어하는 것이 바람직하다. 다만, 그 함량이 지나치게 많은 경우에는 내흑변성이 저하되고, 투입량 대비 물성향상 효과가 크지 않기 때문에, 그 함량의 상한은 1.5 중량%로 제어하는 것이 바람직하다.
Zinc phosphate is included as an auxiliary additive to improve corrosion resistance. Here, the content of zinc phosphate is preferably controlled to 0.2 wt% or more in order to secure corrosion resistance. However, when the content thereof is too large, the weathering resistance deteriorates and the effect of improving the physical properties with respect to the input amount is not large. Therefore, the upper limit of the content thereof is preferably controlled to 1.5 wt%.

티타늄 카보네이트: 0.5~3.4중량% Titanium carbonate: 0.5 to 3.4 wt%

티타늄 카보네이트는 코팅용액의 안정성과 소지강판 및 코팅용액의 반응성을 위하여 포함되며, 수지와 무기물의 커플링제로서의 역할을 할 수 있다. 상기 티타늄 카보네이트는 내식성 확보를 위하여 0.5 중량% 이상 포함되는 것이 바람직하다. 반면에, 그 함량을 많이 투입하더라도 투입량 대비 내식성 향상효과가 미미하므로 그 상한은 3.4 중량%로 제어하는 것이 바람직하다.
Titanium carbonate is included for the stability of coating solution and reactivity of base steel and coating solution, and can serve as a coupling agent of resin and inorganic material. It is preferable that the titanium carbonate is contained in an amount of 0.5 wt% or more for the purpose of securing corrosion resistance. On the other hand, even if a large amount thereof is added, the effect of improving the corrosion resistance against the input amount is insignificant, so that the upper limit is preferably controlled to 3.4 wt%.

Zr화합물: 0.5~4중량%Zr compound: 0.5 to 4 wt%

상기 Zr화합물은 내식성을 향상시키기 위하여 포함된다. 상기 Zr화합물은 내식성을 확보하기 위하여 0.5 중량% 이상 포함하는 것이 바람직하다. 다만, 그 함량을 많이 투입하더라도 투입량 대비 내식성 향상효과가 미미하므로 그 상한은 4중량%로 제한하는 것이 바람직하다.
The Zr compound is included to improve the corrosion resistance. The Zr compound is preferably contained in an amount of 0.5 wt% or more in order to secure corrosion resistance. However, even if a large amount thereof is added, the effect of improving the corrosion resistance against the input amount is insignificant, so that the upper limit is preferably limited to 4 wt%.

실리카: 0.4~3중량%Silica: 0.4 to 3 wt%

상기 실리카는 내식성을 향상시키기 위하여 포함되며, 주로 콜로이달 실리카를 사용한다. 상기 실리카는 내식성을 확보하기 위하여 0.4 중량% 이상 포함하는 것이 바람직하다. 다만, 그 함량을 많이 투입할 경우 용액안정성이 저하되므로 그 상한은 3중량%로 제한하는 것이 바람직하다.
The silica is included to improve corrosion resistance, and mainly colloidal silica is used. The silica is preferably contained in an amount of 0.4 wt% or more in order to ensure corrosion resistance. However, the solution stability is lowered when a large amount thereof is added, so the upper limit is preferably limited to 3% by weight.

상기와 같은 조성을 갖는 코팅용액을 이용하여, 후술할 강판의 일면 또는 양면에 코팅층을 형성시킴으로써, 상기 강판의 내식성 및 내가공흑화성을 극대화할 수 있다.
By forming a coating layer on one side or both sides of a steel sheet to be described later by using the coating solution having the above composition, the corrosion resistance and the processing blackness of the steel sheet can be maximized.

이하, 본 발명의 다른 측면인 코팅강판에 대하여 상세히 설명한다. 본 발명의 코팅강판은 소지강판, 상기 소지강판에 형성된 아연계 도금층, 상기 아연계 도금층 상에 형성된 유무기복합 코팅층을 포함하며, 상기 코팅층은 상기 코팅용액 조성물에 의하여 형성될 수 있다.
Hereinafter, a coated steel sheet according to another aspect of the present invention will be described in detail. The coated steel sheet of the present invention comprises a base steel sheet, a zinc-based plated layer formed on the base steel sheet, and an organic-inorganic composite coating layer formed on the zinc-based plated layer, and the coating layer may be formed by the coating solution composition.

상기 소지강판은 특별히 한정되는 것은 아니며, 본 발명의 목적에 맞게 적용될 수 있는 소지강판인 경우, 어떠한 강판을 사용하여도 무방하다.
The base steel sheet is not particularly limited and, in the case of a base steel sheet applicable to the purpose of the present invention, any steel sheet may be used.

그리고, 상기 아연계 도금층의 형성방법은 용융아연도금방법에 의하여, 실시하는 것이 바람직하나, 이외에도 아연계 도금층을 형성할 수 있는 방법은 어떠한 방법이라도 적용 가능하다. 그리고, 아연계 도금층의 성분계 역시 특별히 한정되는 것은 아니며, 통상적인 용융아연도금강판 혹은 전기아연도금강판의 도금층의 성분계를 적용할 수 있다.
The method of forming the zinc-based plated layer is preferably carried out by a hot-dip galvanizing method, but any method of forming the zinc-based plated layer may be applied. The component system of the zinc-based plated layer is not particularly limited, and a component of a plated layer of an ordinary hot-dip galvanized steel sheet or an electro-galvanized steel sheet can be applied.

또한, 상기 코팅강판은 상기 아연계 도금층이 형성된 강판의 일면 또는 양면에 형성된 코팅층을 포함할 수 있다. 상기 코팅용액을 이용하여, 상기 강판의 일면 또는 양면을 코팅하는 것이 바람직하다. 이 때, 코팅층의 부착량은 0.5~2g/㎡으로 제어하는 것이 바람직하다. 본 발명이 의도하고자 하는 내식성을 확보하기 위하여 그 부착량의 하한은 0.5g/㎡으로 제어하는 것이 바람직하다. 단, 상기 부착량이 2g/㎡를 초과하는 경우에는 코팅층의 전도성이 떨어진다.
In addition, the coated steel sheet may include a coating layer formed on one side or both sides of the steel sheet on which the zinc-based plated layer is formed. It is preferable to coat one or both surfaces of the steel sheet using the coating solution. At this time, the coating amount of the coating layer is preferably controlled to 0.5 to 2 g / m 2. In order to secure the intended corrosion resistance of the present invention, the lower limit of the adhesion amount is preferably controlled to 0.5 g / m 2. However, when the deposition amount exceeds 2 g / m < 2 >, the conductivity of the coating layer deteriorates.

이하, 상기 코팅층의 성분계에 대하여 상세히 설명한다. 상기 코팅층은 상술한 코팅용액을 이용하여 형성된 것이 바람직하며, 상기 성분계 역시 코팅용액의 성분계로부터 도출되는 것이 바람직하다.
Hereinafter, the component system of the coating layer will be described in detail. It is preferable that the coating layer is formed using the coating solution described above, and the component layer is also derived from the component system of the coating solution.

상기 우레탄-아크릴 복합수지 및 나노 실리케이트-아크릴 복합수지는 내식성, 내용제성 및 가공흑화성을 확보하기 위해서, 20 중량% 이상 포함되는 것이 바람직하다. 다만, 상기 바인더 수지는 동일 고형분의 조건에서 투입함량이 증가할 경우 무기계 내식제의 첨가량이 감소하여, 내식성이 감소하므로, 그 상한은 60중량%로 제어하는 것이 바람직하다. 여기서, 상기 수지의 특성은 상술한 코팅용액에서 설명한 복합수지의 특성을 나타내는 것이 바람직하다.
The urethane-acrylic composite resin and the nano-silicate-acrylic composite resin are preferably contained in an amount of 20% by weight or more in order to ensure corrosion resistance, solvent resistance and process blackness. However, when the content of the binder resin is increased under the condition of the same solid content, the addition amount of the inorganic anticorrosive agent decreases and the corrosion resistance decreases, so that the upper limit is preferably controlled to 60 wt%. Here, the characteristics of the resin preferably show the characteristics of the composite resin described in the coating solution.

또한, 도 1의 (a) 및 (b)에 모식적으로 나타낸 바와 같이, 상기 코팅층에 포함된 실란A, 실란B 및 바나듐 포스페이드는 부식인자에 대하여 베리어(Barrier) 역할을 하고, 실리카, 티타늄 카보네이트, Zr화합물, 마그네슘 화합물 및 인산아연은 무기 내식제로서, 방청성(부식지연)을 부여하는 역할을 한다.
1 (a) and 1 (b), silane A, silane B, and vanadium phosphide contained in the coating layer act as a barrier against corrosive factors, and silica, titanium Carbonates, Zr compounds, magnesium compounds and zinc phosphates are inorganic anticorrosive agents and play a role in imparting rust inhibition (corrosion retardation).

상기 코팅층에 포함된 실란A 및 실란B는 코팅층 내부에서 전반적으로 분포를 하며 부식인자를 방어하는 역할을 한다. 상기 실란A 및 실란B는 소수성 및 베리어 효과는 좋으나 과량 투입시 용액안정성이 문제시된다. 따라서, 일반적으로는 1~2중량%로 포함되는데, 본 발명에서는 최대 33중량%로 포함함으로써, 코팅층의 최상부뿐만 아니라 중간층까지도 코팅층의 소수성을 유지하면서, 베리어 효과를 유지할 수 있다.
The silane A and silane B contained in the coating layer are distributed throughout the coating layer and serve to protect the corrosion factor. The above-mentioned silane A and silane B have good hydrophobicity and barrier effect, but have a problem of solution stability when they are added in excess. Therefore, in the present invention, it is contained in an amount of 1 to 2% by weight, and in the present invention, by including it at a maximum of 33% by weight, the barrier effect can be maintained while maintaining the hydrophobicity of the coating layer as well as the uppermost part of the coating layer.

그 다음 녹방지제(rust inhibitor)로서 실리카, 티타늄 카보네이트, Zr화합물 등은 코팅층 내부로 침입된 부식인자들과 반응하여 보다 안정한 화합물을 이루므로, 추가적인 침입을 차단하여 아연층의 백청을 억제시킨다.As a rust inhibitor, silica, titanium carbonate, Zr compounds, etc. react with corrosion factors penetrated into the coating layer to form a more stable compound, thereby inhibiting the addition of zinc to the zinc layer.

또한, 상기 부식인자들은 상술한 베리어를 뚫고 들어가 마지막 층인 바나듐 포스페이트(V-PO4)에 도달하게 된다. 특히 바나듐 포스페이트층의 경우 하지의 아연층과 반응을 하여 인산염층을 형성시킴에 따라, 코팅층에서 최종적인 부식방지 베리어 역할을 한다. 다만, 어느 정도 시간이 경과하면 부식인자들의 공격을 받아 아연층에서 백청이 발생될 수 있다.
In addition, the corrosion factors penetrate the aforementioned barrier and reach the final layer, vanadium phosphate (V-PO 4 ). Particularly, in the case of the vanadium phosphate layer, the phosphate layer is formed by reacting with the zinc layer of the underlying layer, thereby acting as a final anti-corrosion barrier in the coating layer. However, after a certain period of time, the attack of corrosive factors can cause white rust in the zinc layer.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

[[ 실시예Example 1] One]

도금부착량이 편면기준 70g/㎡의 용융아연도금강판에 기존 크롬 프리 용액(출원번호: KR2005-0128523)을 바(bar) 코팅 방식으로 도포한 후, 상기 용융아연도금강판을 인덕션 히터를 이용하여 PMT(peak metal temperature) 140℃로 가열하여, 소부 건조하여 종래예 1을 제조하였다. 이 때, 종래예 1의 습식 부착량 측정결과는 680mg/㎡였다.
The existing chromium free solution (application number: KR2005-0128523) was applied to a hot dip galvanized steel sheet having a plated adhesion amount of 70 g / m 2 on one side by a bar coating method, and then the hot dip galvanized steel sheet was subjected to PMT (peak metal temperature) of 140 ° C, followed by baking to prepare Conventional Example 1. At this time, the wet adhesion amount measurement result of Conventional Example 1 was 680 mg / m 2.

본 발명에 기술된 코팅용액을 도금부착량이 편면기준 40g/㎡인 용융아연도금강판에 바 코팅 방식으로 도포한 후, 상기 용융아연도금강판을 인덕션 히터를 이용하여 140℃로 가열하여, 소부 건조하여 발명예 1을 제조하였다. 발명예 1의 습식 부착량 측정결과는 680mg/㎡였다.
The coating solution described in the present invention was applied to a hot-dip galvanized steel sheet having a plating adhesion amount of 40 g / m 2 on one side by bar coating method, and then the hot-dip galvanized steel sheet was heated to 140 캜 using an induction heater, Inventive Example 1 was prepared. The wet adhesion amount measurement result of Inventive Example 1 was 680 mg / m 2.

종래예 1 및 발명예 1의 내식성, 내가공흑화성 및 내흑변성을 측정하여 하기 표 1에 나타내었다.
The corrosion resistance, the intrinsic blackening resistance and the blacking resistance of Conventional Example 1 and Inventive Example 1 were measured and are shown in Table 1 below.

내식성 평가는 코팅시료를 염수농도 5%, 온도 35℃, 분무압 1kg/cm2의 조건에서 염수분무테스트를 진행하여, 적청이 5% 발생하는 시간을 측정하였다. 또한, 내가공흑화성 평가는 Tribometer기를 이용하여 0.25kgf/mm2 압력으로 10회 왕복 후 수지코팅층이 검게 변하는 정도를 육안으로 관찰하였다. 더불어, 내흑변성은 항온항습기 안에서 50℃ 그리고 95%의 상대습도 환경에서 120 시간 유지 전후 색차(델타E) 값을 측정하였다.
In the corrosion resistance evaluation, the coating samples were subjected to a salt spray test under conditions of a salt concentration of 5%, a temperature of 35 ° C, and a spray pressure of 1 kg / cm 2 , and the time during which the coating was generated at 5% was measured. In addition, the degree of blackening of the resin coating layer was visually observed after 10 round trips at 0.25 kgf / mm < 2 > pressure using a tribometer machine. In addition, the chromaticity (delta E) value was measured before and after 120 hours in 50% C and 95% relative humidity environment in a thermostatic chamber.

구분division 내식성Corrosion resistance
(시간)(time)
내가공흑화성In-process blackness
(등급)(Rating)
내흑변성Black degeneration
(델타 E)(Delta E)
종래예Conventional example 1 One 300300 44 2.02.0 발명예Honor 1 One 500500 22 1.01.0

종래예 1은 300 시간 만에 적청이 5% 발생하였다. 또한, 내가공흑화성과 관련하여 4등급이 측정되었으며, 내흑변성과 관련하여 2.0의 결과값을 나타내었다.
Conventional Example 1 produced 5% redness in 300 hours. In addition, 4 grades were measured with respect to the intrinsic blackening resistance, and the results of 2.0 with respect to the internal blackness were shown.

이에 반하여, 발명예 1은 500 시간 만에 적청이 5% 발생하였다. 그리고 내가공흑화성은 2등급으로 나타났고, 내흑변성 평가 결과는 색차가 1.0의 결과값을 나타내었다.On the contrary, in Inventive Example 1, the elongation occurred 5% in 500 hours. In addition, the intrinsic blackening resistance was evaluated as grade 2, and the result of the evaluation of black coloration showed a color difference of 1.0.

따라서 본 발명에 기술된 코팅용액을 사용한 용융아연도금강판은 아연도금 부착량이 편면기준 40g/㎡으로 종래예 1의 70g/㎡보다 적음에도 불구하고 적청 발생 시간이 오히려 늦음으로써 우수한 내식성을 나타내었고, 내가공흑화성 및 내흑변성도 크게 개선되었다.
Therefore, the hot dip galvanized steel sheet using the coating solution described in the present invention exhibited excellent corrosion resistance because the amount of zinc plating adhered was 40 g / m 2 on one side, which was lower than 70 g / m 2 in Conventional Example 1, The intrinsic blackness and the intrinsic blackness were greatly improved.

[[ 실시예Example 2] 2]

용융아연도금강판(아연부착량 40g/㎡)의 표면에 하기 표 2 및 표 3에 기재된 성분계를 만족하는 코팅용액을 롤코터 방식으로 도포하여 그 부착량을 680mg/㎡로 제어한 후, 상기 용융아연도금강판을 140℃로 가열하여, 소부 건조하여 코팅시편을 제작하였다.
A coating solution satisfying the components listed in Tables 2 and 3 below was applied on the surface of a hot-dip galvanized steel sheet (zinc adhesion amount: 40 g / m 2) by a roll coating method to control its adhesion amount to 680 mg / m 2, The steel sheet was heated to 140 캜 and baked to prepare coating specimens.

하기 표 2 및 표 3의 조성으로 제조된 각각의 코팅용액의 용액안정성을 평가하고, 상기 코팅용액이 도포된 코팅강판의 내식성 및 내가공흑화성을 평가한 후 하기 표 2 및 표 3에 함께 나타내었다. 이때, 티오-우레아는 모든 발명예와 비교예에 대하여 1.5중량%가 포함되도록 하였다.
The solution stability of each of the coating solutions prepared in the compositions shown in Tables 2 and 3 below was evaluated, and the corrosion resistance and the intrinsic blackening resistance of the coated steel sheet coated with the coating solution were evaluated. The results are shown in Tables 2 and 3 . At this time, the thio-urea was contained in an amount of 1.5% by weight based on all the inventive and comparative examples.

상기 용액안정성은 코팅용액의 점도가 초기대비 20% 이상 상승하거나 육안관찰결과 용액이 침전, 분해 및 젤화가 진행되었을 경우 불량(X)으로 판단하였다.
The stability of the solution was judged to be defective (X) when the viscosity of the coating solution rose by 20% or more from the initial stage, or when the solution was precipitated, decomposed and gelated as a result of visual observation.

그리고, 상기 내식성 평가는 평판상태에서 염수농도 5%, 온도 35℃, 분무압 1kg/cm2의 조건에서 적청이 5% 발생하는데 소요되는 시간을 측정하였다. 또한 내식성의 평가 기준은 종래예 1과 동등 이상 수준인 300 시간을 기준하여 다음과 같이 평가하였다. The corrosion resistance evaluation was carried out under the conditions of a salt concentration of 5%, a temperature of 35 DEG C and a spray pressure of 1 kg / cm < 2 > in a flat plate state. The evaluation criteria of corrosion resistance were evaluated as follows based on 300 hours, which is equal to or higher than that of Conventional Example 1, as follows.

○ : 300 시간 이상○: 300 hours or more

X : 300 시간 미만
X: Less than 300 hours

또한, 상기 내가공흑화성 평가는 Tribometer기를 이용하여 0.25kgf/mm2 압력으로 10회 왕복 후 수지코팅층이 검게 변하는 정도를 육안으로 관찰하였고, 통상적인 크롬프리 코팅강판의 요구수준인 2등급을 기준하여 다음과 같이 평가하였다.The degree of blackening of the resin coating layer was visually observed after 10 round trips at a pressure of 0.25 kgf / mm 2 using a tribometer machine, and the degree of blackening of the resin coating layer was visually observed. And evaluated as follows.

○ : 2등급 이내○: Within 2 grade

X : 2등급 초과
X: Exceeds grade 2

구분division 코팅용액(중량%)Coating solution (% by weight) 품질특성Quality characteristics V-V- POPO 44 MgOMgO 칼슘화합물Calcium compound 실란Silane
AA
복합수지Composite resin
A+BA + B
인산Phosphoric acid
아연zinc
TiCOTiCO 33 ZrOZrO 실리Silly
Car
실란Silane
BB
용액solution
안정성stability
내식Corrosion
castle
내가공흑화성In-process blackness
비교예1Comparative Example 1 2.52.5 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 발명예2Inventory 2 3.03.0 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 발명예3Inventory 3 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 발명예4Honorable 4 1111 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 비교예2Comparative Example 2 1212 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 비교예3Comparative Example 3 55 0.050.05 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 발명예5Inventory 5 55 0.10.1 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 발명예6Inventory 6 55 1.41.4 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 비교예4Comparative Example 4 55 2.02.0 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 비교예5Comparative Example 5 55 0.70.7 2.42.4 55 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 발명예7Honorable 7 55 0.70.7 2.42.4 88 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 발명예8Honors 8 55 0.70.7 2.42.4 3333 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 비교예6Comparative Example 6 55 0.70.7 2.42.4 3535 3030 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 비교예7Comparative Example 7 55 0.70.7 2.42.4 1212 1515 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX 발명예9Proposition 9 55 0.70.7 2.42.4 1212 2020 0.50.5 0.70.7 1.51.5 0.80.8 4141 발명예10Inventory 10 55 0.70.7 2.42.4 1212 6060 0.50.5 0.70.7 1.51.5 0.80.8 4141 비교예8Comparative Example 8 55 0.70.7 2.42.4 1212 6565 0.50.5 0.70.7 1.51.5 0.80.8 4141 XX

(단, 복합수지A+B는 우레탄-아크릴 복합수지 및 나노 실리케이트-아크릴 복합수지임)
(Provided that the composite resin A + B is a urethane-acrylic composite resin and a nanosilicate-acrylic composite resin)

구분division 코팅용액(중량%)Coating solution (% by weight) 품질특성Quality characteristics V-V- POPO 44 MgOMgO 칼슘화합물Calcium compound 실란Silane
AA
복합수지Composite resin
A+BA + B
인산Phosphoric acid
아연zinc
TiCOTiCO 33 ZrOZrO 실리Silly
Car
실란Silane
BB
용액solution
안정성stability
내식Corrosion
castle
내가I 공흑화Blackening castle
비교예9Comparative Example 9 55 0.70.7 2.42.4 1212 3030 0.10.1 0.70.7 1.51.5 0.80.8 4141 XX 발명예11Exhibit 11 55 0.70.7 2.42.4 1212 3030 0.20.2 0.70.7 1.51.5 0.80.8 4141 발명예12Inventory 12 55 0.70.7 2.42.4 1212 3030 1.51.5 0.70.7 1.51.5 0.80.8 4141 비교예10Comparative Example 10 55 0.70.7 2.42.4 1212 3030 2.02.0 0.70.7 1.51.5 0.80.8 4141 XX 비교예11Comparative Example 11 55 0.70.7 2.42.4 1212 3030 0.50.5 0.30.3 1.51.5 0.80.8 4141 XX 발명예13Inventory 13 55 0.70.7 2.42.4 1212 3030 0.50.5 0.50.5 1.51.5 0.80.8 4141 발명예14Inventory 14 55 0.70.7 2.42.4 1212 3030 0.50.5 3.43.4 1.51.5 0.80.8 4141 비교예12Comparative Example 12 55 0.70.7 2.42.4 1212 3030 0.50.5 4.04.0 1.51.5 0.80.8 4141 XX 비교예13Comparative Example 13 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 0.30.3 0.80.8 4141 XX 발명예15Honorable Mention 15 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 0.50.5 0.80.8 4141 발명예16Inventory 16 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 4.04.0 0.80.8 4141 비교예14Comparative Example 14 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 4.54.5 0.80.8 4141 XX 비교예15Comparative Example 15 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.20.2 4141 XX 발명예17Inventory 17 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.40.4 4141 발명예18Inventory 18 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 3.03.0 4141 비교예16Comparative Example 16 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 3.53.5 4141 XX 비교예17Comparative Example 17 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 2020 XX 발명예19Evidence 19 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 2828 발명예20Inventory 20 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 5757 비교예18Comparative Example 18 55 0.70.7 2.42.4 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 6060 XX 비교예19Comparative Example 19 55 0.70.7 1.91.9 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 2020 XX 발명예21Inventory 21 55 0.70.7 2.12.1 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 2828 발명예22Inventory 22 55 0.70.7 3.03.0 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 5757 비교예20Comparative Example 20 55 0.70.7 3.23.2 1212 3030 0.50.5 0.70.7 1.51.5 0.80.8 6060 XX

(단, 복합수지A+B는 우레탄-아크릴 복합수지 및 나노 실리케이트-아크릴 복합수지임)
(Provided that the composite resin A + B is a urethane-acrylic composite resin and a nanosilicate-acrylic composite resin)

비교예 1은 바나듐 포스페이드의 함량이 본 발명이 제어하는 범위보다 낮기 때문에, 부식인자 침투를 막는 인산아연층이 부족하여 내식성이 저하되었다.
In Comparative Example 1, since the content of vanadium phosphide is lower than the range controlled by the present invention, the zinc phosphate layer which inhibits permeation of corrosion factor is insufficient and the corrosion resistance is lowered.

비교예 2는 바나듐 포스페이드의 함량이 본 발명이 제어하는 범위보다 높기 때문에, 용액안정성이 떨어지는 문제 외에도 에칭이 과다 발생하여 내흑변성이 저하되었다.
In Comparative Example 2, since the content of vanadium phosphide was higher than the range controlled by the present invention, besides the problem of poor solution stability, too much etching occurred and the black weathering was lowered.

비교예 3은 Mg산화물의 함량이 본 발명이 제어하는 범위보다 낮기 때문에, Mg의 수화물 형성을 통한 부식억제 역할이 충분치 못하여 내식성이 저하되었다.
In Comparative Example 3, since the content of Mg oxide was lower than the range controlled by the present invention, the corrosion inhibition was insufficient due to insufficient corrosion inhibiting effect through Mg hydrate formation.

비교예 4는 Mg산화물의 함량이 본 발명이 제어하는 범위보다 높기 때문에, 용액 내에서 필요 이상으로 존재하여 다른 내식 첨가제와 반응하게 되어 용액안정성이 저하되었다.
In Comparative Example 4, since the content of Mg oxide was higher than the range controlled by the present invention, it was more than necessary in the solution and reacted with other corrosion-resistant additives, and the solution stability was lowered.

비교예 5는 실란A의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 실란의 수지와 무기물간의 가교역할이 불충분하여 내식성이 저하되었다.
In Comparative Example 5, since the content of silane A was lower than the range controlled by the present invention, the crosslinking effect between the resin of the silane and the inorganic material was insufficient and the corrosion resistance was degraded.

비교예 6은 실란A의 함량이 본 발명이 제어하는 범위보다 높기 때문에, 용액 내에서 안정적으로 분산되는 실란 함량 초과로 인하여 용액안정성이 저하되었다.
In Comparative Example 6, since the content of silane A was higher than the range controlled by the present invention, solution stability was lowered due to exceeding the silane content stably dispersed in the solution.

비교예 7은 복합수지의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 바인더 수지의 역할이 충분치 못하여 고온 및 고습 분위기에서 수분의 침투가 용이하여 내가공흑화성이 저하하였다.
In Comparative Example 7, since the content of the composite resin was lower than the range controlled by the present invention, the role of the binder resin was insufficient and penetration of moisture in a high temperature and high humidity atmosphere was easy and the in-process blackening property was lowered.

비교예 8는 복합수지의 함량이 본 발명이 제어하는 범위보다 높기 때문에 상대적으로 무기계 내식제의 함량이 감소되어 내식성이 저하하였다.
In Comparative Example 8, since the content of the composite resin was higher than the range controlled by the present invention, the content of the inorganic anticorrosive agent was relatively decreased and the corrosion resistance was lowered.

비교예 9는 인산아연의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 내식 보조역할이 부족하여 강판의 내식성이 저하되었다.
In Comparative Example 9, since the content of zinc phosphate was lower than the range controlled by the present invention, the corrosion resistance of the steel sheet deteriorated due to the lack of a corrosion assistant role.

비교예 10은 인산아연의 함량이 본 발명이 제어하는 범위보다 높기 때문에 수지층의 열화를 일으켜 내가공흑화성이 저하되었다.
In Comparative Example 10, since the content of zinc phosphate was higher than the range controlled by the present invention, the resin layer was deteriorated and the processing blackness was degraded.

비교예 11은 티타늄 카보네이트(TiCO3)의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 수지와의 가교역할이 부족하여 내식성이 저하되었다.
In Comparative Example 11, since the content of titanium carbonate (TiCO 3 ) was lower than the range controlled by the present invention, the cross-linking function with the resin was insufficient and the corrosion resistance was degraded.

비교예 12는 티타늄 카보네이트(TiCO3)의 함량이 본 발명이 제어하는 범위보다 높기 때문에 용액 내에서 다른 내식제들과의 알맞은 혼합 및 분산이 이루어지지 못하여 용액안정성이 저하되었다.
In Comparative Example 12, since the content of titanium carbonate (TiCO 3 ) was higher than the range controlled by the present invention, proper mixing and dispersion with other corrosion inhibitors were not achieved in the solution, and the solution stability was degraded.

비교예 13은 Zr화합물의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 내식 보조역할이 부족하여 강판의 내식성이 저하되었다.
In Comparative Example 13, since the content of the Zr compound was lower than the range controlled by the present invention, the corrosion resistance of the steel sheet was deteriorated due to insufficient anti-corrosion auxiliary role.

비교예 14는 Zr화합물의 함량이 본 발명이 제어하는 범위보다 높기 때문에 다른 내식제들과의 알맞은 혼합 및 분산이 이루어지지 못하여 용액안정성이 저하되었다.
In Comparative Example 14, since the content of the Zr compound was higher than the range controlled by the present invention, proper mixing and dispersion with other corrosion inhibitors were not achieved and the solution stability was degraded.

비교예 15는 실리카의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 수지층과의 결합력이 감소하여 내식성이 저하되었다.
In Comparative Example 15, since the content of silica was lower than the range controlled by the present invention, the bonding strength with the resin layer was decreased and the corrosion resistance was lowered.

비교예 16은 실리카의 함량이 본 발명이 제어하는 범위보다 높기 때문에 다른 내식제들과의 알맞은 혼합 및 분산이 이루어지지 못하여 용액안정성이 저하되었다.
In Comparative Example 16, since the content of silica was higher than the range controlled by the present invention, proper mixing and dispersion with other corrosion inhibitors were not achieved and the solution stability was degraded.

비교예 17은 실란B의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 유기물 및 무기 첨가제와의 결합 및 내식성 증대 역할이 약해져서 강판의 내식성이 저하되었다.
In Comparative Example 17, since the content of silane B was lower than the range controlled by the present invention, the bond with the organic and inorganic additives and the role of increasing the corrosion resistance were weakened, and the corrosion resistance of the steel sheet was lowered.

비교예 18은 실란B의 함량이 본 발명이 제어하는 범위보다 높기 때문에 용액 안정성이 저하되어 내식성이 감소하였다.
In Comparative Example 18, since the content of silane B was higher than the range controlled by the present invention, the solution stability was lowered and the corrosion resistance was decreased.

비교예 19은 칼슘화합물의 함량이 본 발명이 제어하는 범위보다 낮기 때문에 유기물 및 무기 첨가제와의 결합 및 내식성 증대 역할이 약해져서 강판의 내식성이 저하되었다.
In Comparative Example 19, since the content of the calcium compound was lower than the range controlled by the present invention, the bond with the organic and inorganic additive and the role of increasing the corrosion resistance were weakened and the corrosion resistance of the steel sheet was deteriorated.

비교예 20은 칼슘화합물의 함량이 본 발명이 제어하는 범위보다 높기 때문에 용액 안정성이 저하되어 내식성이 감소하였다.
In Comparative Example 20, since the content of the calcium compound was higher than the range controlled by the present invention, the solution stability was lowered and the corrosion resistance was decreased.

이에 반하여, 본 발명에 제어하는 코팅용액의 조성을 만족하는 발명예 2 내지 22는 용액안정성, 내식성 및 내가공흑화성이 우수하게 평가되었음을 확인할 수 있다.
On the other hand, Examples 2 to 22, which satisfy the composition of the coating solution to be controlled according to the present invention, can be confirmed to be excellent in solution stability, corrosion resistance and in-process blackness.

[[ 실시예Example 3] 3]

용융아연도금강판(아연부착량 40g/㎡)의 표면에 상기 발명예 3의 조성에 기재된 코팅용액을 기본조성으로 하면서, 상기 복합수지 A+B의 조성을 표 4에 기재된 조건으로 변화시킨 코팅용액을 롤코터 방식으로 도포하여 유무기복합 코팅층을 형성시킨 후, 상기 용융아연도금강판을 PMT 140℃로 가열하여, 소부 건조하여 코팅시편을 제작하였다.
On the surface of the hot-dip galvanized steel sheet (zinc adhesion amount: 40 g / m 2), the coating solution described in the composition of Inventive Example 3 was changed to the composition shown in Table 4 while the composition of the composite resin A + B was changed to the basic composition, To form an organic-inorganic composite coating layer. Then, the hot-dip galvanized steel sheet was heated to 140 ° C by PMT and baked to prepare a coated specimen.

이후, 상기 코팅강판의 용액안정성과 내식성을 실시예 2와 동일한 조건 및 기준으로 평가하여 표 4에 나타내었다. 여기서 복합수지A는 우레탄-아크릴 복합수지를 의미하고, 복합수지B는 나노 실리케이트-아크릴 복합수지를 의미한다.
Then, the solution stability and corrosion resistance of the coated steel sheet were evaluated on the same conditions and basis as in Example 2, and are shown in Table 4. [ Herein, the composite resin A means a urethane-acrylic composite resin, and the composite resin B means a nano-silicate-acrylic composite resin.

복합수지AComposite Resin A 복합수지BComposite resin B 용액solution
안정성stability
내식Corrosion
castle
내가공흑화성In-process blackness
첨가량Addition amount 분자량Molecular Weight NCONCO // OHOH 첨가량Addition amount 분자량Molecular Weight 실리케이트Silicate 비교예21Comparative Example 21 1010 68,00068,000 1.61.6 1111 120,000120,000 1.51.5 XX 발명예23Inventory 23 1212 68,00068,000 1.61.6 1111 120,000120,000 1.51.5 발명예24Honors 24 1919 68,00068,000 1.61.6 1111 120,000120,000 1.51.5 발명예25Honors 25 3636 68,00068,000 1.61.6 1111 120,000120,000 1.51.5 비교예22Comparative Example 22 4040 68,00068,000 1.61.6 1111 120,000120,000 1.51.5 XX 비교예23Comparative Example 23 1919 35,00035,000 1.61.6 1111 120,000120,000 1.51.5 XX 발명예26Evidence 26 1919 40,00040,000 1.61.6 1111 120,000120,000 1.51.5 발명예27Honors 27 1919 90,00090,000 1.61.6 1111 120,000120,000 1.51.5 비교예24Comparative Example 24 1919 95,00095,000 1.61.6 1111 120,000120,000 1.51.5 XX 비교예25Comparative Example 25 1919 68,00068,000 0.50.5 1111 120,000120,000 1.51.5 XX 발명예28Evidence 28 1919 68,00068,000 1One 1111 120,000120,000 1.51.5 발명예29Evidence 29 1919 68,00068,000 33 1111 120,000120,000 1.51.5 비교예26Comparative Example 26 1919 68,00068,000 3.53.5 1111 120,000120,000 1.51.5 XX XX 비교예27Comparative Example 27 1919 68,00068,000 1.61.6 66 120,000120,000 1.51.5 XX 발명예30Inventory 30 1919 68,00068,000 1.61.6 88 120,000120,000 1.51.5 발명예31PROPERTIES 31 1919 68,00068,000 1.61.6 2424 120,000120,000 1.51.5 비교예28Comparative Example 28 1919 68,00068,000 1.61.6 3030 120,000120,000 1.51.5 XX 비교예29Comparative Example 29 1919 68,00068,000 1.61.6 1111 70,00070,000 1.51.5 XX XX 발명예32Exhibit 32 1919 68,00068,000 1.61.6 1111 80,00080,000 1.51.5 발명예33PROPERTIES 33 1919 68,00068,000 1.61.6 1111 160,000160,000 1.51.5 비교예30Comparative Example 30 1919 68,00068,000 1.61.6 1111 180,000180,000 1.51.5 XX 비교예31Comparative Example 31 1919 68,00068,000 1.61.6 1111 120,000120,000 0.50.5 XX 발명예34PROPOSITION 34 1919 68,00068,000 1.61.6 1111 120,000120,000 1One 발명예35Practice 35 1919 68,00068,000 1.61.6 1111 120,000120,000 33 비교예32Comparative Example 32 1919 68,00068,000 1.61.6 1111 120,000120,000 3.53.5 XX

비교예 21과 비교예 27은 복합수지A의 함량이 기준치보다 낮을 경우, 무기물과 혼합되어 치밀한 구조의 코팅층을 이룰 수 있는 수지의 함량이 부족하여 내식성이 열위해진다. 다만, 상기 복합수지는 투입함량이 지나치게 많아도, 비교예 22와 비교예 28에서와 같이 투입에 의한 물성향상 효과가 미미할 뿐 아니라 내식성이 다시 감소하는 경향을 보였다.
In Comparative Example 21 and Comparative Example 27, when the content of the composite resin A is lower than the reference value, the content of the resin capable of forming a coating layer of a dense structure mixed with the inorganic material is insufficient, and the corrosion resistance is weakened. However, even if the amount of the above-mentioned composite resin is too high, the effect of improving the physical properties by the addition is not sufficient and the corrosion resistance tends to decrease again as in Comparative Example 22 and Comparative Example 28.

비교예 23과 비교예 29는 상기 복합수지의 중량평균분자량(Mw)이 낮아서 무기 내식제 성분의 일부가 침전되는 문제가 있었다. 또한 비교예 29는 가공성 향상용 북합수지 B의 함량이 부족하여 내가공흑화성이 열화하였다. 반면에, 비교예 24와 비교예 30은 중량평균분자량이 너무 높아서 가교밀도를 확보하지 못한 관계로 내식성이 열화하였다.
Comparative Example 23 and Comparative Example 29 had a problem that the weight average molecular weight (Mw) of the composite resin was low and part of the inorganic corrosion inhibitor was precipitated. Further, in Comparative Example 29, the content of the resin B for improving the workability was insufficient, and the processing blackness deteriorated. On the other hand, in Comparative Example 24 and Comparative Example 30, the weight average molecular weight was too high and the crosslinking density could not be ensured, so that the corrosion resistance was deteriorated.

비교예 25는 수지코팅층의 경질도를 확보하지 못해서 가공시 수지가 검게 손상되어 가공흑화성이 열화하였다. 반면에, 비교예 26은 용액안정성 및 내식성이 열위되는 문제가 있었다.
In Comparative Example 25, since the hardness of the resin coating layer could not be secured, the resin was blackened during processing and the process blackness deteriorated. On the other hand, Comparative Example 26 had a problem that solution stability and corrosion resistance were inferior.

비교예 31은 내식제인 실리케이트의 함량이 부족하여 내식성이 열화하였다. 반면에, 비교예 32는 용액안정성이 열위되는 문제가 있었다.
In Comparative Example 31, the content of silicate, which is a corrosion-resistant agent, was insufficient and the corrosion resistance was deteriorated. On the other hand, Comparative Example 32 had a problem that solution stability was inferior.

이에 반하여, 본 발명에 제어하는 코팅용액의 조성을 만족하는 발명예 23 내지 35는 용액안정성, 내식성 및 내가공흑화성 등의 품질이 우수하게 평가되었음을 확인할 수 있다.
On the other hand, Examples 23 to 35 satisfying the composition of the coating solution to be controlled according to the present invention can confirm that the quality such as solution stability, corrosion resistance, and processing blackness is excellent.

[[ 실시예Example 4] 4]

용융아연도금강판(아연부착량 40g/㎡)의 표면에 상기 표 2에 기재된 발명예 3의 코팅용액을 롤코터 방식으로 도포하여 하기 표 5에 기재된 부착량으로 유무기복합 코팅층을 형성시킨 후, 상기 용융아연도금강판을 PMT 140℃로 가열하여, 소부 건조하여 코팅시편을 제작하였다.
The coating solution of Inventive Example 3 described in Table 2 was coated on the surface of a hot-dip galvanized steel sheet (zinc adhesion amount: 40 g / m 2) by a roll coating method to form an organic-inorganic composite coating layer at the adhesion amount shown in Table 5, The zinc plated steel sheet was heated to a PMT temperature of 140 ° C and baked to prepare a coating specimen.

이후, 상기 코팅강판의 전도성을 평가하여 표 5에 나타내었다. 이때 상기 전도성은 Loresta GP 측정기를 이용하여 측정하였고, 통상적 크롬프리 코팅강판의 요구 수준인 0.1mΩ을 기준으로 하여, 다음과 같이 평가하였다. 한편 내식성은 실시예 2와 동일한 조건 및 기준으로 평가하였다. Then, the conductivity of the coated steel sheet was evaluated and is shown in Table 5. The conductivity was measured using a Loresta GP measuring device and evaluated as follows based on a required level of 0.1 m? Of a conventional chrome-free coated steel sheet. On the other hand, the corrosion resistance was evaluated under the same conditions and standards as in Example 2.

○ : 0.1mΩ이하○: 0.1mΩ or less

X : 0.1mΩ초과
X: More than 0.1mΩ

구분division 부착량Adhesion
(g/㎡)(g / m 2)
내식성Corrosion resistance 전도성conductivity
비교예Comparative Example 33 33 0.20.2 XX 발명예Honor 36 36 0.50.5 발명예Honor 37 37 1.01.0 발명예Honor 38 38 2.02.0 비교예Comparative Example 34 34 2.12.1 XX

비교예 33은 부착량이 발명에서 제어하는 범위보다 적게 형성되어 내식 역할을 해주는 코팅층이 충분한 두께로 올라가지 못하여 내식성이 저하되었다.
In Comparative Example 33, the adhesion amount was formed to be less than the range controlled by the invention, and the corrosion resistance was degraded because the coating layer serving as a corrosion-resistant layer did not rise to a sufficient thickness.

비교예 34은 부착량이 발명이 제어하는 범위 이상으로 올라가서 코팅층에 비 전도성 성분들이 많아지면서 전자 흐름을 방해하여 전기 전도성이 저하되는 결과를 보여주었다.
In Comparative Example 34, the deposition amount increased beyond the range controlled by the present invention, and the non-conductive components were increased in the coating layer, thereby interfering with the electron flow, and the electrical conductivity was lowered.

이에 반하여, 본 발명에 제어하는 코팅용액의 조성을 만족하는 발명예 36 내지 38은 내식성과 전도성이 모두 우수하게 평가되었음을 확인할 수 있다.On the other hand, Examples 36 to 38 satisfying the composition of the coating solution to be controlled according to the present invention can be confirmed to have excellent corrosion resistance and conductivity.

Claims (8)

고형분 기준으로, 우레탄-아크릴 복합수지: 12~36중량%, 나노 실리케이트-아크릴 복합수지: 8~24중량% 및 무기계 내식제: 40~80중량%를 포함하고,
상기 무기계 내식제는 코팅용액 조성물 전체 대비 실란A: 8~33중량%, 실란B: 28~57중량%, 바나듐 포스페이트: 3~11중량%, 티오-우레아: 0.5~7중량%, 마그네슘 화합물: 0.1~1.4중량%, 칼슘화합물: 2.1~3.0중량%, 인산아연: 0.2~1.5중량%, 티타늄 카보네이트: 0.5~3.4중량%, Zr화합물: 0.5~4중량%, 및 실리카: 0.4~3중량%로 이루어지며,
상기 실란A는 감마 글리시독시프로필트리에톡시 실란 및 감마 아미노 프로필트리에톡시 실란 중 1종 또는 2종의 혼합물이고,
상기 실란B는 비닐계실란, 에폭시계실란 및 알콕시계실란 중 1종 또는 2종 이상의 혼합물인 것인, 내식성 및 내가공흑화성이 우수한 코팅용액 조성물.
A resin composition comprising a urethane-acrylic composite resin in an amount of 12 to 36 wt%, a nano-silicate-acrylic composite resin in an amount of 8 to 24 wt%, and an inorganic corrosion inhibitor in an amount of 40 to 80 wt%
The inorganic anticorrosion agent may be selected from the group consisting of 8 to 33% by weight of silane A, 28 to 57% by weight of silane B, 3 to 11% by weight of vanadium phosphate, 0.5 to 7% by weight of thio-urea, 0.1 to 1.4% by weight of calcium carbonate, 0.2 to 1.5% by weight of zinc phosphate, 0.5 to 3.4% by weight of titanium carbonate, 0.5 to 4% by weight of Zr compound and 0.4 to 3% Lt; / RTI >
The silane A is a mixture of one or two of gamma glycidoxypropyltriethoxysilane and gammaaminopropyltriethoxysilane,
Wherein the silane B is one or more of vinyl silane, epoxy silane and alkoxy silane.
제 1항에 있어서,
상기 나노 실리케이트-아크릴 복합수지는 나노 실리케이트가 1.0~3.0중량%가 포함된 것인, 내식성 및 내가공흑화성이 우수한 코팅용액 조성물.
The method according to claim 1,
Wherein the nanosilicate-acrylic composite resin contains 1.0 to 3.0% by weight of a nanosilicate, and the coating solution composition is excellent in corrosion resistance and in-process blackness.
제 1항에 있어서,
상기 우레탄-아크릴 복합수지의 중량평균분자량(Mw)은 각각 40000~90000이고, 상기 나노 실리케이트-아크릴 복합수지의 중량평균분자량(Mw)은 80,000~160,000인, 내식성 및 내가공흑화성이 우수한 코팅용액 조성물.
The method according to claim 1,
Wherein the weight average molecular weight (Mw) of the urethane-acrylic composite resin is 40,000 to 90,000 and the weight average molecular weight (Mw) of the nano-silicate-acrylic composite resin is 80,000 to 160,000. Composition.
삭제delete 삭제delete 삭제delete 소지강판; 상기 소지강판 상에 형성된 아연계 도금층; 및 상기 도금층 상에 형성된 코팅층을 포함하며,
상기 코팅층은 청구항 1 내지 3 중 어느 하나의 코팅용액 조성물에 의하여 형성된 것인, 내식성 및 내가공흑화성이 우수한 코팅강판.
Base steel sheet; A zinc plated layer formed on the base steel sheet; And a coating layer formed on the plating layer,
Wherein the coating layer is formed by the coating solution composition of any one of claims 1 to 3, and has excellent corrosion resistance and in-process blackness.
청구항 7에 있어서,
상기 코팅층의 부착량은 강판의 편면을 기준으로 0.5~2g/㎡인, 내식성 및 내가공흑화성이 우수한 코팅강판.
The method of claim 7,
Wherein the coating amount of the coating layer is 0.5 to 2 g / m < 2 > based on one side of the steel sheet, and the coating steel sheet has excellent corrosion resistance and in-process blackness.
KR1020120150134A 2012-12-21 2012-12-21 Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties KR101439669B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120150134A KR101439669B1 (en) 2012-12-21 2012-12-21 Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120150134A KR101439669B1 (en) 2012-12-21 2012-12-21 Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties

Publications (2)

Publication Number Publication Date
KR20140080930A KR20140080930A (en) 2014-07-01
KR101439669B1 true KR101439669B1 (en) 2014-09-24

Family

ID=51732341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120150134A KR101439669B1 (en) 2012-12-21 2012-12-21 Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties

Country Status (1)

Country Link
KR (1) KR101439669B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278477A (en) * 2018-03-29 2018-07-13 黑冻科技有限公司 A kind of fuel cell hydrogen-feeding gas cylinder and organosilicon polymer coating
KR102209545B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Heat-resistant coating solution having high moisture proof and coated steel sheet using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158646A (en) * 1997-12-01 1999-06-15 Nkk Corp Organically coated steel sheet excellent in corrosion resistance
KR100643355B1 (en) 2004-12-28 2006-11-10 주식회사 포스코 Steel Sheet for Automobile Fuel Tank with Excellent Corrosion Resistance and Adhesive and Manufacturing Process Thereof
KR20090036127A (en) * 2006-07-06 2009-04-13 다우 글로벌 테크놀로지스 인크. Dispersions of olefin block copolymers
KR100984935B1 (en) 2008-05-23 2010-10-01 현대하이스코 주식회사 Metal Surface Treatment Solution And Method of Manufacturing Steel Sheet Using The Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158646A (en) * 1997-12-01 1999-06-15 Nkk Corp Organically coated steel sheet excellent in corrosion resistance
KR100643355B1 (en) 2004-12-28 2006-11-10 주식회사 포스코 Steel Sheet for Automobile Fuel Tank with Excellent Corrosion Resistance and Adhesive and Manufacturing Process Thereof
KR20090036127A (en) * 2006-07-06 2009-04-13 다우 글로벌 테크놀로지스 인크. Dispersions of olefin block copolymers
KR100984935B1 (en) 2008-05-23 2010-10-01 현대하이스코 주식회사 Metal Surface Treatment Solution And Method of Manufacturing Steel Sheet Using The Same

Also Published As

Publication number Publication date
KR20140080930A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
KR101786392B1 (en) Solution composition for surface treating of steel sheet, zinc-based metal plated steel sheet using the same, and manufacturing method of the same
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
KR101786358B1 (en) Solution composition for surface treating of steel sheet, zinc-based metal plated steel sheet using the same, and manufacturing method of the same
US7348068B2 (en) Surface-treated steel sheet excellent in corrosion resistance, conductivity, and coating appearance
EP3730672B1 (en) Surface treatment solution composition for ternary hot-dip zinc alloy-plated steel sheet, providing excellent corrosion resistance and blackening resistance, ternary hot-dip zinc alloy-plated steel sheet surface-treated using same, and manufacturing method therefor
WO2001092602A1 (en) Organic coating covered steel sheet
KR20140021511A (en) Method for coating metallic surfaces with a polymer-containing coating agent, the coating agent and use thereof
KR102314431B1 (en) Coating composition for hot dip galvanized steel sheet having excellent blackening-resistance and alkali-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
SK288289B6 (en) Chrome free resin composition having good alkaline resistance and forming properties, method for surface treating steel sheet using the same and surface-treated steel sheet
KR20140081574A (en) Cr-FREE SURFACE TREATMENT COMPOSITIONS AND SURFACE TREATED GALVANIZED STEEL SHEET USING THEREOF
JP6577559B2 (en) Coating composition excellent in corrosion resistance and lubricity, and coated steel plate using the same
KR101461755B1 (en) Composition for organic-inorganic hybrid coating solution and steel sheet having organic-inorganic hybrid coating with superior corrosion-resistance and blackening-resistance
CN101512044B (en) Non-chromic thin organic-inorganic mixing coating layer for zincic metal
KR101449109B1 (en) Composition for organic-inorganic hybrid coating solution and steel sheet having organic-inorganic hybrid coating
KR101439669B1 (en) Coating solution and coated steel sheet having superior corrosion-resistance and tribological properties
KR20120128771A (en) Copolymer resin for metal surface treatment, composition comprising the copolymer resin and zinc-based metal plated steel sheets using the same
KR101500081B1 (en) Coationg solution and coated steel sheet having high alkali resistance
KR101736552B1 (en) Coating Composition Having Superior Corrosion-Resistance After Bending and Coated Steel Sheet Using the Same
KR101543893B1 (en) A coating composition for Zn-Al-Mg coated steel and the Zn-Al-Mg coated steel sheet, and method therefore
KR100586454B1 (en) Anti-corrosion coating composition and zinc-coated steel coated with the composition
KR101190425B1 (en) METAL SURFACE TREATMENT SOLUTION AND METHOD OF MANUFACTURING Cr-FREE HOT-ROLLED GALVANIZED STEEL SHEETS USING THE SAME
KR101435289B1 (en) Coating solution and coated steel sheet having high corrosion resistance
JP4947025B2 (en) Chrome-free painted steel plate with excellent red rust resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 4