KR101427599B1 - The purification method and the purification device refining as low density bio-methane - Google Patents

The purification method and the purification device refining as low density bio-methane Download PDF

Info

Publication number
KR101427599B1
KR101427599B1 KR1020140025568A KR20140025568A KR101427599B1 KR 101427599 B1 KR101427599 B1 KR 101427599B1 KR 1020140025568 A KR1020140025568 A KR 1020140025568A KR 20140025568 A KR20140025568 A KR 20140025568A KR 101427599 B1 KR101427599 B1 KR 101427599B1
Authority
KR
South Korea
Prior art keywords
gas
ammonia
stage
absorption tower
hydrogen sulfide
Prior art date
Application number
KR1020140025568A
Other languages
Korean (ko)
Inventor
이병관
이병기
이상훈
Original Assignee
청해이엔브이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 청해이엔브이 주식회사 filed Critical 청해이엔브이 주식회사
Priority to KR1020140025568A priority Critical patent/KR101427599B1/en
Application granted granted Critical
Publication of KR101427599B1 publication Critical patent/KR101427599B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • B01D47/08Spray cleaning with rotary nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Epidemiology (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention relates to a refining method of a low concentration methane gas, capable of maximizing separation and collection process efficiency of carbon dioxide (CO_2) and methane gas (CH_4) by installing multistage absorption tower at a high speed flow circulation type apparatus to separate and purify ammonia gas (NH_3) and hydrogen sulfide gas (H_2S) which are representative impurities in a system of purifying and treating low concentration methane gas generated during a anaerobic digestion process of organic waste such as food waste into high concentration methane gas through purification. More particularly, first, an ammonia (NH_3) gas included in a low concentration methane gas is absorbed and eluted using water in a high speed flow circulation type absorption tower with multistage, and second, a hydrogen sulfide (H2S) gas is removed by a wet catalyst chemical reaction absorption method using a liquid Fe-chelate catalyst synthesized using an organic acid salt as a dispersing agent in a high speed flow circulation type absorption tower with multistage designed to have the same structure.

Description

고속 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 정제방법 및 그 장치{The purification method and the purification device refining as low density bio-methane}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purification method and apparatus for low-concentration methane gas using a high-

본 발명은 고속 유동순환식 장치 내에 다단 흡수탑을 설치하여 음식물쓰레기 등의 유기성 폐기물의 혐기성 소화공정에서 발생하는 저농도 메탄가스를 정제하여 고농도의 메탄가스로 정제 처리하는 시스템 중 대표적인 불순물 성분인 암모니아(NH3) 가스와 황화수소(H2S) 가스를 사전에 분리(제거) 정제하여 연결되는 유기자원 가스들인 이산화탄소(CO2)와 메탄(CH4) 가스의 분리 회수 공정 효율을 극대화 시킬 수 있도록 한 저농도 메탄가스의 정제방법에 관한 것으로서, 보다 구체적으로는 1차적으로 저농도 메탄가스에 포함되어 있는 암모니아(NH3) 가스를 고속 유동순환식 다단 흡수탑 내에서 물을 이용하여 흡수시키고, 2차적으로 동일한 구조로 설계된 고속 유동순환식 다단 흡수탑내에서 유기산염을 분산제로 사용하여 합성한 액상 철킬레이트(Fe-chelate) 촉매에 의한 습식 촉매 화학반응 흡수법으로 황화수소(H2S) 가스를 제거하는 저농도 메탄가스의 정제방법에 관한 것이다.
The present invention relates to a system for purifying low-concentration methane gas generated in an anaerobic digestion process of organic wastes such as food wastes by installing a multi-stage absorption tower in a high-speed flow circulation apparatus and purifying ammonia (Methane) and methane (CH4) gas, which are organic resources that are separated and separated by previously separating (purifying) NH 3 gas and hydrogen sulfide (H2S) More specifically, ammonia (NH3) gas contained in a low-concentration methane gas is first absorbed by using water in a high-velocity circulation type multi-stage absorption tower, and a high-speed flow A liquid iron chelate (Fe-chelate) synthesized by using an organic acid salt as a dispersant in a circulating multi- It relates to the purification of a low concentration of methane gas to remove hydrogen sulfide (H2S) by a wet chemical catalyst reaction gas absorption by the sheet.

일반적으로 국내에 도입된 음식물쓰레기 공공처리시설의, 혐기성 처리공정은 음식물쓰레기 처리장내의 유기물 성분을 메탄에너지로 전환할 수 있고, 산소의 공급도 불필요하여 에너지의 소모가 적고, 발생 슬러지도 호기성 공정의 약 10% 내외여서 유럽 및 미국 등지에서는 경제적인 처리 공정으로 주로 사용되고 있다. Generally, the anaerobic treatment process of the food waste public treatment facility introduced in Korea can convert the organic matter component in the food waste disposal plant into methane energy, and it is unnecessary to supply oxygen, thereby consuming less energy. It is about 10%, and it is mainly used as an economical treatment process in Europe and the United States.

환경부의 통계에 따르면 음식물쓰레기의 90%는 자원화 방법을 통하여 처리되고 있으며, 그중 80%이상이 퇴비화 하는 것으로 나타났다. 하지만 퇴비화를 할 경우에는 온실가스를 216kg CO2-eq/ton 배출하는 것으로 평가되었다. According to the statistics of the Ministry of Environment, 90% of food waste is processed through the recycling method, and more than 80% of the waste is composted. However, in case of composting, it was estimated that greenhouse gas was emitted at 216 kg CO2-eq / ton.

따라서, 정부에서는 퇴비화 재활용보다는 바이오매스 에너지원으로 재활용하는 것을 보다 적극적으로 권장하고 있다. 이를 통한 대체에너지 생산과 CO2 배출량 감소에 기여하도록 하는 생각이 에너지 변환기술이다. Therefore, the government is actively encouraging recycling as a biomass energy source rather than composting recycling. The energy conversion technology is thought to contribute to the production of alternative energy and the reduction of CO2 emissions.

즉, 음식물쓰레기를 통해 바이오가스을 조성하고 이것을 연소하는 것으로 전력 등의 에너지로 변화하는 것을 지속적으로 행한다는 구상이다. 결국 석탄, 석유, 천연가스 등의 화석연료를 원료로 발전하면 CO2의 배출이 급격히 증가하지만 이 연료들을 재생 가능한 바이오매스로 대체하는 것으로 화석연료의 사용을 억제할 수 있게 되는 것이다. In other words, biogas is formed through food waste, and it is a concept to continuously change to energy such as electric power by burning it. As a result, fossil fuels such as coal, oil, and natural gas are used as raw materials, and the emission of CO2 increases rapidly. However, replacing these fuels with renewable biomass can suppress the use of fossil fuels.

다시 말해 바이오매스 등의 이용에 의해 그 사용량만큼 화석연료를 사용하는 경우의 CO2발생량을 저감할 수 있게 되는 것이다. 그러므로 이러한 CO2의 배출을 줄이던가 아니면 배출된 가스를 경제적으로 재이용 할 수 있는 재활용 기술개발이 시급한 형편이다. In other words, by using biomass or the like, it is possible to reduce the amount of generated CO2 when the fossil fuel is used as much as the usage amount. Therefore, it is imperative to develop recycling technology that can reduce CO2 emissions or economically reuse exhausted gases.

대한민국 등록특허 10-09511367호Korean Patent No. 10-09511367

전술한 바와 같은 문제점을 해결하기 위하여 안출된 본 발명의 목적은 음식물쓰레기의 혐기소화공정을 이용한 자립형 에너지 전환기술을 제공하는데 있다.It is an object of the present invention to provide a self-sustaining energy conversion technology using anaerobic digestion process of food waste.

본 발명의 다른 목적은 고속 유동순환식 장치 내에 다단 흡수탑을 설치하여 음식물쓰레기 등의 유기성 폐기물의 혐기성 소화공정에서 발생하는 저농도 메탄가스를 정제하여 고농도의 메탄가스로 정제 처리하는 시스템 중 대표적인 불순물 성분인 암모니아(NH3) 가스와 황화수소(H2S) 가스를 사전에 분리(제거) 정제하여 연결되는 유기자원 가스들인 이산화탄소(CO2)와 메탄(CH4) 가스의 분리 회수 공정 능력을 보다 향상시킬 수 있도록 하는 저농도 메탄가스의 정제방법을 제공하는데 있다.
It is another object of the present invention to provide a multi-stage absorption tower in a high-speed flow circulation system, which is capable of purifying low-concentration methane gas generated in an anaerobic digestion process of organic wastes such as food wastes, (CO 2) and methane (CH 4) gas, which are organic resources that are separated by removing (purifying) ammonia (NH 3) gas and hydrogen sulfide (H2S) And a method for purifying methane gas.

본 발명의 목적은 고속 유동순환식 장치 내에 다단 흡수탑을 설치하여 음식물쓰레기 등의 유기성 폐기물의 혐기성 소화공정에서 발생하는 저농도 메탄가스를 정제하여 고농도의 메탄가스로 정제 처리하는 정제공정의 전처리 공정으로서 암모니아(NH3) 가스와 황화수소(H2S) 가스를 사전에 분리 제거시켜 정제하는 것을 특징으로 하는 고속 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 정제방법을 통해 달성될 수 있다.An object of the present invention is to provide a pretreatment process of a refining process for refining low-concentration methane gas generated in an anaerobic digestion process of organic waste such as food waste by refluxing methane gas at a high concentration by providing a multi-stage absorption tower in a high- The present invention can be accomplished through a method of purifying low-concentration methane gas using a high-flow-circulating multistage absorption tower characterized in that ammonia (NH3) gas and hydrogen sulfide (H2S) gas are previously separated and purified.

여기서, 장치 내에 유입된 저농도 바이오 가스 중 암모니아(NH3) 가스는 암모니아(NH3) 흡수탱크에서 물을 흡수제로 사용하여 1단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 암모니아 가스를 흡수하여 제거한 뒤, 잔류하는 가스를 물을 흡수제로 사용하여 연속적으로 2단계 다단 흡수탑에서 제거 후, 3단계, 4단계 다단 흡수탑을 거치면서 완벽하게 제거되도록 하는 것을 특징으로 한다.Here, the ammonia (NH3) gas in the low concentration biogas introduced into the apparatus absorbs and removes the ammonia gas from the ammonia (NH3) absorption tank by the nozzle injection by the rotation of the orifice in the one-stage multistage absorption tower using water as the absorbent, The residual gas is continuously removed from the two-stage multi-stage absorption tower using water as an absorbent, and then completely removed while passing through the multi-stage absorption tower in the third and fourth stages.

또한, 처리된 저농도 바이오 가스 중 암모니아(NH3) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 이송 펌프를 사용하여 암모니아(NH3) 흡수탱크에 있는 암모니아수를 암모니아 저장탱크로 이송한 후 암모니아(NH3) 중화 제거탱크에 충진되어 있는 보충수를 암모니아(NH3) 흡수탱크로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거하는 것을 특징으로 한다. When the removal efficiency of ammonia (NH3) gas in the treated low concentration biogas drops, ammonia (NH3) in the ammonia (NH3) absorption tank is transferred to the ammonia storage tank using ammonia (NH3) The makeup water filled in the neutralization removal tank is transferred to the ammonia (NH3) absorption tank, and the noxious gas is continuously removed from the multi-stage absorption tower.

또한, 암모니아(NH3) 가스가 1차 제거된 바이오가스를 황화수소(H2S) 흡수탱크에서 유기산 철킬레이트(Fe-chelate) 수용액을 이용하여 1단계, 2단계, 3단계, 4단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 황화수소(H2S) 가스를 흡수하여 제거하는 것을 특징으로 한다.In addition, biogas in which ammonia (NH3) gas was firstly removed was treated with an organic acid iron chelate aqueous solution in a hydrogen sulfide (H2S) absorption tank to remove the orifice from the first, second, third, And the hydrogen sulfide (H2S) gas is absorbed and removed by nozzle injection by rotation.

또한, 처리된 저농도 바이오 가스 중 황화수소(H2S) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 이송 펌프를 사용하여 황화수소(H2S) 흡수탱크에 있는 액상 유기산 철킬레이트(Fe-chelate)를 촉매 환원 재생탱크로 이송한 후 촉매 환원 재생탱크에 충진되어 있는 이미 사전에 재생 처리된 보충 철킬레이트(Fe-chelate) 촉매를 황화수소(H2S) 흡수탱크로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거하는 것을 특징으로 한다.
In addition, when the removal efficiency of the hydrogen sulfide (H2S) gas in the treated low concentration biogas falls, the liquid organic acid iron chelate (Fe-chelate) in the hydrogen sulfide (H2S) absorption tank is regenerated (Fe-chelate) catalyst, which has been previously regenerated and filled in the catalytic reduction recovery tank, is transferred to a hydrogen sulfide (H2S) absorption tank, and the harmful gas is continuously removed from the multistage absorption tower .

본 발명의 효과는 다음과 같다.The effects of the present invention are as follows.

먼저, 본 발명은 고속 유동순환식 다단 흡수탑에 의한 암모니아(NH3) 가스와 황화수소(H2S) 가스 분리(제거) 정제 처리를 안정적으로 전처리 함으로써, 후단에 연결되는 유가자원 가스들인 이산화탄소(CO2)와 메탄(CH4) 가스의 분리 회수 공정 능력을 크게 향상시킬 수 있는 효과를 갖는다.First, the present invention stably prepares the ammonia (NH 3) gas and hydrogen sulfide (H 2 S) gas separation (purification) purification treatment by the high-speed flow circulation type multi-stage absorption tower to remove carbon dioxide (CO 2) It is possible to remarkably improve the separation and recovery process capability of the methane (CH4) gas.

또한, 본 발명은 고속 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 분리정제 공정은 일정기간 동안 처리수나 촉매들의 교체 공정 없이 반복하여 순환시킴으로써 저농도 메탄가스 정제 처리 정화능력을 안정적으로 보다 향상시킬 수 있는 효과를 갖는다.
In addition, the present invention can stably improve the low-concentration methane gas purification treatment purification ability by repeatedly circulating the low-concentration methane gas using the high-speed flow circulation type multi-stage absorption tower without repeating the process water or catalyst for a predetermined period .

도 1은 본 발명의 전체 공정 개념도.
도 2와 도 3은 본 발명의 고속 유동순환식 다단 흡수탑 장치의 구조도 및 개념도.
도 4는 본 발명의 일실시예로서, 처리시간별 암모니아 가스 제거율도표.
도 5, 도 6, 도 7, 도 8은 본 발명의 일실시예로서, 철킬레이트(Fe-chelate)촉매 농도별, 처리시간별 황화수소 가스 제거율도표.
1 is a whole process conceptual view of the present invention.
2 and 3 are a structural view and a conceptual view of a high-speed flow circulation type multi-stage absorption tower apparatus of the present invention.
FIG. 4 is a graph showing ammonia gas removal rates by treatment time, according to an embodiment of the present invention. FIG.
FIGS. 5, 6, 7, and 8 are graphs showing hydrogen sulfide gas removal rates by iron chelate catalyst concentration and treatment time according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 구체적인 실시예에 대해 설명하기로 한다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

도 1은 본 발명의 전체 공정 개념도이고, 도 2와 도 3은 본 발명의 고속 유동순환식 다단 흡수탑 장치의 구조도 및 개념도를 도시한 것이다. FIG. 1 is a conceptual view of the entire process of the present invention, and FIGS. 2 and 3 illustrate a structural view and a conceptual view of a high-speed flow circulating multistage absorber of the present invention.

도 1과 도 2 그리고 도 3을 참조하면, 본 발명의 일실시 예에 따른 저농도 메탄가스의 정제장치는 고속 유동순환식 다단흡수탑을 이용한 암모니아(NH3) 흡수탱크(6)와 황화수소(H2S) 흡수탱크(7), 그리고 배출수의 재순환 사용을 위한 전기중화 제거장치(10), 촉매 환원 재생탱크(17), 이온 탈취장치(11)들을 포함한다.1, 2, and 3, an apparatus for purifying methane gas of low concentration according to an embodiment of the present invention includes an ammonia (NH3) absorption tank 6 and a hydrogen sulfide (H2S) An absorption tank 7, and an electro decontamination device 10 for use in recirculation of the effluent water, a catalytic reduction recovery tank 17, and an ion deodorization device 11.

먼저, 1차적으로 장치 내에 유입된 저농도 바이오 가스 중 암모니아(NH3) 가스는 암모니아(NH3) 흡수탱크(6)에서 물을 흡수제로 사용하여 1단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 암모니아 가스를 흡수하여 제거한 뒤, 잔류하는 가스를 물을 흡수제로 사용하여 연속적으로 2단계 다단 흡수탑에서 제거 후, 3단계, 4단계 다단 흡수탑을 거치면서 완벽하게 제거한다.First, the ammonia (NH3) gas in the low concentration biogas introduced into the apparatus is introduced into the ammonia (NH3) absorption tank 6 through the nozzle injection by the orifice rotation in the one-stage multi- And the remaining gas is continuously removed from the two-stage multi-stage absorption tower using water as an absorbent, and then completely removed while passing through the multi-stage absorption tower in the third and fourth stages.

이렇게 암모니아(NH3) 가스가 1차 제거된 바이오가스는 황화수소(H2S) 흡수탱크(7)에서 유기산 철킬레이트(Fe-chelate) 수용액을 이용하여 동일한 방법으로 1단계, 2단계, 3단계, 4단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 황화수소(H2S) 가스를 흡수하여 제거한다. The biogas in which the ammonia (NH3) gas is firstly removed by the same method is used in the hydrogen sulfide (H2S) absorption tank 7 using the aqueous solution of the organic acid iron chelate (Fe-chelate) In the multi-stage absorption tower, the H2S gas is absorbed and removed by nozzle injection by orifice rotation.

이 때 본 충진 흡수탑에서는 폴링으로 체류 시간을 증가 시키고, 데미스트로 잔류 가스를 제거한 후 배출된다.At this time, in the present absorption tower, the residence time is increased by polling, and after the residual gas is removed by the demister, it is discharged.

처리된 저농도 바이오 가스 중 암모니아(NH3) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 암모니아 이송 펌프(19)를 사용하여 암모니아(NH3) 흡수탱크(6)에 있는 암모니아수를 암모니아 저장탱크(20)로 이송한 후 암모니아(NH3) 중화 제거탱크(16)에 충진되어 있는 보충수를 암모니아(NH3) 흡수탱크(6)로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거한다.When the ammonia (NH3) gas removal efficiency of the treated low concentration biogas drops, the ammonia water in the ammonia (NH3) absorption tank 6 is supplied to the ammonia storage tank 20 using the attached ammonia transfer pump 19, The NH 3 neutralization removal tank 16 is transferred to the ammonia (NH 3) absorption tank 6 to continuously remove the toxic gas from the multi-stage absorption tower 16.

상기한 공정과 동일하게, 처리된 저농도 바이오 가스 중 황화수소(H2S) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 이송 펌프(22)를 사용하여 황화수소(H2S) 흡수탱크(8)에 있는 액상 유기산 철킬레이트(Fe-chelate)를 촉매 환원 재생탱크(17)로 이송한 후 촉매 환원 재생탱크(17)에 충진되어 있는 이미 사전에 재생 처리된 보충 철킬레이트(Fe-chelate) 촉매를 황화수소(H2S) 흡수탱크(8)로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거한다.When the removal efficiency of the hydrogen sulfide (H2S) gas in the treated low-concentration biogas falls, the liquid organic acid (H2S) in the hydrogen sulfide (H2S) absorption tank (8) After the iron chelate is transferred to the catalytic reduction regeneration tank 17, the previously regenerated supplemental iron chelate catalyst (H2S), which is filled in the catalytic reduction regeneration tank 17, Is transferred to the absorption tank (8), and the noxious gas is continuously removed from the multi-stage absorption tower.

한편, 상기 공정 중, 특히 배출수와 촉매의 재순환 재활용을 위한 공정들인 암모니아 중화제거 탱크(16)와 촉매 환원 재생탱크(17)에서 발생될 수 있는 악취가스는 탱크 상단에 부착되어 있는 가스 배출 환풍 설비에 이온 탈취장치(11)를 부착하여 완벽하게 악취를 제거하여 시스템 밖으로 배출한다.Meanwhile, odor gas, which may be generated in the ammonia neutralization removal tank 16 and the catalytic reduction recovery tank 17, which are processes for recycling and recycling the effluent and the catalyst, The ion deodorizing device 11 is attached to remove the odor completely and discharge it out of the system.

또한, 본 발명에 의한 저농도 메탄가스의 정제 시스템 공정 중에는 발생되는 배출수를 전자기 공명 장치와 전자장 장치, 전기 화학적 분해 장치를 이용하여 정화처리하여 재순환시키는 공정 기술과 일정기간 사용한 액상 철킬레이트(Fe-chelate) 촉매를 재생하여 재사용하는 공정 기술 및 상기 공정들에서 발생될 수 있는 악취가스를 이온발생기 집적시스템으로 이온중화시켜 제거할 수 있는 이온 탈취장치가 포함될 수 있다.During the refining system process of the low-concentration methane gas according to the present invention, the effluent water generated is purified by using an electromagnetic resonance device, an electromagnetic field device or an electrochemical decomposition device, and is recycled, and a liquid iron chelate (Fe-chelate ) Process technology for regenerating and reusing the catalyst, and an ion deodorization device capable of ionizing and neutralizing the malodorous gas generated in the processes by the ion generator integration system.

도 4는 본 발명의 일실시예로서, 상기한 처리공정에 준하여 실시한 시험가동 실험결과로서, 다음 표 1에 나타낸 바와 같은 처리조건으로 실험한 처리시간별 암모니아 가스 제거율도표이다.FIG. 4 is a chart of the ammonia gas removal rate by treatment time, which is an experiment according to the treatment conditions as shown in the following Table 1, as a result of the test operation test conducted according to the above-described treatment process.

Water를 이용한 암모니아가스 제거 실험 조건 Ammonia gas removal experiment condition using water Inlet 조건 (water)Inlet condition (water) NH3 농도
(ppm)
NH 3 concentration
(ppm)
Gas유량
(L/min)
Gas flow rate
(L / min)
pHpH 펌프
분사량
Pump
Injection quantity
pilot size pilot size
결과값Result value 1,0201,020 44 7.837.83 20L/min20 L / min 600*400*1500600 * 400 * 1500

상기 표 1과 도 4를 참조하면, 함유 암모니아 가스는 물에 대해 비교적 높은 용해도를 가지기 때문에 흡수액으로 물(Water)를 이용하여 테스트를 진행하였다.Referring to Table 1 and FIG. 4, since the contained ammonia gas has a comparatively high solubility in water, the water was used as an absorbing solution.

Pilot Plant에 1020μ㏖/㏖ 바이오가스 중의 암모니아 가스를 유입시켜 실험장치 유출부 농도를 확인한 후 노즐을 이용한 물(Water)을 분사시켜 제거된 유출부 가스농도를 측정기기로 연속 측정하였다. Ammonia gas in the 1020μmol / mol biogas was injected into the pilot plant, and the concentration of the outflow gas was injected through the nozzle after confirming the concentration of the outlet of the experimental apparatus.

그 결과, 암모니아농도는 초기7~8분정도 100ppm 이하로 급속히 제거되다가 서서히 감소하여 최종제거농도는 10ppm 이하로 측정되었다. 결국 최종제거율은 99.1%의 제거효율을 나타내어 매우 만족스러운 결과 값을 얻을 수 있었다. As a result, the ammonia concentration was rapidly reduced to 100 ppm or less in the initial 7 to 8 minutes, and gradually decreased, and the final removal concentration was measured to be 10 ppm or less. As a result, the final removal rate showed 99.1% removal efficiency and very satisfactory results were obtained.

도 5, 도 6, 도 7, 도 8은 본 발명의 일실시예로서, 상기한 처리공정에 준하여 실시한 시험가동 실험결과로서, 다음 표 2, 표 3, 표 4, 표 5에 나타낸 바와 같은 처리조건으로 실험한 철킬레이트(Fe-chelate) 촉매 농도별, 처리시간별 황화수소 가스 제거율도표이다.Figs. 5, 6, 7 and 8 show the results of the test operation performed in accordance with the above-described process, as shown in the following Tables 2, 3, 4 and 5 (Fe-chelate) catalyst concentration and the treatment time.

Fe-chelate촉매를 이용한 탈황실험 조건(촉매농도:500ppm)Desulfurization experiment conditions using Fe-chelate catalyst (catalyst concentration: 500 ppm) Inlet 조건 (Fe-chelate 500ppm)Inlet conditions (Fe-chelate 500 ppm) H2S 농도
(ppm)
H 2 S concentration
(ppm)
Gas유량
(L/min)
Gas flow rate
(L / min)
pHpH 펌프
분사량
Pump
Injection quantity
pilot size pilot size
결과값Result value 996996 44 7.437.43 20L/min20 L / min 600*400*1500600 * 400 * 1500

Fe-chelate촉매를 이용한 탈황실험 조건(촉매농도:1,000ppm)Desulfurization experiment conditions using Fe-chelate catalyst (catalyst concentration: 1,000 ppm) Inlet 조건 (Fe-chelate 1,000ppm)Inlet conditions (Fe-chelate 1,000 ppm) H2S 농도
(ppm)
H 2 S concentration
(ppm)
Gas유량
(L/min)
Gas flow rate
(L / min)
pHpH 펌프
분사량
Pump
Injection quantity
pilot size pilot size
결과값Result value 996996 44 7.627.62 20L/min20 L / min 600*400*1500600 * 400 * 1500

Fe-chelate촉매를 이용한 탈황실험 조건(촉매농도:2,500ppm)Desulfurization experiment conditions using Fe-chelate catalyst (catalyst concentration: 2,500ppm) Inlet 조건 (Fe-chelate 2,500ppm)Inlet conditions (Fe-chelate 2,500 ppm) H2S 농도
(ppm)
H 2 S concentration
(ppm)
Gas유량
(L/min)
Gas flow rate
(L / min)
pHpH 펌프
분사량
Pump
Injection quantity
pilot size pilot size
결과값Result value 996996 44 7.787.78 20L/min20 L / min 600*400*1500600 * 400 * 1500

Fe-chelate촉매를 이용한 탈황실험 조건(촉매농도:10,000ppm)Desulfurization experiment conditions using Fe-chelate catalyst (catalyst concentration: 10,000 ppm) Inlet 조건 (Fe-chelate 10,000ppm)Inlet conditions (Fe-chelate 10,000 ppm) H2S 농도
(ppm)
H 2 S concentration
(ppm)
Gas유량
(L/min)
Gas flow rate
(L / min)
pHpH 펌프
분사량
Pump
Injection quantity
pilot size pilot size
결과값Result value 996996 44 7.837.83 20L/min20 L / min 600*400*1500600 * 400 * 1500

도 5와 표 2를 참조하면, 흡수액으로 철킬레이트(Fe-chelate) 촉매 농도를 500ppm인 것을 이용하여 TEST를 진행한 결과, 바이오가스 중의 황화수소 농도가 996μ㏖/㏖인 유입가스가 유출구 초기 20분까지는 110μ㏖/㏖정도로 급격한 감소를 보였으며 20분 이후부터는 큰 폭의 차이가 없었고 Outlet조건인 60분 후 최종 유출가스 농도는 115ppm으로 측정되어 88.5%의 제거효율을 보였다.Referring to FIG. 5 and Table 2, the test was conducted using an iron chelate (Fe-chelate) catalyst concentration of 500 ppm as an absorbing solution. As a result, the inflow gas having a hydrogen sulfide concentration of 996 mu mol / And the removal efficiency was 88.5% after measuring the final effluent gas concentration at 115 ppm after 60 minutes of the outlet condition.

도 6과 표 3을 참조하면, 흡수액으로 철킬레이트(Fe-chelate) 촉매 농도를 1,000ppm인 것을 이용하여 TEST를 진행한 결과, 바이오가스 중의 황화수소 농도가 996μ㏖/㏖인 유입가스가 유출구 초기 10분까지는 120μ㏖/㏖정도로 급격한 감소를 보였으며 철킬레이트(Fe-chelate) 촉매 농도가 500ppm인 것에 비해 제거농도는 높았으나, 10분 이후부터 점차 그 제거율은 감소하여 Outlet조건인 60분 후 최종 유출가스 농도는 91ppm으로 측정되어 90.9%의 제거효율을 보였다.6 and Table 3, the test was carried out using an iron chelate (Fe-chelate) catalyst concentration of 1,000 ppm as the absorbing solution. As a result, it was found that the inflow gas having a hydrogen sulfide concentration of 996 mu mol / Min, the removal rate was steeply decreased to about 120 μmol / mol, and the removal rate was higher than that of iron chelate catalyst (500 ppm). However, the removal rate gradually decreased after 10 minutes, The gas concentration was measured at 91 ppm and showed a removal efficiency of 90.9%.

도 7과 표 4를 참조하면, 흡수액으로 철킬레이트(Fe-chelate) 촉매 농도를 2,500ppm인 것을 이용하여 TEST를 진행한 결과, 바이오가스 중의 황화수소 농도가 996μ㏖/㏖인 유입가스가 유출구 초기 10분까지는 100μ㏖/㏖정도로 급격한 감소를 보였으며, 10분 이후부터 점차 그 제거율은 감소하여 Outlet조건인 60분 후 최종 유출가스 농도는 44ppm으로 측정되어 95.58%의 제거효율을 보였다.7 and Table 4, the test was carried out using an iron chelate (Fe-chelate) catalyst concentration of 2,500 ppm as an absorbing solution. As a result, it was found that the inflow gas having a hydrogen sulfide concentration of 996 mu mol / Minute, the removal rate decreased gradually after 10 minutes, and the final effluent gas concentration was measured to be 44 ppm after 60 minutes as an outlet condition, and the removal efficiency was 95.58%.

도 8과 표 5를 참조하면, 흡수액으로 철킬레이트(Fe-chelate) 촉매 농도를 10,000ppm인 것을 이용하여 TEST를 진행한 결과, 바이오가스 중의 황화수소 농도가 996μ㏖/㏖인 유입가스가 Outlet조건인 60분 후 최종 유출가스 농도는 35ppm으로 측정되어 96.49%의 제거효율을 보였다.Referring to FIG. 8 and Table 5, when the test was conducted using an iron chelate (Fe-chelate) catalyst concentration of 10,000 ppm as the absorbing solution, it was found that the inflow gas having a hydrogen sulfide concentration of 996 mu mol / After 60 minutes, the final effluent gas concentration was measured to be 35 ppm, indicating a removal efficiency of 96.49%.

상기실험결과들을 종합해 보면 철킬레이트(Fe-chelate) 촉매 농도를 높임에 따라 반응시간도 단축되어 현장 운전 시에는 기본농도 이상으로 운전 시에 반응시간을 단축할 수 있고 처리효율도 증가할 것으로 보이며, 분석결과 철킬레이트(Fe-chelate) 촉매농도를 높일수록 황화수소 제거율 또한 높게 분석되어 현장 유입가스의 농도에 따라 적용되는 농도를 달리하면 처리효율도 상승할 것으로 기대 할 수 있었다.According to the above experimental results, the reaction time can be shortened by increasing the Fe-chelate catalyst concentration, so that the reaction time can be shortened and the treatment efficiency can be increased in the case of operation at the basic concentration or more in the field operation As a result of analysis, it was expected that the higher the catalyst concentration of iron chelate, the higher the removal rate of hydrogen sulfide.

1 : pH 조절탱크 2 : pH 조절펌프
3 : 촉매 보충펌프 4 : 촉매 보충탱크
5 : 암모니아 흡수펌프 6 : 암모니아 흡수탱크
7 : 황화수소 흡수탱크 8 : 황화수소 흡수펌프
9 : 전기중화 공급펌프 10 : 전기중화 제거장치
11 : 이온 탈취장치 12 : 암모니아 흡수탱크 공급펌프
13 : 여과탱크 14 : 황화수소 흡수탱크 공급펌프
15 : 여과탱크 16 : 암모니아 중화제거탱크
17 : 촉매 환원 재생탱크 18 : 브로와
19 : 암모니아 이송펌프 20 : 암모니아 저장탱크
21 : 암모니아 공급펌프 22 : 황화수소 이송펌프
23 : 황화수소 저장탱크 24 : 황화수소 공급펌프
1: pH adjustment tank 2: pH adjustment pump
3: Catalyst refill pump 4: Catalyst refill tank
5: Ammonia absorption pump 6: Ammonia absorption tank
7: hydrogen sulfide absorption tank 8: hydrogen sulfide absorption pump
9: Electric neutralization supply pump 10: Electric neutralization removal device
11: ion deodorization device 12: ammonia absorption tank feed pump
13: Filtration tank 14: Hydrogen sulfide absorption tank feed pump
15: Filtration tank 16: Ammonia neutralization tank
17: Catalytic reduction recovery tank 18:
19: Ammonia transfer pump 20: Ammonia storage tank
21: ammonia feed pump 22: hydrogen sulfide feed pump
23: hydrogen sulfide storage tank 24: hydrogen sulfide feed pump

Claims (5)

고속 유동순환식 장치 내에 다단 흡수탑을 설치하여 음식물쓰레기 등의 유기성 폐기물의 혐기성 소화공정에서 발생하는 저농도 메탄가스를 정제하여 고농도의 메탄가스로 정제 처리하는 정제공정의 전처리 공정으로서 암모니아(NH3) 가스와 황화수소(H2S) 가스를 사전에 분리 제거시켜 정제하며;
장치 내에 유입된 저농도 바이오 가스 중 암모니아(NH3) 가스는 암모니아(NH3) 흡수탱크에서 물을 흡수제로 사용하여 1단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 암모니아 가스를 흡수하여 제거한 뒤, 잔류하는 가스를 물을 흡수제로 사용하여 연속적으로 2단계 다단 흡수탑에서 제거 후, 3단계, 4단계 다단 흡수탑을 거치면서 완벽하게 제거되도록 하고;
암모니아(NH3) 가스가 1차 제거된 바이오가스를 황화수소(H2S) 흡수탱크에서 유기산 철킬레이트(Fe-chelate) 수용액을 이용하여 1단계, 2단계, 3단계, 4단계 다단 흡수탑에서 오리피스 회전에 의한 노즐 분사로 황화수소(H2S) 가스를 흡수하여 제거하며;
저농도 메탄가스의 정제 공정 중에 발생되는 배출수를 전자기 공명 장치, 전자장 장치, 전기 화학적 분해 장치를 차례대로 거쳐 정화처리하여 재순환시키는 공정과, 상기 메탄가스의 정제 공정에서 발생될 수 있는 악취가스를 이온발생기로 통과시켜 이온중화되어 제거시키는 공정을 포함하는 것을 특징으로 하는 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 정제방법.
(NH3) gas as a pretreatment process for purifying low-concentration methane gas generated in the anaerobic digestion process of organic waste such as food wastes by refining the high-concentration methane gas by installing a multi-stage absorption tower in a high-speed flow circulation system, And hydrogen sulfide (H2S) gas are separated and removed in advance;
The ammonia (NH3) gas in the low-concentration biogas introduced into the apparatus absorbs and removes the ammonia gas from the ammonia (NH3) absorption tank by using the nozzle injection by the orifice rotation in the one-stage multistage absorption tower using water as the absorbent, Gas is removed continuously from the two-stage multi-stage absorption tower using water as the absorbent, and then completely removed through the multi-stage absorption tower of the third stage and the fourth stage;
Biogas in which ammonia (NH3) gas is firstly removed is subjected to orifice rotation in the first stage, second stage, third stage, and fourth stage multi-stage absorption tower using an aqueous solution of organic acid iron chelate (Fe-chelate) in a hydrogen sulfide Absorbing and removing hydrogen sulfide (H2S) gas by nozzle spraying;
A step of recycling the effluent water generated during the refining process of the low-concentration methane gas through the electromagnetic resonance device, the electromagnetic field device, and the electrochemical decomposition device in order, and recycling the odor gas generated in the purification process of the methane gas, And then neutralizing the ion so that the ion is neutralized. The method for purifying low-concentration methane gas using the multi-stage adsorption tower of the flow circulation type.
삭제delete 제1항에 있어서,
처리된 저농도 바이오 가스 중 암모니아(NH3) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 이송 펌프를 사용하여 암모니아(NH3) 흡수탱크에 있는 암모니아수를 암모니아 저장탱크로 이송한 후 암모니아(NH3) 중화 제거탱크에 충진되어 있는 보충수를 암모니아(NH3) 흡수탱크로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거하는 것을 특징으로 하는 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 정제방법.
The method according to claim 1,
When the removal efficiency of the ammonia (NH3) gas in the treated low concentration biogas decreases, the ammonia water in the ammonia (NH3) absorption tank is transferred to the ammonia storage tank using the transfer pump attached, and then ammonia (NH3) Wherein the makeup water filled in the tank is transferred to an ammonia (NH3) absorption tank, and the noxious gas is continuously removed from the multi-stage absorption tower, thereby purifying the low concentration methane gas.
삭제delete 제1항에 있어서,
처리된 저농도 바이오 가스 중 황화수소(H2S) 가스의 제거 처리 효율이 떨어질 시에는 부착되어 있는 이송 펌프를 사용하여 황화수소(H2S) 흡수탱크에 있는 액상 유기산 철킬레이트(Fe-chelate)를 촉매 환원 재생탱크로 이송한 후 촉매 환원 재생탱크에 충진되어 있는 이미 사전에 재생 처리된 보충 철킬레이트(Fe-chelate) 촉매를 황화수소(H2S) 흡수탱크로 이송하여, 연속적으로 다단 흡수탑에서 유해가스를 제거하는 것을 특징으로 하는 유동순환식 다단흡수탑을 이용한 저농도 메탄가스의 정제방법.
The method according to claim 1,
When the removal efficiency of the hydrogen sulfide (H2S) gas in the treated low concentration biogas decreases, the liquid organic acid iron chelate (Fe-chelate) in the hydrogen sulfide (H2S) absorption tank is supplied to the catalytic reduction recovery tank (Fe-chelate) catalyst, which has been previously regenerated and filled in the catalytic reduction recovery tank, is transferred to a hydrogen sulfide (H2S) absorption tank, and the noxious gas is continuously removed from the multistage absorption tower Wherein the low-concentration methane gas is purified by a flow-cycling multi-stage absorption tower.
KR1020140025568A 2014-03-04 2014-03-04 The purification method and the purification device refining as low density bio-methane KR101427599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140025568A KR101427599B1 (en) 2014-03-04 2014-03-04 The purification method and the purification device refining as low density bio-methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140025568A KR101427599B1 (en) 2014-03-04 2014-03-04 The purification method and the purification device refining as low density bio-methane

Publications (1)

Publication Number Publication Date
KR101427599B1 true KR101427599B1 (en) 2014-08-07

Family

ID=51749821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140025568A KR101427599B1 (en) 2014-03-04 2014-03-04 The purification method and the purification device refining as low density bio-methane

Country Status (1)

Country Link
KR (1) KR101427599B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656792B1 (en) 2016-02-03 2016-09-12 청해이엔브이 주식회사 Purification system for refining bio-gas
KR101682392B1 (en) * 2016-04-19 2016-12-05 정재억 Wastewater disposal equipment
KR101876443B1 (en) 2017-11-16 2018-08-09 청해이엔브이 주식회사 Gas removal apparatus using electromagnetic induction heating and gases purification system using it
CN109111066A (en) * 2018-10-11 2019-01-01 泉州师范学院 A kind of method of bioelectrochemistry removal pig manure stink
KR102019954B1 (en) 2018-12-26 2019-09-11 청해이엔브이 주식회사 System for removal of harmful gas and odor
KR20200066849A (en) 2018-12-03 2020-06-11 주식회사 포스코 Malodor removing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076621A (en) * 1976-03-15 1978-02-28 Air Resources, Inc. Chelate oxidation of hydrogen sulfide in sour water
KR100948334B1 (en) * 2009-02-09 2010-03-17 이상범 Ammonia and hydrogen sulfide removing aparatus contained in biogas
JP2010207726A (en) 2009-03-10 2010-09-24 Mitsubishi Heavy Industries Mechatronics Systems Ltd Apparatus and method for purifying gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076621A (en) * 1976-03-15 1978-02-28 Air Resources, Inc. Chelate oxidation of hydrogen sulfide in sour water
KR100948334B1 (en) * 2009-02-09 2010-03-17 이상범 Ammonia and hydrogen sulfide removing aparatus contained in biogas
JP2010207726A (en) 2009-03-10 2010-09-24 Mitsubishi Heavy Industries Mechatronics Systems Ltd Apparatus and method for purifying gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656792B1 (en) 2016-02-03 2016-09-12 청해이엔브이 주식회사 Purification system for refining bio-gas
KR101682392B1 (en) * 2016-04-19 2016-12-05 정재억 Wastewater disposal equipment
KR101876443B1 (en) 2017-11-16 2018-08-09 청해이엔브이 주식회사 Gas removal apparatus using electromagnetic induction heating and gases purification system using it
CN109111066A (en) * 2018-10-11 2019-01-01 泉州师范学院 A kind of method of bioelectrochemistry removal pig manure stink
KR20200066849A (en) 2018-12-03 2020-06-11 주식회사 포스코 Malodor removing apparatus
KR102019954B1 (en) 2018-12-26 2019-09-11 청해이엔브이 주식회사 System for removal of harmful gas and odor

Similar Documents

Publication Publication Date Title
KR101427599B1 (en) The purification method and the purification device refining as low density bio-methane
KR102622551B1 (en) Acid gas treatment
US20090028646A1 (en) System and method for treating landfill gas using landfill leachate
CN104607029B (en) Synchronous flue gas desulfurization and denitrification process combining chemical absorption with anaerobic-aerobic conversion
CN107970760B (en) Waste gas treatment process for papermaking sewage station
CN205042345U (en) Waste gas treatment device
CN102161537A (en) Deep purification method of coking wastewater based on advanced ozone oxidation
CN101172729A (en) Physciochemical treatment technique for remained aqueous ammonia of coke-oven plant
CN108434958A (en) A kind of sludge workshop foul gas advanced treatment device and its treatment process
CN108191056B (en) Desulfurization and denitrification method for desulfurization and denitrification wastewater and ammonia nitrogen wastewater
CN105417898B (en) A method of reverse osmosis concentrated water and hyperfiltration reverse-rinsing water in processing bi-membrane method system
CN105387472A (en) Technique for combined treatment of various foul gases in coal chemical industry
CN204582928U (en) Waste water, refuse depot foul gas cleaning equipment
KR100722929B1 (en) Advanced treatment method of ethanolamine-wastewater based on coupled process with physicochemical and biological unit operations
CN107670478A (en) A kind of waste water station waste gas treatment process
Kasulla et al. A Retrospection of hydrogen sulphide removal technologies in biogas purification
CN205717254U (en) The high-efficiency environment friendly exhaust gas processing device that a kind of chemical plant is special
CN208389756U (en) A kind of sludge workshop foul gas advanced treatment device
CN102188883B (en) Novel smoke purification process and device capable of integrally desulphurizing, denitrifying and removing heavy metals
KR101807244B1 (en) Apparatus for preparing biogas
CN102887612A (en) Coal chemical industrial wastewater treating and recycling method combined with coal dressing process
CN204865493U (en) A clean system for stench waste gas
Yin et al. Handling of amine-based wastewater produced during carbon capture
CN112811710A (en) Wastewater treatment device and process in xylitol processing
KR20210033106A (en) Method for eliminating pollutant from solution

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180717

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 6