KR101427194B1 - Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME - Google Patents

Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME Download PDF

Info

Publication number
KR101427194B1
KR101427194B1 KR1020130097645A KR20130097645A KR101427194B1 KR 101427194 B1 KR101427194 B1 KR 101427194B1 KR 1020130097645 A KR1020130097645 A KR 1020130097645A KR 20130097645 A KR20130097645 A KR 20130097645A KR 101427194 B1 KR101427194 B1 KR 101427194B1
Authority
KR
South Korea
Prior art keywords
thermoelectric material
mnsi
thermoelectric
doped
powder
Prior art date
Application number
KR1020130097645A
Other languages
Korean (ko)
Inventor
김일호
신동길
유신욱
Original Assignee
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국교통대학교산학협력단 filed Critical 한국교통대학교산학협력단
Priority to KR1020130097645A priority Critical patent/KR101427194B1/en
Application granted granted Critical
Publication of KR101427194B1 publication Critical patent/KR101427194B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Abstract

The present invention relates to a Cr-doped Mn-Si thermoelectric material. The Mn-Si thermoelectric material with a composition of MnSi1.75-δ(0<=δ<=0.03) is doped with Cr. Also, The present invention relates to a method for manufacturing the Cr-doped Mn-Si thermoelectric material which includes a first step of mixing Mn powder and Si powder prepared with the composition of MnSi1.75-δ(0<=δ<=0.03) and Cr powder prepared as a dopant as material powder; a second step of forming higher manganese silicides phase with regard to the mixed raw material powder; and a third step of sintering thermoelectric material powder with the higher manganese silicides phase. The present invention provides Mn-Si thermoelectric materials with improved thermoelectric performance by using Cr as a dopant replaced by Mn. Also, the described method for manufacturing the Cr-doped Mn-Si thermoelectric material manufactures a Cr-added Mn-Si thermoelectric material with high thermoelectric performance by controlling MnSi phase.

Description

크롬이 첨가된 망간-규소계 열전재료 및 그 제조방법{Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME}TECHNICAL FIELD The present invention relates to a chromium-added manganese-silicon thermoelectric material and a method of manufacturing the same. More particularly, the present invention relates to a Cr-doped Mn-Si thermoelectric material,

본 발명은 열전재료와 그 제조방법에 관한 것으로, 더욱 자세하게는 망간-규소계 물질에 크롬을 첨가하여 열전성능을 향상시킨 열전재료 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a thermoelectric material and a method of manufacturing the same, and more particularly, to a thermoelectric material having improved thermoelectric performance by adding chromium to a manganese-silicon-based material and a method of manufacturing the same.

최근 대체 에너지의 개발 및 절약에 대한 관심이 고조되고 있는 가운데, 효율적인 에너지 변환 물질에 관한 조사 및 연구가 활발히 진행되고 있다. 특히, 열을 전기 에너지로 변환하는 재료인 열전재료에 대한 연구가 가속화되고 있다.In recent years, interest in the development and conservation of alternative energy has been increasing, and researches and researches on efficient energy conversion materials are being actively carried out. In particular, researches on thermoelectric materials, which are materials for converting heat into electric energy, are being accelerated.

이러한 열전재료는 열을 전기로 또는 전기를 열로 직접 변화시키는 기능을 갖는 금속 또는 세라믹재로서, 온도차만 부여하면 가동 부분 없이도 발전이 가능하다는 장점이 있다.Such a thermoelectric material is a metal or ceramic material having a function of directly converting heat into electricity or electricity into heat, and it is advantageous that power generation is possible without moving parts if only a temperature difference is given.

잠재적인 열전 실리사이드에 대한 연구는 Nikitin1에 의해 처음 보고되었으며, 열전 실리사이드 후보군으로서 MnSi, MnSi2, CrSi2, CoSi가 보고되었다.Research on potential thermal suicide was first reported by Nikitin1, the MnSi, MnSi 2, CrSi 2, CoSi has been reported as a thermal suicide candidates.

이들 중에 망간 실리사이드는 값이 싸고 자원이 풍부한 구성성분과 친환경적이면서 고온에서의 높은 산화저항성 때문에 고온에서 작동하는 열전재료로서 주목되었으며, 열전 성능이 뛰어난 조성은 MnSi2가 아닌 고망간실리사이드(HMS, higher manganese silicides)라 불리는 MnSi1.72~1.75 범위(Si content: 63.0~63.6%)의 조성이며, 고망간실리사이드는 0.4~0.7eV의 좁은 밴드갭 에너지를 가지는 p-형 반도체의 거동을 보인다.Among them, manganese silicide has attracted attention as a thermoelectric material which operates at a high temperature due to its low cost and resource-rich components and high oxidation resistance at high temperature, and the composition having excellent thermoelectric performance is not MnSi 2 but high manganese silicide (HMS, higher manganese silicides) called MnSi 1.72 ~ 1.75 range (Si content: a composition of 63.0 ~ 63.6%), and manganese silicide exhibit the p- type semiconductor having a narrow bandgap energy of 0.4 ~ 0.7eV behavior.

고망간실리사이드는 서로 다른 당량비를 나타내는 Mn4Si7(MnSi1.75), Mn11Si19(MnSi1.72), Mn15Si26(MnSi1.73) 및 Mn27Si47(MnSi1.74)의 네 가지 상을 가지는 정방정계 구조로 알려져 있으며, 각 상들은 구성물질의 작용에 의해서 a 축에 비해 상당히 긴 c축을 갖는다. 이러한 상들은 Nowotny chimney-ladder 상으로 불린다.The high manganese silicide has four phases of Mn 4 Si 7 (MnSi 1.75 ), Mn 11 Si 19 (MnSi 1.72 ), Mn 15 Si 26 (MnSi 1.73 ) and Mn 27 Si 47 (MnSi 1.74 ) Known as a tetragonal structure, and each phase has a c-axis which is considerably longer than the a-axis due to the action of the constituent material. These awards are called Nowotny chimney-ladder awards.

고망간실리사이드는 일반적으로 용해법, 결정성장법, 화학반응법 및 박막공정 등의 방법으로 제조하나, c축을 수직으로 분리하는 MnSi 2차상이 잔류하여 열전특성을 악화시키는 요인이 되고 있다.High manganese silicide is generally produced by a method such as dissolution method, crystal growth method, chemical reaction method and thin film method, but MnSi secondary phase which vertically separates c-axis remains and becomes a factor to deteriorate thermoelectric properties.

이러한 MnSi 2차상은 Si 원자의 느린 확산 속도와 고망간실리사이드의 포정반응 때문에 고망간실리사이드의 기지 내에서 제거하기 어렵지만, MnSi 상의 크기와 분포 패턴을 조절하는 방법으로 열전성능을 개선하고 있다.These MnSi secondary phases are difficult to remove from the base of the high manganese silicide due to the slow diffusion rate of Si atoms and the entanglement of the high manganese silicide, but the thermoelectric performance is improved by controlling the size and distribution pattern of the MnSi phase.

하지만, 이러한 고망간실리사이드의 열전성능 개선 노력은 제조방법의 변경에 한정되고 있으며, 열전성능을 향상시키기 위한 도핑재료 등에 대한 결과가 부족한 실정이다.However, efforts to improve the thermoelectric performance of such a high-manganese silicide are limited to the modification of the manufacturing method, and the results of the doping materials and the like for improving the thermoelectric performance are insufficient.

1. T. Itoh and M. Yamada, J. Elec. Mater., 38(7), (2009), 925-929.1. T. Itoh and M. Yamada, J. Elec. Mater., 38 (7), (2009), 925-929. 2. W. Luo, H. Li, Y. Yang, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics, 19, (2011), 404-408 2. W. Luo, H. Li, Y. Yang, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics, 19, (2011), 404-408

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 열전성능을 향상시킨 망간-규소계 열전재료 및 그 제조방법을 제공하는데 그 목적이 있다.
It is an object of the present invention to provide a manganese-silicon thermoelectric material having improved thermoelectric performance and a method of manufacturing the same.

상기 목적을 달성하기 위한 크롬이 첨가된 망간-규소계 열전재료는, MnSi1.75-δ(0≤δ≤0.03)의 조성을 갖는 망간-규소계 열전재료에 Cr이 도핑된 것을 특징으로 한다.The chromium-doped manganese-silicon based thermoelectric material to attain the above object is characterized in that Cr-doped manganese-silicon thermoelectric material having a composition of MnSi 1.75-delta (0??? 0.03) is doped.

본 발명의 발명자들은 고망간실리사이드의 열전성능을 더욱 향상시키기 위하여 Cr을 도펀트로 사용한 본 발명을 발명하였다. Cr은 p-형의 도펀트로서 Mn보다 더 적은 밸런스 전자를 제공하면서도 고망간실리사이드의 결정구조를 변화시키지 않기 때문에, Cr에 의한 Mn의 부분적인 치환은 캐리어(hole) 농도를 효과적으로 증가시켜 고망간실리사이드의 열전성능을 향상시킨다.The inventors of the present invention invented the present invention using Cr as a dopant to further improve the thermoelectric performance of the high manganese silicide. Since Cr is a p-type dopant, it provides less balance electrons than Mn and does not change the crystal structure of the high manganese silicide, so partial substitution of Mn by Cr effectively increases the hole concentration, Thereby improving the thermoelectric performance.

특히, 종래에는 Cr의 첨가가 열전전도를 향상시켜 열전성능을 저해하는 것으로 알려져 있었지만, 본 발명의 실시예에서 Cr의 첨가에 따른 열전전도의 변화는 거의 없으며 전기전도도의 향상에 의해서 열전 성능이 향상됨을 확인하였다.In particular, it has been conventionally known that the addition of Cr increases the thermal conductivity and hinders the thermoelectric performance. However, in the embodiment of the present invention, there is almost no change in the thermal conductivity due to the addition of Cr, and the thermoelectric performance is improved by the improvement of the electric conductivity Respectively.

이때, 열전재료의 조성이 MnSi1.75-δ:Crx (0≤δ≤0.03, 0<x≤0.1)인 것이 바람직하다. Cr 첨가의 효과는 매우 미량을 첨가하는 경우에도 나타나지만, 0.1이상으로 첨가하는 경우에는 열전성능이 감소하는 문제가 발생한다.At this time, it is preferable that the composition of the thermoelectric material is MnSi 1.75-delta : Cr x (0??? 0.03, 0 < x ? 0.1). The effect of Cr addition is also shown in the case of adding a very small amount, but when it is added at 0.1 or more, there arises a problem that the thermoelectric performance is decreased.

상기 목적을 달성하기 위한 크롬이 첨가된 망간-규소계 열전재료의 제조방법은, MnSi1.75-δ(0≤δ≤0.03)의 조성에 맞추어 준비된 망간 분말과 실리콘 분말 및 도펀트로 준비된 크롬 분말을 원료분말로서 혼합하는 제1단계; 혼합된 원료분말에 대하여 고망간실리사이드 상을 형성하는 제2단계; 및 상기 고망간실리사이드 상이 형성된 열전재료 분말을 소결하는 제3단계를 포함한다.The method for producing a manganese-silicon based thermoelectric material to which the chromium is added is characterized in that a manganese powder prepared in accordance with the composition of MnSi 1.75 -? (0??? 0.03), a silicon powder and a chromium powder prepared by dopant are mixed A first step of mixing as a powder; A second step of forming a high manganese silicide phase on the mixed raw material powder; And a third step of sintering the thermoelectric material powder having the high manganese silicide phase formed thereon.

이때, 제1단계에서 혼합되는 원료분말이 MnSi1.75-δ:Crx (0≤δ≤0.03, 0<x≤0.1)의 조성에 맞추어 혼합되는 것이 바람직하다.At this time, it is preferable that the raw material powder to be mixed in the first step is mixed according to the composition of MnSi 1.75-δ : Cr x (0 ≦ δ 0.03, 0 < x ≦ 0.1).

또한, 제2단계는 기계적 합금화법 또는 고상 반응법 중에 하나의 방법으로 수행될 수 있으며, 고상 반응법으로 수행되는 경우에는 진공상태로 1100K~1400K의 온도 범위에서 수행되는 것이 바람직하다.The second step may be performed by one of the mechanical alloying method and the solid state reaction method. When the solid phase reaction method is employed, the second step may be performed in a vacuum state at a temperature ranging from 1100K to 1400K.

그리고 제3단계는 진공 열간 프레싱에 의해서 수행되는 것이 좋으며, 진공 열간 프레싱은 1073K 이상의 온도에서 60MPa 이상의 압력으로 1시간 이상의 시간동안 수행되는 것이 바람직하다.The third step is preferably performed by vacuum hot pressing, and the vacuum hot pressing is preferably performed at a temperature of 1073 K or more and a pressure of 60 MPa or more for 1 hour or more.

상술한 바와 같이 구성된 크롬이 첨가된 망간-규소계 열전재료는, 망간과 치환되는 도펀트로서 크롬을 사용함으로써, 열전성능이 향상된 망간-규소계 열전재료를 제공할 수 있는 효과가 있다.The manganese-silicon thermoelectric material to which the chromium is added as described above has the effect of providing a manganese-silicon thermoelectric material having improved thermoelectric performance by using chromium as a dopant to be substituted with manganese.

또한, 상술한 크롬이 첨가된 망간-규소계 열전재료의 제조방법은, MnSi 상을 조절함으로써, 열정성능이 뛰어난 크롬이 첨가된 망간-규소계 열전재료를 제조할 수 있는 효과가 있다.Further, the above-mentioned method for producing a manganese-silicon thermoelectric material to which chromium is added has the effect of producing a manganese-silicon thermoelectric material to which chromium is added with excellent passive performance by controlling the MnSi phase.

도 1은 본 발명에 따른 실시예로 제조된 열전재료 시편에 대한 XRD분석 결과이다.
도 2는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대한 전기전도도 측정 결과이다.
도 3은 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 제벡계수를 측정한 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 출력인자를 평가한 결과를 나타낸 그래프이다.
도 5는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 열전도도를 측정한 결과를 나타낸 그래프이다.
도 6은 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 열전 성능지수를 평가한 결과를 나타낸 그래프이다.
FIG. 1 is a result of XRD analysis of a thermoelectric material specimen manufactured according to an embodiment of the present invention.
2 shows the results of electrical conductivity measurement of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.
3 is a graph showing the results of measurement of the Seebeck coefficient for the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.
4 is a graph showing the results of evaluating the output factors of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.
5 is a graph showing the results of measurement of thermal conductivity of a thermoelectric material according to an embodiment of the present invention and a thermoelectric material of a comparative example.
6 is a graph showing a result of evaluating the thermoelectric performance index of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, embodiments of the present invention will be described in detail.

먼저 본 실시예의 크롬이 첨가된 망간-규소계 열전재료의 제조방법은 화학 양론적 비율에 맞추어 원료분말을 혼합한다. (제1단계)First, the chromium-added manganese-silicon based thermoelectric material manufacturing method of this embodiment mixes raw material powders in accordance with the stoichiometric ratio. (First step)

본 실시예는 MnSi1.75-δ:Crx (δ=0, 0.01, 0.02, 0.03, x=0.01)의 조성식에 맞추어, 직경이 45㎛ 미만인 순도 99.9%의 Mn분말과 직경이 45㎛ 미만인 순도 99.99%의 Si분말 및 45㎛ 미만인 순도 99.9%의 Cr분말을 화학 양론적 비율에 맞추어 혼합하였다.In this example, a Mn powder having a purity of less than 45 탆 and a purity of 99.9% and a purity of less than 45 탆, having a purity of 99.99%, were prepared in accordance with the composition formula of MnSi 1.75-δ : Cr x (δ = 0, 0.01, 0.02, 0.03, % Si powder and 99.9% pure Cr powder with a purity of less than 45 [mu] m were mixed in a stoichiometric ratio.

다음으로 혼합된 분말에 고상 반응 공정을 수행하여 고망간실리사이드를 형성한다. (제2단계)The mixed powder is then subjected to a solid phase reaction process to form a high manganese silicide. (Second step)

상기한 조성으로 혼합된 원료분말을 알루미나 도가니에 넣고 진공상태에서 1273K의 온도로 6시간동안 고상 반응 공정을 수행하였다.The raw material powder mixed in the above composition was placed in an alumina crucible and subjected to a solid-phase reaction process in a vacuum state at a temperature of 1273K for 6 hours.

마지막으로 고상 반응 공정으로 제조된 크롬이 첨가된 망간-규소계 열전재료를 실린더형의 고강도 흑연 틀에 넣고 진공 열간 프레싱을 수행한다. (제3단계)Finally, the chromium-added manganese-silicon thermoelectric material prepared by the solid-phase reaction process is placed in a cylindrical high-strength graphite mold and subjected to vacuum hot pressing. (Third step)

본 실시예에서는 지름이 10mm인 흑연 틀을 이용하였고, 소결과정에서의 상변화를 방지하기 위하여 진공상태를 유지하였으며, 1173K의 온도에서 70MPa의 압력으로 1시간 동안 열간 프레싱을 수행하여 열전재료 시편을 제조하였다.
In this embodiment, a graphite mold having a diameter of 10 mm was used. In order to prevent the phase change during the sintering process, a vacuum state was maintained and hot pressing was performed for 1 hour at a pressure of 70 MPa at a temperature of 1173 K, .

도 1은 본 발명에 따른 실시예로 제조된 열전재료 시편에 대한 XRD분석 결과이다. (a)는 MnSi1.75:Cr0.01 조성인 경우, (b)는 MnSi1.74:Cr0.01 조성인 경우, (c)는 MnSi1.73:Cr0.01 조성인 경우 및 (d)는 MnSi1.72:Cr0.01 조성인 경우의 XRD분석 결과이다.FIG. 1 is a result of XRD analysis of a thermoelectric material specimen manufactured according to an embodiment of the present invention. (a) is MnSi 1.75: If the Cr 0.01 composition, (b) is MnSi 1.74: If the Cr 0.01 composition, (c) is MnSi 1.73: If the Cr 0.01 composition and (d) is MnSi 1.72: the Cr 0.01 Composition XRD analysis results.

각 조성에 대한 상 패턴은 ICDD 표준회절자료의 Mn11Si19(PDF# 03-065-2862), Mn15Si26(PDF#00-020-0724), Mn27Si47(PDF#00-026-1251) 및 Mn4Si7(PDF#01-072-2069)과 일치하여 Cr의 첨가에 따른 상변화는 없었으며, 제 2상으로 금속성의 MnSi(0~0.8%)가 분석되었지만 X-선 분석 검출한계 이내이다. 또한, 모든 시편은 정방정계 결정구조를 가지고 있었으며, 표 1과 같이 문헌에 보고된 격자상수와 아주 유사한 것으로 보아 본 실시예에 따른 고상 반응 공정과 연간 프레싱에 의해 고망간실리사이드 상이 성공적으로 합성된 것을 확인할 수 있다.
The phase diagram for each composition is shown in the ICDD standard diffraction data of Mn 11 Si 19 (PDF # 03-065-2862), Mn 15 Si 26 (PDF # 00-020-0724), Mn 27 Si 47 -1251) and Mn 4 Si 7 (PDF # 01-072-2069), no phase change was observed due to the addition of Cr, and metallic MnSi (0-0.8%) was analyzed as the second phase, Analysis is within detection limit. All the specimens had a tetragonal crystal structure and were very similar to the lattice constants reported in the literature as shown in Table 1, indicating that the high-manganese silicide phase was successfully synthesized by the solid- Can be confirmed.

표 1은 본 실시예에 따른 Cr를 도핑한 열전재료와 비교를 위해서 Cr을 첨가하지 않은 비교예의 열전재료에 대하여 격자상수를 측정한 결과이다. Cr를 첨가하지 않은 비교예의 열전재료에 대한 격자상수의 이론값은 과거에 수행된 연구자료들에서 선택하였다.Table 1 shows the result of measuring the lattice constant of the thermoelectric material of Comparative Example not containing Cr for comparison with the thermoelectric material doped with Cr according to the present embodiment. The theoretical values of the lattice constants for the thermoelectric materials of the Comparative Examples without addition of Cr were selected from the research data conducted in the past.

조성Furtherance 실시예와 비교예의 격자상수The lattice constants of Examples and Comparative Examples 이론상 격자상수Theoretical lattice constant a (nm)a (nm) c (nm)c (nm) a (nm)a (nm) c (nm)c (nm) Mn11Si19(MnSi1.72)Mn 11 Si 19 (MnSi 1.72 ) 0.55170.5517 4.80904.8090 0.55180.5518 4.81364.8136 Mn11Si19(MnSi1.72):Cr0.01 Mn 11 Si 19 (MnSi 1.72 ): Cr 0.01 0.55350.5535 4.81454.8145 -- -- Mn15Si26(MnSi1.73)Mn 15 Si 26 (MnSi 1.73 ) 0.55170.5517 6.54156.5415 0.55310.5531 6.53116.5311 Mn15Si26(MnSi1.73):Cr0.01 Mn 15 Si 26 (MnSi 1.73 ): Cr 0.01 0.55240.5524 6.54396.5439 0.55250.5525 6.55046.5504 Mn27Si47(MnSi1.74)Mn 27 Si 47 (MnSi 1.74 ) 0.55240.5524 11.75811.758 0.55300.5530 11.79011.790 Mn27Si47(MnSi1.74):Cr0.01 Mn 27 Si 47 (MnSi 1.74 ): Cr 0.01 0.55290.5529 11.78911.789 -- -- Mn4Si7(MnSi1.75)Mn 4 Si 7 (MnSi 1.75 ) 0.55260.5526 1.74671.7467 0.55250.5525 1.74361.7436 Mn4Si7(MnSi1.75):Cr0.01 Mn 4 Si 7 (MnSi 1.75 ): Cr 0.01 0.55320.5532 1.74781.7478 -- --

표 1에 나타난 것과 같이, Cr 도핑에 의해 격자상수가 증가한 것으로 나타났으며, 특히 상대적으로 a 축보다 c 축이 더욱 증가한 것으로부터 Cr이 Mn의 자리에 잘 치환된 고망간실리사이드 열전재료가 제조된 것을 확인할 수 있다.
As shown in Table 1, the lattice constants were increased by Cr doping. Especially, the c-axis was more increased than the a-axis, so that a high-manganese silicide thermoelectric material in which Cr was substituted with Mn was prepared .

도 2는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대한 전기전도도 측정 결과이다.2 shows the results of electrical conductivity measurement of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.

도시된 것과 같이, 본 실시예의 열전재료와 비교예의 열전재료는 모든 조성에서 온도의 상승에 따라서 전기전도도가 약간 감소하는 축퇴 반도체 특성을 보인다.As shown in the figure, the thermoelectric material of this embodiment and the thermoelectric material of the comparative example exhibit a degeneracy semiconductor characteristic in which the electric conductivity is slightly reduced with an increase in temperature in all the compositions.

Cr이 도핑된 본 실시예의 열전재료는 비교예에 비하여 전체적으로 전기전도도가 높아진 것으로 확인되었으며, 이는 Cr이 Mn보다 더 적은 밸런스 전자를 제공하기 때문에 Cr에 의한 Mn의 부분적인 치환으로 캐리어(hole) 농도가 증가한 결과인 것으로 생각된다.
It has been confirmed that the electric conductivity of the thermoelectric material of this embodiment doped with Cr is higher than that of the comparative example because Cr provides more balanced electrons than Mn, and therefore, the partial substitution of Mn by Cr causes the hole concentration Of the total population.

도 3은 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 제벡계수를 측정한 결과를 나타낸 그래프이다.3 is a graph showing the results of measurement of the Seebeck coefficient for the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.

도시된 것과 같이, 본 실시예의 열전재료와 비교예의 열전재료는 모든 조성에서 제백계수가 양(positive)의 값을 갖는 p형 전도성을 나타낸다. 그리고 온도 증가에 따라 제벡계수가 증가하였고, 고온에서도 고유전도가 없이 제벡계수는 계속 증가하였다. As shown in the figure, the thermoelectric material of this embodiment and the thermoelectric material of the comparative example exhibit p-type conductivity having a positive white count value in all compositions. And the increase of the temperature increases the Seebeck coefficient.

또한 Cr을 도핑한 본 실시예의 열전재료는 비교예의 열전재료에 비하여 전체적으로 제벡계수가 감소하였으며, MnSi1.75의 경우가 823K에서 234㎶/K의 제백계수를 나타낸 반면에, MnSi1.75:Cr0.01의 경우는 823K에서 224㎶/K의 제벡계수를 나타내었다. MnSi1.75:Crx조성에서 최대 제벡계수를 보인 것은 각 조성의 밴드 캡 크기 때문인 것으로 판단된다.
The Cr-doped thermoelectric material of the present example exhibited a decrease in the Seebeck coefficient as a whole compared to the thermoelectric material of the comparative example. In the case of MnSi 1.75 , the whitening coefficient was 234 kJ / K at 823 K. On the other hand, in the case of MnSi 1.75 : Cr 0.01 Exhibited a Seebeck coefficient of 224 kJ / K at 823K. The maximum Seebeck coefficient of MnSi 1.75 : Cr x composition appears to be due to the band cap size of each composition.

도 4는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 출력인자를 평가한 결과를 나타낸 그래프이다.4 is a graph showing the results of evaluating the output factors of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.

도시된 것과 같이, Cr의 도핑에 의해 출력인자가 증가하였고, MnSi1.73:Cr0.01 조성의 경우 723K에서 1.01 mW/mK2의 최대 출력인자를 나타내었다. Cr 도핑에 의한 출력인자의 변화 경향은 전기전도도의 변화 경향과 유사하며, 전기전도도 증가에 의해 출력인자가 증가한 것으로 보인다.
As shown, the output factor was increased by the doping of Cr and the maximum output factor of 1.01 mW / mK 2 at 723K for MnSi 1.73 : Cr 0.01 composition. The tendency of the change of the output factor by Cr doping is similar to the tendency of change of the electric conductivity, and it seems that the output factor is increased by the increase of the electric conductivity.

도 5는 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 열전도도를 측정한 결과를 나타낸 그래프이다. 내부에 삽입된 그래프는 격자 열전도도를 측정한 결과이다.5 is a graph showing the results of measurement of thermal conductivity of a thermoelectric material according to an embodiment of the present invention and a thermoelectric material of a comparative example. The graph inserted inside is the result of measuring the lattice thermal conductivity.

고망간실리사이드의 조성 및 Cr의 도핑여부에 관계없이 전체적으로 유사한 열전도도 값을 나타내었다. 모든 조성의 열전재료가 623 K에서 최솟값을 보였고, Cr이 도핑된 본 실시예의 열전재료는 2.1~2.6 W/mK을 나타내었다. Regardless of the composition of the high manganese silicide and the doping of Cr. The thermoelectric materials of all compositions showed a minimum value at 623 K, and the thermoelectric materials of this embodiment doped with Cr showed 2.1 to 2.6 W / mK.

한편 종래의 연구에서는 고망간실리사이드에 Cr을 도핑하면 전자-정공 쌍에 의한 바이폴라 효과로 인해 고온에서 열전도도가 크게 증가하는 것으로 보고되었다. 하지만 본 실시예의 열전재료는 측정 온도 범위에서 비교예의 열전재료보다 약간 낮거나 유사한 열전도도를 보였으며, 이는 삽입된 도면에 나타난 것과 같이 격자 열전도도가 감소하였기 때문인 것으로 으로 판단된다.
In the conventional research, it has been reported that when Cr is doped into the high manganese silicide, the thermal conductivity at high temperature is greatly increased due to the bipolar effect due to electron-hole pairs. However, the thermoelectric material of this embodiment showed a slightly lower or similar thermal conductivity in the measured temperature range than the thermoelectric material of the comparative example, and this is because the lattice thermal conductivity decreased as shown in the inset.

도 6은 본 발명의 실시예에 따른 열전재료와 비교예의 열전재료에 대하여 열전 성능지수를 평가한 결과를 나타낸 그래프이다.6 is a graph showing a result of evaluating the thermoelectric performance index of the thermoelectric material according to the embodiment of the present invention and the thermoelectric material of the comparative example.

본 실시예의 열전재료와 비교예의 열전재료는 모든 조성에서 온도가 상승함에 따라 성능지수가 증가하였으며, Cr이 도핑된 열전재료가 비교예의 열전재료에 비하여 성능지수가 향상된 것을 확인할 수 있다.The performance index of the thermoelectric material of the present embodiment and the thermoelectric material of the comparative example increased with increasing temperature in all the compositions and it was confirmed that the thermoelectric material doped with Cr improved the performance index compared with the thermoelectric material of the comparative example.

앞서 살펴본 것과 같이, Cr 도핑을 통해 열전도도의 변화보다는 전기전도도의 증가로 인한 출력인자의 증가가 열전 성능지수의 증가로 이어졌다. 최대 성능지수는 MnSi1.73:Cr0.01조성의 열전재료가 823 K에서 0.36의 성능지수를 보였다. As described above, the increase of the output factor due to the increase of the electric conductivity rather than the change of the thermal conductivity through the Cr doping led to the increase of the thermoelectric performance index. The maximum performance index showed a performance index of 0.36 at 823 K for a thermoelectric material of MnSi 1.73 : Cr 0.01 composition.

이상과 같이, 본 실시예의 Cr가 도핑된 열전재료는 전기전도도가 향상되어 열전성능이 향상되는 것을 확인할 수 있었다.
As described above, it was confirmed that the thermoelectric material doped with Cr of the present embodiment had improved electrical conductivity and improved thermoelectric performance.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Those skilled in the art will understand. Therefore, the scope of protection of the present invention should be construed not only in the specific embodiments but also in the scope of claims, and all technical ideas within the scope of the same shall be construed as being included in the scope of the present invention.

Claims (9)

MnSi1.75-δ(0≤δ≤0.03)의 조성을 갖는 망간-규소계 열전재료에 Cr이 도핑된 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료.
A chromium - doped manganese-silicon thermoelectric material characterized in that Cr-doped manganese-silicon thermoelectric material having a composition of MnSi 1.75 -? (0??? 0.03) is doped.
청구항 1에 있어서,
상기 열전재료의 조성이 MnSi1 .75-δ:Crx (0≤δ≤0.03, 0<x≤0.1)인 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료.
The method according to claim 1,
The composition of the thermoelectric material MnSi 1 .75-δ: Cr x (0??? 0.03, 0 <x? 0.1).
MnSi1.75-δ(0≤δ≤0.03)의 조성에 맞추어 준비된 망간 분말과 실리콘 분말 및 도펀트로 준비된 크롬 분말을 원료분말로서 혼합하는 제1단계;
혼합된 원료분말에 대하여 고망간실리사이드 상을 형성하는 제2단계; 및
상기 고망간실리사이드 상이 형성된 열전재료 분말을 소결하는 제3단계를 포함하는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
A first step of mixing manganese powder prepared according to the composition of MnSi 1.75 -? (0??? 0.03), silicon powder and chromium powder prepared as a dopant as raw material powders;
A second step of forming a high manganese silicide phase on the mixed raw material powder; And
And a third step of sintering the thermoelectric material powder having the high-manganese silicide phase formed thereon, and a third step of sintering the thermoelectric material powder having the high-manganese silicide phase.
청구항 3에 있어서,
상기 제1단계에서 혼합되는 원료분말이 MnSi1 .75-δ:Crx (0≤δ≤0.03, 0<x≤0.1)의 조성에 맞추어 혼합되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 3,
The raw material powder to be mixed in the first step 1 MnSi 1 .75-δ: Cr x (0??? 0.03, 0? X? 0.1).
청구항 3에 있어서,
상기 제2단계가 기계적 합금화법 또는 고상 반응법 중에 하나의 방법으로 수행되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 3,
Wherein the second step is carried out by one of a mechanical alloying method or a solid state reaction method.
청구항 5에 있어서,
상기 제2단계가 고상 반응법으로 수행되고, 상기 고상 반응법은 진공상태로 1100K~1400K의 온도 범위에서 수행되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 5,
Wherein the second step is performed in a solid state reaction method and the solid state reaction method is performed in a vacuum state in a temperature range of 1100K to 1400K.
청구항 3에 있어서,
상기 제3단계가 진공 열간 프레싱에 의해서 수행되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 3,
Wherein the third step is performed by vacuum hot pressing. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
청구항 7에 있어서,
상기 진공 열간 프레싱이 1073K 이상의 온도에서 수행되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 7,
Wherein the vacuum hot pressing is performed at a temperature of 1073K or higher. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
청구항 8에 있어서,
상기 진공 열간 프레싱이 60MPa 이상의 압력으로 1시간 이상의 시간동안 수행되는 것을 특징으로 하는 크롬이 첨가된 망간-규소계 열전재료의 제조방법.
The method of claim 8,
Wherein the vacuum hot pressing is performed at a pressure of 60 MPa or more for 1 hour or more.
KR1020130097645A 2013-08-19 2013-08-19 Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME KR101427194B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130097645A KR101427194B1 (en) 2013-08-19 2013-08-19 Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130097645A KR101427194B1 (en) 2013-08-19 2013-08-19 Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME

Publications (1)

Publication Number Publication Date
KR101427194B1 true KR101427194B1 (en) 2014-08-07

Family

ID=51749724

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130097645A KR101427194B1 (en) 2013-08-19 2013-08-19 Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME

Country Status (1)

Country Link
KR (1) KR101427194B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145653A (en) * 2015-02-06 2016-08-12 株式会社豊田自動織機 Solar heat collection pipe, sunlight-heat conversion device, solar heat power generation device
KR20180075294A (en) * 2016-12-26 2018-07-04 연세대학교 산학협력단 Manganese-silicon thermoelectric materials with improved thermoelectric properties and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235083A (en) 2005-08-25 2007-09-13 Komatsu Ltd Thermoelectric material and production method thereof
JP2011210845A (en) 2010-03-29 2011-10-20 Ibaraki Univ BULK TYPE MANGANESE SILICIDE SINGLE CRYSTAL OR POLYCRYSTAL DOPED WITH Ga OR Sn, AND METHOD OF MANUFACTURING THE SAME
JP2013070044A (en) 2011-09-08 2013-04-18 Hitachi Chemical Co Ltd Thermoelectric conversion module and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235083A (en) 2005-08-25 2007-09-13 Komatsu Ltd Thermoelectric material and production method thereof
JP2011210845A (en) 2010-03-29 2011-10-20 Ibaraki Univ BULK TYPE MANGANESE SILICIDE SINGLE CRYSTAL OR POLYCRYSTAL DOPED WITH Ga OR Sn, AND METHOD OF MANUFACTURING THE SAME
JP2013070044A (en) 2011-09-08 2013-04-18 Hitachi Chemical Co Ltd Thermoelectric conversion module and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145653A (en) * 2015-02-06 2016-08-12 株式会社豊田自動織機 Solar heat collection pipe, sunlight-heat conversion device, solar heat power generation device
KR20180075294A (en) * 2016-12-26 2018-07-04 연세대학교 산학협력단 Manganese-silicon thermoelectric materials with improved thermoelectric properties and preparation method thereof
KR102026517B1 (en) * 2016-12-26 2019-09-27 연세대학교 산학협력단 Manganese-silicon thermoelectric materials with improved thermoelectric properties and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2320485B1 (en) New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
Zhu et al. Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics
EP2835363B1 (en) Circuit board using a sintered oxide compact
Dong et al. Highly nonlinear property and threshold voltage of Sc2O3 doped ZnO-Bi2O3-based varistor ceramics
Kang et al. Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb
EP3293776B1 (en) P-type skutterudite thermoelectric material, manufacturing method therefor, and thermoelectric element comprising same
US10038132B2 (en) Thermoelectric materials and their manufacturing method
KR101427194B1 (en) Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME
Yu et al. Vacancy controlled n–p conduction type transition in CuAgSe with superior thermoelectric performance
KR101470197B1 (en) Thermoelectric materials of Bi-Te-Se-based solid solution
JP5095517B2 (en) Aluminum-containing zinc oxide n-type thermoelectric conversion material
KR101322795B1 (en) Manufacturing method of ga-doped zno having enhanced thermoelectric power factor by enlarged ga solubility
KR102290764B1 (en) Tetrahedrite-based thermoelectric materials and method for preparing the same
Bose et al. Effect of dual-doping on the thermoelectric transport properties of CaMn 1− x Nb x/2 Ta x/2 O 3
US9666782B2 (en) P-type semiconductor composed of magnesium, silicon, tin, and germanium, and method for manufacturing the same
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
KR101375559B1 (en) Synthesizing method of higher manganese silicides thermoelectric material and higher manganese silicides thermoelectric material synthesized by the method
KR101405364B1 (en) SYNTHESIZING METHOD FOR Al-DOPED Mn-Si THERMOELECTRIC MATERIAL AND THERMOELECTRIC MATERIAL SYNTHESIZED BY THE METHOD
KR20190046484A (en) Thermoelectric materials and fabrication method of the same
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
US20170158563A1 (en) Material for a Thermoelectric Element and Method for Producing a Material for a Thermoelectric Element
KR102026517B1 (en) Manganese-silicon thermoelectric materials with improved thermoelectric properties and preparation method thereof
JP5931413B2 (en) P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module
Thong et al. Investigation of the influence of singly and dually doping effect on scattering mechanisms and thermoelectric properties of perovskite-type STO
Zeng et al. Electrical and thermal conduction behaviors in La‐substituted GdBaCuFeO5+ δ ceramics

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 5