KR101426402B1 - 줄기세포 증식능 및 분화능 개선용 조성물 - Google Patents
줄기세포 증식능 및 분화능 개선용 조성물 Download PDFInfo
- Publication number
- KR101426402B1 KR101426402B1 KR1020110146624A KR20110146624A KR101426402B1 KR 101426402 B1 KR101426402 B1 KR 101426402B1 KR 1020110146624 A KR1020110146624 A KR 1020110146624A KR 20110146624 A KR20110146624 A KR 20110146624A KR 101426402 B1 KR101426402 B1 KR 101426402B1
- Authority
- KR
- South Korea
- Prior art keywords
- stem cells
- cells
- mesenchymal stem
- cell
- bone marrow
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/71—Ranunculaceae (Buttercup family), e.g. larkspur, hepatica, hydrastis, columbine or goldenseal
- A61K36/714—Aconitum (monkshood)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/30—Extraction of the material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/50—Methods involving additional extraction steps
- A61K2236/51—Concentration or drying of the extract, e.g. Lyophilisation, freeze-drying or spray-drying
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Alternative & Traditional Medicine (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
본 발명은 부자추출물을 포함하는 줄기세포 증식능 및 분화능 개선용 조성물 및 이를 이용한 줄기세포의 증식능 및 분화능을 개선하는 방법에 관한 것이다. 본 발명은 줄기세포의 증식률 및 분화율을 효과적으로 향상시킴으로써 줄기세포, 특히 다능성 중간엽 줄기세포의 대량생산이 가능하다. 또한, 본 발명은 배아줄기세포보다 안전성면에서 매우 우수한 다능성 줄기세포의 사용을 증가시킴으로써 다양한 임상분야에서 사용될 수 있다.
Description
본 발명은 줄기세포 증식능 및 분화능 개선용 조성물과 줄기세포 증식능 및 분화능을 개선하는 방법에 관한 것이다.
줄기세포는 자기 재생능력 및 적합한 신호에 의해 자극되면 특정 세포 또는 기관으로 분화될 수 있는 능력을 갖는다. 이러한 이유에서 줄기세포는 재생의학 분야에서 큰 관심을 받고 있다. 그러나 배아줄기세포의 의학적 이용은 윤리적 문제, 면역 부적합성 및 제어되지 않는 종양 또는 기형종의 생성을 유발할 수 있고, 성제줄기세포는 윤리적 문제 및 면역 거부반응을 피할 수 있지만, 분화능이 제한적이라는 단점이 있다(Florian et al., 2007).
성체줄기세포는 조직 보수 및 줄기세포와 비대칭 세포 분할에 의해 분화된 세포간의 평형을 유지하는데 관여한다. 성체줄기세포가 대부분 성인 조직에서 발견되지만, 골수세포는 쉽게 접근할 수 있고 2종류의 줄기세포를 갖고 있기 때문에 줄기세포의 이상적인 공급처로 여겨지고 있다. 골수는 비부착 조혈세포 및 부착 기질세포로 구성되어 있으며, 사이토카인 또는 성장인자의 분비를 통해 상호작용한다(Ozawa et al ., 2008). 조혈모세포는 다양한 혈액세포(적혈구, 혈소판, 백혈구)로 분화하며 가소성(plasticity)를 나타내는 것으로 알려져 있는 반면, 부착 기질세포는 골세포, 연골세포 및 지방세포로 분화된다고 알려져 있으며, 조혈모세포 및 부착 기질세포는 세포 및 유전자 치료에 이용될 수 있다(Van Damme et al., 2002). 중간엽 줄기세포(Mesenchymal stem cells, MSCs)는 고도로 전문화된 세포 종류 또는 기관을 발생시키는 그들의 능력 및 자기재생 능력에 의해 특징지어진다(Tet al ., 2007; Hentze et al ., 2007).
중간엽 줄기세포는 방추형 모양의 이형 세포군을 나타내며, 배양시 부착되는 특징을 보인다(Tschet al., 2011). 중간엽 줄기세포는 마우스, 랫트, 고양이, 개, 토끼, 돼지 및 개코원숭이를 포함하는 다양한 종으로부터 분리 및 배양 되어졌다. 중간엽 줄기세포의 CD105, CD44, CD29 및 Sca-1 발현 및 CD11b(면역세포 마커), CD45(조혈세포 마커) 및 CD34의 비발현은 마우스에서 가변적이다(Kolf et al., 2007). 또한, 중간엽 줄기세포는 골세포, 연골세포, 지방세포, 근육세포 및 섬유아세포 계통에 속하는 분화된 기질 세포가 될 수 있다(Chamberlain et al., 2007). 중간엽 줄기세포의 자기재생능력 뿐 아니라 다분화능은 비정상 콜라겐 생성 또는 저인산증(hypophosphatasia)과 비정상 골아세포 및 연골세포의 장애에서 기인한 골형성 결함(osteogenesis imperfect, OI)의 세포 및 유전자 치료를 위한 효과적인 타겟이다(Jethva et al., 2009; Van Damme et al., 2002). 중간엽 줄기세포는 또한 말초 신경의 보수 및 유지와 골격시스템의 보수에 기여할 수 있다(Bielby et al., 2007; Papathanasopoulos et al., 2008). 게다가, 중간엽 줄기세포는 이식에 대한 면역억제 활성을 가지고 있어 대숙주성이식편병(graft-versus-host disease)을 치료하는데 효과적으로 이용된다(Shi et al., 2010; Uccelli et al., 2011).
몇몇 사이토카인 및 성장인자들은 중간엽 줄기세포 증식을 촉진시키는 것으로 알려진 MAPK(mitogen-activated protein kinases) 신호전달과 연관되어 있다. PDGF(Platelet-derived growth factor) 및 FGF2(fibroblast growth factor 2)는 JNK(c-Jun N-terminal kinase) 신호전달을 통해 증식을 촉진시키는 것으로 알려져 있다(Ahn et al., 2009). 또한, bFGF(basic fibroblast growth factor)가 인간 골수 중간엽 줄기세포 증식을 자극시키는 것은 ERK1/2(extracellular signal-regulated kinase 1/2)를 통해 매개된다. 그러나, PDGF-BB 및 bFGF-유도에 의한 증식은 골아세포 분화 가능성에는 영향을 끼치지 않는다(Levy et al., 2008; Choi et al., 2008).
중간엽 줄기세포는 세포 및 유전자 치료 적용에 있어 여러 가지 한계점을 갖는다. 첫째, 중간엽 줄기세포는 낮은 빈도로 존재하여 인 비트로에서 증식시켜야 할 필요가 있다. 둘째, 중간엽 줄기세포의 증식능 및 분화능은 배양과정에서 감소된다. 셋째, 중간엽 줄기세포에 대한 특이전인 표면 마커가 결여되어 있다(Bonab et al., 2006; Napolitano et al., 2007; Nadri et al., 2007; Ohishi et al., 2010).
사이토카인 및 성장인자들은 자기재생으로부터 분화까지의 단계를 조절하는데 중요한 역할을 하지만, 이러한 과정에서 분자적 메커니즘은 아직까지 잘 알려져 있지 않으며 실제 이용에 있어 한계점을 가지고 있다(Summer et al ., 2008).
본 발명에서는 성장인자 또는 사이토카인의 기능을 대체하면서 중간엽 줄기세포의 증식 및 분화를 조절하는 무독성의 한약재를 스크리닝하였다. 기존에 알려진 기능 및 임상 이용가능성에 기본을 두고 동의보감으로부터 사상자, 부자, 음양곽 및 몇몇 중요한 한약재를 선택하였다. 사상자(Cnidi Fructus)는 벌사상자(Cnidium monnieri (L.) Cusson)의 열매로 염증, 피부 질환 및 무기력 치료를 위한 전통약재로써 이용되고 있다. 최근 연구에서 사상자가 인간 교아종(glioblastoma) 세포주에서 항암 효과를 나타내며 종양세포에서 멜라닌 생성 억제 및 혈관형성 억제 활성을 나타낸다는 것이 알려져 있다(Jung et al., 2010; Yun et al., 2009; Kim et al., 2000).
부자로부터 수득한 용해성 다당류는 종양 성장 억제 효과를 나타내며, 음양곽의 플라보노이드 성분은 항산화 효과를 나타내는 것을 알려져 있다(Gao et al., 2010; Sze et al., 2010). 음양곽의 플라보노이드는 골아세포 형성을 자극하며, 난소절제 마우스에서 파골세포생성 과정을 저해하여 골손실을 예방한다(Chen et al ., 2010). 또한, 음양곽의 플라보노이드는 BMP 및 Wnt/β-카테닌 신호전달 과정을 통해 인간 중간엽 줄기세포의 골아세포 분화를 유발한다(Zhang et al ., 2010). 음양곽은 총 콜레스테롤 및 트리글리세리드를 감소시키며 에스트라디올을 증가시킨다(Yan et al ., 2008). 그러나, 골수 중간엽 줄기세포의 증식 및 분화에 대한 한약재의 효과에 대해서는 알려진 바가 거의 없으며 더욱이, 골수에 한약재를 처리함으로써 신호전달 과정을 통해 골수 중간엽 줄기세포의 증식 및 분화를 조절한다는 것은 전혀 알려져 있지 않다.
이와 같이 본 발명의 목적은 마우스 골수 중간엽 줄기세포의 증식 및 분화에 대한 한약재의 효과를 밝히고, 이러한 과정에 관여된 신호전달 경로를 설명하는데 있다. 중간엽 줄기세포에 있어 한약재의 효과를 확인하기 위해 세포 생존능력 분석, 세포 주기 분석, 면역 블롯팅, 면역 조직화학분석 및 분화 분석법을 수행하고 마우스 골수 중간엽 줄기세포의 증식능 및 분화능을 확인하였다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 줄기세포의 증식률 및 분화율을 효과적으로 향상시킬 수 있는 식물-유래 물질을 개발하고자 노력하였다. 그 결과 부자추출물을 줄기세포에 처리하여 궁극적으로 줄기세포의 증식률 및 분화율이 매우 효과적으로 향상되는 것을 확인함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 부자추출물을 포함하는 줄기세포 증식능 및 분화능 개선용 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 부자추출물을 줄기세포에 처리하는 단계를 포함하는 줄기세포의 증식능 및 분화능을 개선하는 방법을 제공하는데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 부자(Aconiti Lateralis Preparata Radix) 추출물을 포함하는 줄기세포 증식능 및 분화능 개선용 조성물을 제공한다.
본 발명자들은 줄기세포의 증식률 및 분화율을 효과적으로 향상시킬 수 있는 식물-유래 물질을 개발하고자 노력하였고, 그 결과 부자추출물을 줄기세포에 처리하여 궁극적으로 줄기세포의 증식률 및 분화율이 매우 효과적으로 향상되는 것을 발견하였다.
본 발명의 줄기세포 증식률 및 분화율 개선에 있어서, 부자추출물이 사용된다.
본 명세서에서 부자를 언급하면서 사용되는 용어 ‘추출물’은 부자에 추출용매를 처리하여 얻은 추출 결과물뿐만 아니라 부자 자체를 동물에게 투여할 수 있도록 제형화(예컨대, 분말화)된 부자 가공물도 포함하는 의미를 갖는다.
본 발명의 조성물에서 이용되는 부자추출물을 부자에 추출용매를 처리하여 얻는 경우에는, 다양한 추출용매가 이용될 수 있다. 바람직하게는, 극성 용매 또는 비극성 용매를 이용할 수 있다. 극성 용매로서 적합한 것은, (i) 물, (ii) 알코올(바람직하게는, 메탄올, 에탄올, 프로판올, 부탄올, 노말-프로판올, 이소-프로판올, 노말-부탄올, 1-펜탄올, 2-부톡시에탄올 또는 에틸렌글리콜), (iii) 아세트산, (iv) DMFO(dimethyl-formamide) 및 (v) DMSO(dimethyl sulfoxide)를 포함한다. 비극성 용매로서 적합한 것은, 아세톤, 아세토나이트릴, 에틸 아세테이트, 메틸 아세테이트, 플루오로알칸, 펜탄, 헥산, 2,2,4-트리메틸펜탄, 데칸, 사이클로헥산, 사이클로펜탄, 디이소부틸렌, 1-펜텐, 1-클로로부탄, 1-클로로펜탄, o-자일렌, 디이소프로필 에테르, 2-클로로프로판, 톨루엔, 1-클로로프로판, 클로로벤젠, 벤젠, 디에틸 에테르, 디에틸 설파이드, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 어닐린, 디에틸아민, 에테르, 사염화탄소 및 THF를 포함한다.
보다 바람직하게는, 본 발명에서 이용되는 추출용매는 (a) 물, (b) 탄소수 1-4의 무수 또는 함수 저급 알코올 (메탄올, 에탄올, 프로판올, 부탄올 등), (c) 상기 저급 알코올과 물과의 혼합용매, (d) 아세톤, (e) 에틸 아세테이트, (f) 클로로포름, (g) 부틸아세테이트, (h) 1,3-부틸렌글리콜, (i) 헥산 및 (j) 디에틸에테르를 포함한다. 보다 더 바람직하게는, 본 발명의 추출물은 물, 메탄올, 에탄올 또는 이의 조합을 부자에 처리하여 수득하며, 가장 바람직하게는 물을 처리한 후 보일링(boiling) 단계를 통하여 수득된 것이다.
본 명세서에서 사용되는 용어 ‘추출물’은 상술한 바와 같이 당업계에서 조추출물(crude extract)로 통용되는 의미를 갖지만, 광의적으로는 추출물을 추가적으로 분획(fractionation)한 분획물도 포함한다. 즉, 부자 추출물은 상술한 추출용매를 이용하여 얻은 것뿐만 아니라, 여기에 정제과정을 추가적으로 적용하여 얻은 것도 포함한다. 예컨대, 상기 추출물을 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 통과시켜 얻은 분획, 다양한 크로마토그래피(크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시된 다양한 정제 방법을 통해 얻어진 분획도 본 발명의 부자 추출물에 포함되는 것이다.
본 발명에서 이용되는 부자 추출물은 감압 증류 및 동결 건조 또는 분무 건조 등과 같은 추가적인 과정에 의해 분말 상태로 제조될 수 있다.
줄기세포는 크게 두 종류로 구별된다: 배아줄기세포(ES) 및 배아생식세포 (EG)를 포함하는 전능성 줄기세포(pluripotent stem cell)와 다능성 줄기세포 (multipotent stem cell).
본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용하는 줄기세포는 전능성 줄기세포 또는 다능성 줄기세포이다. 보다 바람직하게는, 본 발명에서 이용하는 줄기세포는 다능성 중간엽 줄기세포, 다능성 조혈모 줄기세포, 다능성 신경 줄기세포, 다능성 간 줄기세포, 다능성 췌장 줄기세포 또는 다능성 표피줄기세포이며, 보다 더 바람직하게는 다능성 중간엽 줄기세포이며, 가장 바람직하게는 골수 중간엽 줄기세포를 이용한다.
본 발명에 따르면, 본 발명의 조성물은 줄기세포의 증식률을 증가시킨다.
본 발명의 구체적인 일 실시예에 따르면, 부자추출물을 처리한 세포는 대조 그룹에 비해 세포 증식이 122.24% 증가하였으며(도 3), DNA 복제에 필요한 증식성 세포핵항원 또한 증가하였다(도 5c). 또한, 부자추출물을 처리한 중간엽 줄기세포는 대조군에 비해 줄기세포의 세포주기가 G2/M기에 유지되며(도 6b), ERK1/2의 인산화가 증가된다(도 7b).
본 발명에 따르면, 본 발명의 조성물은 줄기세포의 분화율을 증가시킨다.
본 발명의 구체적인 일 실시예에 따르면, 부자추출물을 처리한 중간엽 줄기세포는 골세포(도 8a, 8b) 또는 지방세포(도 8c) 계통으로 분화가 유도된다.
본 발명의 다른 양태에 따르면, 본 발명은 부자추출물을 줄기세포에 처리하는 단계를 포함하는 줄기세포의 증식능 및 분화능을 개선하는 방법을 제공한다.
보다 구체적으로는, 본 발명은 (a) 부자추출물을 유기용매를 이용하여 추출하는 단계; (b) 부자추출물을 줄기세포에 처리하는 단계를 통하여 줄기세포의 증식능 및 분화능을 매우 효과적으로 향상시킬 수 있다.
본 발명의 명세서에서 줄기세포의 증식능 및 분화능을 개선하는 방법은 상기 부자추출물을 유효성분으로 포함하는 조성물을 이용하고 있기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위해서 그 기재를 생략한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(ⅰ) 본 발명은 부자추출물을 포함하는 줄기세포 증식능 및 분화능 개선용 조성물 및 이를 이용하여 줄기세포의 증식능 및 분화능을 개선하는 방법을 제공한다.
(ⅱ) 본 발명은 줄기세포의 증식률 및 분화율을 효과적으로 향상시킴으로써 줄기세포, 특히 다능성 중간엽 줄기세포의 대량생산이 가능하다.
(ⅲ) 또한, 본 발명은 배아줄기세포보다 안전성면에서 매우 우수한 다능성 줄기세포의 사용을 증가시킴으로써 다양한 임상분야에서 사용될 수 있다.
도 1은 마우스 골수 중간엽 줄기세포의 분리 및 세포 표면 마커에 대한 FACS 분석 결과를 나타낸 그림이다.
(a) 마우스 골수 중간엽 줄기세포의 형태에 대한 현미경 사진(배율 10×, 스케일 바= 50 μm), (b) 세포 표면 마커 발현에 대한 FACS 분석 결과.
도 2는 다혈통(multi-lineage) 간엽 세포 분화를 확인한 결과이다. 세포는 3 계대 배양 후 분화 여부를 확인하였다.
(a) 골혈성 확인을 위해 세포를 알리자린 레드 및 본 코사로 염색함, (b) 지방세포 형성 확인을 위해 지질 소낭(lipid vesicle)을 오일 레드로 염색함(배율 40×).
도 3은 마우스 골수 중간엽 줄기세포 성장에 있어 한약재의 효과를 확인한 결과이다. 마우스 골수 중간엽 줄기세포를 24시간 동안 무혈청 배지에서 배양한 후 한약재(0, 1, 10, 100 μg/ml)를 24시간 처리하였다. 각 결과값은 표준편차(n=3)로 나타내었으며, *는 대조값으로부터 현저한 차이를 나타내는 값을 나타낸 것이다(*: p < 0.05, **: p < 0.01, ***: p < 0.001).
도 4는 마우스 골수 중간엽 줄기세포 성장에 있어 한약재의 성장 억제효과를 확인한 결과이다. 마우스 골수 중간엽 줄기세포를 24시간 동안 무혈청 배지에서 배양한 후 한약재(0, 1, 10, 100 μg/ml)를 24시간 처리하였다. 0 그룹에는 PBS를 처리하였다. 각 결과값은 표준편차(n=3)로 나타내었으며, *는 대조값으로부터 현저한 차이를 나타내는 값을 나타낸 것이다(***: p < 0.001).
도 5는 증식성 세포핵항원(proliferating cell nuclear antigen, PCNA)에 대한 면역염색 결과이다. 마우스 골수 중간엽 줄기세포를 혈청을 포함하는 배지에서 배양한 후, SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 한약재(100 μg/ml)를 24시간 처리하였다. 핵 확인을 위해 PI 염색(적색)을 수행하거나 항-PCNA 항체를 이용하여 염색(청색)하였다. bFGF는 양성 대조군으로 사용되었다. 모든 이미지는 올림푸스 BX-61 형광 현미경을 이용하여 촬영하였으며 배율은 20×이다.
도 6은 마우스 골수 중간엽 줄기세포의 세포주기에 있어 한약재의 효과를 확인한 결과이다.
(a) 마우스 골수 중간엽 줄기세포를 무혈청 배지에서 24시간 배양한 후 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 사상자(100 μg/ml)를 24시간 처리함, (b) 마우스 골수 중간엽 줄기세포를 무혈청 배지에서 24시간 배양한 후 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 부자(100 μg/ml)를 24시간 처리함.
도 7은 사상자 및 부자 처리 후 p-ERK1/2, p-p38, 총 ERK1/2 및 총 p38을 면역블롯팅으로 확인하였다. β-튜불린은 대조군으로 사용되었다.
(a) 마우스 골수 중간엽 줄기세포에 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 사상자(100 μg/ml)를 5분, 10분 및 30분간 처리함, (b) 마우스 골수 중간엽 줄기세포에 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 부자(100 μg/ml)를 5분, 10분 및 30분간 처리함.
도 8은 한약재 처리에 따른 마우스 골수 중간엽 줄기세포의 골형성 및 지방세포 분화를 확인한 결과이다. 한약재 또는 유도 배지를 1, 2, 3주간 처리한 후, 알리자린, 본 코사 또는 오일 레드로 염색하였다. 세포는 15계대 이후에 측정하였다(배율 20×).
(a) 혹 유사 구조를 확인하기 위해서 골형성 배양 후 알리자린 레드로 염색함, (b) 칼슘-인산염 축적을 확인하기 위해 골형성 배양 후 본 코사로 염색함, (c) 지방방울을 확인하기 위해 지방세포화 배양 후 오일 레드로 염색함.
도 9는 부자 처리에 따른 인산-Smad1/5 및 총 Runx2 발현 변화를 웨스턴블롯을 통해 확인한 결과이다. β-튜불린은 대조군으로 이용되었다.
(a) Smad1/5의 인산화를 면역블롯팅으로 측정하기 위해 마우스 골수 중간엽 줄기세포에 부자(100 μg/ml) 또는 골형성 유도 배지를 3주간 처리함, (b) Runx2의 발현을 면역블롯팅으로 측정하기 위해 마우스 골수 중간엽 줄기세포에 부자(100 μg/ml) 또는 골형성 유도 배지를 3주간 처리함.
(a) 마우스 골수 중간엽 줄기세포의 형태에 대한 현미경 사진(배율 10×, 스케일 바= 50 μm), (b) 세포 표면 마커 발현에 대한 FACS 분석 결과.
도 2는 다혈통(multi-lineage) 간엽 세포 분화를 확인한 결과이다. 세포는 3 계대 배양 후 분화 여부를 확인하였다.
(a) 골혈성 확인을 위해 세포를 알리자린 레드 및 본 코사로 염색함, (b) 지방세포 형성 확인을 위해 지질 소낭(lipid vesicle)을 오일 레드로 염색함(배율 40×).
도 3은 마우스 골수 중간엽 줄기세포 성장에 있어 한약재의 효과를 확인한 결과이다. 마우스 골수 중간엽 줄기세포를 24시간 동안 무혈청 배지에서 배양한 후 한약재(0, 1, 10, 100 μg/ml)를 24시간 처리하였다. 각 결과값은 표준편차(n=3)로 나타내었으며, *는 대조값으로부터 현저한 차이를 나타내는 값을 나타낸 것이다(*: p < 0.05, **: p < 0.01, ***: p < 0.001).
도 4는 마우스 골수 중간엽 줄기세포 성장에 있어 한약재의 성장 억제효과를 확인한 결과이다. 마우스 골수 중간엽 줄기세포를 24시간 동안 무혈청 배지에서 배양한 후 한약재(0, 1, 10, 100 μg/ml)를 24시간 처리하였다. 0 그룹에는 PBS를 처리하였다. 각 결과값은 표준편차(n=3)로 나타내었으며, *는 대조값으로부터 현저한 차이를 나타내는 값을 나타낸 것이다(***: p < 0.001).
도 5는 증식성 세포핵항원(proliferating cell nuclear antigen, PCNA)에 대한 면역염색 결과이다. 마우스 골수 중간엽 줄기세포를 혈청을 포함하는 배지에서 배양한 후, SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 한약재(100 μg/ml)를 24시간 처리하였다. 핵 확인을 위해 PI 염색(적색)을 수행하거나 항-PCNA 항체를 이용하여 염색(청색)하였다. bFGF는 양성 대조군으로 사용되었다. 모든 이미지는 올림푸스 BX-61 형광 현미경을 이용하여 촬영하였으며 배율은 20×이다.
도 6은 마우스 골수 중간엽 줄기세포의 세포주기에 있어 한약재의 효과를 확인한 결과이다.
(a) 마우스 골수 중간엽 줄기세포를 무혈청 배지에서 24시간 배양한 후 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 사상자(100 μg/ml)를 24시간 처리함, (b) 마우스 골수 중간엽 줄기세포를 무혈청 배지에서 24시간 배양한 후 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 부자(100 μg/ml)를 24시간 처리함.
도 7은 사상자 및 부자 처리 후 p-ERK1/2, p-p38, 총 ERK1/2 및 총 p38을 면역블롯팅으로 확인하였다. β-튜불린은 대조군으로 사용되었다.
(a) 마우스 골수 중간엽 줄기세포에 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 사상자(100 μg/ml)를 5분, 10분 및 30분간 처리함, (b) 마우스 골수 중간엽 줄기세포에 SB202190(30 μM) 또는 PD98059(30 μM)를 2시간 처리하고 부자(100 μg/ml)를 5분, 10분 및 30분간 처리함.
도 8은 한약재 처리에 따른 마우스 골수 중간엽 줄기세포의 골형성 및 지방세포 분화를 확인한 결과이다. 한약재 또는 유도 배지를 1, 2, 3주간 처리한 후, 알리자린, 본 코사 또는 오일 레드로 염색하였다. 세포는 15계대 이후에 측정하였다(배율 20×).
(a) 혹 유사 구조를 확인하기 위해서 골형성 배양 후 알리자린 레드로 염색함, (b) 칼슘-인산염 축적을 확인하기 위해 골형성 배양 후 본 코사로 염색함, (c) 지방방울을 확인하기 위해 지방세포화 배양 후 오일 레드로 염색함.
도 9는 부자 처리에 따른 인산-Smad1/5 및 총 Runx2 발현 변화를 웨스턴블롯을 통해 확인한 결과이다. β-튜불린은 대조군으로 이용되었다.
(a) Smad1/5의 인산화를 면역블롯팅으로 측정하기 위해 마우스 골수 중간엽 줄기세포에 부자(100 μg/ml) 또는 골형성 유도 배지를 3주간 처리함, (b) Runx2의 발현을 면역블롯팅으로 측정하기 위해 마우스 골수 중간엽 줄기세포에 부자(100 μg/ml) 또는 골형성 유도 배지를 3주간 처리함.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
재료 및 방법
실험재료
RT-PCR을 수행하기 위해 트리졸 RNA 추출 시약(Invitrogen, USA), 클로로포름(Sigma Chemical Co., USA), 이소프로파놀(Sigma Chemical Co., USA), DEPC(Diethyl pyrocarbonate, Sigma Chemical Co., USA), 에틸 알코올(Sigma Chemical Co., USA), 올리고 dT(Promega Co., USA), MMLV 역전사효소(Promega Co., USA)를 구입하여 사용하였다.
핵 추출 키트(Active & Motif, USA), Bio-Rad 단백질 어세이 키트(Bio-Rad, USA), 30% 아크릴아마이드 믹스(Bio-Rad, USA), SeePico CBB stain 키트(Benebiosis, Korea), 항-phospho-ERK, 항-phospho-p38(Cell Signaling Technology, Beverly, MA), 항-phospho-JNK(R&D systems Inc., Minneapolis), 항-ERK, 항-p38 및 항-α-튜불린(Santa Cruz Biotechnology Inc., CA), 메탄올(Sigma Chemical Co., USA), 고트 항-토끼 IgG(Sigma Chemical Co., USA), 암모늄 퍼설페이트(Sigma Chemical Co., USA), N, N, N, N'-tetramethylethylenediamine(TEMED, Sigma Chemical Co., USA), DTT(dithiothreitol, Sigma Chemical Co., USA), 브로모페놀 블루(Sigma Chemical Co., USA), 트윈 20(Sigma Chemical Co., USA), 글라이신(Sigma Chemical Co., USA), 트리즈마 베이스(Sigma Chemical Co., USA), 스킴 밀크(Becton Dickison, USA), 글리세롤(Showa, Japan), 니트로셀룰로스 멤브레인 (Schleicher & Schuell, Germany), 소듐 도데실 설페이트(SDS, Sigma Chemical Co., USA) 및 겔 블롯팅 페이퍼(Schleicher & Schuell, Germany)는 SDS-PAGE 및 웨스턴 블롯팅에 이용하였다.
한약재 추출물
한약재는 원광 약재시장에서 구입하였다(Wonkwang Herbal Drug Co. Ltd. 한국). 건조된 한약재 300 g에 6 L의 물을 넣어 2시간 동안 끓인 후, 상등액을 필터링하고 감압상태에서 증발시켰다. 각 추출물의 수율은 표 1에 나타내었다. 여과액은 동결건조하여 4℃에 보관하였다. 각 실험 전에 건조된 추출물은 증류수(Millipore, USA)에 녹인 후, 실온에서 2분간 볼텍싱하였다.
마우스 골수 중간엽 줄기세포의 분리
마우스 기질 세포는 Nadri 등(2007)의 수정된 프로토콜에 따라 분리하였다. 8-12 주령 웅성 C57BL/6 마우스의 대퇴골 및 경골에 15% FBS(Gibco-BRL, Grand Island, NY), 100 U/ml 페니실린, 100 μg/ml 스트렙토마이신을 추가적으로 포함하는 DMEM(Gibco-BRL, Grand Island, NY)을 통과하게 하여 골수세포를 추출하였다. 골수를 26-게이지 바늘이 탑재된 주사기를 이용하여 부유시킨 후 70 μm 세포 여과기(Falcon, Becton Dickinson and Company, Heidelberg, Germany)에 통과시켜 단일세포 부유액을 수득하였다. 15% FBS, 100 U/ml 페니실린, 100 μg/ml 스트렙토마이신을 추가적으로 포함하는 DMEM 배양액이 채워진 0.1% 젤라틴-coated 10-cm 디쉬에서 37°C, 5% CO2, 가습조건 하에 세포를 배양하였다. 3일 후, 비부착 세포는 제거하고 부착세포는 배양 디쉬에 90% 정도 채워질 때까지(6-7일) 배양하였다. 3회 계대배양 후, 부착된 골수세포는 동종세포로 조혈세포가 전혀 없는 상태가 되었다. 모든 동물 실험은 기관의 지침에 따라 수행하였다.
MACS
시스템을 이용한
Sca
-1 양성 및
CD45
음성 마우스 골수
중간엽
줄기세포의 분류
Sca-1(+) 마우스 골수 중간엽 줄기세포는 MACS 시스템(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)을 이용하여 분류하였다. 3회 계대배양 후, 마우스 골수 중간엽 줄기세포에 PE-conjugated 항-CD45 항체(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)를 4°C에서 10분간 처리하고 MACS 버퍼(0.5% BSA 및 2 mM EDTA를 포함하는 PBS)로 세척하였다. 그 다음, 항-PE 마이크로 비드(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)를 4°C에서 10분간 처리하고 MACS 버퍼로 세척하였다. 샘플은 Miltenyi magnet로 충진된 MACS 컬럼에 통과시켰다. CD45(-) 마우스 골수 중간엽 줄기세포에 FITC-conjugated 항-Sca-1 항체(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)를 4°C에서 10분간 처리한 후, MACS 버퍼로 세척하였다. 그 다음, 항-FITC 마이크로 비드(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)를 4°C에서 10분간 처리한 후 MACS 버퍼로 세척하고, 샘플은 Miltenyi magnet로 충진된 MACS 컬럼에 통과시켰다. Sca-1(+) 마우스 골수 중간엽 줄기세포는 MACS 버퍼로 세척하여 컬럼으로부터 용출시켰다. 그 다음, FITC-conjugated 랫트 항마우스 Sca-1, CD11b 및 PEconjugated 랫트 항-마우스 CD105, CD45(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)로 4°C에서 30분간 염색하였다. 세포는 침전시킨 후 PBS로 2회 세척하고, 70% EtOH를 포함한 PBS로 고정시킨 후 유세포 분석기(B&D Biosciences, Cell Quest software)를 이용하여 분석하였다.
골수
중간엽
줄기세포 분화 분석
분리된 세포가 골원성(osteogenic) 및 지방세포화 계통으로 분화될 가능성이 있는지를 확인하였다. 골형성을 위해 배양세포는 Eslaminejad 등에 의해 개시된 골원성 조건 배지에서 배양하였다. 간략하게 설명하면, 10 mM β-글리세롤 인산염(Sigma Chemical Co., USA), 50 μg/ml 아스코르브산염-2-인산염(Sigma Chemical Co., USA) 및 10-7 M 덱사메사손(Sigma Chemical Co., USA)을 포함하는 DMEM을 이용하였다. 배양배지는 3주까지 일주일에 2회 교환하였다. 세포는 메탄올을 이용하여 실온에서 10분간 고정시키고, 알리자린 레드(pH 4.0)으로 상온에서 5분간 염색한 후, 골결절형성 확인을 위해 본 코사(Von Kossa) 염색을 수행하였다. 지방형성을 확인하기 위해, 배양세포를 50 μg/ml 인도메타신(Sigma Chemical Co., USA), 10-7 M 덱사메사손 및 50 μg/ ml 아스코르브산-2-인산염을 포함하는 DMEM에 배양하였다. 배양배지는 3주까지 일주일에 2회 교환하였다. 세포는 메탄올로 45분간 고정시킨 후 오일 레드(Sigma Chemical Co., USA)로 염색하였다.
RNA
추출 및
RT
-
PCR
총
RNA
추출
1×106개 세포에 트리졸 1 ml을 첨가한 후 균질화 시키고, 상온에서 5분간 배양하였다. 샘플에 클로로포름 250 μl을 첨가하고 상온에서 10분간 12,000 g 조건으로 원심분리하였다. 액상층은 새 튜브로 옮기고 400 μl의 이소프로파놀을 첨가한 후 상온에서 10분간 정치시키고 4℃에서 10분간 12,000 g 조건으로 원심분리하였다. RNA 펠렛은 75% 에탄올을 첨가하여 세척한 후, 건조시키고 DEPC가 처리된 물로 부유시켰다. 총 RNA 샘플은 변성 포름알데히드/아가로스/이티듐 브로마이드 전기영동을 통해 분석하였다. 포유류 총 RNA 샘플은 0.5-12kb 사이에 약하게 끌리는 밴드로 나타나며, 28S rRNA 및 18S rRNA 밴드는 각각 약 4.5 kb 및 1.9 kb에 나타난다. 이러한 밴드들의 강도 비율은 1.5-2.5:1 정도이다. RNA의 총량은 분광광도계(Molecular Devices, USA) 260 nm에서 측정하였다.
cDNA
합성 및
PCR
총 RNA 5 μg에 MMLV 역전사 효소 및 올리고 dT 프라이머를 처리하고 42℃에서 1시간 반응시켜 cDNA 첫번째 가닥을 합성하였다. 그 다음, PCR은 Saiki 등(1986)이 개시한 방법을 수정하여 수행하였다. 먼저, 5 μl cDNA에 2.5 μl의 10 PCR 버퍼, 25 mM MgCl2 1 μl , 2.5 mM dNTP 1 μl, 중합효소(1 U) 0.5 μl , 각 프라이머(4 pmol) 1 μl를 첨가하고 최종 볼륨이 25 μl가 되도록 DEPC-H2O 첨가하였다. 이 혼합물을 95℃에서 5분간 가열한 후, 72℃ 1분, 95℃ 1분, 56-62℃ 1분의 사이클을 35회 반복하였다. 오스테오칼신의 정방향 및 역방향 프라이머 서열은 각각 5'-GACCATCTTTCTGCTCACTCTG-3', 5'-GTGATACCATAGATGCGTTTG TAG-3'이다. 지질단백질 리파아제의 정방향 및 역방향 프라이머 서열은 각각 5'-GAGGACACTTGTCATCTCATTC-3', 5'-CCTTCT TATTGGTCAGACTTCC-3'이며, 마우스 β-액틴의 정방향 및 역방향 프라이머 서열은 각각 5'-ACCGTGAAAAGATGACCCAG-3' 및 5'-TACGGATGTCAACGTCACAC-3'이다. PCR 생성물은 1.5% 아가로스 젤에서 분리하였으며, 에티듐 브로마이드로 염색한 후 i-MAX 젤 이미지 분석 시스템(CoreBioSystem, Korea)을 이용하여 가시화 하였다. 결과는 Alpha Easy™ FC 소프트웨어(Alpha Innotech, USA)를 이용하여 분석하였다.
세포 생존능력 및 분화 분석
세포 분화는 MTT 분석법을 통해 분석하였다. 마우스 골수 중간엽 줄기세포를 24시간 동안 무혈청 상태로 배양한 후, 각각의 한약재(1, 10 및 100 μg/ml)를 처리하였다. 24시간 후, 배양액을 제거하고 세포에 MTT를 처리한 다음 마이크로타이터 플레이트 리더(Molecular Devices, Sunnyvale, CA, USA)를 이용하여 분광광도계 450 nm에서 대사 활성도를 측정하였다.
PCNA
검출
PCNA를 검출하기 위해, 마우스 골수 중간엽 줄기세포를 고정시킨 다음 차가운 메탄올로 투과성을 증가시킨 후, 3회 세척하고 5% FBS를 포함하는 DMEM으로 상온에서 1시간동안 블로킹시켰다. 샘플은 세척한 후 항-PCNA 항체를 처리하여 하룻밤동안 배양하였다. 그 다음, 세포를 3회 세척하고 고트 항-마우스 알렉사 488 항체(excitation 488 nm, emission 519 nm)를 처리한 후 4시간 배양하였다. 핵을 검출하기 위해, 세포에 PI를 처리하고 5분간 배양하였고, 그 다음 올림푸스 BX-61 형광현미경으로 이미지를 관찰하였다.
세포 주기 분석
세포 주기 분석을 위해 마우스 골수 중간엽 줄기세포를 무혈청 배지에서 배양한 후 한약재 및 다양한 억제제를 24시간동안 처리하였다. 세포를 수득한 후 차가운 PBS로 세척하고 70% 에탄올로 4℃에서 하룻밤동안 고정시켰다. 세포를 차가운 PBS로 세척하고 원심분리하여 세포 침전물을 수득한 후 0.5 μg/ml RNase 및 PI 용액(10 μg/ml)을 처리하여 37℃에서 30분간 배양하였다. PI-DNA 복합체로부터 발산되는 형광은 FACS(B&D Biosciences, Cell Quest software, San Jose, CA, USA)를 이용하여 분석하였다.
웨스턴
블롯
성장이 정지된 프리-컨플루언트 마우스 골수 중간엽 줄기세포에 다양한 억제제 및 한약재를 5분, 10분, 30분 동안 처리하였다. 세포는 PBS로 세척하고 세포 용해 버퍼(Promega, Madison, WI)로 세포를 용해시켰다. 총 세포 용해물은 SDS-PAGE를 이용하여 분리하였고, PVDF 멤브레인(Millipore, Bedford, MA)으로 트랜스퍼한 후 멤브레인을 5% 스킴 밀크로 블로킹하고, PBST(0.1% Tween 20을 포함하는 PBS)로 세척하였다. 멤브레인에 1차 항체(항-인산-ERK, 항-인산-p38, 항-인산-Smad1/5, 항-ERK, 항-p38, 항-Runx2 또는 항-β-튜불린)를 처리한 후 세척하고 HRP(horseradish peroxidase, Santa Cruz Biotechnology Inc.)가 결합된 2차 항체를 처리하였다. 그 다음 ECL 시스템(enhanced chemiluminescence system, Amersham Biosciences, UK)을 이용하여 가시화하였다.
통계학적 분석
GraphPrism 4.0.3 소프트웨어(GraphPad Software, Inc., San Diego, CA)를 이용하여 통계학적 분석을 수행하였다. 모든 데이터는 표준 편차로 나타냈으며, 스튜던트 t검정은 그룹간 의미값을 비교하기 위해 이용되었다.
실험결과
세포 표면
마커의
분석
골수를 C57BL/c(n=15) 마우스로부터 수득한 후 100 mm 배양 디쉬에 세포 25×106개를 분주하여 배양하였다. 비부착세포는 3일 후 제거하고 배지를 교체하였다. 부착세포(계대 0)는 PBS로 세척한 후 3-4일 마다 새 배지를 첨가하였다. 7일째, 세포가 디쉬에 90% 정도 채워지면 다른 플라스크로 세포를 옮겼다. 마우스 골수 중간엽 줄기세포의 배양 동안, 세포 형태는 점차 섬유아세포 같은 방추형 모양에서 편평하고 확대된 모양의 세포로 변하였다(도 1a).
마우스 골수 중간엽 줄기세포의 특징을 확인하기 위해 세포 표면 항원 발현에 대한 면역아형검사를 수행한 결과, 세포들은 FITC-결합 랫트 항-마우스 Sca-1 및 PE-결합 랫트 항-마우스 CD105에 염색되었다. 또한, 세포들은 FITC-결합 랫트 항-마우스 CD11b에는 염색되지 않았다. CD105, CD11b 및 Sca-1의 발현은 FACS 분석을 통해 확인하였다. FACS 분석을 통해 CD105를 발현하는 세포는 97.06%, Sca-1을 발현하는 세포는 90.1%인 것을 나타났다. CD11b를 발현하는 세포는 배양세포 가운데 0.22%에 불과하였다(도 1b).
마우스 골수
중간엽
줄기세포의 분화 가능성
줄기세포는 다양한 세포 계통으로 분화할 수 있는 능력을 가지고 있는데, 마우스 골수 중간엽 줄기세포가 이러한 분화능력을 가지고 있는 확인하기 위하여 실험을 수행하였다. 마우스 골수 중간엽 줄기세포는 적절한 유도 배지에서 배양하면 쉽게 골세포 및 지방세포로 분화된다는 것을 확인하였다. 골세포 배양에서 알리자린 레드 염색 결과, 3주 후부터 혹과 유사한 구조가 관찰되었다(도 2). 골세포의 특이적인 현상이 칼슘-인산염 축적을 확인하기 위해 골세포 배양조건의 세포를 본 코사(Von Kossa)로 염색한 결과, 마우스 골수 중간엽 줄기세포에서 칼슘-인산염 축적이 확인되었다. 마찬가지로 마우스 골수 중간엽 줄기세포 배양 2-3주 후, 오일 레드로 염색한 결과 지방세포 유도 배지 조건 하에서 배양한 세포에서 지방방울(adipose droplet)이 관찰되었다(도 2). 마우스 골수 중간엽 줄기세포는 계대배양 8회까지 골세포 및 지방세포 분화능을 유지하였다.
한약재의 마우스 골수
중간엽
줄기세포 증식 개선 효과
마우스 골수 중간엽 줄기세포 증식에 있어서 한약재의 효과는 생존 세포의 대사활성을 측정하는 MTT 분석법을 이용하여 확인하였다. 실험에 앞서 세포를 무혈청 배지에서 배양하여 성장이 정지되도록 하고, 한약재를 24시간 처리하였다. 육계(Cinnamomi Cortex), 속단(Dipsaci Radix), 산약(Dioscoreae Rhizoma), 사상자(Cnidi Fructus), 당귀(Angelicae Gigantis Radix) 또는 우슬(Achyranthis Bidentatae Radix)을 처리(100 μg/ml)한 세포는 대조 그룹에 비해 세포 증식이 현저하게 증가하였으며(각각 219.57, p< 0.01; 117.47, p< 0.01; 140.71, p< 0.001; 122.51, p< 0.05; 134.19, p<0.05; 105.78(%)), 부자(Aconiti Lateralis Preparata Radix, 10 μg/ml)를 처리한 세포는 대조 그룹에 비해 세포 증식이 122.24%(p< 0.01) 증가하였다. 또한, 백자인(Biotae Semen, 50 μg/ml) 처리한 세포에서는 대조 그룹에 비해 세포 증식이 173.87 %(p< 0.001) 증가하였다(도 3). 이러한 결과는 육계, 속단, 산약, 사상자, 당귀, 부자, 우슬 및 백자인이 마우스 골수 중간엽 줄기세포 증식률을 증가시킨다는 것을 의미한다.
반면, 숙지황(Rehmanniae Radix Preparata) 또는 복분자(Rubi Fructus)를 처리한 세포는 농도 의존적으로 대조 그룹에 비해 세포 증식이 감소하였으나, 큰 차이를 나타내지는 않았다. 그에 반해, 음양곽(Epimedii Herba)을 처리(10 및 100 μg/ml)한 세포는 대조 그룹에 비해 세포 증식이 현저하게 감소하였다(농도별로 각각 87.26, 64.77 (%), p< 0.001)(도 4).
한약재 명 | 총 물의 양(ml) | 한약재 총량(g) | 수율 |
육계(Cinnamomi Cortex) | 3000 | 150 | 6.4%(9.6g) |
속단(Dipsaci Radix) | 380 | 19 | 13.68% (2.6g) |
산약(Dioscoreae Rhizoma) | 6000 | 300 | 15.9%(47.7g) |
사상자(Cnidi Fructus) | 600 | 30 | 12%(3.6g) |
당귀(Angelicae Gigantis Radix) | 1060 | 53 | 11.1%(5.87g) |
우슬(Achyranthis Bidentatae Radix) | 3000 | 150 | 42.6%(63.9g) |
부자(Aconiti Lateralis Preparata Radix) |
5000 | 250 | 17.12% (42.8g) |
백자인(Biotae Semen) | 3000 | 150 | 22.27%(33.4g) |
숙지황(Rehmanniae Radix Preparata) | 6000 | 300 | 55.6%(166.8g) |
복분자(Rubi Fructus) | 1500 | 75 | 21.2%(15.9g) |
음양곽(Epimedii Herba) | 6000 | 300 | 12.3%(37.1g) |
한약재를 처리한 증식성 마우스 골수
중간엽
줄기세포에서 증식성
세포핵항원
측정
세포 주기에 있어서 한약재의 증식 효과를 확인하기 위해 DNA 복제(Miyachi et al ., 1978)에 필요한 단백질인 증식성 세포핵항원(proliferating cell nuclear antigen, PCNA)을 측정하였다. 혈청을 포함한 배지에서 배양한 세포에 p38 억제제인 SB202190 또는 ERK1/2 억제제인 PD98059를 처리 또는 처리하지 않은 상태에서 한약재(100 μg/ml)를 24시간 동안 처리하였다. 그 다음, 핵 염색을 위해 PI(propidium iodide, 적색)를 처리하고, 동시에 PCNA 항체(청색)를 처리하여 반응시켰다. 사상자 및 부자를 처리한 세포는 한약재를 처리하지 않은 세포(untreated cells)에 비해 PCNA가 증가하였으며, 이러한 결과는 사상자 및 부자가 골수 중간엽 줄기세포 증식을 활성화시킨다는 것을 의미한다. 더욱이, 사상자 또는 부자만을 처리한 세포에 비해 SB202190 또는 PD98059를 먼저 처리한 세포에서 PCNA가 감소하였다. 이러한 결과는 사상자 및 부자의 세포 증식 효과가 ERK1/2 및 p38과 같은 세포 신호전달 경로와 연관되어 마우스 골수 중간엽 줄기세포 증식을 촉진시킨다는 것을 의미한다(도 5b, 5c). 음양곽을 처리한 세포는 음양곽을 처리하지 않은 세포에 비해 PCNA가 감소하였으며, SB202190 또는 PD98059를 먼저 처리한 세포는 음양곽만을 처리한 세포에 비해 PCNA가 감소하였다(도 5d).
ERK1
/2 및
p38
신호전달을 통한 한약재의 마우스 골수
중간엽
줄기세포 증식 효과
한약재의 마우스 골수 중간엽 줄기세포 증식효과가 신호전달에 의한 것인지 확인하기 위해 한약재를 처리하여 마우스 골수 중간엽 줄기세포 증식을 유도한 가운데 세포 주기를 분석하였다. 마우스 골수 중간엽 줄기세포는 무혈청 배지에서 배양한 후 SB202190 또는 PD98059를 처리 또는 처리하지 않은 상태에서 사상자(100 μg/ml)를 24시간 동안 처리하고 PI 염색을 한 후 세포 주기 분석을 수행하였다. 분석 결과, 사상자를 처리한 세포는 세포 증식 방향으로 세포 주기가 진행된 것에 반해, 사상자를 처리하지 않은 세포 대부분은 G1기에 머물렀다(G1기: 75.03%, 84.80%; S기: 5.92%, 9.55%; G2/M: 19.05%, 5.65 %)(도 6a).
마우스 골수 중간엽 줄기세포에 PD98059를 먼저 처리한 경우, PD98059를 처리하지 않은 세포에 비해 G1기 정체가 75.03%에서 85.21%로 증가하여 세포 증식이 악화되었음을 확인하였다. 또한, 마우스 골수 중간엽 줄기세포에 SB202190를 먼저 처리한 경우 SB202190를 처리하지 않은 세포에 비해 G1기 정체가 75.03%에서 81.08%로 증가하였다.
부자를 처리한 세포는 세포 증식 방향으로 세포 주기가 진행된 것에 반해, 음양곽을 처리하지 않은 세포 대부분은 G1기에 머물렀다(G1기: 76.06 %, 84.80 %, S기: 6.61%, 9.55%, G2/M: 17.33%, 5.65%)(도 6b). 마우스 골수 중간엽 줄기세포에 PD98059를 먼저 처리한 경우, PD98059를 처리하지 않은 세포에 비해 G1기 정체가 76.06%에서 82.94%로 증가하였다. 또한, 마우스 골수 중간엽 줄기세포에 SB202190를 먼저 처리한 경우, SB202190를 처리하지 않은 세포에 비해 G1기 정체가 76.06%에서 86.77%로 증가하였다. 이러한 결과들은 사상자 및 부자가 G1기에서 S기, S기에서 G2/M기로의 전환을 담당하는 ERK1/2 및 p38과 같은 세포 주기 촉진 신호전달 과정을 통해 마우스 골수 중간엽 줄기세포의 증식을 촉진시킨다는 것을 의미한다.
사상자 및 부자의
ERK1
/2 신호전달 활성화
마우스 골수 중간엽 줄기세포에 한약재를 처리하였을 때 발생하는 신호전달 변화를 확인하기 위하여 웨스턴 블롯을 수행하였다. 성장이 정지된 마우스 골수 중간엽 줄기세포에 PD98059(30 μM)를 2시간 먼저 처리한 후, 사상자 또는 부자(100 μg/ml)를 5분, 10분 및 30분간 처리하였다. 인산-ERK1/2 항체를 이용하여 웨스턴 블롯을 수행한 결과, 사상자 및 부자를 처리한 경우 ERK1/2의 인산화가 증가한 반면, 억제제를 처리한 이후 사상자 또는 부자를 처리한 경우에는 ERK1/2의 인산화가 감소하였다(도 7a, 7b). 이러한 결과는 사상자 및 부자가 마우스 골수 중간엽 줄기세포의 증식과 관련된 ERK1/2 신호전달을 활성화시킨다는 것을 의미한다.
또한, 성장이 정지된 마우스 골수 중간엽 줄기세포에 SB202190(30 μM)를 2시간 먼저 처리한 후, 사상자 또는 부자(100 μg/ml)를 5분, 10분 및 30분간 처리하였다. 인산-p38 항체를 이용하여 웨스턴 블롯을 수행한 결과, p38의 인산화 변화는 나타나지 않았다(도 7a, 7b).
음양곽, 사상자 및 부자에 의한 마우스 골수
중간엽
줄기세포의 지방세포 분화 촉진
마우스 골수 중간엽 줄기세포의 중요한 특징은 골아세포, 조연골세포 및 지방세포에 대한 분화능을 갖는 것이다. 한약재가 마우스 골수 중간엽 줄기세포의 골세포 및 지방세포 분화능에 영향을 미치는지 확인하기 위해 마우스 골수 중간엽 줄기세포에 음양곽, 사상자 및 부자(100 μg/ml)를 3주간 처리하였다. 알리자린 레드 및 본 코사 분석 결과, 마우스 골수 중간엽 줄기세포는 음양곽, 사상자 및 부자에 의해 골세포 계통으로 강하게 분화 유도되는 것을 확인하였다. 특히, 도 8a 및 8b를 살펴보면, 사상자 및 부자를 처리한 세포는 처리 2주 후부터 골세포 분화가 유도되었다.
부자의
BMP
-2/
Smad
-의존적
Runx2
신호전달을 통한 골세포 분화 자극
골세포 분화에 있어서 부자 처리에 의한 Runx2 단백질 발현 및 BMP-2/Smad 신호전달 변화를 확인하기 위해 웨스턴 블롯을 수행하여 Runx2 단백질 및 BMP-2/Smad 발현을 측정하였다. 마우스 골수 중간엽 줄기세포에 부자(100 μg/ml) 또는 골세포 유도 배양액을 21일간 처리하였다. 인산-Smad1/5 및 Runx2 항체를 이용하여 웨스턴 블롯을 수행한 결과, 도 9a에서 보는 바와 같이 부자를 처리한 경우 Smad1/5의 인산화가 증가한 반면, 부자 및 골세포 유도 배양액을 동시에 처리한 경우에는 Smad1/5의 인산화에 영향을 미치지 않았다. 또한, Runx2 단백질 레벨은 부자에 의해 증가되었고, 아무 것도 처리하지 않은 마우스 골수 중간엽 줄기세포와 비교하였을 때 부자 및 골세포 유도 배양액을 처리한 경우에는 Runx2 단백질의 발현이 감소하였다(도 9b). 이러한 결과는 부자가 BMP-2/Smad-의존적 Runx2 신호전달을 통해 골세포 분화를 촉진시킨다는 것을 의미한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
Ahn HJ, Lee WJ, Kwack K, Kwon YD.FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett. 2009;3;583(17):2922-6.
Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003; 15;89(6):1235-49.
Bielby R, Jones E, McGonagle D.The role of mesenchymal stem cells in maintenance and repair of bone. Injury. 2007;38:S26-32.
Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;10;7:14.
CI, Tejados N, Delgado J, Gaztelumendi A, Otaegui D, Lang V, Trigueros C. ERK2 protein regulates the proliferation of human mesenchymal stem cells without affecting their mobilization and differentiation potential. Exp Cell Res. 2008;314(8):1777-88.
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing.Stem Cells. 2007; 25(11):2739-49.
Chae HD, Lee MR, Broxmeyer HE. AICAR Induces G1/S Arrest and Nanog Down-Regulation via p53 and Enhances Erythroid Differentiation. Stem Cells. 2011 Nov 10 in press.
Chen WF, Mok SK, Wang XL, Lai KH, Lai WP, Luk HK, Leung PC, Yao XS, Wong MS. Total flavonoid action of the Herba epimedii extract suppresses urinary calcium excretion and improves bone properties in ovariectomised mice. Br J Nutr. 2011;105(2):180-9.
Gao T, Bi H, Ma S, Lu J. he antitumor and immunostimulating activities of water soluble polysaccharides from Radix Aconiti, Radix Aconiti Lateralis and Radix Aconiti Kusnezoffii. Nat Prod Commun. 2010;5(3):447-55.
Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25:2432.
Jethva R, Otsuru S, Dominici M, Horwitz EM. Cell therapy for disorders of bone. Cytotherapy. 2009;11(1):3-17.
Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 2008;22(4):954-65.
Jung HW, Ghil SH. A Torilis japonica extract exerts anti-proliferative activities on the U87MG human glioblastoma cell line. Mol Med Report. 2010;3(6):1041-5.
Kim MS, Lee YM, Moon EJ, Kim SE, Lee JJ, Kim KW. Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int J Cancer. 2000;87(2):269-75.
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204.
Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U.Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci. 2007;15:2904-11.
Nadri S, Soleimani M.Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev Biol Anim. 2007;43(8-9):276-82.
Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R.An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol. 2007;51(8):723-9.
Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T, Wada M, Amano K, Yoneda T.Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab. 2008;26(3):203-12.
McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D'Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M.Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46:249-79.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.
Levy O, Dvir T, Tsur-Gang O, Granot Y, Cohen S. Signal transducer and activator of transcription 3-A key molecular switch for human mesenchymal stem cell proliferation. Int J Biochem Cell Biol. 2008;40(11).
Ohishi M, Schipani E.Bone marrow mesenchymal stem cells. J Cell Biochem. 2010;109(2):277-82.
Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun. 2008 ;30(3):121-7.
Papathanasopoulos A, Giannoudis PV.Biological considerations of mesenchymal stem cells and endothelial progenitor cells. Injury. 2008; 39(2):S21-32.
Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009 ;15;108(3):577-88.
Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324163-6.
Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010;20(5):510-8.
Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, Chung JH, Kim BS, Lee H, Joung B, Park S, Choi D, Jang Y, Chung NS, Yoo KJ, Hwang KC.Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells. 2005 ;30;19(3):402-7.
Summer R, Fine A. Mesenchymal progenitor cell research: limitations and recommendations. Proc Am Thorac Soc. 2008;5(6):707-10.
Sze SC, Tong Y, Ng TB, Cheng CL, Cheung HP. erba Epimedii: anti-oxidative properties and its medical implications. Molecules. 2010 ;15(11):7861-70.
TF, Westenfelder C. Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn. 2007;236(12):3321-31.
Tropel P, NoD, Platet N, Legrand P, Benabid AL, Berger F.Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004;295(2):395-406.
TschC, Miteva K, Schultheiss HP, Van Linthout S.Mesenchymal Stromal Cells: a Promising Cell Source for the Treatment of Inflammatory Cardiomyopathy. Curr Pharm Des. 2011 Sep 15.
Tuan RS, Boland G, Tuli R.Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5(1):32-45.
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?. Trends Immunol. 2007;28(5):219-26.
Van Damme A, Vanden Driessche T, Collen D, Chuah MK. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther. 2002;2(2):195-209.
Yan FF, Liu Y, Liu YF, Zhao YX. Herba Epimedii water extract elevates estrogen level and improves lipid metabolism in postmenopausal women. Phytother Res. 2008;22(9):1224-8.
Yee AS, Paulson EK, McDevitt MA, Rieger-Christ K, Summerhayes I, Berasi SP, Kim J, Huang CY, Zhang X.The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene. 2004;336(1):1-13.
Yun CY, Kim D, Lee WH, Park YM, Lee SH, Na M, Jahng Y, Hwang BY, Lee MK, Han SB, Kim Y.Torilin from Torilis japonica inhibits melanin production in alpha-melanocyte stimulating hormone-activated B16 melanoma cells. Planta Med. 2009 ;75(14):1505-8.
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 Mar;12(1):9-18Ahn HJ, Lee WJ, Kwack K, Kwon YD.FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett. 2009;583(17):2922-6.
Zhang JF, Li G, Chan CY, Meng CL, Lin MC, Chen YC, He ML, Leung PC, Kung HF. Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/beta-catenin signaling pathway. Mol Cell Endocrinol. 2010;314(1):70-4
Claims (12)
- 부자(Aconiti Lateralis Preparata Radix) 추출물을 포함하는 다능성 중간엽 줄기세포의 증식능 및 골세포 또는 지방세포로의 분화능 개선용 조성물.
- 제 1 항에 있어서, 상기 추출물은 물, 메탄올, 에탄올 또는 이의 조합을 부자에 처리하여 수득한 것을 특징으로 하는 조성물.
- 삭제
- 삭제
- 삭제
- 제 1 항에 있어서, 상기 다능성 중간엽 줄기세포는 골수 중간엽 줄기세포인 것을 특징으로 하는 조성물.
- 부자추출물을 개체로부터 분리된 줄기세포에 처리하는 단계를 포함하는 줄기세포의 증식능 및 분화능을 개선하는 방법.
- 제 7 항에 있어서, 상기 추출물은 물, 메탄올, 에탄올 또는 이의 조합을 부자에 처리하여 수득한 것을 특징으로 하는 방법.
- 삭제
- 삭제
- 삭제
- 제 7 항에 있어서, 상기 줄기세포는 골수 중간엽 줄기세포인 것을 특징으로 하는 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110146624A KR101426402B1 (ko) | 2011-12-30 | 2011-12-30 | 줄기세포 증식능 및 분화능 개선용 조성물 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110146624A KR101426402B1 (ko) | 2011-12-30 | 2011-12-30 | 줄기세포 증식능 및 분화능 개선용 조성물 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130077949A KR20130077949A (ko) | 2013-07-10 |
KR101426402B1 true KR101426402B1 (ko) | 2014-08-08 |
Family
ID=48991019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110146624A KR101426402B1 (ko) | 2011-12-30 | 2011-12-30 | 줄기세포 증식능 및 분화능 개선용 조성물 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101426402B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101667001B1 (ko) * | 2013-08-12 | 2016-10-17 | 한국생명공학연구원 | 줄기세포 배양액에서 탐지 가능한 지방유래 줄기세포의 증식 및 치료능력 탐지용 마커 및 이의 용도 |
KR101594341B1 (ko) * | 2013-09-17 | 2016-02-17 | 경희대학교 산학협력단 | 벤조일아코닌을 이용한 중배엽 줄기세포의 골세포 분화 유도용 조성물 및 이를 이용한 골세포 분화 유도 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090126692A (ko) * | 2008-06-05 | 2009-12-09 | (주)아모레퍼시픽 | 지방세포 분화 촉진용 조성물 |
KR20110042314A (ko) * | 2008-07-29 | 2011-04-26 | 허베이 이링 메디슨 리서치 인스티튜트 코오포레이션 리미티드 | 생체 내에서 골수-유래 간충직 줄기세포 생존 및 심근세포들로의 분화 촉진용 의약 제조를 위한 중국 전통의약 조성물의 용도 |
KR20110059832A (ko) * | 2008-04-01 | 2011-06-07 | 바이오스펙트럼 주식회사 | 식물성 펩톤을 포함하는 줄기세포 증식 촉진용 조성물 |
KR20110100444A (ko) * | 2010-03-04 | 2011-09-14 | 박영준 | 줄기세포 생존능 및 증식능 개선용 조성물 |
-
2011
- 2011-12-30 KR KR1020110146624A patent/KR101426402B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110059832A (ko) * | 2008-04-01 | 2011-06-07 | 바이오스펙트럼 주식회사 | 식물성 펩톤을 포함하는 줄기세포 증식 촉진용 조성물 |
KR20090126692A (ko) * | 2008-06-05 | 2009-12-09 | (주)아모레퍼시픽 | 지방세포 분화 촉진용 조성물 |
KR20110042314A (ko) * | 2008-07-29 | 2011-04-26 | 허베이 이링 메디슨 리서치 인스티튜트 코오포레이션 리미티드 | 생체 내에서 골수-유래 간충직 줄기세포 생존 및 심근세포들로의 분화 촉진용 의약 제조를 위한 중국 전통의약 조성물의 용도 |
KR20110100444A (ko) * | 2010-03-04 | 2011-09-14 | 박영준 | 줄기세포 생존능 및 증식능 개선용 조성물 |
Also Published As
Publication number | Publication date |
---|---|
KR20130077949A (ko) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function | |
Kumar et al. | Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells | |
Qian et al. | Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification | |
Kim et al. | Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells | |
Chieregato et al. | Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue | |
Hong et al. | 17-β estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells | |
Melo et al. | Transplantation of human skin-derived mesenchymal stromal cells improves locomotor recovery after spinal cord injury in rats | |
Nadri et al. | Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells | |
Zhou et al. | Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide | |
Omar et al. | The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro | |
Yousefi et al. | Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro | |
Wei et al. | Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells | |
Jin et al. | Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes | |
Sun et al. | Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes | |
Luo et al. | Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine | |
Banerjee et al. | In toto differentiation of human amniotic membrane towards the Schwann cell lineage | |
Bahrampour Juybari et al. | Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes | |
Shi et al. | Synaptic plasticity of human umbilical cord mesenchymal stem cell differentiating into neuron‐like cells in vitro induced by edaravone | |
KR101426402B1 (ko) | 줄기세포 증식능 및 분화능 개선용 조성물 | |
KR101408106B1 (ko) | 줄기세포 분화능 개선용 조성물 | |
Luo et al. | Co-culture with TM4 cells enhances the proliferation and migration of rat adipose-derived mesenchymal stem cells with high stemness | |
Jahandideh et al. | The effect of Trimetazidine and Diazoxide on immunomodulatory activity of human embryonic stem cell-derived mesenchymal stem cell secretome | |
KR101594341B1 (ko) | 벤조일아코닌을 이용한 중배엽 줄기세포의 골세포 분화 유도용 조성물 및 이를 이용한 골세포 분화 유도 방법 | |
Manochantr et al. | The expression of neurogenic markers after neuronal induction of chorion-derived mesenchymal stromal cells | |
Kim et al. | Osteogenic differentiation of human mesenchymal stem cells promoted by the crude extracts of the mixture of Cortex mori radicis, Patrinia saniculaefolia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20170713 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180718 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190604 Year of fee payment: 6 |