KR101418675B1 - Louver guided wind turbine - Google Patents
Louver guided wind turbine Download PDFInfo
- Publication number
- KR101418675B1 KR101418675B1 KR1020130029633A KR20130029633A KR101418675B1 KR 101418675 B1 KR101418675 B1 KR 101418675B1 KR 1020130029633 A KR1020130029633 A KR 1020130029633A KR 20130029633 A KR20130029633 A KR 20130029633A KR 101418675 B1 KR101418675 B1 KR 101418675B1
- Authority
- KR
- South Korea
- Prior art keywords
- shaft
- wind
- frame
- rotating body
- rotating
- Prior art date
Links
- 238000010248 power generation Methods 0.000 claims abstract description 25
- 230000007423 decrease Effects 0.000 claims abstract description 8
- 238000005192 partition Methods 0.000 claims description 7
- 238000000638 solvent extraction Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims 3
- 230000008859 change Effects 0.000 description 11
- 230000006698 induction Effects 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 238000007664 blowing Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/005—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor the axis being vertical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/42—Storage of energy
- F05B2260/421—Storage of energy in the form of rotational kinetic energy, e.g. in flywheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
Description
본 발명은 바람 흐름의 운동에너지를 회전체에 충돌시켜 에너지를 얻는 풍력발전기에 관한 것으로, 보다 상세하게는 바람의 흐름을 효율적으로 회전체에 안내하여 더 큰 회전력으로 발전할 수 있는 루버유도형 풍력발전기에 관한 것이다.
The present invention relates to a wind power generator for obtaining energy by colliding a kinetic energy of a wind flow with a rotating body, and more particularly, to a wind power generator for guiding a wind flow to a rotating body, Generator.
일반적으로 발전기는 기계적 에너지를 전기적 에너지로 변환하는 장치를 말한다. 발전기는 보통 몸체와, 상기 몸체에 회전되게 장착되어 외력에 의해 회전하는 회전축과, 상기 회전축과 함께 회전하며 다수로 권선되어 있는 코일로 구성된 회전자와, 상기 회전자의 외측에 구비되며 상기 몸체의 내측에 고정 장착되는 자석으로 구성된 고정자를 포함한다.Generally, a generator is a device that converts mechanical energy into electrical energy. The generator includes a body, a rotor mounted rotatably on the body, a rotating shaft rotating by an external force, and a plurality of coils wound around the rotating shaft, wherein the rotor is provided on the outside of the rotor, And a stator made of a magnet fixedly mounted inside.
상기 회전축이 외력에 의해 회전하면, 상기 회전축에 결합된 코일이 회전하면서 상기 자석에서 발생하는 자기장에 의해 상기 코일 내부에는 기전력을 통한 전류가 흐르게 된다. 이러한 발전기는 상기 회전축을 회전시키는 동력원에 따라 수력, 화력, 풍력 및 원자력 등으로 분류된다.When the rotation shaft is rotated by an external force, a coil coupled to the rotation shaft rotates, and a current through an electromotive force flows into the coil due to a magnetic field generated in the magnet. These generators are classified into hydraulic power, thermal power, wind power and nuclear power depending on the power source for rotating the rotary shaft.
특히 풍력에 의한 발전기는 주로 바람의 흐름을 이용하여 상기 회전축을 회전시키는데, 이러한 회전축을 회전시키는 장치를 풍력발전기라고 한다. 즉, 풍력발전기는 바람의 흐름를 이용하여 발전기의 회전축을 회전시켜 전력을 생산하는 장치이다.Particularly, a generator based on wind power mainly rotates the rotating shaft by using a wind flow, and a device for rotating such rotating shaft is called a wind power generator. That is, the wind turbine generator is a device that generates electric power by rotating the rotary shaft of the generator using the wind flow.
이러한 풍력발전기는 회전축의 방향에 따라 크게 수평축 풍력발전기(horizontal axis wind turbine)와 수직축 풍력발전기(vertical axis wind turbine)의 2가지로 분류할 수 있다. 상기 수평축 풍력발전기는 회전체의 회전축이 바람의 방향과 수평인 풍력발전기이고, 상기 수직축 풍력발전기는 회전체의 회전축이 바람의 방향과 수직인 풍력발전기이다.These wind turbines can be classified into two types, horizontal axis wind turbine and vertical axis wind turbine, depending on the direction of the rotating shaft. The horizontal axis wind power generator is a wind power generator in which the rotation axis of the rotating body is horizontal to the wind direction and the vertical axis wind power generator is a wind power generator in which the rotation axis of the rotating body is perpendicular to the wind direction.
보통 풍속이 초속 5m를 넘으면 경제적인 가치가 높은 것으로 평가된다. 국립기상연구소가 만들고 있는 바람지도에 따르면, 우리나라에서 바람자원이 가장 풍부한 곳은 제주도, 백두대간 능선과 서남해안으로 나타났다. 하지만 평원이 적고 산악지형이 대부분인 우리나라에서 풍력자원을 효율적으로 이용하기 위해서 더 많은 연구가 필요한 실정이다.If the wind speed exceeds 5m per second, it is considered to have high economic value. According to the map of wind generated by the National Meteorological Research Institute, the most abundant wind resources in Korea are Jeju Island, Baekdudaegan Ridge and West Coast. However, more research is needed to utilize wind resources effectively in Korea, which has fewer plains and mostly mountainous terrain.
수평형 풍력발전기의 경우 일정한 방향의 바람이 꾸준히 불어줄 때 가장 높은 효율을 얻을 수 있고, 바람의 방향 및 세기에 따라 요윙 또는 피칭장치를 설치해야 하며, 대부분 바람 자원이 풍부한 지역에 많이 쓰이고 있다. 반면 수직형 풍력발전기는 고장비율이 낮고, 발전비율이 높아 개발경쟁이 치열한 분야이다. 수평형 풍력발전기의 날개를 돌리기 위해 필요한 최소한의 풍속은 초속 4m인 반면 수직형 풍력발전기는 초속 3.9m의 풍속에서도 20와트 할로겐 전구 3개를 켤 수 있는 만큼의 전력을 생산한다.In the case of a horizontal type wind turbine, it is necessary to install a yawing or pitching device according to the direction and intensity of the wind, and it is mostly used in an area rich in wind resources, when the wind in a certain direction blows steadily. Vertical wind turbines, on the other hand, have a low failure rate and high power generation ratios. The minimum wind speed required to turn the wing of a horizontal wind power generator is 4 m per second, while the vertical wind power generator produces enough power to turn on three 20 watt halogen bulbs at a wind speed of 3.9 m / sec.
이러한 수직형 풍력발전기는 바람의 방향이나 풍속에 영향을 덜 받기 때문에 우리나라의 상황에 적합한 것으로 평가받고 있다. 이러한 수직형 풍력발전기와 같은 소형 풍력발전기의 보급과 함께 풍력발전은 도심으로 범위를 확장하고 있다. 도심의 건물들이 점점 고층화되면서 생겨난 빌딩풍이 신재생에너지로 재탄생하고 있는 것이다.This type of vertical wind turbine is considered to be suitable for the situation in Korea because it is less affected by wind direction and wind speed. With the spread of small wind turbines such as vertical wind turbines, wind power is expanding to the city center. As the buildings in the city become increasingly high-rise, the building style is being reborn as renewable energy.
상기와 같은 수직형 풍력발전기의 경우에도 바람의 흐름을 받아 회전축을 회전시키는 회전체의 형태에 따라 사보니우스형, 다리우스형, 자이로밀형 및 크로스플로우형 등이 있다.In the case of the vertical wind turbine as described above, there is also a saberoid type, a darius type, a gyro-mill type, a cross flow type, and the like depending on the shape of the rotating body that receives the wind flow and rotates the rotary shaft.
사보니우스형은 네덜란드 사람 사보니우스의 이름을 딴 것으로서, 반 원통형의 2장 날개로 구성되며, 좌우 날개를 서로 다르게 원주 방향으로 다소 중첩되는 부분을 남겨서 엇갈리게 조합한 구성이다. 그에 따라 좌우 날개 사이를 빠져나가는 바람을 반대쪽 날개 뒷면에 흘러들도록 함으로써 회전 방향으로 미는 작용과 맞바람의 저항을 억제하는 힘이 되어 회전효율을 높여준다.The Sabonius type is named after the Dutch Savonius, consisting of two semi-cylindrical wings, with the left and right wings alternating with each other leaving a slightly overlapping portion in the circumferential direction. As a result, the wind that exits between the right and left wings flows to the back side of the opposite wing, thereby enhancing the rotation efficiency by pushing in the rotational direction and suppressing the resistance of the upwind.
다리우스형은 프랑스인 다리우스에 의해 발명된 풍차로서, 날개는 2~3개가 일반적이고, 항력을 이용하는 사보니우스형과 달리 양력형으로 회전수가 매우 큰 것이 특징이다. 풍향에는 영향이 없으므로 방향타가 불필요하지만 정지상태에서 바람으로부터 얻는 토크가 매우 작으므로 자력으로 회전을 시작하기 어렵기 때문에 기동모터나 사보니우스형과 조합하여 기동성을 향상시키는 등의 대책이 강구되어야 한다.The Darius type is a windmill invented by the Frenchman Darius. Two to three wings are common, and unlike the Sabonius type that uses drag, it is a lifting type and has a very large number of revolutions. Since there is no influence on the wind direction, no rudder is necessary, but since the torque obtained from the wind in the stop state is very small, it is difficult to start rotation by the magnetic force. Therefore, countermeasures such as improving maneuver in combination with a starting motor or a sandwich type should be taken .
자이로밀형은 다리우스형을 개량한 것으로 에어포일과 같은 단면을 가진 수직날개형 풍차이다. 다리우스형과 마찬가지로 기동토크가 매우 낮으므로 사보니우스형과 결합하여 기동성을 향상시킬 필요가 있으며, 일단 돌기 시작하면 주속비가 높고 회전토크도 높다.The gyro mill type is an improved version of the Darrie type and is a vertical blade type windmill with the same cross section as the airfoil. Since the starting torque is very low like the Darius type, it is necessary to improve the maneuverability by combining with the saberoid type. Once started, the peripheral speed ratio is high and the rotation torque is high.
크로스플로우형은 길쭉한 기와장처럼 생긴 날개를 원판 바깥 둘레의 모서리에 적당한 각도를 주어 등간격으로 여러개를 부착함으로써 내부의 바람이 날개의 틈 사이를 통하여 내부 공동부를 관류하여 반대쪽 날개 틈을 통해 외부로 배출되면서 일정방향으로 회전하는 풍차이다. 물론 수직형 풍력발전기의 특성에 따라 바람에 대해서는 무지향성이고, 모든 방향에서 바람을 받아 회전한다.The crossflow type is designed such that a long tapered wing is attached to the edge of the disk at an appropriate angle to attach several pieces at regular intervals so that the inner wind passes through the gap of the wing through the inner cavity and is discharged to the outside through the gap of the opposite wing It is a windmill rotating in a certain direction. Of course, depending on the characteristics of the vertical wind turbine, the wind is omnidirectional, and it winds in all directions and rotates.
상술한 수직형 풍력발전기에 관해서 다수의 특허가 존재하고 있으며, 첫째 작은 바람에도 회전체의 기동성을 확보하고, 둘째 회전체의 기동시 회전력을 크게 하여 발전 효율을 높이고자 바람을 집속하여 안내하거나 회전체의 형상을 변경하는 등의 다양한 형태가 존재하고 있다.There are a large number of patents relating to the above-mentioned vertical wind turbine. The first is to secure the maneuverability of the rotor even in a small wind, and to increase the rotational force during the start of the second rotating body, And the shape of the whole is changed.
물론 본 발명 역시 수직형 풍력발전기로서 작은 바람에도 회전체의 기동성을 확보하고, 회전체의 기동시 회전력을 더욱 크게 하고자 하는 것은 종래의 기술과 동일한 목적으로 발명된 것이다. 다만 그에 더하여 풍속에 따라 회전체로 안내되는 바람의 흐름을 자동적으로 가변시킬 수 있어 회전체의 최초 기동시부터 기동 후 회전시에 보다 효율적으로 회전체를 회전시킬 수 있도록 하고자 한다.
It is a matter of course that the present invention also aims at securing the maneuverability of the rotating body even in a small wind as a vertical wind power generator and increasing the turning force when the rotating body is started. In addition, the flow of wind guided to the rotating body can be automatically changed according to the wind speed, so that the rotating body can be more efficiently rotated from the initial start of the rotating body to the rotation after the starting.
상기와 같은 관점에서 안출된 본 발명의 목적은, 우리나라의 실정에 맞게 풍속에 따라 회전체로 안내되는 바람의 흐름을 자동적으로 가변시킬 수 있어 회전체의 최초 기동시부터 기동 후 회전시에 보다 효율적으로 회전체를 회전시킬 수 있는 루버유도형 풍력발전기를 제공하는 데 있다.It is an object of the present invention, which is conceived from the above-described viewpoints, to automatically change the wind flow guided to the rotating body according to the wind speed in accordance with the actual situation of the country, Which is capable of rotating the rotating body.
본 발명의 그 밖의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관된 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.
Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments with reference to the accompanying drawings.
상기와 같은 목적을 달성하기 위해 본 발명에 따른 루버유도형 풍력발전기는, 하부의 발전부 및 상부의 회전부로 구획된 프레임과, 상기 프레임의 내부에 상기 회전부 상단으로부터 상기 발전부 하단까지 회전가능하게 설치된 샤프트와, 각각이 상기 샤프트를 중심으로 복수의 고정바가 방사상으로 연장 형성되고, 상기 프레임의 회전부 내부에 상하로 서로 마주보도록 상기 샤프트에 결합되어 함께 회전하는 한 쌍의 회전체고정부재와, 복수의 블레이드가 상기 샤프트를 기준으로 둘레방향을 따라 원호상 등간격으로 배치되고, 상기 블레이드 각각이 상기 한 쌍의 회전체고정부재의 고정바 사이에 상하로 설치되며, 유입되는 바람으로부터 상기 블레이드가 상기 한 쌍의 회전체고정부재와 함께 회전하여 상기 샤프트에 회전력을 발생시키는 회전체와, 각각이 상기 회전체의 바깥 둘레방향을 따라 원호상으로 배치되고, 상기 프레임의 회전부 외주둘레에 좌우로 회전가능하게 설치되며, 평단면상 에어포일 형상으로 형성되어 유입되는 바람을 향해 양력을 받아 회전하는 복수의 루버와, 상기 샤프트의 하단에 배치되도록 상기 프레임의 발전부 내부에 설치되고, 상기 샤프트의 회전모멘트를 받아 발전하는 발전모듈과, 상기 샤프트 상에 고정 결합되어 상기 샤프트와 함께 회전하고, 상기 샤프트의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트의 회전속도가 작아지면 관성모멘트가 작아지도록 변화하는 가변관성모듈을 포함하여 이루어진다.In order to achieve the above object, a louver induction type wind turbine according to the present invention comprises a frame divided into a lower power generator and an upper rotating part, and a frame rotatably installed in the frame from the upper end of the rotating part to the lower end of the power generator A pair of rotatable fixing members each of which is rotatably coupled to the shaft so as to face each other up and down inside a rotating portion of the frame, a plurality of fixed bars extending radially around the shaft, Wherein the blades are arranged at equal intervals in an arc in the circumferential direction with respect to the shaft, and each of the blades is vertically installed between the fixing bars of the pair of rotator fixing members, A rotating body rotating together with a pair of rotating body fixing members to generate rotational force on the shaft, Each of which is disposed in an arc shape along the outer circumferential direction of the rotating body and is rotatably installed on the outer circumference of the rotating portion of the frame and is formed into a flat airfoil shape and is rotated by receiving a lift toward the incoming wind A plurality of louvers; a power generation module installed in a power generation portion of the frame so as to be disposed at a lower end of the shaft and generating power by receiving a rotation moment of the shaft; And a variable inertia module that changes the inertial moment so that the moment of inertia increases as the rotational speed of the shaft increases and decreases as the rotational speed of the shaft decreases.
또한, 상기 가변관성모듈은, 내부가 중공인 상광하협으로 형성된 몸체와, 각각이 상기 몸체의 내부에 자유롭게 움직이도록 배치되고, 상기 샤프트의 회전이 정지된 경우 상기 몸체의 바닥면 중심으로 모이며, 상기 샤프트가 회전하여 점점 속도가 커질수록 상기 몸체의 바닥면을 타고 외측 반경방향으로 이동하는 복수의 질량볼을 포함하는 것을 특징으로 한다.The variable inertia module may include a body formed of a hollow top of the hollow body and a plurality of flexible inertia modules arranged to move freely within the body and to be centered on the bottom surface of the body when the rotation of the shaft is stopped, And a plurality of mass balls moving in an outer radial direction on the bottom surface of the body as the shaft rotates and the speed increases.
또한, 상기 가변관성모듈의 몸체는, 회전중심으로부터 방사상 등간격으로 내부를 구획하는 복수의 격벽을 포함하고, 상기 가변관성모듈의 질량볼 각각은, 상기 몸체의 격벽 각각으로 구획된 내부마다 동일한 수로 채워진 것을 특징으로 한다.The body of the variable inertia module may include a plurality of partitions partitioning the inside of the variable inertia module at regular intervals radially from the center of rotation, and each of the mass balls of the variable inertia module may be divided into the same number Is filled.
또한, 상기 루버 각각은, 회전축이 평단면상 공력중심(aerodynamic center)에 위치하는 것을 특징으로 한다.Further, each of the louvers is characterized in that the rotary shaft is located on a flat aerodynamic center.
또한, 상기 회전체의 블레이드 각각은, 평단면상 에어포일 형상으로 형성되어 전연이 상기 회전체고정부재의 고정바 끝단에 고정 설치되며, 후연이 상기 회전체고정부재의 인접한 고정바 상에 고정 설치되고, 회전하는 상기 샤프트와 상기 회전체 사이에 유입된 바람이 소용돌이가 발생하는 와류공간부가 형성되는 것을 특징으로 한다.Each of the blades of the rotating body is formed in the shape of a flat foil airfoil and the leading edge is fixed to the end of the fixed bar of the rotating body fixing member and the trailing edge is fixedly installed on the adjacent fixed bar of the rotating body fixing member And a swirling vortex space in which a swirling wind is introduced between the rotating shaft and the rotating body is formed.
또한, 중심이 하방으로 오목하게 경사진 원판 형상이고, 상기 프레임의 회전부 상부 중심에 고정 설치되어 상기 와류공간부로부터 발생한 소용돌이를 프레임의 회전부 상방으로 안내하는 와류안내판을 더 포함하는 것을 특징으로 한다.
The vortex guiding plate may further include a vortex guiding plate fixed to the center of the upper portion of the rotating portion of the frame and guiding the vortex generated from the vortex space portion to a position above the rotating portion of the frame.
본 발명에 따른 루버유도형 풍력발전기는, 우리나라의 실정에 맞게 풍속에 따라 회전체로 안내되는 바람의 흐름을 에어포일 형상으로 회전 가능하게 설치된 복수의 루버를 통하여 자동적으로 가변시킬 수 있어 회전체의 최초 기동시부터 기동 후 회전시에 보다 효율적으로 회전체를 회전시킬 수 있다.The louver induction type wind turbine according to the present invention can automatically change the wind flow guided to the rotating body according to the wind speed in accordance with the actual situation of Korea through a plurality of louvers rotatably provided in the airfoil shape, It is possible to rotate the rotating body more efficiently at the time of starting from the initial start to after starting.
특히, 상기 샤프트와 함께 회전하는 가변관성모듈을 통하여 상기 샤프트의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트의 회전속도가 작아지면 관성모멘트가 작아지도록 하여 샤프트의 회전속도를 일정하게 제한할 수 있고, 과도한 풍속에도 샤프트의 회전속도를 제한함으로써 발전을 가능하게 하여 효율적인 발전을 이루어낼 수 있다.Particularly, when the rotation speed of the shaft is increased through the variable inertia module that rotates together with the shaft, the moment of inertia becomes large, and when the rotation speed of the shaft becomes small, the moment of inertia becomes small so that the rotation speed of the shaft can be constantly limited , The rotation speed of the shaft can be limited even at an excessive wind speed, so that the power generation can be performed and efficient power generation can be achieved.
또한, 샤프트와 회전체 사이에 유입된 바람이 소용돌이를 발생하는 와류공간부가 형성되어 회전체로 유입되는 바람에 흡입력을 발생시켜 더욱 효율적인 회전을 가능하게 하고, 와류공간부에서 발생한 소용돌이는 와류안내판을 통해 프레임의 회전부 상방으로 안내되어 배출됨으로써 바람의 흐름을 보다 원활하게 이끌어내어 발전 효율을 높일 수 있다.
In addition, the swirling space formed between the shaft and the rotating body generates a swirling space, thereby generating a suction force in the wind that flows into the rotating body, thereby enabling more efficient rotation. So that the flow of wind can be smoothly guided and the power generation efficiency can be improved.
도 1은 본 발명에 따른 루버유도형 풍력발전기의 일 실시예를 도시한 사시도이고,
도 2는 도 1의 실시예의 측단면도이며,
도 3은 도 1의 실시예의 평단면도이고,
도 4 및 5는 에어포일 형상의 구조를 도시한 개념도이며,
도 6 및 7은 도 3의 실시예를 기준으로 풍속에 따라 회전하는 루버의 움직임을 도시한 평단면도이고,
도 8은 도 2의 실시예를 기준으로 와류공간부의 소용돌이가 와류안내판을 통해 배출되는 상태를 도시한 측단면도이며,
도 9는 도 2의 실시예 중 가변관성모듈의 작동과정을 도시한 측단면도이고,
도 10은 도 2의 실시예 중 가변관성모듈의 제1 실시예의 작동과정을 도시한 평단면도이며,
도 11은 도 2의 실시예 중 가변관성모듈의 제2 실시예의 작동과정을 도시한 평단면도이다.1 is a perspective view showing an embodiment of a louver induction type wind turbine according to the present invention,
Figure 2 is a side cross-sectional view of the embodiment of Figure 1,
3 is a plan sectional view of the embodiment of Fig. 1,
4 and 5 are conceptual diagrams showing the structure of the airfoil shape,
Figs. 6 and 7 are plan sectional views showing the movement of the louver rotating according to the wind speed on the basis of the embodiment of Fig. 3,
8 is a side cross-sectional view showing a state in which the vortex in the vortex space portion is discharged through the vortex guide plate on the basis of the embodiment of Fig. 2,
FIG. 9 is a side cross-sectional view showing the operation of the variable inertia module in the embodiment of FIG. 2,
FIG. 10 is a plan sectional view showing the operation of the first embodiment of the variable inertia module in the embodiment of FIG. 2,
11 is a plan sectional view showing the operation of the second embodiment of the variable inertia module in the embodiment of FIG.
이하에서는 첨부된 도면을 참조로 본 발명에 따른 루버유도형 풍력발전기의 바람직한 실시예를 상세히 설명한다.
Hereinafter, preferred embodiments of a louver induction type wind turbine according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 루버유도형 풍력발전기는 도 1 내지 11에 도시된 바와 같이 프레임(100), 샤프트(200), 회전체고정부재(300), 회전체(400), 루버(500), 발전모듈(600) 및 가변관성모듈(700)을 포함하여 이루어지고, 샤프트(200) 및 회전체(400) 사이에 와류공간부(800)가 형성되며, 와류안내판(900)을 더 포함할 수 있다.1 to 11, the louver induction type wind turbine according to the present invention includes a
프레임(100)은 도 1 및 2에 도시된 바와 같이 후술할 각종 구성요소가 취부 및 결합되는 뼈대로서, 상하로 직립되게 설치되어 하부의 발전부(110) 및 상부의 회전부(120)로 구획된다. 프레임(100) 하부의 발전부(110)는 후술할 발전모듈(600)이 설치되는 공간이며, 그 외 증감속기, 정전압장치, 전력변환장치 및 축전모듈 등이 설치될 수 있고, 특히 도면에 도시된 바와 같이 후술하는 가변관성모듈(700)이 설치될 수 있다. 프레임(100) 상부의 회전부(120)는 사방이 개방된 골조구조물로 내부에 후술할 샤프트(200) 및 회전체고정부재(300)가 설치되고, 외주 둘레를 따라 루버(500)가 설치된다.The
샤프트(200)는 도 1 내지 3에 도시된 바와 같이 상기 프레임(100)의 내부에 상기 회전부(120) 상단으로부터 상기 발전부(110) 하단까지 회전가능하게 설치된다. 샤프트(200)가 회전 가능하도록 설치되기 위해 샤프트(200)를 회전 지지하는 베어링이 프레임(100) 내부에 구비될 수 있다. 샤프트(200)는 후술할 회전체(400)의 회전력을 받아 회전하며 후술할 발전모듈(600)에 회전모멘트를 제공하여 발전할 수 있도록 한다. 본 발명에 따른 루버유도형 풍력발전기는 샤프트(200)가 상하 수직으로 세워져 회전하므로 수직형 풍력발전기에 해당한다.The
회전체고정부재(300)는 도 1 내지 3에 도시된 바와 같이 한 쌍이 구비되어 각각이 상기 샤프트(200)를 중심으로 복수의 고정바(310)가 방사상으로 연장 형성되고, 상기 프레임(100)의 회전부(120) 내부에 상하로 서로 마주보도록 상기 샤프트(200)에 결합되어 함께 회전한다. 회전체고정부재(300)는 한 쌍이 서로 대칭되게 마주보도록 샤프트(200) 상에 고정 결합되고, 상기 프레임(100)의 회전부(120) 내부에 위치한다. 회전체고정부재(300)는 명칭 그대로 후술할 회전체(400)를 고정하는 부재로서, 각각 복수의 고정바(310)가 방사상으로 연장 형성되어 후술할 회전체(400)를 고정하게 된다.1 to 3, each of the rotating
회전체(400)는 도 1 내지 3에 도시된 바와 같이 복수의 블레이드(410)가 상기 샤프트(200)를 기준으로 둘레방향을 따라 원호상 등간격으로 배치되고, 상기 블레이드(410) 각각이 상기 한 쌍의 회전체고정부재(300)의 고정바(310) 사이에 상하로 설치되며, 유입되는 바람으로부터 상기 블레이드(410)가 상기 한 쌍의 회전체고정부재(300)와 함께 회전하여 상기 샤프트(200)에 회전력을 발생시킨다. 회전체(400)는 회전체고정부재(300)에 설치되어 함께 회전할 수 있는 구성이면, 블레이드(410)의 형상이 사보니우스형이나 다리우스형 기타 다른 형상이라도 좋다.1 to 3, a plurality of
다만, 본 발명에서 회전체(400)는 크로스플로우형과 유사한 형상이되, 특히 상기 회전체(400) 블레이드(410) 각각은 평단면상 에어포일 형상으로 형성되어 전연이 상기 회전체고정부재(300)의 고정바(310) 끝단에 고정 설치되며, 후연이 상기 회전체고정부재(300)의 인접한 고정바(310) 상에 고정 설치된다. 에어포일 형상은 도 4에 도시된 바와 같이 바람을 받는 전연(leading edge)과 바람이 타고 흐른 후 나가는 후연(trailing edge)으로 구성된다. 즉, 회전체(400)의 블레이드(410) 각각은 도 3에 도시된 바와 같이 전연이 상기 회전체고정부재(300)의 고정바(310) 끝단에 고정 설치되고, 후연이 상기 회전체고정부재(300)의 인접한 고정바(310) 상에 고정 설치된다. 상기 회전체(400)의 블레이드(410)의 형상을 에어포일 형상으로 형성한 것은 후술할 루버(500)와의 연계를 통해 더욱 분명해지겠지만, 회전체(400)가 기동하기 전에 블레이드(410)의 전연방향으로 바람이 유입될 경우 양력을 받고, 블레이드(410)의 평단면상 하부캠버면으로 바람이 유입될 경우 항력을 받아 보다 용이하게 회전할 수 있도록 하고자 한다.In particular, in the present invention, the
이때, 도 6 및 8에 도시된 바와 같이 회전하는 상기 샤프트(200)와 회전체(400) 사이에 유입된 바람이 소용돌이가 발생하는 와류공간부(800)가 형성된다. 와류공간부(800)는 샤프트(200)와 회전체(400) 사이에 유입된 바람이 소용돌이가 발생하는 구간으로 소용돌이는 와류공간부(800)의 상방을 통해 프레임(100)의 회전부(120) 상방으로 배출된다. 이러한 와류공간부(800)에 발생한 소용돌이는 회전체(400)의 내부로 바람을 흡인하는 기능을 하며 회전체(400)의 회전을 더욱 용이하게 한다. 또한, 와류공간부(800)에 발생한 소용돌이를 프레임(100)의 회전부(120) 상방으로 배출할 때, 보다 효율적으로 배출할 수 있도록 도 8에 도시된 바와 같이 와류안내판(900)을 더 포함할 수 있다. 와류안내판(900)은 중심이 하방으로 오목하게 경사진 원판 형상이고, 상기 프레임(100)의 회전부(120) 상부 중심에 고정 설치되어 상기 와류공간부(800)로부터 발생한 소용돌이를 프레임(100)의 회전부(120) 상방으로 안내한다. 와류안내판(900)을 통해 소용돌이가 퍼지면서 회전체(400)의 회전에 힘을 실어주고, 프레임(100)의 회전부(120) 상방으로 배출될 때 난류가 발생하는 것을 방지할 수 있다.At this time, as shown in FIGS. 6 and 8, an
루버(500)는 도 1 내지 3에 도시된 바와 같이 복수가 구비되어 각각이 상기 회전체(400)의 바깥 둘레방향을 따라 원호상으로 배치되고, 상기 프레임(100)의 회전부(120) 외주둘레에 좌우로 회전가능하게 설치되며, 평단면상 에어포일 형상으로 형성되어 유입되는 바람을 향해 양력을 받아 회전한다. 루버(500)는 에어포일 형상으로 형성되어 회전하기 때문에 어느 방향으로 바람이 불어오더라도 루버(500)의 전연이 바람이 불어오는 방향을 향하게 된다. 따라서 불어오는 바람의 방향에 따라 각각의 루버(500)가 회전하여 후연을 통해 내부의 회전체(400)로 바람을 유도하게 된다. 도 7에 도시된 바와 같이 루버(500)는 풍속의 변화에 따라 양력의 크기가 달라지면서 회전반경도 변화하게 되며, 루버(500)를 통해 안내된 바람의 방향은 회전체(400) 각각의 블레이드(410)의 회전효율을 더욱 높일 수 있도록 흘러간다.1 to 3, each of the
상기 루버(500)가 프레임(100)의 회전부(120) 외주둘레에 좌우로 회전가능하게 설치되는데, 이때 루버(500) 각각의 회전축은 도 5에 도시된 바와 같이 평단면상 공력중심(aerodynamic center)에 위치하도록 한다. 공력중심은 바람에 대한 받음각의 변화에 대해 모멘트 값이 일정한 지점으로, 풍속의 변화에 따라 루버(500)의 회전반경이 변화더라도 받음각의 변화에 대해서 변화하지 않는 고정된 위치이기 때문이다. 대칭에어포일의 공력중심은 전연으로부터 시위길이의 1/4지점(시위 25% 지점)에 있다.The
한편, 상기 루버(500)가 에어포일 형상으로 회전가능하게 설치됨으로써 또 다른 특징을 가진다. 즉, 바람의 방향성에 상관없이 바람이 불어오는 방향에 위치한 루버(500)가 회전하여 회전체(400)를 향해 바람을 안내하는 것은 물론이고, 바람이 불어오는 방향의 루버(500) 반대측에 위치한 루버(500)의 경우 도 6에 도시된 바와 같이 직접 바람을 맞지 않고, 회전체(400)를 통과한 바람을 외부로 쉽게 유도하여 배출할 수 있는 효과도 있다. 만일 루버(500)가 고정된 상태라면 바람의 방향성에 영향을 받을 수밖에 없고, 특히 바람이 불어오는 방향의 반대측에 위치한 루버(500)를 통해 회전체(400)를 거친 바람이 외부로의 배출이 어려워져 난류가 형성되어 회전체(400)의 회전효율을 저하시킬 수 있기 때문이다.On the other hand, the
발전모듈(600)은 도 2에 도시된 바와 같이 상기 샤프트(200)의 하단에 배치되도록 상기 프레임(100)의 발전부(110) 내부에 설치되고, 상기 샤프트(200)의 회전모멘트를 받아 발전한다. 발전모듈(600)은 일반적인 발전기로서, 상기 샤프트(200)과 함께 회전하며 다수로 권선되어 있는 코일로 구성된 회전자(미도시)와, 상기 회전자의 외측에 구비되며 고정 장착되는 자석(미도시)으로 구성된 고정자를 포함하며, 상기 샤프트(200)가 바람에 의해 회전하면, 상기 샤프트(200)에 결합된 코일이 회전하면서 상기 자석에서 발생하는 자기장에 의해 상기 코일 내부에는 기전력을 통한 전류가 흐르게 된다. 물론, 발전모듈(600)에서 생산한 전력은 축전기(미도시) 등을 통해 축전하여 사용하거나 발전된 전력을 전기장치에 바로 사용할 수도 있다.2, the
가변관성모듈(700)은 도 2, 9 및 10에 도시된 바와 같이 상기 샤프트(200)의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트(200)의 회전속도가 작아지면 관성모멘트가 작아지도록 상기 샤프트(200) 상에 고정 결합되어 상기 샤프트(200)와 함께 회전한다. 관성(inertia)이란 사전적 의미로는 현재의 운동상태를 지속하게 하는 물체의 성질로서, 정지하고 있거나 움직이고 있는 물체는 각각 관성 때문에 움직이게 하거나, 속도의 크기나 방향을 변화시키려는 어떠한 힘에 대해서도 저항한다. 즉, 관성은 수동적인 성질로서, 물체가 힘이나 토크(회전력) 등의 능동적인 힘에 저항하게 하는 것 외에는 물체에 아무런 작용을 하지 않는다.As shown in FIGS. 2, 9, and 10, the
이러한 관성의 크기는 관성질량과 관성모멘트(회전질량)로 나눌 수 있다. 뉴턴의 제2법칙인 힘은 질량과 가속도의 곱(F=ma)으로 표현되는데, 병진운동에서 물체의 관성은 질량(m)이 되고, 이를 관성질량이라고 표기한다. 이를 회전운동에 적용하면 회전력은 회전질량(관성모멘트, I)과 각가속도의 곱(T=Iα)으로 표현되는데, 회전운동에서 물체의 관성은 회전질량이 되고, 이를 관성모멘트라고 표기한다. 따라서 관성모멘트는 어떤 물체의 회전관성을 정량적으로 측정한 값으로서, 어떤 축의 둘레를 회전하고 있는 물체에 회전력을 가하여 축 주위를 도는 회전속력을 변화시키려고 할 때, 물체가 보이는 저항의 크기를 말한다. 이러한 관성모멘트(I)는 특정의 회전축에 대한 값으로 나타나며, 회전체를 작은 부분으로 나누어 그 각 부분의 질량에 회전축과 각 부분 사이의 거리의 제곱을 곱하고 나서 그들을 모두 합한 값(I=Σmr2)으로 정의된다.The magnitude of this inertia can be divided into the inertia mass and the moment of inertia (rotational mass). Newton's second law, force, is expressed as the product of mass and acceleration (F = ma). In translation, the inertia of the object becomes mass (m), which is expressed as inertial mass. When applied to rotational motion, the rotational force is expressed as the product of the rotational mass (moment of inertia, I) and the angular velocity (T = Iα). In the rotational motion, the inertia of the object becomes the rotational mass and is expressed as the moment of inertia. Therefore, the moment of inertia is a quantitative measurement of the rotational inertia of an object, and refers to the magnitude of the resistance seen when an attempt is made to change the rotational speed around an axis by applying a rotational force to an object rotating about an axis. This moment of inertia (I) is expressed as a value for a particular axis of rotation, divided into small parts, the mass of each part multiplied by the square of the distance between the axis of rotation and each part, and then summing them together (I = Σmr 2 ).
즉, 회전운동에서 어떤 물체의 관성모멘트가 크다는 것은 정지상태에서 회전운동으로 변화시키기가 어렵다는 것이고, 반대로 관성모멘트가 작다는 것은 정지상태에서 회전운동으로 변화시키기가 보다 용이하다는 것이다. 이러한 원리를 본 발명에 따른 루버유도형 풍력발전기에 적용하고자 한다면, 샤프트(200)가 특정의 회전축이 되고, 샤프트(200)와 함께 회전하는 구성으로는 회전체고정부재(300), 회전체(400) 및 가변관성모듈(700)이 된다. 이 중 회전체고정부재(300) 및 회전체(400)는 샤프트(200)에 고정되어 변화하지 않는 값인 반면에, 가변관성모듈(700)을 샤프트(200)의 회전속도의 변화에 따른 원심력의 크기에 따라 관성모멘트를 변화시킬 수 있도록 구성한다. 즉, 가변관성모듈(700)은 상기 샤프트(200)의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트(200)의 회전속도가 작아지면 관성모멘트가 작아지도록 변화하는 것이다. 이러한 가변관성모듈(700)의 관성모멘트의 변화는 첫째, 샤프트(200)가 정지상태에서 최초 기동시의 회전속도가 작을 때는 관성모멘트를 작게 하여 샤프트(200)의 정지상태에서 회전운동으로 변화시키기 용이하도록 하고, 둘째 샤프트(200)가 회전상태에서 고속회전시 관성모멘트를 크게 하여 회전운동을 계속적으로 유지하게 하는 역할과 함께 샤프트(200)의 급속한 회전속도를 제한할 수 있다. 예컨대, 피겨스케이터의 회전운동시 팔이나 다리를 몸 안쪽으로 오무리면 관성모멘트가 작아져 회전속도가 커지고, 반대로 팔이나 다리를 몸 바깥으로 벌리면 관성모멘트가 커져 회전속도가 느려지는 것을 확인할 수 있다.That is, it is difficult to change the inertia moment of an object in the rotational motion from the static state to the rotational motion. On the other hand, the small moment of inertia means that it is easier to change from the static state to the rotary motion. In order to apply this principle to the louver induction type wind turbine according to the present invention, the
상기와 같은 가변관성모듈(700)에서 샤프트(200)의 회전속도에 따라 관성모멘트를 변화시킬 수 있도록 구체적인 구성을 상세히 설명한다. 즉, 가변관성모듈(700)은 도 2, 9 및 10에 도시된 바와 같이 내부가 중공인 상광하협으로 형성된 몸체(710)와, 각각이 상기 몸체(710)의 내부에 자유롭게 움직이도록 배치되고, 상기 샤프트(200)의 회전이 정지된 경우 상기 몸체(710)의 바닥면 중심으로 모이며, 상기 샤프트(200)가 회전하여 점점 속도가 커질수록 상기 몸체(710)의 바닥면을 타고 외측 반경방향으로 이동하는 복수의 질량볼(720)을 포함한다.A specific configuration for changing the moment of inertia of the
상기 가변관성모듈(700)의 몸체(710) 내부가 상광하협, 즉 위는 넓고 아래는 좁은 형상인 이유는 각각의 질량볼(720)이 샤프트(200)의 정지와 함께 몸체(710)가 정지상태인 경우 몸체(710)의 바닥면을 타고 몸체(710)의 하부 중심으로 모이게 하여 가변관성모듈(700)의 관성모멘트를 작게 하고, 샤프트(200)의 회전속도가 점점 커져 몸체(710) 역시 회전상태인 경우 몸체(710)의 하부 중심에 모인 각각의 질량볼(720)이 몸체(710)의 내부에서 원심력에 의해 몸체(710)의 내부에서 외측 반경방향으로 이동하여 가변관성모듈(700)의 관성모멘트를 크게 하고자 하는 것이다.The reason for the fact that the inside of the
한편, 상기 가변관성모듈(700)의 몸체(710) 내부가 구획되지 않고, 질량볼(710)이 몸체(710)의 내부에서 전후좌우상하로 너무 자유롭게 움직인다면, 질량볼(710)이 어느 일측방향으로만 모이거나 흩어져 샤프트(200)를 중심으로 가변관성모듈(700)의 회전중심이 편심될 수 있고, 이는 오히려 샤프트(200)의 회전을 방해하는 요소가 될 수 있다. 이러한 가변관성모듈(700)의 몸체(710) 내부에서 원둘레를 따라 각각의 질량볼(720)이 균등하게 놓일 수 있도록 몸체(710)의 내부를 구획하는 것이다. 즉, 도 11에 도시된 바와 같이 상기 가변관성모듈(700)의 몸체(710)는 회전중심으로부터 방사상 등간격으로 내부를 구획하는 복수의 격벽(711)을 포함하고, 상기 가변관성모듈(700)의 질량볼(720) 각각은, 상기 몸체(710)의 격벽(711) 각각으로 구획된 내부마다 동일한 수로 채워질 수 있다. 이를 통해 각각의 질량볼(720)이 몸체(710)의 내부 격벽(711)으로 구획된 구간마다 동일한 수로 나뉘어 몸체(710)의 내부 중심으로 모이거나 반경방향으로 이동하여 가변관성모듈(700)이 편심되는 것을 방지할 수 있다.
If the inside of the
본 발명에 따른 루버유도형 풍력발전기의 작동과정을 도 3, 6 내지 9를 참조하여 보다 상세하게 살펴보되, 중복된 설명은 생략한다.The operation of the louver induction type wind turbine according to the present invention will be described in more detail with reference to FIGS. 3, 6 to 9, and redundant description will be omitted.
도 3에 도시된 바와 같이 바람이 불지 않는 경우에는 샤프트(200) 및 회전체(400)는 정지된 상태이고, 루버(500) 역시 바람의 방향과 상관없이 제멋대로 회전된 상태이다. 또한, 가변관성모듈(700)의 질량볼(720)은 관성모멘트가 작아지도록 몸체(710) 내부 중심에 모두 모여 있는 상태이다.3, when the wind is not blown, the
이때, 도 6 및 7에 도시된 바와 같이 일방향으로부터 바람이 불어오면, 먼저 바람이 불어오는 방향에 위치한 루버(500) 각각이 불어오는 바람의 방향을 향하도록 전연이 회전하고, 풍속에 따라 양력을 받아 더 큰 회전반경으로 회전하기도 한다. 루버(500)를 통과한 바람의 흐름은 회전체(400)를 향하고, 회전체(400) 각각의 블레이드(410)는 기동시 양력과 함께 항력을 받아 회전하게 된다. 또한, 가변관성모듈(700)은 관성모멘트가 작아진 상태에서 회전체(400) 및 샤프트(200)의 회전을 용이하게 한 후, 질량볼(720)이 몸체(710)의 내부 중심으로부터 외측 반경방향으로 점점 이동하여 관성모멘트를 크게 한다.6 and 7, when the wind is blown from one direction, the leading edge is rotated so that each of the
회전체(400)의 회전이 커지면 커질수록 회전체(400)와 샤프트(200) 사이의 와류공간부(800)에는 소용돌이가 발생하고, 발생한 소용돌이는 도 8에 도시된 바와 같이 와류안내판(900)을 통해 프레임(100)의 회전부(120) 상방으로 배출된다. 이때 와류공간부(800)의 소용돌이는 회전체(400) 내부로 바람이 보다 용이하게 흡인되도록 유도하고, 회전체(400) 바깥둘레의 루버(500)는 회전체(400)를 향해 바람의 흐름을 풍속에 따라 변화시켜 안내한다. 한편, 불어오는 바람을 맞는 루버(500)의 반대측 루버(500)들은 직접 바람을 맞지 않고, 회전체(400)를 거친 바람을 맞게 되고 그에 따라 각각의 루버(500)들은 회전하면서 바람을 용이하게 외부로 배출할 수 있는 것이다. 또한, 도 9에 도시된 바와 같이 회전체(400) 및 샤프트(200)의 급속한 회전으로 인해 회전속도가 제어할 수 없을 정도로 커지지 않도록 가변관성모듈(700)의 관성모멘트가 극대화되어 회전체(400) 및 샤프트(200)의 회전속도를 제한할 수 있고, 샤프트(200)의 회전속도를 일정하게 유지하여 지속적인 회전력을 기대할 수 있다.As the rotation of the
바람에 의해 회전체(400)가 회전하면 샤프트(200)가 회전하게 되고, 결국 샤프트(200)의 회전모멘트를 발전모듈(600)이 받아 발전하게 되는 것이다.When the
상술한 바와 같이 본 발명에 따른 루버유도형 풍력발전기는, 우리나라의 실정에 맞게 풍속에 따라 회전체(400)로 안내되는 바람의 흐름을 에어포일 형상으로 회전 가능하게 설치된 복수의 루버(500)를 통하여 자동적으로 가변시킬 수 있어 회전체(400)의 최초 기동시부터 기동 후 회전시에 보다 효율적으로 회전체(400)를 회전시킬 수 있다.As described above, the louver induction type wind turbine according to the present invention includes a plurality of
특히, 상기 샤프트(200)와 함께 회전하는 가변관성모듈(700)을 통하여 상기 샤프트(200)의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트(200)의 회전속도가 작아지면 관성모멘트가 작아지도록 하여 샤프트(200)의 회전속도를 일정하게 제한할 수 있고, 과도한 풍속에도 샤프트(200)의 회전속도를 제한함으로써 발전을 가능하게 하여 효율적인 발전을 이루어낼 수 있다.Particularly, when the rotational speed of the
또한, 샤프트(200)와 회전체(400) 사이에 유입된 바람이 소용돌이를 발생하는 와류공간부(800)가 형성되어 회전체(400)로 유입되는 바람에 흡입력을 발생시켜 더욱 효율적인 회전을 가능하게 하고, 와류공간부(800)에서 발생한 소용돌이는 와류안내판(900)을 통해 프레임(100)의 회전부(120) 상방으로 안내되어 배출됨으로써 바람의 흐름을 보다 원활하게 이끌어내어 발전 효율을 높일 수 있다.
In addition, the swirling
앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
The embodiments of the present invention described above and shown in the drawings should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of the present invention as long as they are obvious to those skilled in the art.
100 : 프레임
110 : 발전부 120 : 회전부
200 : 샤프트
300 : 회전체고정부재 310 : 고정바
400 : 회전체 410 : 블레이드
500 : 루버
600 : 발전모듈
700 : 가변관성모듈
710 : 몸체 711 : 격벽
720 : 질량볼
800 : 와류공간부
900 : 와류안내판100: frame
110: power generator 120:
200: Shaft
300: rotating body fixing member 310: fixed bar
400: rotating body 410: blade
500: Louver
600: power generation module
700: Variable inertia module
710: Body 711:
720: Mass Ball
800: Vortex space part
900: vortex indicator plate
Claims (6)
상기 프레임의 내부에 상기 회전부 상단으로부터 상기 발전부 하단까지 회전가능하게 설치된 샤프트와,
각각이 상기 샤프트를 중심으로 복수의 고정바가 방사상으로 연장 형성되고, 상기 프레임의 회전부 내부에 상하로 서로 마주보도록 상기 샤프트에 결합되어 함께 회전하는 한 쌍의 회전체고정부재와,
복수의 블레이드가 상기 샤프트를 기준으로 둘레방향을 따라 원호상 등간격으로 배치되고, 상기 블레이드 각각이 상기 한 쌍의 회전체고정부재의 고정바 사이에 상하로 설치되며, 유입되는 바람으로부터 상기 블레이드가 상기 한 쌍의 회전체고정부재와 함께 회전하여 상기 샤프트에 회전력을 발생시키는 회전체와,
각각이 상기 회전체의 바깥 둘레방향을 따라 원호상으로 배치되고, 상기 프레임의 회전부 외주둘레에 좌우로 회전가능하게 설치되며, 평단면상 에어포일 형상으로 형성되어 유입되는 바람을 향해 양력을 받아 회전하는 복수의 루버와,
상기 샤프트의 하단에 배치되도록 상기 프레임의 발전부 내부에 설치되고, 상기 샤프트의 회전모멘트를 받아 발전하는 발전모듈과,
상기 샤프트 상에 고정 결합되어 상기 샤프트와 함께 회전하고, 상기 샤프트의 회전속도가 커지면 관성모멘트가 커지고, 상기 샤프트의 회전속도가 작아지면 관성모멘트가 작아지도록 변화하는 가변관성모듈을 포함하고,
상기 회전체의 블레이드 각각은,
평단면상 에어포일 형상으로 형성되어 전연이 상기 회전체고정부재의 고정바 끝단에 고정 설치되며, 후연이 상기 회전체고정부재의 인접한 고정바 상에 고정 설치되고,
회전하는 상기 샤프트와 상기 회전체 사이에 유입된 바람이 소용돌이가 발생하는 와류공간부가 형성되고,
중심이 하방으로 오목하게 경사진 원판 형상이고, 상기 프레임의 회전부 상부 중심에 고정 설치되어 상기 와류공간부로부터 발생한 소용돌이를 프레임의 회전부 상방으로 안내하는 와류안내판을 더 포함하는 것을 특징으로 하는 루버유도형 풍력발전기.
A frame partitioned by a lower power generating portion and an upper rotating portion,
A shaft rotatably installed in the frame from an upper end of the rotation part to a lower end of the power generation part;
A pair of rotator fixing members each formed of a plurality of fixing bars extending radially about the shaft and coupled to the shaft so as to face each other vertically inside the rotating portion of the frame,
A plurality of blades are arranged at equal intervals in an arc in the circumferential direction with respect to the shaft, and each of the blades is vertically installed between the fixing bars of the pair of rotator fixing members, A rotating body rotating together with the pair of rotating body fixing members to generate rotational force in the shaft,
Each of which is disposed in an arc shape along the outer circumferential direction of the rotating body and is rotatably installed on the outer circumference of the rotating portion of the frame and is formed into a flat airfoil shape and is rotated by receiving a lift toward the incoming wind A plurality of louvers,
A power generation module installed in a power generation portion of the frame so as to be disposed at a lower end of the shaft and generating power by receiving a rotation moment of the shaft,
And a variable inertia module that is fixedly coupled to the shaft and rotates together with the shaft and changes the inertial moment so that the inertial moment increases when the rotation speed of the shaft increases and decreases when the rotation speed of the shaft decreases,
Wherein each of the blades of the rotating body includes:
And a leading edge is fixedly installed on an adjacent fixed bar of the rotating body fixing member, and the leading edge of the leading edge of the rotating body is fixed to the fixed bar of the rotating body fixing member,
A swirling vortex space is formed between the rotating shaft and the rotating body,
Further comprising a vortex guiding plate fixed to the center of the upper portion of the rotating portion of the frame and guiding the vortex generated from the vortex space portion upward above the rotating portion of the frame, Wind power generator.
상기 가변관성모듈은,
내부가 중공인 상광하협으로 형성된 몸체와,
각각이 상기 몸체의 내부에 자유롭게 움직이도록 배치되고, 상기 샤프트의 회전이 정지된 경우 상기 몸체의 바닥면 중심으로 모이며, 상기 샤프트가 회전하여 점점 속도가 커질수록 상기 몸체의 바닥면을 타고 외측 반경방향으로 이동하는 복수의 질량볼을 포함하는 것을 특징으로 하는 루버유도형 풍력발전기.
The method according to claim 1,
Wherein the variable inertia module comprises:
A body formed as a hollow top of the hollow interior,
Each of which is arranged to move freely in the inside of the body, and when the rotation of the shaft is stopped, it is centered at the center of the bottom surface of the body, and as the shaft rotates and the speed increases, And a plurality of mass balls moving in the direction of the louver.
상기 가변관성모듈의 몸체는,
회전중심으로부터 방사상 등간격으로 내부를 구획하는 복수의 격벽을 포함하고,
상기 가변관성모듈의 질량볼 각각은,
상기 몸체의 격벽 각각으로 구획된 내부마다 동일한 수로 채워진 것을 특징으로 하는 루버유도형 풍력발전기.
3. The method of claim 2,
The body of the variable inertia module includes:
And a plurality of partitions partitioning the inside from the rotation center at radially equally spaced intervals,
Wherein each of the mass balls of the variable inertia module comprises:
Wherein each of the partition walls is filled with the same number of inner portions partitioned by the partition walls of the body.
상기 루버 각각은,
회전축이 평단면상 공력중심(aerodynamic center)에 위치하는 것을 특징으로 하는 루버유도형 풍력발전기.
The method according to claim 1,
Wherein each of the louvers includes:
Characterized in that the rotary shaft is located on a flat aerodynamic center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130029633A KR101418675B1 (en) | 2013-03-20 | 2013-03-20 | Louver guided wind turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130029633A KR101418675B1 (en) | 2013-03-20 | 2013-03-20 | Louver guided wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101418675B1 true KR101418675B1 (en) | 2014-07-10 |
Family
ID=51741955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130029633A KR101418675B1 (en) | 2013-03-20 | 2013-03-20 | Louver guided wind turbine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101418675B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220154993A (en) | 2021-05-14 | 2022-11-22 | 경희대학교 산학협력단 | Adaptive Triboelectric nanogenerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011064097A (en) * | 2009-09-16 | 2011-03-31 | Tenso Kogyo Kk | Wind turbine device and wind turbine generator using the same |
KR20110050895A (en) * | 2009-11-09 | 2011-05-17 | 이소학 | Windmill |
KR20110089435A (en) * | 2008-12-18 | 2011-08-08 | 서울대학교산학협력단 | Displayable wind turbine |
KR20120115612A (en) * | 2011-04-11 | 2012-10-19 | 서용석 | Apparatus for generating by wind power |
-
2013
- 2013-03-20 KR KR1020130029633A patent/KR101418675B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110089435A (en) * | 2008-12-18 | 2011-08-08 | 서울대학교산학협력단 | Displayable wind turbine |
JP2011064097A (en) * | 2009-09-16 | 2011-03-31 | Tenso Kogyo Kk | Wind turbine device and wind turbine generator using the same |
KR20110050895A (en) * | 2009-11-09 | 2011-05-17 | 이소학 | Windmill |
KR20120115612A (en) * | 2011-04-11 | 2012-10-19 | 서용석 | Apparatus for generating by wind power |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220154993A (en) | 2021-05-14 | 2022-11-22 | 경희대학교 산학협력단 | Adaptive Triboelectric nanogenerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7802967B2 (en) | Vertical axis self-breaking wind turbine | |
US20110156392A1 (en) | Wind turbine control | |
EP2623774A2 (en) | Vertical shaft turbine and bidirectional stack type vertical shaft turbine provided with same | |
US20120121379A1 (en) | Tower type vertical axle windmill | |
WO2009068950A2 (en) | Cross fluid-flow axis turbine | |
US9890768B2 (en) | Hybrid vertical axis wind turbine | |
KR20110084023A (en) | Turbine for generation of electricity by wind using construction for concentrating wind | |
KR20220084514A (en) | Vertical axis wind turbine | |
JP2011064097A (en) | Wind turbine device and wind turbine generator using the same | |
RU2559681C2 (en) | Wind generator with vertical axle and speed-limiting blade | |
JP2005090332A (en) | Darrieus wind turbine | |
JP2012092651A (en) | Wind power generation apparatus | |
KR101207023B1 (en) | A wind-power generator | |
KR101418675B1 (en) | Louver guided wind turbine | |
KR101418674B1 (en) | Louver guided wind turbine | |
EP2459873B1 (en) | A wind turbine | |
KR101418676B1 (en) | Twin-airfoil type wind turbine | |
US20130119662A1 (en) | Wind turbine control | |
KR101418673B1 (en) | Louver guided wind turbine | |
CA2532597A1 (en) | Vertical axis fluid actuated turbine | |
JP2006090246A (en) | Wind turbine generator | |
CN104832372B (en) | The vertical shaft wind electric system of 10MW grades of aerodynamic braking | |
KR100979177B1 (en) | Wind-turbine apparatus | |
KR20120062051A (en) | Smart power generator by wind power | |
KR20220133241A (en) | Drag-and-lift-based wind turbine system with adjustable blades |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180731 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190704 Year of fee payment: 6 |