KR101402279B1 - Rapid isolation method of enterohaemorrhagic Escherichia coli - Google Patents

Rapid isolation method of enterohaemorrhagic Escherichia coli Download PDF

Info

Publication number
KR101402279B1
KR101402279B1 KR1020140027339A KR20140027339A KR101402279B1 KR 101402279 B1 KR101402279 B1 KR 101402279B1 KR 1020140027339 A KR1020140027339 A KR 1020140027339A KR 20140027339 A KR20140027339 A KR 20140027339A KR 101402279 B1 KR101402279 B1 KR 101402279B1
Authority
KR
South Korea
Prior art keywords
ser
thr
leu
val
coli
Prior art date
Application number
KR1020140027339A
Other languages
Korean (ko)
Inventor
강연호
정경태
김종현
이선진
조성학
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020140027339A priority Critical patent/KR101402279B1/en
Application granted granted Critical
Publication of KR101402279B1 publication Critical patent/KR101402279B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/06Gastro-intestinal diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a detection method of enterohemorrhagic escherichia coli and, more specifically, to a detection method using an antibody against a verotoxin which is produced by colon bacillus. By using the detection method or a kit for detection according to the present invention, the enterohemorrhagic escherichia coli are rapidly and accurately detected from a specimen. Therefore, it is possible to immediately cope with contagion by diagnosing the infection of the enterohemorrhagic escherichia coli rapidly and accurately.

Description

마그네틱 비드를 이용한 장출혈성 대장균 신속 분리동정 방법{Rapid isolation method of enterohaemorrhagic Escherichia coli}Rapid isolation method of enterohaemorrhagic Escherichia coli using magnetic beads {Rapid isolation method of enterohaemorrhagic Escherichia coli}

본 발명은 장출혈성 대장균 검출 방법에 관한 것으로, 구체적으로 이들 대장균이 생산하는 독소인 베로독소에 대한 항체와 마그네틱 비드를 이용하여 시료로부터 장출혈성 대장균을 신속 정확하게 검출하는 방법에 관한 것이다.
The present invention relates to a method for detecting intestinal haemorrhagic E. coli, and specifically, to a method for rapidly and accurately detecting intestinal haemorrhagic E. coli from a sample using an antibody against verotoxin, a toxin produced by these E. coli, and magnetic beads.

장출혈성 대장균(Enterohemorrhagic Escherichia coli, EHEC)은 베로독소(verotoxin, VT)를 생산하기 때문에, 감염 시 용혈성 요독 증후군을 야기시키는 심각한 병원성 균주로 알려져 있다. 또한 피부 접촉을 통한 전염뿐만 아니라 식수 등을 통해서도 전염도 될 수 있고, 감염 시 치사율도 유아 10%, 노인 50%에 이르는 등 매우 위험한 균주이다.
Since Enterohemorrhagic Escherichia coli (EHEC) produces verotoxin (VT), it is known as a serious pathogenic strain that causes hemolytic uremic syndrome during infection. In addition, it can be transmitted not only through skin contact, but also through drinking water, and the mortality rate at the time of infection reaches 10% for infants and 50% for the elderly, making it a very dangerous strain.

대부분의 전염성 감염의 경우가 그렇듯이, 감염 여부를 조속히 판단하여 후속 전염에 의한 피해를 줄이는 것이 매우 중요하지만, 기존 장출혈성 대장균의 감염 진단 방법은 검사 기간이 오래 걸리거나 정확도가 떨어지는 문제가 있다. 특히 이러한 전염성 병원균의 감염은 추가 전염을 방지하기 위해 감염자의 격리 조치가 필요한데, 오진하였을 경우 감염자가 아닌 사람을 격리할 수 있다는 문제가 있어, 신속하면서도 정확한 진단 방법의 개발이 요구되고 있다.As is the case with most infectious infections, it is very important to promptly determine whether the infection is infected and reduce the damage caused by subsequent transmission, but the existing methods of diagnosing infection with intestinal haemorrhagic E. coli have a problem that the test period takes a long time or the accuracy is poor. In particular, the infection of these infectious pathogens requires quarantine measures of the infected person to prevent further transmission, and there is a problem that people who are not infected can be quarantined if a misdiagnosis is made, and development of a rapid and accurate diagnosis method is required.

기존의 진단 방법을 살펴보면, 전통적으로는 설사 환자의 분변을 전배양한 후 맥컨키(MacConkey) 한천배지에 배양하여 각각의 집락을 선별하고 중합효소연쇄반응(polymerase chain reaction, PCR) 방법으로 시가 독소 유전자(Shiga toxin gene)의 유무를 판별하는 방법을 사용하였으며, 최근 들어 콜로니 서던 블롯(colony southern blot)을 통해 300여개의 집락을 한 번에 검사하는 방법이 사용되기도 한다.Traditionally, the feces of diarrhea patients are pre-cultured and then cultured on MacConkey agar medium to select each colony, and then toxin Shiga by polymerase chain reaction (PCR) method. A method of determining the presence or absence of a gene (Shiga toxin gene) was used, and recently, a method of examining 300 colonies at once through a colony southern blot has also been used.

위의 방법들은 최소 3 ~ 5일의 검사 기간이 필요하며, 한 환자의 검체로부터 장출혈성 대장균을 분리하기 위한 비용 및 인력이 많이 소모되는 방법이다. 이러한 시간, 인력, 비용은 대변 검체내의 비병원성 대장균과 병원성 대장균의 구별이 어렵기 때문에 발생하고 있다.
The above methods require a test period of at least 3 to 5 days, and are expensive and manpower consuming methods for separating intestinal hemorrhagic E. coli from a sample of one patient. Such time, manpower, and cost are caused because it is difficult to distinguish between non-pathogenic E. coli and pathogenic E. coli in a stool sample.

본 발명자는 상기와 같은 기존 진단 방법의 문제점을 개선하여 보다 신속하고 정확한 새로운 방법을 개발하고자 예의 연구 노력하였다.The present inventors have made diligent research efforts to develop a more rapid and accurate new method by improving the problems of the existing diagnosis method as described above.

이의 결과, 베로독소에 대한 항체와 자성입자가 결합된 형태의 검출용 입자를 사용할 경우, 시료로부터 장출혈성 대장균만을 신속하고 정확하게 분리해 낼 수 있고, 여기에 PCR 등의 방법을 추가로 적용하면 더욱 효과적으로 검출할 수 있음을 확인하였으며, 이러한 검출방법을 이용하여 장출혈성 대장균 감염 여부를 신속하고 정확하게 진단할 수 있음을 확인하고 본 발명을 완성하게 되었다.
As a result, in the case of using detection particles in the form of a combination of an antibody against verotoxin and magnetic particles, only intestinal hemorrhagic E. coli can be quickly and accurately separated from the sample. It was confirmed that it can be effectively detected, and it was confirmed that it was possible to quickly and accurately diagnose the presence of intestinal hemorrhagic E. coli infection using this detection method, and the present invention was completed.

본 발명의 주된 목적은 신속하고 정확하게 장출혈성 대장균을 검출할 수 있는 방법을 제공하는데 있다.The main object of the present invention is to provide a method for quickly and accurately detecting intestinal hemorrhagic E. coli.

본 발명의 다른 목적은 신속하고 정확하게 장출혈성 대장균을 검출할 수 있는 장출혈성 대장균 검출용 키트를 제공하는데 있다.
Another object of the present invention is to provide a kit for detecting intestinal haemorrhagic E. coli that can quickly and accurately detect intestinal haemorrhagic E. coli.

본 발명의 한 양태에 따르면, 본 발명은 장출혈성 대장균(Enterohemorrhagic Escherichia coli, EHEC)의 베로독소와 이 베로독소에 대한 항체의 항원-항체 결합반응을 이용하여 장출혈성 대장균 균체를 검출하는 것을 특징으로 하는 장출혈성 대장균 검출 방법을 제공한다.
According to one aspect of the present invention, the present invention is characterized by detecting enterohemorrhagic Escherichia coli (EHEC) vero toxin and an antigen-antibody binding reaction of an antibody against vero toxin to detect enterohemorrhagic Escherichia coli cells. It provides a method for detecting intestinal hemorrhagic E. coli.

베로독소는 시가독소(shiga toxin)와 구조상 유사성이 있어 시가유사독소(shiga like toxin)라고도 한다.Vero toxin is also called shiga like toxin because of its structural similarity to shiga toxin.

기존에는 베로독소에 대한 항체를 주로 독성 중화를 목적으로 사용하였다. 하지만, 본 발명자는 이 베로독소가 장출혈성 대장균의 외막에 존재한다는 것을 연구를 통해 확인하였고, 이에 대한 항체를 이용하면 독소 뿐만 아니라 균체도 함께 검출할 수 있을 것이라 생각하였다. 또한 이 항체에 자성입자를 결합함으로써 보다 용이하게 장출혈성 대장균 균체를 검출할 수 있을 것이라 생각하였으며, 실험을 통해 실제로 이를 확인하였다.Previously, antibodies against verotoxin were mainly used for the purpose of neutralizing toxicity. However, the present inventors confirmed that this vero toxin is present in the outer membrane of intestinal hemorrhagic E. coli, and thought that using an antibody against this vero toxin would be able to detect not only toxins but also bacteria. In addition, by binding magnetic particles to this antibody, it was thought that it would be possible to more easily detect the intestinal haemorrhagic E. coli cells, and this was actually confirmed through an experiment.

지금까지 알려진 바에 따르면 장출혈성 대장균은 베로독소 1 또는 베로독소 2 중에서 하나 또는 두개의 단백질 독소를 생산한다. 각 베로독소는 두 종류의 단백질 서브유닛(A, B)으로 이루어진다.It is known to date that intestinal hemorrhagic Escherichia coli produces one or two protein toxins of either Verotoxin 1 or Verotoxin 2. Each verotoxin consists of two types of protein subunits (A and B).

베로독소 1 및 2의 아미노산 서열 및 관련 유전자의 염기서열은 균주에 따라 약간씩 다르게 나타날 수 있으나, 대표적으로 베로독소 1의 경우 서브유닛 A는 서열번호 1의 아미노산 서열, 서브유닛 B는 서열번호 2의 아미노산 서열로 표시될 수 있으며, 이들의 유전자 염기 서열은 각각 서열번호 3, 4로 표시될 수 있다. 베로독소 2의 경우 서브유닛 A는 서열번호 5의 아미노산 서열, 서브유닛 B는 서열번호 6의 아미노산 서열, 각각의 유전자 염기서열은 서열번호 7, 8로 표시될 수 있다.The amino acid sequence of Verotoxin 1 and 2 and the nucleotide sequence of the related gene may appear slightly different depending on the strain, but representatively, in the case of Verotoxin 1, subunit A is the amino acid sequence of SEQ ID NO: 1, and subunit B is SEQ ID NO: 2 It may be represented by the amino acid sequence of, and their gene base sequence may be represented by SEQ ID NOs: 3 and 4, respectively. In the case of Verotoxin 2, subunit A may be represented by the amino acid sequence of SEQ ID NO: 5, subunit B is the amino acid sequence of SEQ ID NO: 6, and each gene nucleotide sequence may be represented by SEQ ID NO: 7, 8.

본 발명에서 사용되는 베로독소에 대한 항체는 통상의 면역반응을 이용한 항체 제조방법에 따라 제조할 수 있다. 베로독소를 항원으로써 포유류나 조류에 투여하여 면역반응을 유도한 다음 생성된 항체를 정제하는 방법으로 얻을 수 있으며, 본 발명에서는 면역글로불린 G(immunoglubulin G, IgG)인 것이 좋다.Antibodies against verotoxin used in the present invention can be prepared according to an antibody preparation method using a conventional immune reaction. Verotoxin can be obtained by administering to mammals or birds as an antigen to induce an immune response and then purifying the generated antibody. In the present invention, it is preferable that it is immunoglobulin G (IgG).

본 발명의 다른 양태에 따르면, 본 발명은 a) 장출혈성 대장균(Enterohemorrhagic Escherichia coli, EHEC)의 베로독소에 대한 항체가 자성입자에 결합되어 이루어지는 검출용 입자를 시료와 접촉시키는 단계; 및 b) 베로독소를 사이에 두고 장출혈성 대장균과 상기 검출용 입자의 항체가 결합된 상태의 결합체를 자력을 사용하여 수득하는 단계;를 포함하는 장출혈성 대장균 검출 방법을 제공한다. 이는 장출혈성 대장균의 검출을 보다 용이하게 하기 위해 자성입자 시스템을 도입한 방법이다.According to another aspect of the present invention, the present invention is a) Enterohemorrhagic Escherichia coli , EHEC) contacting a sample with a detection particle formed by binding of an antibody against verotoxin to a magnetic particle; And b) obtaining a conjugate of intestinal haemorrhagic Escherichia coli and the antibody of the detection particle bound by using a magnetic force with a vero toxin interposed therebetween. This is a method of introducing a magnetic particle system to facilitate detection of intestinal hemorrhagic E. coli.

본 발명에서 자성입자는 항체와의 결합력을 갖고 자성을 띄는 마이크로 또는 나노 단위(직경)의 입자를 의미한다. 이러한 자성입자로는 자성을 띄는 코어입자의 표면이 예를 들어 아민(NH2)과 같은 작용기(functional group)로 코팅된 것이 있으며, 코어입자의 성분이나 표면 작용기가 다른 다양한 종류의 자성입자가 시판되고 있어, 이들을 이용할 수 있다. 이 자성입자와 베로독소 항체를 결합하여 검출용 입자를 제조할 때에는 각 자성입자 제조사의 매뉴얼에 따르는 것이 바람직하나, 아민 작용기를 갖는 자성입자를 사용하는 경우에는 결합반응 온도를 2 ~ 6℃(최적 4℃), 시간을 8 ~ 24시간(최적 18시간)으로 하는 것이 바람직하다. 반응온도가 낮을수록 항체의 활성 유지에는 좋으나 자성입자와의 결합효율이 떨어지고, 높을수록 항체가 활성을 잃을 수 있다는 문제가 있으며, 반응시간이 너무 짧으면 충분한 결합반응이 이루어지지 못해 검출용 입자의 생성 효율이 떨어지고, 시간이 길어질더라도 별다른 효율 상승 효과가 없거나 오히려 효율이 낮아질 수 있다.In the present invention, magnetic particles mean micro- or nano-unit (diameter) particles that have a binding force with an antibody and exhibit magnetism. As such magnetic particles, the surface of the magnetic core particle is coated with a functional group such as amine (NH 2 ), and various types of magnetic particles with different components or surface functional groups of the core particle are commercially available. It has become, and these can be used. When manufacturing a detection particle by combining this magnetic particle with a verotoxin antibody, it is preferable to follow the manual of each magnetic particle manufacturer, but when using magnetic particles having an amine functional group, the binding reaction temperature is 2 ~ 6℃ (optimum 4°C), it is preferable to set the time to 8 to 24 hours (optimum 18 hours). The lower the reaction temperature is, the better it is to maintain the activity of the antibody, but the binding efficiency with magnetic particles decreases, and the higher the reaction time is, the problem is that the antibody may lose activity. If the reaction time is too short, sufficient binding reaction cannot be achieved, and thus detection particles are generated. Even if the efficiency decreases and the time is prolonged, there may be no effect of increasing the efficiency, or the efficiency may be lowered.

본 발명에서 시료는 완충액(pH 6.5 ~ 8)에 현탁하여 사용하는 것이 바람직하다.In the present invention, the sample is preferably used by suspending it in a buffer solution (pH 6.5 ~ 8).

장출혈성 대장균이 존재하는 시료에 본 발명의 검출용 입자를 첨가하면 항원(베로독소)-항체 결합반응을 통해 검출용 입자와 베로독소의 결합체가 생성되는데, 이때 균체가 함께 결합된 형태의 결합체도 생성된다.When the detection particle of the present invention is added to a sample containing enterohemorrhagic E. coli, a conjugate of the detection particle and vero toxin is generated through an antigen (verotoxin)-antibody binding reaction. Is created.

본 발명의 검출 방법에 있어서, 장출혈성 대장균의 검출 효율을 보다 높이기 위해 상기 a)단계와 b)단계 사이에 대장균 배양용 배지에서 35 내지 39℃로 2 내지 18시간 배양하는 단계;를 더 포함하는 것이 바람직하다. 이는 샘플 내에 존재할 수 있는 장출혈성 대장균을 배양하여 균체수를 늘림으로써 항체와의 결합율을 높이기 위한 것으로, 배양온도는 대장균의 생장에 적합한 온도이며, 배양시간은 대장균의 균체수 증가 및 항체 결합반응의 효율을 고려한 시간이다. VT1과 VT2의 최적시간조건이 각각 8시간, 4시간으로 다소 차이가 있으나 상기 범위에서는 두 경우 모두 결합반응이 충분히 이루어질 것이라 판단된다. 하지만 각각에 대한 보다 적절한 범위는 VT1의 경우 2 ~ 8시간, VT2의 경우 4 ~ 18시간이다. 대장균 배양용 배지로는 TSB, LB 등을 사용할 수 있다.In the detection method of the present invention, in order to further increase the detection efficiency of intestinal hemorrhagic E. coli, incubating for 2 to 18 hours at 35 to 39° C. in an E. coli culture medium between steps a) and b). It is desirable. This is to increase the binding rate with the antibody by culturing intestinal hemorrhagic E. coli that may exist in the sample to increase the number of cells, and the culture temperature is a temperature suitable for the growth of E. coli, and the incubation time is the increase in the number of E. coli cells and the antibody binding reaction. This is the time considering the efficiency of The optimal time conditions for VT1 and VT2 are slightly different, such as 8 hours and 4 hours, respectively, but in the above range, it is determined that the binding reaction will be sufficiently performed in both cases. However, a more appropriate range for each is 2 to 8 hours for VT1 and 4 to 18 hours for VT2. As a medium for culturing E. coli, TSB, LB, or the like can be used.

본 발명의 검출 방법에서 추가로, 상기 결합체의 장출혈성 대장균을 대상으로 장출혈성 대장균의 베로독소 유전자 중 일부를 증폭할 수 있는 프라이머 세트를 사용하여 중합효소 연쇄반응(polymerase chain reaction, PCR)을 수행하는 단계; 및 상기 중합효소 연쇄반응을 통해 증폭된 산물을 분석하는 단계;를 더 포함하는 것이 바람직하다. 이와 같은 PCR 방법을 추가로 적용하면 보다 신속하고 정확하게 장출혈성 대장균의 검출 여부를 확인할 수 있다.In addition, in the detection method of the present invention, a polymerase chain reaction (PCR) is performed using a primer set capable of amplifying some of the verotoxin genes of enterohemorrhagic Escherichia coli targeting enterohemorrhagic Escherichia coli of the conjugate. The step of doing; And analyzing the product amplified through the polymerase chain reaction. If such a PCR method is additionally applied, it is possible to more quickly and accurately determine whether intestinal hemorrhagic E. coli is detected.

상기 프라이머 세트는 서열번호 9의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 10의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트(VT1에 대한 프라이머 세트); 및 서열번호 11의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 12의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트(VT2에 대한 프라이머 세트);중에서 선택되는 것이 바람직하다.The primer set includes a primer set (primer set for VT1) comprising an oligonucleotide comprising a nucleotide sequence of SEQ ID NO: 9 and an oligonucleotide comprising a nucleotide sequence of SEQ ID NO: 10; And a primer set comprising an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 11 and an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 12 (primer set for VT2).

또한, 결합체의 장출혈성 대장균을 대장균 배양용 배지(특히 고체배지)에서 배양하면, 직접 균체를 수득할 수 있다.In addition, by culturing the conjugate intestinal hemorrhagic Escherichia coli in an Escherichia coli culture medium (especially a solid medium), cells can be directly obtained.

본 발명의 또 다른 양태에 따르면, 본 발명은 장출혈성 대장균(Enterohemorrhagic Escherichia coli, EHEC)의 베로독소에 대한 항체가 자성 입자에 결합되어 이루어지는 검출용 입자를 포함하는 장출혈성 대장균 검출용 키트를 제공한다. 이 키트는 본 발명의 장출혈성 대장균 검출 방법을 매우 용이하게 수행할 수 있도록 하기 위해 제공되는 것이다.According to another aspect of the present invention, the present invention is enterohemorrhagic Escherichia (Enterohemorrhagic Escherichia coli , EHEC) provides a kit for detecting intestinal haemorrhagic Escherichia coli including particles for detection obtained by binding an antibody against verotoxin of a magnetic particle. This kit is provided in order to very easily perform the method of detecting intestinal hemorrhagic E. coli of the present invention.

상기 키트에 추가로 장출혈성 대장균의 베로독소 유전자 중 일부를 증폭할 수 있는 프라이머 세트를 더 포함하는 것이 바람직하며, 이때 프라이머 세트는 서열번호 9의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 10의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트; 및 서열번호 11의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 12의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트;중에서 선택되는 것이 바람직하다.
In addition to the kit, it is preferable to further include a primer set capable of amplifying some of the verotoxin genes of intestinal hemorrhagic Escherichia coli, wherein the primer set is an oligonucleotide comprising a nucleotide sequence of SEQ ID NO: 9 and a base of SEQ ID NO: 10 A primer set consisting of an oligonucleotide comprising a sequence; And a primer set comprising an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 11 and an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 12.

본 발명에 따른 검출 방법 또는 검출용 키트를 사용하면, 시료로부터 장출혈성 대장균을 신속하고 정확하게 검출할 수 있고, 이에 따라 장출혈성 대장균 감염 여부 또한 신속하고 정확하게 진단할 수 있어, 전염 방지를 위한 조속한 처리가 가능해진다.
If the detection method or the detection kit according to the present invention is used, it is possible to quickly and accurately detect intestinal haemorrhagic E. coli from a sample, and accordingly, it is possible to quickly and accurately diagnose whether intestinal hemorrhagic E. Becomes possible.

도 1은 본 발명의 일실시예에 따른 장출혈성 대장균 검출 과정을 나타낸 모식도이다.
도 2는 EHEC의 전체 단백질을 대상으로 VT1과 VT2에 대한 항체를 사용하여 교차반응을 확인한 결과이다.
도 3은 4℃의 반응조건에서 자성입자와 VT1 또는 VT2에 대한 항체의 시간에 따른 부착정도를 나타낸 그래프이다.
도 4는 샘플에 검출용 입자를 첨가하고 LB배지를 첨가하여 배양시간에 따른 검출효율을 나타낸 그래프이다.
도 5는 비 EHEC 균주와의 교차반응을 실험한 결과를 나타낸 그래프이다. EHEC(VT1), EHEC(VT2), EHEC(VT1 & VT2), VT1 non-expressed EHEC, VT2 non-expressed EHEC 중에서 선택한 EHEC 균주와 9주의 Non-pathogenic E. coli, Salmonella typhimurium, Vibrio Cholera O1, Shigella sonneri 등의 비 EHEC 균주를 혼합한 시료를 대상으로 한 EHEC 균주의 검출율을 나타낸다.
1 is a schematic diagram showing a process of detecting intestinal hemorrhagic E. coli according to an embodiment of the present invention.
Figure 2 is a result of confirming the cross-reaction using antibodies against VT1 and VT2 targeting the entire protein of EHEC.
3 is a graph showing the degree of adhesion of magnetic particles and antibodies to VT1 or VT2 over time under a reaction condition of 4°C.
4 is a graph showing detection efficiency according to incubation time by adding detection particles to a sample and adding LB medium.
5 is a graph showing the results of an experiment of cross-reaction with non-EHEC strains. EHEC strains selected from EHEC(VT1), EHEC(VT2), EHEC(VT1 & VT2), VT1 non-expressed EHEC, and VT2 non-expressed EHEC and 9 non-pathogenic E. coli , Salmonella typhimurium , Vibrio Cholera O1 , Shigella It shows the detection rate of EHEC strains targeting a sample mixed with non-EHEC strains such as sonneri.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail through examples. Since these examples are for illustrative purposes only, the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1. One. 베로독소에Verotoxin 대한 항체 제조 Anti-antibody preparation

1-1. 마우스에 항원 투여(1-1. Administration of antigen to mice ( AntigenAntigen boostingboosting ))

항원으로 사용할 VT1 과 VT2는 대장균 발현 시스템을 사용하여 제조하였다.VT1 and VT2 to be used as antigens were prepared using the E. coli expression system.

베로독소를 항원으로 하여 첫 번째 면역화로서 항원과 동량(각기 250㎕ 정도)의 complete Freund's adjuvant(Sigma)와 혼합 후 emulsion을 만들어 생후 6주령의 암컷 BALB/c 마우스의 복강 내(intraperitoneal injection, ip)에 주입하였다. 1 마리당 50ng의 항원을 주사하며 6마리를 대상으로 실시하였다.As the first immunization with Verotoxin as an antigen, mix with complete Freund's adjuvant (Sigma) of the same amount (about 250µl each) and make an emulsion to make an emulsion in a 6-week-old female BALB/c mouse intraperitoneal injection (ip). Injected into. Each animal was injected with 50 ng of antigen, and 6 rats were administered.

두 번째 면역화는 2주 후에 진행되었고, 위의 방법과 동일한 방법으로 투여하였다. 세 번째 면역화 또한 두 번째 면역화 과정과 동일한 방법으로 실시하였고, 마지막으로 2주 후에 항원(3차 투여 시와 동일한 양)을 PBS에 혼합하여 이를 꼬리의 정맥(미정맥, intravenous injection, iv)에 주사하였다. 마지막 투여를 미정맥을 통해 하는 것은 특이도 높은 B 림프구들을 비장으로 유도하기 위함이다. 마지막 면역화 후 3일 후에 세포융합과정을 진행하였다.
The second immunization proceeded after 2 weeks and was administered in the same manner as above. The third immunization was also carried out in the same way as the second immunization process, and finally, two weeks later, the antigen (the same amount as the third administration) was mixed with PBS and injected into the vein of the tail (intravenous injection, iv). I did. The last administration is done through the caudal vein to induce highly specific B lymphocytes into the spleen. The cell fusion process was performed 3 days after the last immunization.

1-2. 1-2. 비장세포와Splenocytes and 골수종세포의 융합( Fusion of myeloma cells ( CellCell fusionfusion ))

세포융합 방법은 Kohler와 Milstein 방법에 따라, PEG(polyethylene glycol, Sigma)를 융합유도물질(fusogen)로 사용하였다. 세포융합 2주전부터 계대해온 골수종세포(myeloma, V653, 세포의 수가 7 ~ 8×105/㎖정도 되면 1/2로 희석 계대하여 다음 날의 실험에 이용한다)와 항체가(antibody titer)가 높게 나타난 마우스의 비장세포(splenocyte)를 미리 준비한 후 이들을 혼합하여 FBS가 첨가되지 않은 세포배양용 배지로 세척한 다음, 미리 가열한(37℃) 1㎖의 PEG를 이용하여 1분간에 걸쳐 서서히 저어주면서 융합시켰다. 융합 후 수분에 걸쳐 천천히 1X HAT 배지(20% FBS, RPMI-1640)를 첨가해 주면서 융합과정을 진행하였다. 이러한 전과정은 37℃ 항온수조(water bath)를 이용하여 시행하였으며, 96 well plate에 well 당 1개의 colony가 생길 정도의 농도로 세포를 HAT가 첨가된 배지로 희석하여 분주하였다. 분주된 96 well plate들은 37℃ CO2 incubator에 넣어 7일간 배양하며 screening 단계에 접어들 때까지 incubator를 열지 않는 것을 원칙으로 하였다.
As for the cell fusion method, PEG (polyethylene glycol, Sigma) was used as a fusogen according to the Kohler and Milstein method. Myeloma cells (myeloma, V653, if the number of cells is 7 ~ 8 × 10 5 /㎖), which has been passaged from 2 weeks before cell fusion, is diluted to 1/2 and used for the next day's experiment) and antibody titer is high. After preparing the splenocytes of the mice shown in advance, they were mixed and washed with a cell culture medium not added with FBS, and then slowly stirred over a period of 1 minute using 1 ml of pre-heated (37° C.) PEG. Fused. The fusion process was performed while slowly adding 1X HAT medium (20% FBS, RPMI-1640) over several minutes after fusion. The whole process was performed using a 37°C water bath, and the cells were diluted with HAT-added medium and dispensed at a concentration sufficient to generate one colony per well in a 96 well plate. Dispensed 96 well plates were placed in a 37°C CO 2 incubator and incubated for 7 days, and in principle, the incubator was not opened until the screening step was entered.

1-3. 특이성 검사 대상 1-3. Specificity test target wellwell 의 선별Screening of

세포융합을 실시한 후 1주일(7일)이 경과하면, 각각의 96 well plate를 꺼내고 inverted microscopy에 올려 세포군(cell colony)의 형성 여부 및 그 정도 (colony의 크기)를 관찰하였다. 표시된 well 중 colony의 크기가 전체 well 면적의 25% 내외를 차지하는 것들만을 골라 특이성 검사 대상으로 삼았다. 형성되는 colony들의 형태학적 모습은 완전한 부유성, 포도상의 군집성, 부분적인 부착성, 완전한 부착성 등 다양한 형태가 나타나므로 각기 형태에 대한 세포 밀도 등을 감안하여 선별한 후 분류하였다.
After 1 week (7 days) after cell fusion, each 96 well plate was taken out and placed on inverted microscopy to observe the formation and extent of cell colony (the size of the colony). Among the marked wells, only those whose colony size occupied around 25% of the total well area were selected for specificity test. The morphological appearances of the colonies formed were classified in consideration of the cell density of each morphology as various forms such as complete floating, clustering, partial adhesion, and complete adhesion appeared.

1-4. 효소면역측정법(1-4. Enzyme Immunoassay ( ELISAELISA )을 이용한 특이성 검사Specificity test using)

해당 항원 용액을 10㎍/㎖의 농도로 100㎕씩 96 well plate에 분주하고 37℃, 60분 반응시켰다. 희석액으로 0.05M sodium bicarbonate 용액을 사용하였다. 반응액을 제거하고 세척액을(인산염 완충액, 0.05% Tween 20) well당 200㎕ 씩 첨가한 후 다시 제거하는 과정을 3회 반복하였다. 세척 후 각 well에 차단액 (blocking solution, 1% BSA가 함유된 인산염 완충액)을 200㎕ 첨가하여 37℃, 30분간 반응시켰다. 차단액과 반응액을 제거하고 상기 세척액을 well 당 200㎕씩 첨가한 후 다시 제거하는 과정을 3회 반복하였다. 단클론 항체(mAb)용액을 well 당 100㎕씩 분주하고 음성대조군용 well에 희석액을 100㎕ 분주한 다음 37℃에서 30분간 반응시켰고, 반응액을 제거하고 상기 세척액을 well 당 200㎕씩 첨가한 후 다시 제거하는 과정을 3회 반복하였다. 항-마우스 IgG에 HRP(Horse reddish peroxidase)가 융합된 시약을 well 당 100㎕씩 분주하고 37℃에서 30분간 반응시켰다. 반응액을 제거하고 상기 세척액을 well 당 200㎕씩 첨가한 후 다시 제거하는 과정을 3회 반복하였다. 효소 기질 용액(o-phenylenediamine 0.4㎎/㎖ in phosphate citrate buffer pH5.0)을 100㎕씩 분주하고 암실의 상온에서 30분간 반응시켰다. 492nm(yellow)에서 흡광도 값을 확인하여 음성대조군의 흡광도의 3배 이상 되는 흡광도 값을 양성 반응의 최소치로 기준하여 음성, 양성으로 판정하였다.
The antigen solution was dispensed at a concentration of 10 μg/ml into a 96 well plate at a concentration of 100 μl and reacted at 37° C. for 60 minutes. 0.05M sodium bicarbonate solution was used as a diluent. The reaction solution was removed, 200 μl of washing solution (phosphate buffer, 0.05% Tween 20) was added per well, and the removal process was repeated three times. After washing, 200 µl of a blocking solution (a phosphate buffer containing 1% BSA) was added to each well and reacted at 37° C. for 30 minutes. After removing the blocking solution and the reaction solution, 200 μl of the washing solution was added per well, and the process of removing again was repeated 3 times. 100 μl of monoclonal antibody (mAb) solution was dispensed per well, 100 μl of the diluted solution was dispensed into the well for negative control, and then reacted at 37° C. for 30 minutes, the reaction solution was removed, and 200 μl of the washing solution was added per well. The process of removing again was repeated three times. A reagent in which HRP (Horse reddish peroxidase) was fused to anti-mouse IgG was dispensed per well by 100 µl and reacted at 37°C for 30 minutes. The reaction solution was removed, 200 μl of the washing solution was added per well, and the process of removing again was repeated three times. An enzyme substrate solution (o-phenylenediamine 0.4 mg/ml in phosphate citrate buffer pH 5.0) was dispensed at 100 μl and reacted for 30 minutes at room temperature in a dark room. The absorbance value was checked at 492 nm (yellow), and the absorbance value 3 times or more of the absorbance of the negative control group was determined as negative or positive based on the minimum value of the positive reaction.

1-4. 1-4. WesternWestern blottingblotting 법을 이용한 특이성 검사Specificity test using method

정제된 재조합 단백질들을 SDS-PAGE상에서 전기영동한 후 nitrocellulose membrane(0.45㎛; Bio-Rad)에 재조합 단백질들을 electrotransfer 시켰다. Towbin et al. (1979)의 방법으로 transfer한 다음 membrane을 blocking buffer(0.01M PBS, 3% skim milk, Sigma)로 실온에서 하룻밤 동안 blocking 하였고, ELISA를 통해 검증된 항체액 (hybridoma 세포배양액)을 blocking solution 에 적정한 농도로 희석하여 1시간 동안 실온에서 반응시켰다.The purified recombinant proteins were electrophoresed on SDS-PAGE, and then the recombinant proteins were electrotransfered to a nitrocellulose membrane (0.45㎛; Bio-Rad). Towbin et al. After transferring by the method of (1979), the membrane was blocked overnight at room temperature with a blocking buffer (0.01M PBS, 3% skim milk, Sigma), and an antibody solution (hybridoma cell culture solution) verified through ELISA was titrated to the blocking solution. It was diluted to concentration and reacted at room temperature for 1 hour.

각 반응 단계마다 PBS-Tween 20(0.05%)으로 5번 씻어내며, Alkaline phosphatase-conjugated anti-mouse IgG(Sigma)를 blocking solution에 적당한 농도로 희석하여 1시간 반응시켰다. 신선한 substrate solution(NBT/BCIP, sigma)을 준비하여 실온에서 10분간 반응시켰다. 반응의 정지를 위하여 증류수를 첨가하며 결과는 육안으로 판독하였다.
Each reaction step was washed 5 times with PBS-Tween 20 (0.05%), and Alkaline phosphatase-conjugated anti-mouse IgG (Sigma) was diluted to an appropriate concentration in a blocking solution and reacted for 1 hour. A fresh substrate solution (NBT/BCIP, sigma) was prepared and reacted at room temperature for 10 minutes. Distilled water was added to stop the reaction, and the result was visually read.

1-5. 1-5. 종세포주Seed cell line 및 생산용 세포주의 관리 And management of production cell lines

원하는 항체를 분비한다고 판단되는 융합 세포주는 limiting dilution 방법으로 1, 2차 클로닝을 수행하여 융합 세포 집단이 하나의 세포로부터 유래되는 클론만이 유도되도록 처리하였다. 확립된 단클론항체 세포주를 배지에 부유시켜 37℃, CO2 세포배양기에서 3 ~ 4일간 증식시킨 뒤 얻은 세포 부유액을 1,300rpm에서 10분간 원심 분리한 후 침전된 세포는 동결방지 보호제(RPMI-1640 세포배양액에 10% DMSO, 20% FBS 첨가)에 부유시킨 후 동결보존용 앰플에 1㎖(1×106 cell/㎖)씩 분주하고 세포주명, 계대번호, 계대일자 등을 기록한 후 freezing container에 넣어 deep freezer(-70℃)에 하룻밤 보관 후 영하 196℃(액체질소)에 동결 보존하여 원종 세포주로 사용하였다.The fusion cell line judged to secrete the desired antibody was subjected to primary and secondary cloning by the limiting dilution method, and the fusion cell population was treated so that only clones derived from one cell were induced. The established monoclonal antibody cell line was suspended in a medium and grown in a 37°C, CO 2 cell incubator for 3 to 4 days, and the obtained cell suspension was centrifuged at 1,300 rpm for 10 minutes. Add 10% DMSO and 20% FBS to the culture solution), dispense 1 ml (1×10 6 cells/ml) into an ampoule for cryopreservation, record the cell line name, passage number, and passage date, and put it in a freezing container. After storing overnight in a deep freezer (-70℃), it was frozen and preserved at -196℃ (liquid nitrogen) to be used as a protozoan cell line.

이후 생산된 원종 단클론 항체 분비 세포주를 꺼내어 37℃ 항온수조에서 빠르게 해동시킨 뒤 배지에 부유시켜 37℃ CO2 세포배양기에서 3 ~ 4일간 증식시킨 다음, 증식된 세포 부유액을 1,300rpm에서 10분간 원심 분리하고 침전된 세포는 동결방지 보호제에 부유시킨 후 동결보존용 앰플에 1㎖(1×106 cell/㎖)씩 분주하고 세포주명, 계대번호, 계대일자 등을 기록한 후 영하 196℃(액체질소)에 동결 보존하여 생산용 단클론 항체 분비 세포주로 사용하였다.
Thereafter, the produced original monoclonal antibody secreting cell line was taken out, quickly thawed in a 37°C constant temperature water bath, suspended in a medium, and allowed to grow in a 37°C CO 2 cell incubator for 3 to 4 days, and then the proliferated cell suspension was centrifuged at 1,300 rpm for 10 minutes. The precipitated cells are suspended in a cryoprotectant, and then dispensed into ampoules for cryopreservation by 1 ml (1×10 6 cells/ml), record the cell line name, passage number, and passage date, and record at -196℃ (liquid nitrogen). And used as a monoclonal antibody-secreting cell line for production.

실시예Example 2. 검출용 입자 제조 및 이를 사용한 2. Manufacture of particles for detection and using the same 장출혈성Intestinal bleeding 대장균 검출 E. coli detection

2-1. 2-1. VT1VT1 & & VT2VT2 단클론Monoclonal 항체의 Of antibodies 외막단백질과의With outer membrane protein 교차반응 확인 Cross-reaction confirmation

VT1 & VT2에 대한 항체의 EHEC의 다른 단백질과의 교차반응을 확인하였다. 이의 결과, 도 2에서와 같이 EHEC의 전체 단백질 중 VT1과 VT2에만 반응하고 다른 단백질에는 교차반응하지 않는 것을 확인하였다.
The cross-reaction of antibodies against VT1 & VT2 with other proteins of EHEC was confirmed. As a result of this, it was confirmed that, as shown in FIG. 2, only VT1 and VT2 were reacted with the total proteins of EHEC, but did not cross-react with other proteins.

2-2. 검출용 입자 제조 및 자성입자-항체 2-2. Manufacture of particles for detection and magnetic particles-antibody 부착능Adhesion 확인 Confirm

Chemicell 사의 SiMAG-Protein A 및 SiMAG-Protein G 제품(아민 작용기를 갖는 자성입자)을 자성입자로 사용하였으며, 제조사에서 제공하는 매뉴얼에 따랐다.Chemicell's SiMAG-Protein A and SiMAG-Protein G products (magnetic particles having an amine functional group) were used as magnetic particles, and the manual provided by the manufacturer was followed.

이들 자성입자에 항체를 부착하기 위한 최적의 시간 조건을 확인하기 위해 100㎍의 항체와 500㎍의 자성입자를 각각 시간 별로 4℃에서 반응시킨 후 자성입자에 부착하지 못한 항체의 단백질량을 정량하였다.In order to confirm the optimal time conditions for attaching the antibody to these magnetic particles, 100 µg of antibody and 500 µg of magnetic particles were reacted at 4°C for each hour, and then the amount of protein of the antibody that failed to adhere to the magnetic particles was quantified. .

이의 결과 도 3과 같이, 4시간 이후부터 결합효율이 서서히 감소하는 것으로 나타났다. SiMAG-Protein G는 4시간까지 결합이 완만하게 이루어지나, 4시간 이후로는 SiMAG-Protein A에 비해 결합력이 5 ~ 10% 정도 높게 나타났다. 그러나 이 정도의 차이는 실험상의 오차로 보여지며, 두 가지 자성입자를 구분하지 않고 사용해도 될 것으로 판단된다. 이 결과를 종합해볼 때 자성입자와 항체의 결합반응 조건은 4℃에서 18시간으로 하는 것이 가장 이상적일 것으로 판단된다. 또한, 결합반응 시 항체와 자성입자의 비율은 1 : 5 ~ 1 : 15(중량기준)으로 하는 것이 좋을 것이라 판단된다.
As a result of this, as shown in FIG. 3, it was found that the coupling efficiency gradually decreased after 4 hours. SiMAG-Protein G bonded gently until 4 hours, but after 4 hours, the bonding strength was 5-10% higher than that of SiMAG-Protein A. However, this difference is seen as an experimental error, and it is judged that the two magnetic particles can be used without distinction. In summarizing these results, it is considered that the most ideal conditions for the binding reaction between the magnetic particles and the antibody should be 18 hours at 4°C. In addition, it is judged that the ratio of the antibody and magnetic particles during the binding reaction should be 1: 5 ~ 1: 15 (based on weight).

2-3. 2-3. VT1VT1 생산 균주와 Production strains and VT2VT2 생산 균주의 검출 확인 Confirmation of detection of production strain

VT1과 VT2 독소를 각각 분비하는 균주와 Non-pathogenic E. coli를 혼합한 LB 배지를 사용하여 검출용 입자의 incubation 시간별 검출 효율을 확인하였다.The detection efficiency of the detection particles by incubation time was confirmed using an LB medium in which a strain secreting VT1 and VT2 toxins and non-pathogenic E. coli were mixed.

검출 여부는 아래의 프라이머를 사용한 중합효소 연쇄반응(PCR) 방법으로 확인하였다.The detection was confirmed by the polymerase chain reaction (PCR) method using the following primers.

VT1 primer F : ATAAATCGCCATTCGTTGACTACVT1 primer F: ATAAATCGCCATTCGTTGACTAC

VT1 primer R : AGAACGCCCACTGAGATCATCVT1 primer R: AGAACGCCCACTGAGATCATC

VT2 primer F : GGCACTGTCTGAAACTGCTCCVT2 primer F: GGCACTGTCTGAAACTGCTCC

VT2 primer R : TCGCCAGTTATCTGACATTCTGVT2 primer R: TCGCCAGTTATCTGACATTCTG

균액을 멸균수에 현탁한 다음 100℃에서 5분간 끓이고 15,000g로 5분간 원심분리하여 수득한 상층액 1㎕를 주형(template)으로 사용하였다. 상기 4종류의 프라이머 각각 1㎕(10pmole), 주형 1㎕를 첨가하여 총 20㎕로 PCR 반응액의 부피를 조절하였다. Taq polymerase는 인트론사의 Maxime PCR PreMix(i-StarMAXII) Cat.No.25281을 사용하였다. PCR 조건은 94℃ 5분 후 94℃ 30초, 55℃ 60초, 72℃ 30초로 총 30회를 실시하고, 72℃에서 5분간 반응하는 조건으로 하였다. PCR 후 전기영동으로 VT1의 product는 180bp, VT2은 255bp의 product 사이즈를 확인하였다.The bacterial solution was suspended in sterile water, then boiled at 100° C. for 5 minutes, and 1 μl of the supernatant obtained by centrifuging at 15,000 g for 5 minutes was used as a template. 1 µl (10 pmole) of each of the four primers and 1 µl of a template were added to adjust the volume of the PCR reaction solution to a total of 20 µl. Taq polymerase used Intron's Maxime PCR PreMix (i-StarMAXII) Cat.No.25281. PCR conditions were 94°C for 5 minutes, followed by 94°C for 30 seconds, 55°C for 60 seconds, and 72°C for 30 seconds, for a total of 30 times, followed by reaction at 72°C for 5 minutes. By electrophoresis after PCR, the product size of VT1 was 180bp and VT2 was 255bp.

EHEC(VT1)의 경우 8시간 incubation하였을 경우 가장 좋은 검출율을 보였으나, EHEC(VT2)는 4시간 incubation에서 가장 좋은 결과를 보였다(도 4 참조). 이 결과들을 종합한 결과, 신속하고 간편한 EHEC의 분리를 위해 incubation 시간을 4시간으로 하는 것이 좋을 것이라 판단된다.
EHEC (VT1) showed the best detection rate when incubated for 8 hours, but EHEC (VT2) showed the best result in 4 hours incubation (see FIG. 4). As a result of synthesizing these results, it is judged that it would be better to set the incubation time to 4 hours for quick and easy separation of EHEC.

2-4. 검출 한계 확인2-4. Check the detection limit

EHEC의 검출 한계를 확인하기 위해 VT1과 VT2를 모두 분비하는 EDL933 균주를 사용하였다. Non-pathogenic E. coli가 108 CFU의 농도인 상태에 EDL933이 1 CFU부터 104 CFU의 농도가 되도록 각각 혼합한 LB 배지에 검출용 입자 50㎕를 넣고 4시간 진탕배양 후 PBS로 5회 세척하여 균을 분리하였다. 이의 결과, 표 1에서와 같이 1 CFU와 101 CFU의 결과에는 균체의 희석에 의한 오차가 발생하였으나, 102 CFU에서는 80% 이상의 검출율을 보였다.To confirm the detection limit of EHEC, an EDL933 strain secreting both VT1 and VT2 was used. In the state where the non-pathogenic E. coli is at a concentration of 10 8 CFU, add 50 µl of detection particles to the LB medium each mixed with EDL933 to a concentration of 1 CFU to 10 4 CFU, and shake culture for 4 hours and wash 5 times with PBS. To isolate the bacteria. As a result, as shown in Table 1, an error occurred due to dilution of the cells in the results of 1 CFU and 10 1 CFU, but a detection rate of 80% or more was observed in 10 2 CFU.

1 CFU1 CFU 101 CFU10 1 CFU 102 CFU10 2 CFU 103 CFU10 3 CFU 104 CFU10 4 CFU EDL933EDL933 6868 189189 10491049 2006620066 3833338333 non-pathogenic E. coli non-pathogenic E. coli 137137 9696 169169 188188 159159 EHEC isolation %EHEC isolation% 33%33% 66%66% 86%86% 99%99% 99%99%

* 결과값 : 분리된 균을 고체배지에서 배양하여 확인된 콜로니수.* Result value: The number of colonies confirmed by culturing the isolated bacteria in solid medium.

* 균 분리 과정에서 진탕배양하는 동안 균체가 생장하여 세포수가 증가하기 때문에, 이에 따라 검출 전 세포수에 비해 검출 이후 확인된 콜로니의 수가 더 크게 나타난다.
* In the process of bacterial isolation, since the number of cells grows and the number of cells increases during shaking culture, the number of colonies identified after detection is larger than the number of cells before detection.

2-5. 2-5. 정상세균총Normal bacterial flora 및 다른 병원성 세균과의 교차반응 확인 And cross-reaction with other pathogenic bacteria

EHEC가 아닌 다른 박테리아들과의 교차반응을 확인하고자 하였다. 일반적으로 대변 검체에는 EHEC 이외에도 다양한 종류의 비병원성 대장균을 포함한 미생물이 존재할 수 있다. 따라서 검출하고자 하는 EHEC 외에 다른 미생물이 함께 존재하더라도 검출율이 높아야 한다. 대장균 이외에 살모넬라균, 비브리오 균 등은 비교적 식별이 용이하나 비병원성 대장균은 그렇지 않기 때문에, 특히 비병원성 대장균과의 교차반응 확인은 매우 중요하다.We tried to confirm the cross-reaction with other bacteria than EHEC. In general, in the stool sample, in addition to EHEC, various kinds of microorganisms including non-pathogenic E. Therefore, even if other microorganisms other than EHEC to be detected exist together, the detection rate must be high. In addition to E. coli, Salmonella and Vibrio are relatively easy to identify, but non-pathogenic E. coli is not, so it is particularly important to confirm cross-reaction with non-pathogenic E. coli.

충북보건환경연구원을 통해 확보한 9주의 Non-pathogenic E. coli, 그밖에 Salmonella typhimurium, Vibrio Cholera O1, Shigella sonneri를 비 EHEC 균주로 사용하였다. 추가로 EHEC 중 VT1과 VT2 독소가 RPLA 방법으로 음성의 결과를 보였던 균주(구분을 위해 편의상 VT1 non-expressed EHEC, VT2 non-expressed EHEC라고 표시한다)들 중 각각 1주를 선별하여 이들 또한 교차반응을 확인하였다. 9 Non-pathogenic E. coli , other Salmonella typhimurium , Vibrio , obtained through Chungbuk Institute of Health and Environment Cholera O1 , Shigella sonneri was used as a non-EHEC strain. In addition, one of the strains in which the VT1 and VT2 toxins of EHEC were negative by the RPLA method (for convenience, they are labeled as VT1 non-expressed EHEC and VT2 non-expressed EHEC) were selected for cross-reaction. Was confirmed.

EHEC(VT1), EHEC(VT2), EHEC(VT1 & VT2), VT1 non-expressed EHEC, VT2 non-expressed EHEC 중에서 선택한 EHEC 균주와 비 EHEC 균주를 혼합한 시료를 준비하고 검출용 입자를 사용한 검출율을 확인하는 방법을 사용하였다.EHEC (VT1), EHEC (VT2), EHEC (VT1 & VT2), VT1 non-expressed EHEC, VT2 non-expressed EHEC. A method of checking was used.

교차반응 확인 결과 도 5에서와 같이, EHEC(VT1), EHEC(VT2), EHEC(VT1 & VT2) 모두 9주의 비병원성 E. coli 또는 다른 병원성 세균들과 선별 분리율이 평균 80% 이상인 것을 확인하였다. 한편, EHEC 대신 VT1 non-expressed EHEC 또는 VT2 non-expressed EHEC를 대상으로 위와 동일한 교차반응을 확인한 결과 VT1 non-expressed EHEC의 경우 약간의 차이가 있기는 하나 균체가 모든 실험에서 분리되었다.As a result of cross-reaction confirmation, as shown in FIG. 5, it was confirmed that the selection separation rate of EHEC (VT1), EHEC (VT2), and EHEC (VT1 & VT2) from 9 weeks of non-pathogenic E. coli or other pathogenic bacteria was an average of 80% or more. On the other hand, as a result of confirming the same cross-reaction with VT1 non-expressed EHEC or VT2 non-expressed EHEC instead of EHEC, the cells were isolated in all experiments, although there was a slight difference in the case of VT1 non-expressed EHEC.

VT1 또는 VT2 non-expressed EHEC는 베로독소를 생산하지 않는 것으로 생각되었으나, 여전히 유해한 균주이다. 이 균주는 RPLA 방법에서 음성의 결과를 나타낸 반면, 본 실시예를 통해 확인되었듯이 본 발명의 검출용 입자를 사용한 경우에는 비록 검출율이 EHEC에 비해 상대적으로 낮기는 하지만 검출이 확인되었다.VT1 or VT2 non-expressed EHECs were thought to not produce verotoxin, but are still harmful strains. While this strain showed a negative result in the RPLA method, as confirmed through this example, when the detection particles of the present invention were used, the detection was confirmed, although the detection rate was relatively low compared to EHEC.

이는 이들 VT1 또는 VT2 non-expressed EHEC가 VT1 또는 VT2를 전혀 생산하지 않는 것이 아니라 미량으로 생산하고, 미량 생산된 VT1 또는 VT2에 본 발명의 검출용 입자가 효율적으로 결합하기 때문인 것으로 판단된다.
This is considered to be because these VT1 or VT2 non-expressed EHECs do not produce VT1 or VT2 at all, but produce in trace amounts, and the detection particles of the present invention efficiently bind to VT1 or VT2 produced in trace amounts.

<110> Korea Center for Disease Control and Prevention <120> Rapid isolation method of enterohaemorrhagic Escherichia coli <130> PA140307-C01 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 315 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 1 Met Lys Ile Ile Ile Phe Arg Val Leu Thr Phe Phe Phe Val Ile Phe 1 5 10 15 Ser Val Asn Val Val Ala Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala 20 25 30 Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr 35 40 45 Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp 50 55 60 Ser Gly Thr Gly Asp Asn Leu Phe Ala Val Asp Val Arg Gly Ile Asp 65 70 75 80 Pro Glu Glu Gly Arg Phe Asn Asn Leu Arg Leu Ile Val Glu Arg Asn 85 90 95 Asn Leu Tyr Val Thr Gly Phe Val Asn Arg Thr Asn Asn Val Phe Tyr 100 105 110 Arg Phe Ala Asp Phe Ser His Val Thr Phe Pro Gly Thr Thr Ala Val 115 120 125 Thr Leu Ser Gly Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Gly 130 135 140 Ile Ser Arg Thr Gly Met Gln Ile Asn Arg His Ser Leu Thr Thr Ser 145 150 155 160 Tyr Leu Asp Leu Met Ser His Ser Gly Thr Ser Leu Thr Gln Ser Val 165 170 175 Ala Arg Ala Met Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg 180 185 190 Phe Arg Gln Ile Gln Arg Gly Phe Arg Thr Thr Leu Asp Asp Leu Ser 195 200 205 Gly Arg Ser Tyr Val Met Thr Ala Glu Asp Val Asp Leu Thr Leu Asn 210 215 220 Trp Gly Arg Leu Ser Ser Val Leu Pro Asp Tyr His Gly Gln Asp Ser 225 230 235 240 Val Arg Val Gly Arg Ile Ser Phe Gly Ser Ile Asn Ala Ile Leu Gly 245 250 255 Ser Val Ala Leu Ile Leu Asn Cys His His His Ala Ser Arg Val Ala 260 265 270 Arg Met Ala Ser Asp Glu Phe Pro Ser Met Cys Pro Ala Asp Gly Arg 275 280 285 Val Arg Gly Ile Thr His Asn Lys Ile Leu Trp Asp Ser Ser Thr Leu 290 295 300 Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser 305 310 315 <210> 2 <211> 89 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 2 Met Lys Lys Thr Leu Leu Ile Ala Ala Ser Leu Ser Phe Phe Ser Ala 1 5 10 15 Ser Ala Leu Ala Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr 20 25 30 Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu 35 40 45 Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln 50 55 60 Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly 65 70 75 80 Gly Gly Phe Ser Glu Val Ile Phe Arg 85 <210> 3 <211> 948 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 3 tcaactgcta atagttctgc gcatcagaat tgcccccaga gtggatgaat cccacaatat 60 tttattgtgc gtaatcccac ggactcttcc atctgccgga cacatagaag gaaactcatc 120 agatgccatt ctggcaactc gcgatgcatg atgatgacaa ttcagtatta atgccacgct 180 tcccagaatt gcattaatgc ttccaaaaga aattcttcct acacgaacag agtcttgtcc 240 atgataatca ggcaggacac tactcaacct tccccagttc aatgtaagat caacatcttc 300 agcagtcatt acataagaac gcccactgag atcatccagt gttgtacgaa atcccctctg 360 tatttgccga aaacgtaaag cttcagctgt cacagtaaca aaccgtaaca tcgctcttgc 420 cacagactgc gtcagtgagg ttccactatg cgacattaaa tccagataag aagtagtcaa 480 cgaatggcga tttatctgca tccccgtacg actgatccct gcaacacgct gtaacgtggt 540 atagctactg tcaccagaca atgtaaccgc tgttgtacct ggaaaggtaa catgtgaaaa 600 atcagcaaag cgataaaaaa cattatttgt cctgttaaca aatcctgtca catataaatt 660 atttcgttca acaataagcc gtagattatt aaaccgccct tcctctggat ctatccctct 720 gacatcaact gcaaacaaat tatcccctgt gccactatca atcatcagta aagacgtacc 780 tcctgatgaa atagtctgta atggagtacc tattgcagag cgaatgacat tcagcgaatc 840 tacatacgtc tttgcagtcg agaagtctaa ggtaaattcc ttcgcaacca cattaactga 900 aaagataaca aagaaaaaag ttagcactct aaaaataatt attttcat 948 <210> 4 <211> 270 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 4 tcaacgaaaa ataacttcgc tgaatccccc tccattatga caggcattag ttttaatggt 60 tacagtcatc cccgtaattt gcgcactgag aagaagagac tgaagattcc atctgttggt 120 aaataattct ttatcaccca ctttaactgt aaaggtatcg tcatcattat attttgtata 180 ctccaccttt ccagttacac aatcaggcgt cgccagcgca cttgctgaaa aaaatgaaag 240 cgatgcagct attaataatg tttttttcat 270 <210> 5 <211> 319 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 5 Met Lys Cys Ile Leu Phe Lys Trp Val Leu Cys Leu Leu Leu Gly Phe 1 5 10 15 Ser Ser Val Ser Tyr Ser Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln 20 25 30 Gln Ser Tyr Val Ser Ser Leu Asn Ser Ile Arg Thr Glu Ile Ser Thr 35 40 45 Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn 50 55 60 His Thr Pro Pro Gly Ser Tyr Phe Ala Val Asp Ile Arg Gly Leu Asp 65 70 75 80 Val Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn 85 90 95 Asn Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr 100 105 110 Arg Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val 115 120 125 Ser Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala 130 135 140 Leu Glu Arg Ser Gly Met Gln Ile Ser Arg His Ser Leu Val Ser Ser 145 150 155 160 Tyr Leu Ala Leu Met Glu Phe Ser Gly Asn Thr Met Thr Arg Asp Ala 165 170 175 Ser Arg Ala Val Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg 180 185 190 Phe Arg Gln Ile Gln Arg Glu Phe Arg Gln Ala Leu Ser Glu Thr Ala 195 200 205 Pro Val Tyr Thr Met Thr Pro Gly Asp Val Asp Leu Thr Leu Asn Trp 210 215 220 Gly Arg Ile Ser Asn Val Leu Pro Glu Tyr Arg Gly Glu Asp Gly Val 225 230 235 240 Arg Val Gly Arg Ile Ser Phe Asn Asn Ile Ser Ala Ile Leu Gly Thr 245 250 255 Val Ala Val Ile Leu Asn Cys His His Gln Gly Ala Arg Ser Val Arg 260 265 270 Ala Val Asn Glu Glu Ser Gln Pro Glu Cys Gln Ile Thr Gly Asp Arg 275 280 285 Pro Val Ile Lys Ile Asn Asn Thr Leu Trp Glu Ser Asn Thr Ala Ala 290 295 300 Ala Phe Leu Asn Arg Lys Ser Gln Phe Leu Tyr Thr Thr Gly Lys 305 310 315 <210> 6 <211> 89 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 6 Met Lys Lys Met Phe Met Ala Val Leu Phe Ala Leu Ala Ser Val Asn 1 5 10 15 Ala Met Ala Ala Asp Cys Ala Lys Gly Lys Ile Glu Phe Ser Lys Tyr 20 25 30 Asn Glu Asp Asp Thr Phe Thr Val Lys Val Asp Gly Lys Glu Tyr Trp 35 40 45 Thr Ser Arg Trp Asn Leu Gln Pro Leu Leu Gln Ser Ala Gln Leu Thr 50 55 60 Gly Met Thr Val Thr Ile Lys Ser Ser Thr Cys Glu Ser Gly Ser Gly 65 70 75 80 Phe Ala Glu Val Gln Phe Asn Asn Asp 85 <210> 7 <211> 960 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 7 atgaagtgta tattatttaa atgggtactg tgcctgttac tgggtttttc ttcggtatcc 60 tattcccggg agtttacgat agacttttcg acccaacaaa gttatgtctc ttcgttaaat 120 agtatacgga cagagatatc gacccctctt gaacatatat ctcaggggac cacatcggtg 180 tctgttatta accacacccc accgggcagt tattttgctg tggatatacg agggcttgat 240 gtctatcagg cgcgttttga ccatcttcgt ctgattattg agcaaaataa tttatatgtg 300 gccgggttcg ttaatacggc aacaaatact ttctaccgtt tttcagattt tacacatata 360 tcagtgcccg gtgtgacaac ggtttccatg acaacggaca gcagttatac cactctgcaa 420 cgtgtcgcag cgctggaacg ttccggaatg caaatcagtc gtcactcact ggtttcatca 480 tatctggcgt taatggagtt cagtggtaat acaatgacca gagatgcatc cagagcagtt 540 ctgcgttttg tcactgtcac agcagaagcc ttacgcttca ggcagataca gagagaattt 600 cgtcaggcac tgtctgaaac tgctcctgtg tatacgatga cgccgggaga cgtggacctc 660 actctgaact gggggcgaat cagcaatgtg cttccggagt atcggggaga ggatggtgtc 720 agagtgggga gaatatcctt taataatata tcagcgatac tggggactgt ggccgttata 780 ctgaattgcc atcatcaggg ggcgcgttct gttcgcgccg tgaatgaaga gagtcaacca 840 gaatgtcaga taactggcga caggcctgtt ataaaaataa acaatacatt atgggaaagt 900 aatacagctg cagcgtttct gaacagaaag tcacagtttt tatatacaac gggtaaataa 960 960 <210> 8 <211> 270 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 8 atgaagaaga tgtttatggc ggttttattt gcattagctt ctgttaatgc aatggcggcg 60 gattgtgcta aaggtaaaat tgagttttcc aagtataatg aggatgacac atttacagtg 120 aaggttgacg ggaaagaata ctggaccagt cgctggaatc tgcaaccgtt actgcaaagt 180 gctcagttga caggaatgac tgtcacaatc aaatccagta cctgtgaatc aggctccgga 240 tttgctgaag tgcagtttaa taatgactga 270 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for VT1 <400> 9 ataaatcgcc attcgttgac tac 23 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for VT1 <400> 10 agaacgccca ctgagatcat c 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for VT2 <400> 11 ggcactgtct gaaactgctc c 21 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for VT2 <400> 12 tcgccagtta tctgacattc tg 22 <110> Korea Center for Disease Control and Prevention <120> Rapid isolation method of enterohaemorrhagic Escherichia coli <130> PA140307-C01 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 315 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 1 Met Lys Ile Ile Ile Phe Arg Val Leu Thr Phe Phe Phe Val Ile Phe 1 5 10 15 Ser Val Asn Val Val Ala Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala 20 25 30 Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr 35 40 45 Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp 50 55 60 Ser Gly Thr Gly Asp Asn Leu Phe Ala Val Asp Val Arg Gly Ile Asp 65 70 75 80 Pro Glu Glu Gly Arg Phe Asn Asn Leu Arg Leu Ile Val Glu Arg Asn 85 90 95 Asn Leu Tyr Val Thr Gly Phe Val Asn Arg Thr Asn Asn Val Phe Tyr 100 105 110 Arg Phe Ala Asp Phe Ser His Val Thr Phe Pro Gly Thr Thr Ala Val 115 120 125 Thr Leu Ser Gly Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Gly 130 135 140 Ile Ser Arg Thr Gly Met Gln Ile Asn Arg His Ser Leu Thr Thr Ser 145 150 155 160 Tyr Leu Asp Leu Met Ser His Ser Gly Thr Ser Leu Thr Gln Ser Val 165 170 175 Ala Arg Ala Met Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg 180 185 190 Phe Arg Gln Ile Gln Arg Gly Phe Arg Thr Thr Leu Asp Asp Leu Ser 195 200 205 Gly Arg Ser Tyr Val Met Thr Ala Glu Asp Val Asp Leu Thr Leu Asn 210 215 220 Trp Gly Arg Leu Ser Ser Val Leu Pro Asp Tyr His Gly Gln Asp Ser 225 230 235 240 Val Arg Val Gly Arg Ile Ser Phe Gly Ser Ile Asn Ala Ile Leu Gly 245 250 255 Ser Val Ala Leu Ile Leu Asn Cys His His His Ala Ser Arg Val Ala 260 265 270 Arg Met Ala Ser Asp Glu Phe Pro Ser Met Cys Pro Ala Asp Gly Arg 275 280 285 Val Arg Gly Ile Thr His Asn Lys Ile Leu Trp Asp Ser Ser Thr Leu 290 295 300 Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser 305 310 315 <210> 2 <211> 89 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 2 Met Lys Lys Thr Leu Leu Ile Ala Ala Ser Leu Ser Phe Phe Ser Ala 1 5 10 15 Ser Ala Leu Ala Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr 20 25 30 Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu 35 40 45 Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln 50 55 60 Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly 65 70 75 80 Gly Gly Phe Ser Glu Val Ile Phe Arg 85 <210> 3 <211> 948 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 3 tcaactgcta atagttctgc gcatcagaat tgcccccaga gtggatgaat cccacaatat 60 tttattgtgc gtaatcccac ggactcttcc atctgccgga cacatagaag gaaactcatc 120 agatgccatt ctggcaactc gcgatgcatg atgatgacaa ttcagtatta atgccacgct 180 tcccagaatt gcattaatgc ttccaaaaga aattcttcct acacgaacag agtcttgtcc 240 atgataatca ggcaggacac tactcaacct tccccagttc aatgtaagat caacatcttc 300 agcagtcatt acataagaac gcccactgag atcatccagt gttgtacgaa atcccctctg 360 tatttgccga aaacgtaaag cttcagctgt cacagtaaca aaccgtaaca tcgctcttgc 420 cacagactgc gtcagtgagg ttccactatg cgacattaaa tccagataag aagtagtcaa 480 cgaatggcga tttatctgca tccccgtacg actgatccct gcaacacgct gtaacgtggt 540 atagctactg tcaccagaca atgtaaccgc tgttgtacct ggaaaggtaa catgtgaaaa 600 atcagcaaag cgataaaaaa cattatttgt cctgttaaca aatcctgtca catataaatt 660 atttcgttca acaataagcc gtagattatt aaaccgccct tcctctggat ctatccctct 720 gacatcaact gcaaacaaat tatcccctgt gccactatca atcatcagta aagacgtacc 780 tcctgatgaa atagtctgta atggagtacc tattgcagag cgaatgacat tcagcgaatc 840 tacatacgtc tttgcagtcg agaagtctaa ggtaaattcc ttcgcaacca cattaactga 900 aaagataaca aagaaaaaag ttagcactct aaaaataatt attttcat 948 <210> 4 <211> 270 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 4 tcaacgaaaa ataacttcgc tgaatccccc tccattatga caggcattag ttttaatggt 60 tacagtcatc cccgtaattt gcgcactgag aagaagagac tgaagattcc atctgttggt 120 aaataattct ttatcaccca ctttaactgt aaaggtatcg tcatcattat attttgtata 180 ctccaccttt ccagttacac aatcaggcgt cgccagcgca cttgctgaaa aaaatgaaag 240 cgatgcagct attaataatg tttttttcat 270 <210> 5 <211> 319 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 5 Met Lys Cys Ile Leu Phe Lys Trp Val Leu Cys Leu Leu Leu Gly Phe 1 5 10 15 Ser Ser Val Ser Tyr Ser Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln 20 25 30 Gln Ser Tyr Val Ser Ser Leu Asn Ser Ile Arg Thr Glu Ile Ser Thr 35 40 45 Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn 50 55 60 His Thr Pro Pro Gly Ser Tyr Phe Ala Val Asp Ile Arg Gly Leu Asp 65 70 75 80 Val Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn 85 90 95 Asn Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr 100 105 110 Arg Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val 115 120 125 Ser Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala 130 135 140 Leu Glu Arg Ser Gly Met Gln Ile Ser Arg His Ser Leu Val Ser Ser 145 150 155 160 Tyr Leu Ala Leu Met Glu Phe Ser Gly Asn Thr Met Thr Arg Asp Ala 165 170 175 Ser Arg Ala Val Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg 180 185 190 Phe Arg Gln Ile Gln Arg Glu Phe Arg Gln Ala Leu Ser Glu Thr Ala 195 200 205 Pro Val Tyr Thr Met Thr Pro Gly Asp Val Asp Leu Thr Leu Asn Trp 210 215 220 Gly Arg Ile Ser Asn Val Leu Pro Glu Tyr Arg Gly Glu Asp Gly Val 225 230 235 240 Arg Val Gly Arg Ile Ser Phe Asn Asn Ile Ser Ala Ile Leu Gly Thr 245 250 255 Val Ala Val Ile Leu Asn Cys His His Gln Gly Ala Arg Ser Val Arg 260 265 270 Ala Val Asn Glu Glu Ser Gln Pro Glu Cys Gln Ile Thr Gly Asp Arg 275 280 285 Pro Val Ile Lys Ile Asn Asn Thr Leu Trp Glu Ser Asn Thr Ala Ala 290 295 300 Ala Phe Leu Asn Arg Lys Ser Gln Phe Leu Tyr Thr Thr Gly Lys 305 310 315 <210> 6 <211> 89 <212> PRT <213> Escherichia coli O157:H7 str. EDL933 <400> 6 Met Lys Lys Met Phe Met Ala Val Leu Phe Ala Leu Ala Ser Val Asn 1 5 10 15 Ala Met Ala Ala Asp Cys Ala Lys Gly Lys Ile Glu Phe Ser Lys Tyr 20 25 30 Asn Glu Asp Asp Thr Phe Thr Val Lys Val Asp Gly Lys Glu Tyr Trp 35 40 45 Thr Ser Arg Trp Asn Leu Gln Pro Leu Leu Gln Ser Ala Gln Leu Thr 50 55 60 Gly Met Thr Val Thr Ile Lys Ser Ser Thr Cys Glu Ser Gly Ser Gly 65 70 75 80 Phe Ala Glu Val Gln Phe Asn Asn Asp 85 <210> 7 <211> 960 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 7 atgaagtgta tattatttaa atgggtactg tgcctgttac tgggtttttc ttcggtatcc 60 tattcccggg agtttacgat agacttttcg acccaacaaa gttatgtctc ttcgttaaat 120 agtatacgga cagagatatc gacccctctt gaacatatat ctcaggggac cacatcggtg 180 tctgttatta accacacccc accgggcagt tattttgctg tggatatacg agggcttgat 240 gtctatcagg cgcgttttga ccatcttcgt ctgattattg agcaaaataa tttatatgtg 300 gccgggttcg ttaatacggc aacaaatact ttctaccgtt tttcagattt tacacatata 360 tcagtgcccg gtgtgacaac ggtttccatg acaacggaca gcagttatac cactctgcaa 420 cgtgtcgcag cgctggaacg ttccggaatg caaatcagtc gtcactcact ggtttcatca 480 tatctggcgt taatggagtt cagtggtaat acaatgacca gagatgcatc cagagcagtt 540 ctgcgttttg tcactgtcac agcagaagcc ttacgcttca ggcagataca gagagaattt 600 cgtcaggcac tgtctgaaac tgctcctgtg tatacgatga cgccgggaga cgtggacctc 660 actctgaact gggggcgaat cagcaatgtg cttccggagt atcggggaga ggatggtgtc 720 agagtgggga gaatatcctt taataatata tcagcgatac tggggactgt ggccgttata 780 ctgaattgcc atcatcaggg ggcgcgttct gttcgcgccg tgaatgaaga gagtcaacca 840 gaatgtcaga taactggcga caggcctgtt ataaaaataa acaatacatt atgggaaagt 900 aatacagctg cagcgtttct gaacagaaag tcacagtttt tatatacaac gggtaaataa 960 960 <210> 8 <211> 270 <212> DNA <213> Escherichia coli O157:H7 str. EDL933 <400> 8 atgaagaaga tgtttatggc ggttttattt gcattagctt ctgttaatgc aatggcggcg 60 gattgtgcta aaggtaaaat tgagttttcc aagtataatg aggatgacac atttacagtg 120 aaggttgacg ggaaagaata ctggaccagt cgctggaatc tgcaaccgtt actgcaaagt 180 gctcagttga caggaatgac tgtcacaatc aaatccagta cctgtgaatc aggctccgga 240 tttgctgaag tgcagtttaa taatgactga 270 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for VT1 <400> 9 ataaatcgcc attcgttgac tac 23 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for VT1 <400> 10 agaacgccca ctgagatcat c 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for VT2 <400> 11 ggcactgtct gaaactgctc c 21 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for VT2 <400> 12 tcgccagtta tctgacattc tg 22

Claims (6)

a) 장출혈성 대장균(Enterohemorrhagic Escherichia coli, EHEC)의 베로독소에 대한 항체가 자성입자에 결합되어 이루어지는 검출용 입자를 시료와 접촉시키는 단계; 및
b) 베로독소를 사이에 두고 장출혈성 대장균과 상기 검출용 입자의 항체가 결합된 상태의 결합체를 자력을 사용하여 수득하는 단계;를 포함하는 장출혈성 대장균 검출 방법.
a) Enterohemorrhagic Escherichia contacting the sample with a detection particle comprising an antibody to berotoxin of E. coli , EHEC bound to magnetic particles; And
and b) obtaining a conjugate in the form of binding between the intestinal hemorrhagic Escherichia coli and the antibody of the detection particles, using a magnetic force.
제 1항에 있어서,
상기 베로독소는 베로독소 1(VT1) 또는 베로독소 2(VT2)인 것을 특징으로 하는 장출혈성 대장균 검출 방법.
The method according to claim 1,
Wherein the berotoxin is berotoxin 1 (VT1) or berotoxin 2 (VT2).
제 2항에 있어서,
상기 베로독소 1은 서열번호 1의 아미노산 서열로 표시되는 서브유닛 A 및 서열번호 2의 아미노산 서열로 표시되는 서브유닛 B로 이루어지며,
상기 베로독소 2는 서열번호 5의 아미노산 서열로 표시되는 서브유닛 A 및 서열번호 6의 아미노산 서열로 표시되는 서브유닛 B로 이루어지는 것을 특징으로 하는 장출혈성 대장균 검출 방법.
3. The method of claim 2,
The verotoxin 1 is composed of a subunit A represented by the amino acid sequence of SEQ ID NO: 1 and a subunit B represented by the amino acid sequence of SEQ ID NO: 2,
Wherein the verotoxin 2 comprises a subunit A represented by the amino acid sequence of SEQ ID NO: 5 and a subunit B represented by the amino acid sequence of SEQ ID NO: 6.
제 1항에 있어서,
상기 a)단계와 b)단계 사이에,
대장균 배양용 배지에서 35 내지 39℃로 2 내지 18시간 배양하는 단계;를 더 포함하는 것을 특징으로 하는 장출혈성 대장균 검출 방법.
The method according to claim 1,
Between the steps a) and b)
And culturing in an E. coli culture medium at 35 to 39 DEG C for 2 to 18 hours.
제 1항에 있어서,
상기 b)단계 이후에,
상기 결합체의 장출혈성 대장균을 대상으로 장출혈성 대장균의 베로독소 유전자 중 일부를 증폭할 수 있는 프라이머 세트를 사용하여 중합효소 연쇄반응을 수행하는 단계; 및
상기 중합효소 연쇄반응을 통해 증폭된 산물을 분석하는 단계;를 더 포함하는 것을 특징으로 하는 장출혈성 대장균 검출 방법.
The method according to claim 1,
After the step b)
Performing a polymerase chain reaction using a primer set capable of amplifying a part of a berotoxin gene of enterohemorrhagic Escherichia coli against enterohemorrhagic Escherichia coli of the combination; And
And analyzing the product amplified by the polymerase chain reaction. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
제 5항에 있어서,
상기 프라이머 세트는
서열번호 9의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 10의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트; 및
서열번호 11의 염기서열을 포함하는 올리고뉴클레오티드 및 서열번호 12의 염기서열을 포함하는 올리고뉴클레오티드로 이루어지는 프라이머 세트;중에서 선택되는 것을 특징으로 하는 장출혈성 대장균 검출 방법.
6. The method of claim 5,
The primer set
A primer set consisting of an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 9 and an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 10; And
A primer set consisting of an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 11 and an oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 12.
KR1020140027339A 2014-03-07 2014-03-07 Rapid isolation method of enterohaemorrhagic Escherichia coli KR101402279B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140027339A KR101402279B1 (en) 2014-03-07 2014-03-07 Rapid isolation method of enterohaemorrhagic Escherichia coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140027339A KR101402279B1 (en) 2014-03-07 2014-03-07 Rapid isolation method of enterohaemorrhagic Escherichia coli

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130051754A Division KR101395933B1 (en) 2013-05-08 2013-05-08 Rapid isolation method of enterohaemorrhagic escherichia coli

Publications (1)

Publication Number Publication Date
KR101402279B1 true KR101402279B1 (en) 2014-06-13

Family

ID=51131462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140027339A KR101402279B1 (en) 2014-03-07 2014-03-07 Rapid isolation method of enterohaemorrhagic Escherichia coli

Country Status (1)

Country Link
KR (1) KR101402279B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799153B1 (en) * 2015-08-31 2017-11-20 성균관대학교산학협력단 PCR chip for preconcentration and detecting pathogen in sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747272A (en) * 1994-02-14 1998-05-05 Henry M. Jackson Foundation For The Advancement Of Military Medicine Detection of shiga-like toxins of enterohemoragic Escherichia coli
JPH10211000A (en) * 1997-01-30 1998-08-11 Shimadzu Corp Detection of bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747272A (en) * 1994-02-14 1998-05-05 Henry M. Jackson Foundation For The Advancement Of Military Medicine Detection of shiga-like toxins of enterohemoragic Escherichia coli
JPH10211000A (en) * 1997-01-30 1998-08-11 Shimadzu Corp Detection of bacteria

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799153B1 (en) * 2015-08-31 2017-11-20 성균관대학교산학협력단 PCR chip for preconcentration and detecting pathogen in sample

Similar Documents

Publication Publication Date Title
Harmsen et al. Escherichia coli F4 fimbriae specific llama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhoea
US4596769A (en) Monoclonal antibodies to peptidoglycan and methods of preparing same
AU2020218748B2 (en) A genetically modified lactobacillus and uses thereof
CN102858799A (en) Antibody against serotype i lipopolysaccharide of pseudomonas aeruginosa
JPH07507444A (en) Purified vacuolating toxin derived from Helicobacter pylori and method for its use
ZA200301244B (en) Lactic acid bacteria capable of reducing an individual&#39;s tendency to develop allergic reactions.
CN113490686A (en) Pathogen binding proteins
AU2009350614B2 (en) Method for detecting and identifying a variant C. difficile strain in a sample
Gangaiah et al. Recombinant Limosilactobacillus (Lactobacillus) delivering nanobodies against Clostridium perfringens NetB and alpha toxin confers potential protection from necrotic enteritis
JP2001503606A (en) Helicobacter pylori adhesin-binding antigen
Sugita-Konishi et al. Blockade of Salmonella enteritidis passage across the basolateral barriers of human intestinal epithelial cells by specific antibody
CN110476065B (en) Diagnostic method
KR101402279B1 (en) Rapid isolation method of enterohaemorrhagic Escherichia coli
FR2966461A1 (en) Use of VP2 capsid protein of Bluetongue virus of serotype 8, a composition or compound having the protein, for the preparation of a reagent or a kit for in vitro diagnosis of an infection by BTV virus in an animal e.g. bovine
KR101395933B1 (en) Rapid isolation method of enterohaemorrhagic escherichia coli
KR101080071B1 (en) Rift valley fever competition ELISA using monoclonal antibodies against recombinant N protein
Boivin et al. Expression of surface protein LapB by a wide spectrum of Listeria monocytogenes serotypes as demonstrated with anti-LapB monoclonal antibodies
CN110607314B (en) TcdB RBD gene, recombinant RBD protein and application
US20110020845A1 (en) Method for the detection and identification of a variant c. difficile strain in a sample
KR101349413B1 (en) Recombinant recombinant vector for producing antigen for Vibrio vulnificus diagnosis and Monoclonal antibody specific to Vibrio vulnificus RtxA1
LU503901B1 (en) Anti-Shigella monoclonal antibody and use thereof
CA2338001A1 (en) Gastrointestinal bacterial antibody factories
CN109970854B (en) Tyrophagus putrescentiae Der p10 monoclonal antibody and preparation method and application thereof
Pasandideh et al. Production of monoclonal antibody against prokaryotically expressed G1 protein of bovine ephemeral fever virus
JP3864230B2 (en) Yone fungus antigen protein, gene encoding the protein, and method for diagnosing Johne&#39;s disease using the protein

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant