KR101395860B1 - Manufacturing method for litium heafluoro phosphate - Google Patents

Manufacturing method for litium heafluoro phosphate Download PDF

Info

Publication number
KR101395860B1
KR101395860B1 KR1020110069368A KR20110069368A KR101395860B1 KR 101395860 B1 KR101395860 B1 KR 101395860B1 KR 1020110069368 A KR1020110069368 A KR 1020110069368A KR 20110069368 A KR20110069368 A KR 20110069368A KR 101395860 B1 KR101395860 B1 KR 101395860B1
Authority
KR
South Korea
Prior art keywords
lithium
reactor
fluoride
reaction
hydrogen fluoride
Prior art date
Application number
KR1020110069368A
Other languages
Korean (ko)
Other versions
KR20130008786A (en
Inventor
이상원
백귀종
양정열
유교영
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to KR1020110069368A priority Critical patent/KR101395860B1/en
Publication of KR20130008786A publication Critical patent/KR20130008786A/en
Application granted granted Critical
Publication of KR101395860B1 publication Critical patent/KR101395860B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 삼염화인(PCl3)과 염소(Cl2), 불화수소(HF)를 끓는점 이상으로 가온하여 가스 상태로 2회 연속 반응시킴으로써 불순물이 많이 포함된 저가의 원료를 사용하면서도 고순도, 고수율의 육불화인산리튬(LiPF6) 제조하는 방법 및 상기 제조방법을 이용하여 제조되는 육불화인산리튬에 관한 것이다.The present invention relates to a process for the production of high purity and high yields by using chlorine trichloride (PCl 3 ), chlorine (Cl 2 ) and hydrogen fluoride (HF) Of lithium hexafluorophosphate (LiPF 6 ), and lithium hexafluorophosphate produced using the above-mentioned production method.

Description

육불화인산리튬의 제조방법 {Manufacturing method for litium heafluoro phosphate}Manufacturing method for lithium hexafluorophosphate < RTI ID = 0.0 >

본 발명은 삼염화인(PCl3)과 염소(Cl2), 불화수소(HF)를 끓는점 이상으로 가온하여 가스 상태로 2회 연속 반응시킴으로써 고순도, 고수율의 육불화인산리튬(LiPF6) 제조하는 방법 및 상기 제조방법을 이용하여 제조되는 육불화인산리튬에 관한 것이다.The present invention relates to a process for producing lithium hexafluorophosphate (LiPF 6 ) of high purity and high yield by heating PCCl 3 , chlorine (Cl 2 ) and hydrogen fluoride (HF) at a temperature higher than the boiling point, And lithium hexafluorophosphate produced by using the above-mentioned production method.

최근 들어 화석연료고갈 및 지구 환경 오염에 대한 우려가 커짐에 따라 하이브리드 전기자동차(Hybrid Electric Vehicle), 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle) 더 나아가서는 순수 전기자동차(Electric Vehicle)에 대한 연구개발이 활기를 띠고 있다. 또한 신재생에너지에 대한 관심이 높아지면서 신재생에너지를 전기화 했을 때 전기 에너지를 효과적으로 저장할 수 있는 에너지저장시스템(Energy Storage System)의 연구개발 역시 점차 본격화하는 모습이다.Recently, there has been a growing concern about depletion of fossil fuels and global environmental pollution. As a result, research on Hybrid Electric Vehicle, Plug-in Hybrid Electric Vehicle, and Pure Electric Vehicle Development is vigorous. In addition, as interest in renewable energy increases, research and development of an energy storage system (Energy Storage System), which can effectively store electric energy when new and renewable energy is electrified, is gradually becoming full-scale.

이러한 전기자동차 및 에너지저장 시스템의 중심에는 핵심 동력원으로서 리튬이온 2차전지가 있으며, 그 리튬이온 2차전지의 4대 부품(양극, 음극, 전해질, 분리막) 중 큰 비중은 차지하고 있지 않지만 전해질 또한 각광 받고 있다.At the heart of these electric vehicles and energy storage systems are lithium-ion rechargeable batteries as the core power source, and the large portion of the four components (anode, anode, electrolyte, separator) of the lithium ion secondary battery is not occupied. have.

전해질에서 육불화인산리튬(LiPF6)는 매우 중요한 구성요소 중 하나이다.Lithium hexafluorophosphate (LiPF 6 ) in the electrolyte is one of the most important components.

일반적으로 육불화인산리튬(LiPF6)은 오염화인(PCl5)과 불화수소(HF) 또는 삼염화인(PCl3), 염소(Cl2)와 불화수소(HF)의 반응에 의해 얻은 오불화인(PF5) 불화수소(HF)에 용해되어 있는 불화리튬(LiF)과 반응시켜 제조되는데 이 때 원료 중 수분이 포함되어 있으면 옥시불화인산리튬(LiPOxFy)이 부산물로 생성되어 고순도의 육불화인산리튬(LiPF6) 제조에 저해요인이 된다.Generally, lithium hexafluorophosphate (LiPF 6 ) is a pentafluorophosphate (PCF 5 ) obtained by the reaction of PCF 5 with hydrogen fluoride (HF) or trichlorosilane (PCl 3 ), chlorine (Cl 2 ) and hydrogen fluoride (PF 5 ) is produced by reacting lithium fluoride (LiF) dissolved in hydrogen fluoride (HF). When water is contained in the raw material, lithium oxyfluoride (LiPO x F y ) is produced as a by- Which is an inhibiting factor in the production of lithium fluorophosphate (LiPF 6 ).

한편, 일본 공개특허공보 제1993-279003호(1993.10.26)에서는 오염화인(PCl5)과 불화수소(HF)의 반응으로 생성 된 오불화인(PF5)과 염화수소(HCl) 가스를 원료에 포함 된 수분에 의한 부반응으로 생성 된 옥시불화인(POxFy) 제거 위해 옥시불화인(POxFy)의 끓는점 이하인 동시에 오불화인(PF5)의 끓는점 이상의 온도로 냉각하여 옥시불화인(POxFy)를 제거한 후 불화수소(HF)에 용해되어 있는 불화리튬(LiF)과 반응시키는 방법이 있는데 대부분의 오불화인(PF5)과 염화수소(HCl) 가스에 소량의 옥시불화인(POxFy) 가스를 제거하는 것은 현실적으로 상당히 어렵다.On the other hand, in Japanese Patent Application Laid-Open No. 1993-279003 (Oct. 26, 1993), pentafluorophosphoric acid (PF 5 ) and hydrogen chloride (HCl) gas produced by the reaction of PCl 5 with hydrogen fluoride (PO x F y ) produced by the side reaction by moisture contained therein is cooled to a temperature not lower than the boiling point of phosphorus oxyfluoride (PO x F y ) and at the boiling point of the phosphorus pentafluoride (PF 5 ) (PO x F y) is reacted with lithium fluoride (LiF) that is dissolved in hydrogen fluoride (HF) after removing there the small quantities of oxy-fluoride in most five fluoride in (PF 5) and hydrogen chloride (HCl) gas (PO x F y ) gas is practically very difficult to remove.

대한민국 공개특허공보 제2000-0046590호(2000.07.25)에서는 오염화인(PCl5)과 불화수소(HF)의 반응으로 오불화인(PF5)을 생성하고 불화수소(HF)에 용해되어 있는 염화리튬(LiCl)과 반응시켜 육불화인산리튬(LiPF6)을 제조하는 방법이 있는데 이 때 원료 및 제품의 건조를 위해 고가의 불소(F2) 가스를 사용함으로써 육불화인산리튬(LiPF6) 또한 고가가 될 수 밖에 없다.Korean Patent Laid-Open Publication No. 2000-0046590 (2000.07.25) discloses a process for producing phosphorus pentafluoride (PF 5 ) by reaction of contaminated phosphorus (PCl 5 ) with hydrogen fluoride (HF) lithium (LiCl) to yield hexafluoride phosphate lithium (LiPF 6) for there is a method of manufacturing hexafluoride lithium phosphate by this time using a high-priced fluorine (F 2) gas for drying the raw material and product (LiPF 6) also It is expensive.

일본 공개특허공보 제1999-171517호(1999.06.29)에서는 삼염화인(PCl3)과 불화수소(HF)를 반응시키고 가스 상태의 삼불화인(PF3)을 생성(제1불소화 공정)시키고 제1불소화 공정으로 생성 된 삼불화인(PF3)을 염소(Cl2)와 반응시켜 가스 상태의 이염화삼불화인(PF3Cl2) 생성(염소화 공정)시키고 이염화삼불화인(PF3Cl2)과 불화수소(HF)를 반응시켜 오불화인(PF5)을 얻는 방법이 있는데 원료의 정제에 관한 어떠한 언급도 없으므로 원료에 포함 된 수분으로 인해 옥시불화인(POxFy)이 생성을 막을 수 없다.
Japanese Patent Application Laid-Open No. 1999-171517 (Jun. 29, 1999) discloses a method of reacting phosphorus trichloride (PCl 3 ) with hydrogen fluoride (HF) to produce gaseous PF 3 (first fluorination step) produced by the fluorination process trifluoride Fine (PF 3), chlorine (Cl 2) and reaction of the gaseous otitis hwasam fluoride (PF 3 Cl 2) generating (chlorination process) and the dibasic hwasam fluoride (PF 3 Cl 2) and There is a method of obtaining hydrogen fluoride (PF 5 ) by reacting with hydrogen fluoride (HF). Since there is no mention about the purification of the raw material, the moisture contained in the raw material can prevent generation of oxyfluoride (PO x F y ) none.

본 발명은 상기와 같은 종래기술의 한계를 극복하기 위해 안출된 것으로, 본 발명의 목적은 삼염화인(PCl3)과 염소(Cl2), 불화수소(HF)를 반응시켜 오불화인(PF5)혼합가스를 생성할 때 끓는점 이상으로 가온하여 가스 상태로 반응시킴으로써 고순도, 고수율의 육불화인산리튬(LiPF6) 제조하는 방법을 제공하는 것이다. SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned drawbacks of the prior art and to provide a method and apparatus for purifying phosphorus pentafluoride (PF 5 ) by reacting phosphorus trichloride (PCl 3 ) with chlorine (Cl 2 ) (LiPF 6 ) having a high purity and a high yield by reacting in a gaseous state by heating at a boiling point or higher when a mixed gas is produced.

상기 목적에 따라 삼염화인(PCl3)과 염소(Cl2), 불화수소(HF) 반응 시 옥시불화인(POxFy)이 생성되지 않고 고순도, 고수율의 오불화인(PF5)혼합가스를 생성하여 최종적으로 고순도, 고수율의 육불화인산리튬(LiPF6)을 생성하기 위해 노력한 결과, 원료를 끓는점 이상으로 가온하고 반응기를 2개를 사용함으로써 가능함을 발견하고 본 발명을 완성하였다.Mixed phosphorus trichloride (PCl 3) and chlorine (Cl 2), a hydrogen fluoride (HF) in oxy-fluoride during the reaction (PO x F y) is not created O fluoride in high purity and high yield (PF 5), depending on the purpose (LiPF 6 ) at a high purity and a high yield by ultrafiltration, distillation, distillation, distillation, distillation, distillation, and gasification. The present inventors have completed the present invention by discovering that the raw material is heated to a boiling point or more and two reactors are used.

본발명은 (a) 삼염화인, 염소, 불화수소를 반응시켜 오불화인을 제조하는 단계; (b) 불화리튬을 불화수소에 용해시켜 불화리튬용액을 제조하는 단계; 및 (c) 상기 단계(a)의 오불화인과 상기 단계(b)의 불화리튬용액을 반응시키는 단계; 를 포함하는 육불화인산리튬의 제조방법 및 상기 제조방법을 이용하여 제조되는 육불화인산리튬을 제공한다. The present invention relates to a process for the production of (a) a process for producing an oxyfluoride by reacting phosphorus trichloride, chlorine and hydrogen fluoride; (b) dissolving lithium fluoride in hydrogen fluoride to prepare a lithium fluoride solution; And (c) reacting the halogen fluoride of step (a) with the lithium fluoride solution of step (b); And a lithium hexafluorophosphate produced by using the above-mentioned production method.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

먼저 1차 반응기로 들어가는 가스의 순서는 특별히 한정하지는 않지만 삼염화인(PCl3), 불화수소(HF), 염소(Cl2)의 순서가 적당하다. 1차 반응기로 들어가는 가스의 순서를 특별히 한정하지 않는 이유는 반응기 두 개를 연속으로 사용함으로써 반응이 불완전하게 일어난 삼염화인(PCl3), 불화수소(HF), 염소(Cl2)가 한차례 더 반응하게 되며 이로인해 한 개의 반응기를사용했을 때 보다 월등하게 고순도, 고수율의 육불화인산리튬의 제조가 가능하기 때문이다. 2차 반응기는 1차 반응기와 같이 연결되어 있으며 1차 반응기를 통과한 가스는 바로 2차 반응기를 거치는 것으로써 1차 반응기에서의 미반응 가스를 다시 한번 2차 반응기에서 반응시키게 된다. 1차 반응기를 통과한 반응 및 미반응 가스는 2차 반응기로 투입되는 과정에서 배관의 내경이 좁아지는 부분을 지나면서 가스의 혼합이 이뤄지게 하여 2차 반응기에서의 반응 효율을 높일 수 있다.First, the order of the gas entering the first reactor is not particularly limited, but the order of phosphorus trichloride (PCl 3 ), hydrogen fluoride (HF), and chlorine (Cl 2 ) is appropriate. The reason why the order of the gas entering the first reactor is not particularly limited is that by using two reactors in succession, the chlorine trichloride (PCl 3 ), hydrogen fluoride (HF) and chlorine (Cl 2 ), which are incompletely reacted, This makes it possible to produce lithium hexafluorophosphate having a high purity and a high yield, which is superior to that of a single reactor. The second reactor is connected with the first reactor and the gas passing through the first reactor passes through the second reactor to react the unreacted gas in the first reactor again in the second reactor. The reaction and the unreacted gas passing through the first reactor may be mixed with the gas passing through the narrowed part of the inner diameter of the pipe during the introduction into the second reactor to increase the reaction efficiency in the second reactor.

1차 반응기에서 삼염화인(PCl3), 불화수소(HF), 염소(Cl2) 가스를 반응시키기 위해서는 반응 가스들을 이동시켜야 하는데 이때 삼염화인(PCl3), 불화수소(HF), 염소(Cl2) 가스만으로도 가능하며 또한 캐리어 가스와 함께이어도 괜찮다. 이때 캐리어 가스로는 질소(N2) 와 아르곤(Ar) 가스가 사용 될 수 있다. Of phosphorus trichloride in a first reactor (PCl 3), hydrogen fluoride (HF), chlorine (Cl 2) in order to a gas reaction need to move the reaction gas wherein phosphorus trichloride (PCl 3), hydrogen fluoride (HF), chlorine (Cl 2 ) It is possible to use only gas, and it is also possible to use with carrier gas. At this time, nitrogen (N 2 ) and argon (Ar) gas may be used as the carrier gas.

반응 온도는 75 내지 150℃가 적당하고 75℃보다 낮을 때는 삼염화인(PCl3)의 기상화가 원활하지 않아 반응에 어려움이 있고 150℃보다 높을 때는 고온이라 설비 선택에 어려움이 있을 수 있고 반응 제어가 어려울 수 있다.The reaction temperature is suitably from 75 to 150 ° C. When the temperature is lower than 75 ° C, it is difficult to perform the reaction because the vaporization of phosphorus trichloride (PCl 3 ) is not smooth. When the temperature is higher than 150 ° C, It can be difficult.

삼염화인(PCl3), 불화수소(HF), 염소(Cl2) 반응 가스의 기상화를 위해서는 원료의 끓는점 이상으로 가온하는 것이 필요한데 특히 삼염화인(PCl3)은 분별증류를 이용하여 고순도의 삼염화인(PCl3) 가스를 제조할 필요가 있다. 이 때 기상으로만 반응시키기 위해 캐리어 가스를 이용하는 방법은 원료 내에 있는 수분이나 금속 불순물은 반응기 내에 혼입 될 가능성이 커 바람직하지 않다.(PCl 3 ), hydrogen fluoride (HF) and chlorine (Cl 2 ) are required to be heated above the boiling point of the raw material in order to vaporize the reaction gas. Particularly, phosphorus trichloride (PCl 3 ) It is necessary to produce phosphorus (PCl 3 ) gas. At this time, the method of using the carrier gas to react only with the gas phase is not preferable because moisture or metallic impurities in the raw material are likely to be incorporated into the reactor.

반응 압력은 특별히 한정하지는 않지만 1~30kgf/cm2가 바람직하고 보다 바람직하게는 3~10kgf/cm2이다. 압력은 너무 낮으면 반응 제어가 너무 어렵고 효율이 많이 떨어지며 압력이 지나치게 높으면 고가의 장치를 필요로 하게 되어 초기 투자비가 증가하는 원인이 되고 반응 제어 또한 상당히 어려우며 반응이 원활하게 이루어지지 않을 수 있다.The reaction pressure is not particularly limited to 1 ~ 30kg f / cm 2 is preferred, and more preferably 3 ~ 10kg f / cm 2. If the pressure is too low, the reaction control becomes too difficult and the efficiency becomes poor. If the pressure is too high, expensive equipment is needed, which causes an increase in the initial investment cost, and the reaction control is also very difficult and the reaction may not be smooth.

삼염화인(PCl3), 불화수소(HF), 염소(Cl2) 가스를 반응시켜 오불화인(PF5)과 염화수소(HCl) 가스를 제조할 때 고수율, 고효율을 위해 반응기를 복수개 연결하여 연속적으로 반응시키는 것이 좋다. 예를 들어 2개 또는 3개의 반응기를 순차적으로 연결하여 반응함으로써 고순도, 고수율의 육불화인산리튬의 제조가 가능하다.(PF 5 ) and hydrogen chloride (HCl) gases by reacting phosphorus trichloride (PCl 3 ), hydrogen fluoride (HF) and chlorine (Cl 2 ) gases, a plurality of reactors are connected for high yield and high efficiency It is preferable to carry out the reaction continuously. For example, it is possible to produce lithium hexafluorophosphate of high purity and high yield by reacting two or three reactors successively connected.

삼염화인(PCl3)과 염소(Cl2)의 혼합은 1 : 1 내지 5의 몰비로 혼합하는 것이 바람직하다. 염소의 함량이 너무 높으면 폐가스 발생량이 증가하여 처리에 어려움이 있고 염소의 함량이 적을 경우 완전 반응하지 않고 남은 삼염화인(PCl3)의 처리가 곤란하다. 삼염화인(PCl3)과 불화수소(HF)의 혼합은 1 : 5 내지 14.5의 몰비로 혼합하는 것이 바람직하다. 불화수소가 과량 첨가될 때에는 다량의 폐가스가 발생하여 처리에 어려움이 있고 생성가스를 정제하는 경우 어려움이 있다. 불화수소의 함량이 적을 경우에는 완전 반응하지 않고 추가적로 불화수소(HF)가 필요하다.It is preferable that the mixture of phosphorus trichloride (PCl 3 ) and chlorine (Cl 2 ) is mixed in a molar ratio of 1: 1 to 5. If the content of chlorine is too high, the amount of waste gas generated increases, which makes treatment difficult. When the content of chlorine is small, it is difficult to treat remaining trichlorethylene (PCl 3 ) without a complete reaction. It is preferable that the mixture of phosphorus trichloride (PCl 3 ) and hydrogen fluoride (HF) be mixed at a molar ratio of 1: 5 to 14.5. When hydrogen fluoride is added in an excessive amount, a large amount of off-gas is generated, which makes it difficult to treat and it is difficult to purify the produced gas. When the content of hydrogen fluoride is small, it is not completely reacted and hydrogen fluoride (HF) is additionally required.

상기 단계(b)의 불화리튬용액은 불화수소와 불화리튬을 15 내지 35 : 1의 몰비로 제조되는 것이 수율면에 있어서 좋다. 불화리튬의 첨가량이 너무 적으면 반응이 제대로 일어나지 않아 육불화인산리튬의 수율이 낮아지고, 불화리튬의 함량이 너무 높게 되면 불화수소에 불화리튬이 완전 용해되지 않아 수율 및 효율면에 있어서 단점을 수반하게 된다. The lithium fluoride solution of step (b) may be prepared in a molar ratio of hydrogen fluoride and lithium fluoride in a molar ratio of 15 to 35: 1. If the amount of lithium fluoride added is too small, the reaction does not occur properly, and the yield of lithium hexafluorophosphate decreases. When the content of lithium fluoride becomes too high, lithium fluoride is not completely dissolved in the hydrogen fluoride, .

삼염화인(PCl3), 불화수소(HF), 염소(Cl2) 가스를 반응시켜 제조된 오불화인(PF5)을 상기의 제조된 불화리튬용액에 첨가하여 반응시키는데 오불화인(PF5)과 불화리튬용액을 1 : 2 내지 3 : 1의 중량비로 혼합하여 수행하는 것이 본 발명을 완성하는데 가장 좋다. 오불화인(PF5)과 불화리튬용액의 혼합에 있어서 불화리튬용액의 첨가량이 너무 적으면 미반응 오불화인(PF5)이 다량 발생하여 고수율을 기대할 수 없으며 폐가스 처리에 어려움이 있을 수 있고, 불화리튬용액의 첨가량이 너무 많으면 반응이 온전히 일어나지 않아 좋지 않다. Phosphorus trichloride (PCl 3), hydrogen fluoride (HF), chlorine (Cl 2) of the O fluoride in (PF 5) prepared by a gas reaction sikineunde reaction is added to the the lithium fluoride solution prepared in five fluoride in (PF 5 ) And a lithium fluoride solution are mixed at a weight ratio of 1: 2 to 3: 1 in order to complete the present invention. If the amount of the lithium fluoride solution to be added is too small in the mixing of the phosphorus pentafluoride (PF 5 ) and the lithium fluoride solution, a large amount of unreacted phosphorus pentafluoride (PF 5 ) may be generated and a high yield can not be expected. If the addition amount of the lithium fluoride solution is too much, the reaction does not occur completely, which is not preferable.

상기 오불화인(PF5)과 불화리튬용액의 혼합반응은 2 내지 12시간 동안 -5℃내지 10℃에서 수행되는 것이 바람직하다. 반응이 종결되면 -20℃ 이하의 온도에서 냉각하여 필터를 통해 육불화인산리튬을 수득하게 된다. The mixing reaction of the phosphorus pentafluoride (PF 5 ) and the lithium fluoride solution is preferably performed at -5 ° C to 10 ° C for 2 to 12 hours. When the reaction is completed, the solution is cooled at a temperature of -20 DEG C or lower, and lithium hexafluorophosphate is obtained through the filter.

본 발명에 따르면 삼염화인(PCl3)과 염소(Cl2), 불화수소(HF)를 반응시켜 오불화인(PF5)을 생성할 때 끓는점 이상으로 가온하여 가스 상태로 2회 연속 반응시킴으로써 불순물이 많이 포함된 저가의 원료를 사용하면서도 고순도, 고수율의 육불화인산리튬(LiPF6)을 제조할 수 있다.According to the present invention, when phosphorus trichloride (PCl 3 ) is reacted with chlorine (Cl 2 ) or hydrogen fluoride (HF) to produce pentafluorophosphorus (PF 5 ) (LiPF 6 ) having high purity and high yield can be produced while using a low-cost raw material containing a large amount of lithium hexafluorophosphate.

도 1은 본 발명에서 사용된 연속 반응기의 개념도이다.1 is a conceptual diagram of a continuous reactor used in the present invention.

이하, 실시예에 의해 본 발명을 보다 상세히 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것일 뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not intended to limit the scope of the present invention.

본 발명의 실시예는 하기 도 1의 반응기를 이용하여 실시하였다.An embodiment of the present invention was carried out using the reactor shown in Fig.

실시예에서 가스크로마토그래피는 애질런트테크놀러지스사의 HP-6890을 사용했으며 헬륨, 진공을 반복 사용하여 외부공기 차단 및 제거 후 분석하였고, 제조된 육불화인산리튬의 순도를 분석하는 XRD 검증은 브루커바이오사이언시스사의 D8 Focus을 사용했으며 시료를 곱게 갈아 시료판 위에 올려놓은 후 분석하였고, 수분함량은 메트롬사의 칼피셔 KF 860, KF 756라는 장비로 에이케이 시약을 이용하여 분석하였고, 자유불산의 농도는 메트롬사의 오토 타이트레이터 888티트란도라는 장비로 0.01몰농도의 수산화나트륨으로 적정하여 방법을 이용하였다. In the examples, HP-6890 manufactured by Agilent Technologies, Inc. was used for gas chromatography, and helium and vacuum were repeatedly used to analyze and remove external air. XRD verification for analyzing the purity of lithium hexafluorophosphate produced was performed by Bruker Bio- The moisture content was analyzed using an AKA reagent with a Karl Fischer KF 860, KF 756, manufactured by Metrom Inc., and the concentration of free fluoric acid was measured using a DF Focus system manufactured by Sys Co., Ltd. The sample was finely ground on a sample plate and analyzed. The autotitrator 888 manufactured by Metrom Co., Ltd. was titrated with sodium hydroxide at a concentration of 0.01 mole with a device called Tritando.

[실시예 1] [Example 1]

삼염화인(PCl3) 137.5g과 불화수소(HF) 150g를 도 1과 같이 넣고 80℃ 이상까지 가열하여 기상화하여 1차 반응기로 투입하였다. 염소(Cl2) 가스 106.5g도 1차 반응기로 투입하였다. 반응 압력은 3kgf/cm2이고 반응 온도는 85℃였다. 이때 기상은 기체정량펌프를 이용하였다. 30분 경과 후 2차 반응기를 거쳐 응축기를 통과한 가스가 흘러나왔다. 상기 반응 생성물을 가스 크로마토그래피(gas-chromato-graphy)로 분석한 결과 오불화인 36.1중량%, 염화수소 52.3중량%, 염소 10.2중량%, 불화수소 1.5중량%이었다.137.5 g of phosphorus trichloride (PCl 3 ) and 150 g of hydrogen fluoride (HF) were charged as shown in Fig. 1, heated to 80 ° C or higher, vaporized, and charged into a primary reactor. 106.5 g of chlorine (Cl 2 ) gas was also introduced into the first reactor. The reaction pressure was 3 kg f / cm 2 and the reaction temperature was 85 ° C. At this time, gas metering pump was used. After 30 minutes, the gas passing through the condenser flowed through the second reactor. As a result of gas-chromatographic analysis of the reaction product, 36.1 wt% of fluorine, 52.3 wt% of hydrogen chloride, 10.2 wt% of chlorine and 1.5 wt% of hydrogen fluoride were obtained.

이 반응가스를 무수불산 300g에 불화리튬 12g 용해되어 있는 빙욕(0℃)의 용기에 투입하였다. 6시간 동안 반응시킨 후 -40℃로 냉각하여 필터를 통해 여과, 진공 건조하여 육불화인산리튬(LiPF6) 31.5g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 99.5중량% 이상의 순도, 수분함량은 25중량ppm 이하, 자유 불산의 농도는 85중량ppm 이하였다.This reaction gas was introduced into a vessel of an ice bath (0 ° C) in which 12 g of lithium fluoride had dissolved into 300 g of anhydrous hydrofluoric acid. The mixture was reacted for 6 hours, cooled to -40 캜, filtered through a filter, and vacuum-dried to obtain 31.5 g of lithium hexafluorophosphate (LiPF 6 ). The obtained crystals were analyzed by XRD and found to be in conformity with standard LiPF 6 , having a purity of 99.5% by weight or more, a water content of 25 ppm by weight or less, and a free fluoric acid concentration of 85 ppm by weight or less.

[실시예 2][Example 2]

1차 반응기에 염소를 75g 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 31.9g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 99.1중량% 이상의 순도, 수분함량은 27중량ppm, 자유 불산의 농도는 61중량ppm이었다.31.9 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1, except that 75 g of chlorine was added to the first reactor. The obtained crystals were analyzed by XRD. As a result, they were in agreement with standard LiPF 6 and had a purity of 99.1 wt% or more, a water content of 27 wt ppm, and a free hydrofluoric acid concentration of 61 wt ppm.

[실시예 3][Example 3]

1차 반응기에 염소를 300g 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 30.4g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 99.1중량% 이상의 순도, 수분함량은 30중량ppm, 자유 불산의 농도는 93중량ppm이었다.30.4 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1, except that 300 g of chlorine was added to the first reactor. The obtained crystals were analyzed by XRD. As a result, they were in agreement with the standard LiPF 6, and had a purity of 99.1 wt% or more, a water content of 30 wt ppm, and a free fluoric acid concentration of 93 wt ppm.

[실시예 4][Example 4]

1차 반응기에 불화수소를 100g 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 28.7g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 98.5중량% 이상의 순도, 수분함량은 29중량ppm, 자유 불산의 농도는 87중량ppm이었다.28.7 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1 except that 100 g of hydrogen fluoride was added to the first reactor. The obtained crystals were analyzed by XRD. As a result, they were in agreement with standard LiPF 6 and had a purity of 98.5% by weight or more, a water content of 29 ppm by weight and a free fluoric acid concentration of 87 ppm by weight.

[실시예 5][Example 5]

1차 반응기에 불화수소를 250g 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 31.4g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 99중량% 이상의 순도, 수분함량은 21중량ppm, 자유 불산의 농도는 81중량ppm이었다.31.4 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1, except that 250 g of hydrogen fluoride was added to the first reactor. The obtained crystals were analyzed by XRD. The results were in agreement with the standard LiPF 6, and the purity was 99 wt% or more, the water content was 21 wt ppm, and the free fluoric acid concentration was 81 wt ppm.

[실시예 6][Example 6]

반응기의 압력이 10kgf/cm2인 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 32.3g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 99.3중량% 이상의 순도, 수분함량은 33중량ppm, 자유 불산의 농도는 79중량ppm이었다.Except that the pressure in the reactor of 10kg f / cm 2, and is performed in the same manner as in Example 1 and was obtained lithium phosphate hexafluoride (LiPF 6) 32.3g. The obtained crystals were analyzed by XRD. As a result, they were in agreement with the standard LiPF 6 and had a purity of 99.3% by weight or more, a water content of 33 ppm by weight and a free fluoric acid concentration of 79 ppm by weight.

[실시예 7][Example 7]

반응기의 압력이 20kgf/cm2인 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 32.7g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 98.9중량% 이상의 순도, 수분함량은 31중량ppm, 자유 불산의 농도는 99중량ppm이었다.And 32.7 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1 except that the pressure of the reactor was 20 kg f / cm 2 . The obtained crystals were analyzed by XRD. The results were in agreement with standard LiPF 6, and found to be 98.9% by weight or more in purity, 31% by weight in water content, and 99% by weight in free fluoric acid.

[비교예 1][Comparative Example 1]

반응기의 압력이 0.2kgf/cm2이고 반응 온도가 30℃인 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 25.7g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 77.9중량%의 순도, 수분함량은 70중량ppm, 자유 불산의 농도는 170중량ppm이었다.The pressure in the reactor, and is performed in the same manner as in Example 1, except that a 0.2kg f / cm 2 and a reaction temperature of 30 ℃ Obtained lithium phosphate hexafluoride (LiPF 6) 25.7g. The obtained crystals were analyzed by XRD. As a result, they were in agreement with standard LiPF 6 and had a purity of 77.9 wt%, a water content of 70 wt ppm, and a free fluoric acid concentration of 170 wt ppm.

[비교예 2][Comparative Example 2]

2차 반응기를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 육불화인산리튬(LiPF6) 25.3g을 획득했다. 획득한 결정을 XRD로 분석한 결과, 표준 LiPF6와 일치했고 86.1중량% 이상의 순도, 수분함량은 65중량ppm, 자유 불산의 농도는 151중량ppm이었다.25.3 g of lithium hexafluorophosphate (LiPF 6 ) was obtained in the same manner as in Example 1 except that the secondary reactor was not used. The obtained crystals were analyzed by XRD. As a result, they were in agreement with standard LiPF 6, and found that the purity was 86.1 wt% or more, the water content was 65 wt ppm, and the free fluoric acid concentration was 151 wt ppm.

Claims (11)

(a) 삼염화인, 염소 및 불화수소를 1차 반응기에서 기상 반응시킨 반응 및 미반응 가스를 배관의 내경이 좁아지는 부분을 지나면서 가스의 혼합이 이뤄지게 하여 2차 반응기로 이송한 후 추가로 기상 반응시켜 오불화인을 제조하는 단계;
(b) 불화리튬을 불화수소에 용해시켜 불화리튬용액을 제조하는 단계; 및
(c) 상기 단계(a)의 오불화인과 상기 단계(b)의 불화리튬용액을 반응시키는 단계; 를 포함하는 육불화인산리튬의 제조방법.
(a) the reaction of gas phase reaction of phosphorus trichloride, chlorine and hydrogen fluoride in the first reactor and the unreacted gas passing through the narrowed part of the inner diameter of the pipe to the second reactor, Reacting the compound of formula
(b) dissolving lithium fluoride in hydrogen fluoride to prepare a lithium fluoride solution; And
(c) reacting the halogen fluoride of step (a) with the lithium fluoride solution of step (b); ≪ / RTI >
제 1항에 있어서,
단계(a)의 오불화인은 삼염화인 : 염소 : 불화수소를 1 : 1 내지 5 : 5 내지 14.5의 몰비로 혼합하여 제조되는 것인 육불화인산리튬의 제조방법.
The method according to claim 1,
Wherein the pentafluorophosphate of step (a) is prepared by mixing trichloride phosphorus: chlorine: hydrogen fluoride in a molar ratio of 1: 1 to 5: 5 to 14.5.
삭제delete 제 1항에 있어서,
상기 기상 반응은 75 내지 150℃에서 실시되는 것인 육불화인산리튬의 제조방법.
The method according to claim 1,
Wherein the gas phase reaction is carried out at 75 to 150 ° C.
삭제delete 제 1항에 있어서,
상기 1차 반응기 및 2차 반응기의 압력은 각각 1 내지 30 kgf/cm2인 것인 육불화인산리튬의 제조방법.
The method according to claim 1,
The first reactor and the second pressure of the primary reactor are each from 1 to 30 kg f / cm 2 to the method of producing a lithium phosphate hexafluoride.
제 6항에 있어서,
상기 반응기의 압력은 3 내지 10 kgf/cm2인 것인 육불화인산리튬의 제조방법.
The method according to claim 6,
Wherein the pressure of the reactor is 3 to 10 kg f / cm < 2 >.
제 1항에 있어서,
상기 단계(b)의 불화리튬용액은 불화수소와 불화리튬을 15 내지 35 : 1의 몰비로 제조되는 것인 육불화인산리튬의 제조방법.
The method according to claim 1,
Wherein the lithium fluoride solution of step (b) is prepared by mixing hydrogen fluoride and lithium fluoride in a molar ratio of 15 to 35: 1.
제 1항에 있어서,
상기 단계(c)의 반응은 2 내지 12시간 동안 -5℃내지 10℃에서 수행되는 것인 육불화인산리튬의 제조방법.
The method according to claim 1,
Wherein the reaction of step (c) is carried out at -5 ° C to 10 ° C for 2 to 12 hours.
제 9항에 있어서,
상기 반응은 오불화인 혼합가스와 불화리튬용액을 1 : 2 내지 3 : 1의 중량비로 혼합하여 수행되는 것인 육불화인산리튬의 제조방법.
10. The method of claim 9,
Wherein the reaction is carried out by mixing a mixed gas of fluorine and a lithium fluoride solution in a weight ratio of 1: 2 to 3: 1.
제 1항, 2항, 4항, 6항 내지 제 10항 중에서 선택된 어느 한 항의 제조방법에 의해 제조된 육불화인산리튬.Lithium hexafluorophosphate produced by the method of any one of claims 1, 2, 4, 6 to 10.
KR1020110069368A 2011-07-13 2011-07-13 Manufacturing method for litium heafluoro phosphate KR101395860B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110069368A KR101395860B1 (en) 2011-07-13 2011-07-13 Manufacturing method for litium heafluoro phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110069368A KR101395860B1 (en) 2011-07-13 2011-07-13 Manufacturing method for litium heafluoro phosphate

Publications (2)

Publication Number Publication Date
KR20130008786A KR20130008786A (en) 2013-01-23
KR101395860B1 true KR101395860B1 (en) 2014-05-16

Family

ID=47838683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110069368A KR101395860B1 (en) 2011-07-13 2011-07-13 Manufacturing method for litium heafluoro phosphate

Country Status (1)

Country Link
KR (1) KR101395860B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050056A1 (en) * 2013-10-04 2015-04-09 関東電化工業株式会社 Method for purifying phosphorus pentafluoride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980063750A (en) * 1996-12-03 1998-10-07 트레일끌로드 Synthesis of fluorophosphate by fluorination of phosphorus trichloride
JP2001122604A (en) * 1999-10-22 2001-05-08 Kanto Denka Kogyo Co Ltd Method for production of high purity lithium hexafluorophosphate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980063750A (en) * 1996-12-03 1998-10-07 트레일끌로드 Synthesis of fluorophosphate by fluorination of phosphorus trichloride
JP2001122604A (en) * 1999-10-22 2001-05-08 Kanto Denka Kogyo Co Ltd Method for production of high purity lithium hexafluorophosphate

Also Published As

Publication number Publication date
KR20130008786A (en) 2013-01-23

Similar Documents

Publication Publication Date Title
KR101559591B1 (en) 5 6 processes for producing phosphorus pentafluoride and hexafluorophosphate
KR100288825B1 (en) Method for producing lithium hexafluorophosphate
KR102294348B1 (en) Method for producing high purity fluoroethylene carbonate
TWI471261B (en) Phosphorus pentafluoride and hexafluorophosphate
CA2621794C (en) High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
US8097360B2 (en) Method for producing electrolyte solution for lithium ion battery and battery using same
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
CN105236380B (en) The preparation method of high-purity difluorophosphoric acid salt
US8771882B2 (en) Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
KR100620861B1 (en) Method of purifying lithium hexafluorosphate
JP2013166680A (en) Method for producing concentrated lithium hexafluorophosphate solution
US9343774B2 (en) Method for producing a lithium hexafluorophosphate concentrated liquid
CN114206774A (en) Method for producing lithium difluorophosphate, method for producing difluorophosphate, lithium difluorophosphate, method for producing nonaqueous electrolytic solution, and method for producing nonaqueous secondary battery
JP5824013B2 (en) Method for producing phosphorus pentafluoride and hexafluorophosphate
JP5865314B2 (en) Method for producing phosphorus pentafluoride and hexafluorophosphate
KR101395860B1 (en) Manufacturing method for litium heafluoro phosphate
JP5609283B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JPH06298507A (en) Purification of lithium hexafluorophosphate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 7