KR101386930B1 - Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system - Google Patents

Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system Download PDF

Info

Publication number
KR101386930B1
KR101386930B1 KR1020120057735A KR20120057735A KR101386930B1 KR 101386930 B1 KR101386930 B1 KR 101386930B1 KR 1020120057735 A KR1020120057735 A KR 1020120057735A KR 20120057735 A KR20120057735 A KR 20120057735A KR 101386930 B1 KR101386930 B1 KR 101386930B1
Authority
KR
South Korea
Prior art keywords
lettuce
light source
photoperiod
plant production
production system
Prior art date
Application number
KR1020120057735A
Other languages
Korean (ko)
Other versions
KR20130134306A (en
Inventor
황승재
정병룡
박지은
박유경
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020120057735A priority Critical patent/KR101386930B1/en
Publication of KR20130134306A publication Critical patent/KR20130134306A/en
Application granted granted Critical
Publication of KR101386930B1 publication Critical patent/KR101386930B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/15Leaf crops, e.g. lettuce or spinach 
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S111/00Planting
    • Y10S111/906Specialized commodity
    • Y10S111/913Vegetable, i.e. small seed
    • Y10S111/914Lettuce
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S47/00Plant husbandry
    • Y10S47/06Plant growth regulation by control of light thereon

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)

Abstract

본 발명은 밀폐형 식물생산 시스템에서 인공광원과 이의 광주기를 이용한 상추 재배방법에 관한 것이다. 본 발명에 따른 상추 재배방법은 상추 생육을 위한 인공광원의 최적 파장대와 광주기를 제공하여 상추 재배 효율을 우수하게 함으로써, 대규모 밀폐형 식물생산 시스템에 유용하게 사용될 수 있다. The present invention relates to a lettuce cultivation method using an artificial light source and its photoperiod in a hermetic plant production system. Lettuce cultivation method according to the present invention by providing the optimum wavelength band and photoperiod of the artificial light source for lettuce growth to excellent lettuce cultivation efficiency, it can be usefully used in large scale hermetic plant production system.

Description

밀폐형 식물생산 시스템에서 인공광원과 이의 광주기를 이용한 상추 재배방법{Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system} Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system}

본 발명은 밀폐형 식물생산 시스템에서 인공광원과 이의 광주기를 이용한 상추 재배방법에 관한 것이다.
The present invention relates to a lettuce cultivation method using an artificial light source and its photoperiod in a hermetic plant production system.

최근 안전한 농산물의 공급을 요구하는 소비자가 증가하고 있고, 이상기후 현상으로 고품질의 원예작물 안전생산의 중요성이 강조되고 있으며 국제적으로 곡물가격의 급등으로 식량안보가 중요한 문제가 되고 있으므로 식물생산 시스템에 대한 관심이 높아지고 있다. 또한 농산물에 있어서 고도의 품질관리기술을 도입하여 안전한 먹거리를 지속적으로 공급할 수 있고 농업과 상업, 그리고 공업이 융합하여 부가가치가 높은 식자재를 공급할 수 있는 연구가 진행되고 있다.Recently, the number of consumers demanding the supply of safe agricultural products is increasing, the importance of safe production of high-quality horticultural crops is emphasized due to the abnormal climate phenomenon, and the food security is becoming an important problem due to the soaring grain prices. Interest is growing. In addition, research is being conducted to provide safe foods by introducing advanced quality control technology in agricultural products and to supply high value-added food materials by combining agriculture, commerce and industry.

식물생산 시스템이란 농작물을 통제된 일정한 시설 내에서 광, 온도, 습도, 이산화탄소 농도 및 배양액 등의 환경조건을 인공적으로 제어하여 계절이나 장소에 관계없이 자동적으로 연속 생산하는 시스템(Takatsuji, 2008)을 말하며, 시설 내에서 최적 재배환경을 유지하면서 연중 균일한 품질의 식물을 자동 생산할 수 있는, 고도의 환경제어를 이용하여 식물을 주년 생산하는 시스템이라 할 수 있다(Lee et al., 2004; Park and Kim, 1998). 현재 전 세계적으로 식물생산 시스템과 관련한 연구가 다각도로 진행되고 있지만, 이에 대한 명확한 정의가 정립되지 못하고 있는 실정이다. 식물생산 시스템은 광원의 이용형태에 따라 일반적으로 완전제어형 식물생산 시스템과 태양광-병용형 식물생산 시스템, 그리고 태양광-이용형 식물생산 시스템 등으로 구분되고 있는데, 이중 완전제어형 식물생산 시스템은 최적 생육조건에서 광 이용효율을 2배 내지 3배 정도 향상시켜 식물생육을 촉진할 수 있으며, 병해충 및 외기의 영향을 받지 않기 때문에 균일한 생육조건하에서 고품질 묘를 생산할 수 있다는 장점이 있다(Kozai, 2007). 이와 같이 식물재배에 효율적인 식물생산 시스템을 실용화시키기 위해서는 인공광원의 종류와 광조사 시간과 같은 환경요인을 구명하는 것이 시급한 실정이다.The plant production system refers to a system that automatically produces continuous crops regardless of season or place by artificially controlling environmental conditions such as light, temperature, humidity, carbon dioxide concentration, and culture solution in a controlled facility (Takatsuji, 2008). In other words, it is a system that produces plants by using high environmental control, which can produce plants of uniform quality throughout the year while maintaining optimal cultivation environment within the facility (Lee et al., 2004; Park and Kim). , 1998). Currently, researches on plant production systems are being conducted in various parts of the world, but no clear definition has been made. Plant production systems are generally classified into fully controlled plant production systems, solar-combined plant production systems, and solar-utilized plant production systems, depending on the type of light source used. Under these conditions, the light utilization efficiency can be improved by 2 to 3 times, and plant growth can be promoted, and since it is not influenced by pests and outdoor air, it is possible to produce high quality seedlings under uniform growth conditions (Kozai, 2007). . As such, it is urgent to find environmental factors such as the type of artificial light source and the light irradiation time in order to realize a practical plant production system for plant cultivation.

일반적으로 식물생산 시스템에서는 발광에 따른 열의 발생과 에너지 손실이 많은 고압나트륨등 보다 형광등이나 금속할라이드등을 주로 이용하고 있다(Kozai, 2007; Tadahisa et al., 2004). 이러한 문제를 보완할 수 있는 LED(light emitting diode)는 수은성분이 없어 환경친화적이고 경량이며, 전력절감이 탁월하고 수명이 길면서도 구동회로가 간단한 장점이 있는 것과 함께 특정 광질을 쉽게 만들 수 있는 장점이 있다(Hwang et al., 2004). 이처럼 특정한 광질을 이용할 수 있다는 것은 식물생산 시스템에서 채소 재배시 재배목적에 따라 맞춤식 광질로 제어할 수 있는 장점이 있어 상추 등 다양한 작물을 대상으로 다각도로 연구가 수행되고 있다.In general, a plant production system uses fluorescent lamps or metal halides rather than high-pressure sodium lamps that generate heat and energy loss due to light emission (Kozai, 2007; Tadahisa et al., 2004). The LED (light emitting diode) that can compensate for this problem is environmentally friendly and lightweight because it has no mercury component, which has excellent power saving, long life, and simple driving circuit. (Hwang et al., 2004). As such, the use of specific minerals has the advantage of being able to control customized minerals according to the cultivation purpose of vegetable cultivation in the plant production system.

적색광에서의 생육촉진 효과(Nishimura et al., 2006; Nishimura et al., 2009; Nishioka et al. 2008)와 LED를 이용한 광질 변환에 따른 어린잎 상추의 생육에 미치는 영향(Lee et al., 2010) 등이 보고된 바 있다. 하지만 주로 적색광이나 청색광 위주의 연구결과가 많으며, 다양한 파장대역을 만들어 식물광합성과 생육을 촉진시킬 수 있는 백색 LED에 관한 연구결과는 부족한 실정이다.Growth Accelerating Effect in Red Light (Nishimura et al., 2006; Nishimura et al., 2009; Nishioka et al. 2008) and Effects of LED on Light Growth of Young Leaf Lettuce (Lee et al., 2010) ) Has been reported. However, many research results are mainly focused on red light or blue light, and research results on white LEDs that can promote plant photosynthesis and growth by making various wavelength bands are insufficient.

광은 식물의 생장과 발달에 매우 중요한 요인이다. 높은 에너지 광의 사용이 다양한 채소의 생산성을 증가시킨다(Dorais et al.,1990). 상추는 시설 내에서 광에 대한 식물체의 반응을 연구하기에 적합한 모델식물로서 국내외에서 빈번하게 활용되어 왔으며(Dougher and Bugbee, 2001; Kim et al., 2004), 재배가 쉽고 재배기간이 짧아 인공광원을 이용한 식물생산 시스템의 생산방식 연구에 적합한 식물로 알려져 있다.Light is a very important factor in the growth and development of plants. The use of high energy light increases the productivity of various vegetables (Dorais et al., 1990). Lettuce has been frequently used at home and abroad as a model plant suitable for studying the plant's response to light in the facility (Dougher and Bugbee, 2001; Kim et al., 2004). It is known as a suitable plant for the production method of the plant production system using.

따라서 본 발명자들은 밀폐형 식물생산 시스템에서 인공광원의 종류(형광등, 백색 LED)와 광조사 시간에 따른 상추의 생육에 대한 영향을 연구하던 중, 인공광원으로서 형광등을 조사하여 상추 생육을 위한 최적 파장대를 제공하고, 이에 광주기 조절시 식물생산 시스템내에서 상추 생육 속도를 더욱 향상시킴과 동시에 고품질, 다수확 효과가 있음을 확인함으로써 본 발명을 완성하였다.
Therefore, the present inventors, while studying the effect on the growth of lettuce according to the type (fluorescent lamp, white LED) and light irradiation time in the hermetic plant production system, by irradiating a fluorescent lamp as an artificial light source to find the optimum wavelength band for lettuce growth The present invention was completed by confirming that there is a high quality, high yielding effect, and at the same time further improving the growth rate of lettuce in the plant production system when adjusting photoperiod.

본 발명의 목적은 밀폐형 식물생산 시스템에서 인공광원과 광주기를 이용한 상추 재배방법을 제공하는 것이다.
An object of the present invention is to provide a lettuce cultivation method using an artificial light source and photoperiod in a hermetic plant production system.

상기와 같은 목적을 달성하기 위하여, 본 발명은 인공광원과 광주기를 이용한 상추 재배방법 및 이를 이용한 밀폐형 식물생산 시스템을 제공한다.
In order to achieve the above object, the present invention provides a method for growing lettuce using an artificial light source and photoperiod and a hermetic plant production system using the same.

본 발명에 따른 상추 재배방법은 상추 생육을 위한 인공광원의 최적 파장대와 광주기를 제공하여 식물생산 시스템 내에서 상추생육 속도를 향상시킴으로써 상추의 고품질, 다수확을 위해 유용하게 사용될 수 있다.
Lettuce cultivation method according to the present invention can be useful for high-quality, high yield of lettuce by providing the optimum wavelength range and photoperiod of the artificial light source for lettuce growth by improving the rate of lettuce growth in the plant production system.

도 1은 본 발명의 밀폐형 식물 생산 시스템을 나타낸 도이다[A는 제어 시스템, B는 인공광원 LED 램프, C는 재순환 관수 시스템, D는 양액 탱크, E는 펌프, F는 냉·난방 시스템, G는 슬라이닥스].
도 2는 상추 재배환경에 대한 광경을 나타낸 도이다.
도 3은 인공광원들의 스펙트럼 분포를 각 파장대별로 절대 발광을 나타낸 도이다.
도 4은 밀폐형 식물생산 시스템에서 상추의 인공광원과 광주기에 따른 엽록소 형광을 나타낸 도이다.
도 5는 밀폐형 식물생산 시스템에서 상추의 인공광원과 광주기에 따른 총 안토시아닌 함량을 나타낸 도이다.
도 6은 밀폐형 식물생산 시스템에서 인공광원과 광주기에 따른 상추 생장에 대한 영향을 나타낸 도이다.
1 is a view showing the hermetic plant production system of the present invention [A is a control system, B is an artificial light source LED lamp, C is a recirculation irrigation system, D is a nutrient solution tank, E is a pump, F is a cooling and heating system, G Slidax].
Figure 2 is a view showing a view on the lettuce cultivation environment.
3 is a diagram illustrating absolute light emission of spectral distribution of artificial light sources for each wavelength band.
Figure 4 is a diagram showing the chlorophyll fluorescence according to the artificial light source and photoperiod of lettuce in a closed plant production system.
5 is a view showing the total anthocyanin content according to the artificial light source and photoperiod of lettuce in a closed plant production system.
6 is a view showing the effect on lettuce growth according to the artificial light source and photoperiod in the hermetic plant production system.

본 발명은,According to the present invention,

1)상추를 암면 펠릿이 담긴 플러그 트레이에 파종한 후 발아시키는 단계; 1) seeding the lettuce in a plug tray containing rock wool pellets and germinating;

2)상기 발아된 상추를 밀폐형 식물생산 시스템의 형광등 하에서 재배하는 단계; 및2) cultivating the germinated lettuce under a fluorescent lamp of a closed plant production system; And

3)상기 재배된 상추를 정식하여 명기를 12 내지 24h/day의 광주기로 형광등을 상추에 조사하는 단계를 포함하는, 인공광원과 이의 광주기를 이용한 상추 재배방법을 제공한다. 3) to provide the artificial light source and the lettuce cultivation method using a photoperiod comprising the step of irradiating the lettuce with a fluorescent lamp with a lighter of 12 to 24h / day to formulate the cultivated lettuce.

이하 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명에 따른 상추 재배방법은 상추를 파종하여 발아시킨 후, 발아된 상추를 밀폐형 식물생산 시스템의 형광등 하에서 재배한 다음, 정식하여 명기를 12 내지 24h/day의 광주기로 형광등을 조사하는 것을 특징으로 한다.The lettuce cultivation method according to the present invention is characterized in that after germinating the seeds by germination, cultivated germinated lettuce under a fluorescent lamp of a closed plant production system, and then formally irradiated a fluorescent lamp with a photoperiod of 12 to 24 h / day do.

상기 플러그 트레이의 크기는 60㎝ × 41㎝ × 5㎝인 것이 바람직하다.The size of the plug tray is preferably 60 cm x 41 cm x 5 cm.

상기 발아는 20℃의 항온발아실에서 3일 이상 발아시키는 것이 바람직하다. The germination is preferably germinated for 3 days or more in a constant temperature germination chamber of 20 ℃.

상기 조사한 형광등은 300 내지 800㎚에서 피크 파장을 가지는 것이 바람직하다. It is preferable that the irradiated fluorescent lamp has a peak wavelength at 300 to 800 nm.

상기 형광등의 광량은 0.50 내지 9.00㎼/㎠/㎚인 것이 바람직하다.It is preferable that the light quantity of the said fluorescent lamp is 0.50-9.00 dl / cm <2> / nm.

상기 형광등의 광도는 100μ㏖·m-2·s- 1 인 것이 바람직하다. Light intensity of said fluorescent lamp is 100μ㏖ · m -2 · s - is preferably 1.

상기 형광등은 12, 18 및 24h/day로 이루어진 군에서 선택된 어느 하나의 광주기로 조사하는 것이 바람직하다. The fluorescent lamp is preferably irradiated with any photoperiod selected from the group consisting of 12, 18 and 24h / day.

본 발명에 따른 상추 재배방법을 이용하면, 식물의 생장에 적합한 광파장대역을 포함하고, 연속적인 광조사시에도 식물에 스트레스를 적게 유발하는 형광등을 적절한 광주기를 이용하여 조사함으로써 상추의 광합성 효율을 높이고, 엽면적, 엽수, 엽록소 함량을 증대시킬 수 있다.The lettuce cultivation method according to the present invention includes an optical wavelength band suitable for plant growth, and enhances photosynthetic efficiency of lettuce by irradiating a fluorescent lamp using an appropriate photoperiod, which causes less stress to plants even during continuous light irradiation. It can increase leaf area, leaf number, and chlorophyll content.

또한 본 발명은 (A)제어 시스템, (B)인공광원 형광등, (C)재순환 관수 시스템, (D)양액 탱크, (E)펌프, (F)냉·난방 시스템, (G)전압 조정기(slidacs)로 구성되며, The present invention also relates to (A) control system, (B) artificial light source fluorescent lamp, (C) recirculating irrigation system, (D) nutrient solution tank, (E) pump, (F) cooling and heating system, (G) voltage regulator (slidacs) )

상기 (A)제어 시스템은 광주기를 12 내지 24h/day로 제어하는 시스템인 것을 특징으로 하고,The control system (A) is characterized in that the system for controlling the photoperiod 12 to 24h / day,

상기 (B)인공광원 형광등은 300 내지 800㎚에서 피크 파장을 가지는 것을 특징으로 하는, 밀폐형 식물생산 시스템을 제공한다. The artificial light source fluorescent lamp (B) provides a closed plant production system, characterized in that it has a peak wavelength at 300 to 800nm.

밀폐형 식물 생산 시스템의 구조를 도 1에 나타내었다. The structure of the hermetic plant production system is shown in FIG.

상기 (A)제어 시스템은 상추의 생장 형태에 따라 온도, 광주기, 양액 및 광원의 조건을 지정하여 자동으로 제어할 수 있도록 하는 것을 포함하며, 광주기는 명기와 암기를 각각 12/12, 18/6 및 24/0(명기/암기)으로 조절한 것을 포함한다.The control system (A) includes automatic control by designating conditions of temperature, photoperiod, nutrient solution and light source according to the growth pattern of lettuce, and photoperiod 12/12, 18 / 6 and 24/0 (bright / memory).

상기 (B)인공광원 형광등은 직관형광등, 환형형광등, PL형광등, 전구식형광등을 포함하나, 직관형광등이 바람직하다. The artificial light source fluorescent lamp (B) includes a linear fluorescent lamp, an annular fluorescent lamp, a PL fluorescent lamp, a bulb fluorescent lamp, but a linear fluorescent lamp is preferable.

상기 (C)재순환 관수 시스템은 양액의 농도, 관수 시간 및 관수 빈도 등을 조절하는 것이 바람직하다. The (C) recycle watering system is preferably adjusted to the concentration of nutrient solution, watering time and watering frequency.

상기 (D)양액 탱크는 농도가 일정한 양액이 저장되어 제어시스템이나 재순환 관수 시스템으로부터 자동으로 제어되는 것이 바람직하다.(D) The nutrient solution tank is preferably stored in a constant concentration of nutrient solution is automatically controlled from a control system or a recirculation irrigation system.

상기 (E)펌프는 밀폐형 식물 생산 시스템 내부의 온도 관리를 위한 지열히트펌프의 방식을 위해 도입된 것이 바람직하다. The (E) pump is preferably introduced for the geothermal heat pump system for temperature management inside the hermetic plant production system.

상기 (F)냉·난방 시스템은 히트펌프를 이용하여 자동적으로 상추재배에 적당한 온도를 유지하는 것이 바람직하다. It is preferable that the said (F) cooling / heating system maintains the temperature suitable for lettuce cultivation automatically using a heat pump.

상기 (G)전압조정기는 입력된 교류전압을 원하는 크기로 변화시켜 새로운 교류 전원을 만드는 것으로, 제어 시스템에 의해 제어되며, 용량이 1㎾, 3㎾, 5㎾인 것을 포함한다. The (G) voltage regulator changes the input AC voltage to a desired size to create a new AC power source, and is controlled by a control system, and includes a capacity of 1 kW, 3 kW and 5 kW.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

[[ 실시예Example 1] : 상추의 재배환경 설정 1]: cultivation environment of lettuce

실험재료는 ‘선홍적축면’ 상추(Lactuca sativa L. ‘Seonhong Jeokchukmyeon’)를 사용하였으며, 2011년 1월 14일에 암면 펠릿(UR암면)이 담긴 240구 육묘용 플러그트레이(60cm × 41cm × 5cm)에 파종하였다. 20℃의 항온발아실(DS-10L-2, Dasol Scientific, Korea)에서 3일간 발아시킨 후 생장상 형태의 밀폐형 식물생산 시스템(C1200H3, FC Poibe Co. Ltd., Korea)의 형광등(Philips Co. Ltd., the Netherlands)하에서 정식 전까지 재배하였다. The test material was 'actual red axis' lettuce ( Lactuca) sativa L. 'Seonhong Jeokchukmyeon') was used and sown on January 14, 2011 in a 240-hole seedling plug tray (60 cm × 41 cm × 5 cm) containing rock wool pellets (UR rock wool). After 3 days of germination in a constant temperature germination chamber (DS-10L-2, Dasol Scientific, Korea) at 20 ° C, the fluorescent lamps of Philips Co. Ltd. (C1200H3, FC Poibe Co. Ltd., Korea) Ltd., the Netherlands).

파종 후 27일째 경상대학교 시설원예학실험실에 설치된 밀폐형 식물생산 시스템에서 상추를 20cm × 20cm의 재식밀도로 3처리 광원과, 3주기의 광조사 시간을 설정하고, 18개체씩 완전임의배치하여 총 162개체를 정식하였다. 실험에 이용한 상추는 평균 초장 10.6cm, 평균 생체중 6.5g인 균일한 묘를 선발하여 사용하였으며, 2011년 2월 9일 정식하였다. 인공광원은 백색 LED(WL #1, Hepas Co. Ltd., Korea), 백색 LED(WL #2, FC Poibe Co. Ltd., Korea), 그리고 형광등(FL, Philips Co. Ltd., Netherlands)을 사용하여, 명기/암기를 각각 12/12, 18/6, 24/0으로 설정하여 광조사 시간을 조절하였다. 인공광원의 길이는 1,200mm로 동일한 크기를 사용하였다.On the 27th day after planting, in the closed plant production system installed in Gyeongsang National University horticulture laboratory, lettuce was planted at 20 cm × 20 cm in 3 treatment light sources and 3 cycles of light irradiation time. Was formulated. The lettuce used for the experiment was selected as a uniform seedling with an average height of 10.6cm and an average live weight of 6.5g, and was set on February 9, 2011. Artificial light sources include white LEDs (WL # 1, Hepas Co. Ltd., Korea), white LEDs (WL # 2, FC Poibe Co. Ltd., Korea), and fluorescent lights (FL, Philips Co. Ltd., Netherlands). Using this, light / memory was set to 12/12, 18/6, and 24/0, respectively, to adjust the light irradiation time. The length of the artificial light source was 1,200mm and the same size was used.

밀폐형 식물생산 시스템의 재배환경은 온도 21±2°C, 상대습도 60±10%, 광도 100μmol·m-2·s-1로 조절하였으며, 정식 후 총 23일간 재배하였다. 상추는 담액식 재순환 수경재배방식으로 재배하였으며, Sonneveld 상추 양액처방을 조제하여 관주에 사용하였다. 제조된 양액의 성분 및 농도를 표 1에 나타내었다. The cultivation environment of the hermetic plant production system was controlled at a temperature of 21 ± 2 ° C, a relative humidity of 60 ± 10%, and a luminous intensity of 100μmol · m -2 · s -1 , and was cultivated for a total of 23 days after planting. Lettuce was cultivated by distillate recycling hydroponic cultivation method, and prepared Sonneveld lettuce nutrient solution was used for irrigation. The components and concentrations of the prepared nutrient solution are shown in Table 1.

성분ingredient 농도(mg·L-1)Concentration (mgL- 1 ) 성분ingredient 농도(mg·L-1)Concentration (mgL- 1 ) Ca(NO3)2 ·4H2OCa (NO 3 ) 2 .4H 2 O 1,014.81,014.8 K2SO4 K 2 SO 4 43.543.5 KNO3 KNO 3 919.1  919.1 H3BO3 H 3 BO 3 1.89  1.89 Fe-EDTAFe-EDTA 15.3  15.3 CuSO4·5H2OCuSO 4 · 5H 2 O 0.20  0.20 KH2PO4 KH 2 PO 4 272.0 272.0 Na2MoO4·2H2ONa 2 MoO 4 .2H 2 O 0.13  0.13 MgSO4·4H2OMgSO 4 4H 2 O 196.8 196.8 ZnSO4·7H2OZnSO 4 .7H 2 O 1.14  1.14 NH4NO3 NH 4 NO 3 104.0 104.0

상기 조제된 양액은 pH는 6.5, EC는 1.5dS·m-1로 조절하여 공급하였다.The prepared nutrient solution was supplied by adjusting the pH to 6.5 and EC to 1.5 dS · m −1 .

상기 실험에 대한 광경을 도 2에 나타내었다.
The scene for this experiment is shown in FIG. 2.

[[ 실시예Example 2] :  2] : 인공광원에In artificial light source 따른  Following 광파장Light wavelength

인공광원에 따른 광파장을 분석하기 위해 백색 LED(WL #1), 백색 LED(WL #2) 및 형광등(FL) 광원을 조사하고, 각 광원과 9㎝ 높이로 떨어진 곳에 분광복사계(RPS-900R, International Light Co. Ltd., USA)를 설치하여 광파장을 측정하였다. In order to analyze the light wavelength according to the artificial light source, the white LED (WL # 1), white LED (WL # 2) and fluorescent light (FL) light source are irradiated, and the spectroradiometer (RPS-900R, International Light Co. Ltd., USA) was installed to measure the light wavelength.

상기 측정한 값을 도 3에 나타내었다.The measured value is shown in FIG. 3.

도 3에 나타낸 바와 같이, 형광등이 백색 LED 광원에 비해 300 내지 800㎚ 사이의 식물의 생장을 위한 다양한 광파장대를 가진 광원임을 확인하였다.
As shown in FIG. 3, it was confirmed that the fluorescent lamp is a light source having various light wavelength bands for plant growth between 300 nm and 800 nm compared to the white LED light source.

[[ 실시예Example 3] :  3]: 인공광원Artificial light source 종류 및 광주기에 따른 엽록소 형광 측정 Chlorophyll Fluorescence Measurement by Type and Photoperiod

인공광원의 종류 및 광주기에 따른 엽록소 형광을 조사하기 위해 정식 후 27일이 지난 후 생장점에서 2번째 잎을 기준으로 측정하였다. 상추 한 개체당 3개 이상의 잎을 대상으로 동일한 위치에서 휴대용 엽록소형광분석기(PAM-2100, Heinz Walz GmbH, Germany)를 이용하여 상추에 존재하는 엽록소의 형광을 측정하였다.To investigate the chlorophyll fluorescence according to the type of artificial light source and photoperiod, it was measured based on the second leaf at 27 days after planting. The fluorescence of chlorophyll in lettuce was measured using a portable chlorophyll fluorescence spectrometer (PAM-2100, Heinz Walz GmbH, Germany) at the same location in three or more leaves per lettuce.

상기 측정한 값을 도 4에 나타내었다. The measured value is shown in FIG. 4.

도 4에서 나타낸 바와 같이, 엽록소 형광값(Fv/Fm)은 광조사 시간이 길어짐에 따라 감소하였고, 형광등 광원에서 12/12(명기/암기) 광조사 시간으로 재배한 처리군에서 0.77로 가장 높았으며, 백색 LED(WL #1) 광원의 24/0(명기/암기) 광조사 시간 처리군에서 0.37로 가장 낮았다. 엽록소 형광값이 너무 낮을 경우 식물이 스트레스에 노출되었거나, 노화단계에 접어든 것으로 평가할 수 있으므로, 백색 LED(WL #1 및 WL #2)를 이용한 연속적인 광조사는 형광등을 이용한 광조사에 비하여 식물에 높은 스트레스를 유발 및 노화를 촉진할 수 있음을 확인하였다. 이를 통해 광조사 시간을 길게 조절하는 경우 형광등이 상추의 재배에 가장 적절한 광원임을 확인하였다.
As shown in FIG. 4, the chlorophyll fluorescence value (Fv / Fm) decreased with increasing light irradiation time, and was highest as 0.77 in the treatment group grown with 12/12 (light / dark) light irradiation time under a fluorescent light source. In the 24/0 (light / memory) irradiation time treatment group of the white LED (WL # 1) light source, the lowest was 0.37. If the chlorophyll fluorescence value is too low, it can be estimated that the plant is exposed to stress or has entered the aging stage. Therefore, continuous light irradiation using white LEDs (WL # 1 and WL # 2) is more effective than plants using fluorescent lamps. It was confirmed that it can induce high stress and promote aging. When the light irradiation time is adjusted through this, it was confirmed that the fluorescent light is the most suitable light source for the cultivation of lettuce.

[[ 실시예Example 4] :  4] : 인공광원Artificial light source 종류 및 광주기에 따른 상추 내의 총 안토시아닌 함량 조사 Investigation of Total Anthocyanin Content in Lettuce by Different Kinds and Photoperiods

인공광원의 종류 및 광주기에 따른 상추 내의 총 안토시아닌 함량을 조사하기 위해, 상추 잎의 생체중 2g을 채취하여 95% 에탄올과 1.5N 염산을 85:15(v/v)로 혼합한 추출액을 막자사발에 2mL첨가하여 파쇄한 용액을 마이크로 튜브에 1mL취하였다. 이후 4℃ 암조건 하에서 24시간 보관 후, 13,000rpm에서 20분간 원심 분리하여 얻은 상등액을 1:5로 희석하여 535㎚에서 분광광도계(Libra S22, Biochrom, United Kingdom)를 이용하여 흡광도를 측정하였다. In order to investigate the total anthocyanin content in lettuce according to the type of artificial light source and photoperiod, 2g of lettuce leaves were taken in vivo, and the extract was mixed with 95% ethanol and 1.5N hydrochloric acid at 85:15 (v / v). 1 mL of 2 mL addition and crushed solution was taken in a microtube. After storage for 24 hours at 4 ℃ dark conditions, the supernatant obtained by centrifugation at 13,000rpm for 20 minutes was diluted 1: 5 and the absorbance was measured using a spectrophotometer (Libra S22, Biochrom, United Kingdom) at 535nm.

상기 측정 결과를 도 5에 나타내었다. The measurement results are shown in Fig.

도 5에 나타낸 바와 같이, 총 안토시아닌 함량은 백색 LED 광원 처리에 비해 형광등 24/0(명기/암기) 처리구에서 약 3배 정도 높아, 적색발현에 따른 총 안토시아닌 함량이 형광등 처리에서 유의적으로 높은 결과를 보여 정의 상관관계를 나타냄을 확인하였다. 또한 백색 LED(WL #2)와 형광등(FL) 광원은 광주기를 24/0(명기/암기)시간으로 조절하여 조사한 처리구의 상추가 총 안토시아닌 함량이 가장 높았고, 백색 LED(WL #1) 광원은 광주기를 18/6(명기/암기)으로 조절하여 조사한 처리구에서 가장 높았다. As shown in FIG. 5, the total anthocyanin content is about 3 times higher in the fluorescent lamp 24/0 (light / memory) treatment than the white LED light source treatment, and the total anthocyanin content according to red expression is significantly higher in the fluorescent lamp treatment. Shows positive correlation. In addition, the white LED (WL # 2) and fluorescent (FL) light sources had the highest total anthocyanin content in the lettuce treated by adjusting photoperiod at 24/0 (light / memory) time, and the white LED (WL # 1) light source It was the highest in the treated group by adjusting photoperiod to 18/6 (light / memory).

한편, Nishimura et al.(2006)은 적색광이 포함된 광원에서 자소(Perilla frutescens Britt.)의 생육이 촉진되며 안토시아닌 함량은 적색광과 청색광의 혼합광원에서 증대된다고 보고한 바 있다. 특히 안토시아닌 색소의 발현과 관련해서 청색광과 UV-A가 크게 작용하며 이는 크립토크롬(cryptochrome)이 이들 광파장의 광수용체로서 역할을 하기 때문(Giliberto et al., 2005; Ninu et al., 1999)으로 알려져 있다. 또한 Lee et al.(2010)은 상추의 생산성을 유지하면서 고색도의 산물을 생산하기 위해서는 적색광과 청색광의 적절한 비율의 조절이 필요하다고 보고하였다. On the other hand, Nishimura et al. (2006) The growth is promoted and anthocyanin content of shiso (Perilla frutescens Britt.) From a light source with a red light has a reported that the increase in the mixed light of the red light and blue light. In particular, blue light and UV-A play a large role in the expression of anthocyanin pigments because cryptochromes act as photoreceptors of these light wavelengths (Giliberto et al., 2005; Ninu et al., 1999). Known. Lee et al. (2010) also reported that it is necessary to adjust the ratio of red light and blue light to produce high-color products while maintaining the productivity of lettuce.

따라서 형광등 처리에 비해 백색 LED 광원을 처리한 상추에서 안토시아닌 함량이 적은 결과로부터, 형광등 파장에서는 UV-A(300~400㎚) 파장대역이 조사되었으나, LED 광원에서는 이러한 안토시아닌 발현과 관련이 있는 파장이 전혀 포함되어 있지 않은 300~800㎚의 대역에서만 파장분포를 나타내는 광원의 조사가 원인임을 알 수 있다.
Therefore, UV-A (300-400nm) wavelength range was investigated at the wavelength of fluorescent light from the results of the anthocyanin content in lettuce treated with white LED light source as compared to the fluorescent light treatment, but the wavelength related to the expression of anthocyanin was found in the LED light source. It can be seen that the cause is the irradiation of the light source showing the wavelength distribution only in the band of 300 to 800 nm which is not included at all.

[[ 실시예Example 5] :  5]: 인공광원Artificial light source 종류 및 광주기에 따른 상추의 생육과 품질 측정 Growth and Quality Measurement of Lettuce by Kind and Photoperiod

인공광원의 종류 및 광주기에 따른 상추의 생육과 품질을 구체적으로 조사하기 위해 초장, 엽장, 엽폭, 엽수, 엽면적(LI-3100, LI-COR Inc., USA), 엽록소 함량(SPAD 502, Minolta, Japan), 최대근장, 지상부와 지하부의 생체중과 건물중, 총 안토시아닌 함량, 엽록소 형광(Fv/Fm), 광합성 능력, 기공전도도, 증산속도 및 CO2 흡수량을 측정하였다. In order to investigate the growth and quality of lettuce according to the type of artificial light source and photoperiod, the height, leaf length, leaf width, number of leaves, leaf area (LI-3100, LI-COR Inc., USA) and chlorophyll content (SPAD 502, Minolta, Japan), maximum root length, ground weight and underground weight, dry weight, total anthocyanin content, chlorophyll fluorescence (Fv / Fm), photosynthetic capacity, porosity, transpiration rate and CO 2 The amount of absorption was measured.

상기 측정값을 표 2 내지 표 4에 나타내었다.
The measured values are shown in Tables 2 to 4.

광원Light source 광주기
(명기/암기)
Guangzhou
(Specification / memorization)
식물크기
(cm)
Plant size
(cm)
최대근장
(cm)
Max root
(cm)
생체중(g)Live weight (g) 건물중(g)(G) in building
지상부Ground 지하부Underground 지상부Ground 지하부Underground WL #1WL # 1 12/1212/12 14.9fy 14.9f y 32.0b32.0b 22.6d22.6d 2.0c2.0c 0.8d0.8d 0.07d0.07d 18/618/6 15.8d-f15.8d-f 32.5ab 32.5ab 31.1c31.1c 3.4b3.4b 1.3c1.3c 0.11c0.11c 24/024/0 17.9bc17.9bc 26.3c26.3c 40.1b40.1b 3.5b3.5b 1.8b1.8b 0.19a0.19a WL #2WL # 2 12/1212/12 15.2ef15.2ef 27.7c27.7c 21.7de 21.7de 1.8c1.8c 0.9d0.9d 0.07d0.07d 18/618/6 16.2de16.2de 31.7b31.7b 38.9b38.9b 4.3a4.3a 1.7b1.7b 0.13bc 0.13bc 24/024/0 18.1b18.1b 31.8b31.8b 47.6a47.6a 4.6a4.6a 2.2a2.2a 0.19a0.19a FLFL 12/1212/12 15.2ef15.2ef 35.0ab 35.0ab 17.4e17.4e 1.5c1.5c 0.8d0.8d 0.05d0.05d 18/618/6 18.1b18.1b 36.0a36.0a 30.9c30.9c 3.0b3.0b 1.5c1.5c 0.12c0.12c 24/024/0 20.8a20.8a 33.8ab 33.8ab 52.3a52.3a 4.6a4.6a 2.2a2.2a 0.16b0.16b

광원Light source 광주기
(명기/암기)
Guangzhou
(Specification / memorization)
엽장
(㎝)
Leaf
(Cm)
엽폭
(㎝)
Leaf width
(Cm)
엽면적
(㎝/plant)
Leaf area
(Cm / plant)
엽수ground game 엽록소 함량
(SPAD)
Chlorophyll content
(SPAD)

WL #1

WL # 1
12/1212/12 13.7cdy 13.7cd y 12.9b12.9b 1,505.1bc 1,505.1bc 6.2b6.2b 14.1b-d14.1b-d
18/618/6 14.7c14.7c 14.4b14.4b 1,671.7b1,671.7b 6.1bc6.1bc 12.2d12.2d 24/024/0 15.8b15.8b 16.0ab16.0ab 1,318.7de1,318.7de 6.1bc 6.1bc 13.5cd 13.5cd
WL #2

WL # 2
12/1212/12 12.9d12.9d 12.8b12.8b 1,167.8e1,167.8e 5.3c5.3c 13.2cd 13.2cd
18/618/6 13.8cd 13.8cd 23.7a23.7a 1,257.9e1,257.9e 6.3b6.3b 16.0ab 16.0ab 24/024/0 14.7c14.7c 16.9ab16.9ab 1,599.6bc1,599.6bc 6.3b6.3b 14.1b-d 14.1b-d
FL

FL
12/1212/12 13.8c13.8c 11.4ab 11.4ab 1,264.3e1,264.3e 7.9a7.9a 14.9a-c14.9a-c
18/618/6 14.6c14.6c 13.2b13.2b 1,440.4cd1,440.4cd 7.9a7.9a 16.5a16.5a 24/024/0 18.3a18.3a 14.2b14.2b 1,990.6a1,990.6a 7.9a7.9a 15.6a-c 15.6a-c

광원Light source 광주기
(명기/암기)
Guangzhou
(Specification / memorization)
광합성
(μmolCO2·m-2·s-1)
photosynthesis
(μmolCO 2 · m -2 · s -1)
기공전도도
(molH2O·m-2·s -1)
Pore Conductivity
(molH 2 O · m -2 · s -1)
증산속도
(molH2O·m-2·s -1)
Rate of increase
(molH 2 O · m -2 · s -1)
CO2
흡수량
(μmol·mol-1)
CO 2
Absorption amount
(μmolmol- 1 )
WL #1WL # 1 12/1212/12 6.38aby 6.38ab y 0.0016ab 0.0016ab 0.036ab 0.036ab 7.67ab 7.67ab 18/618/6 7.49a7.49a 0.0036a0.0036a 0.068ab 0.068ab 9.03a9.03a 24/024/0 1.61d1.61d 0.0005b0.0005b 0.010b0.010b 1.94d1.94d WL #2WL # 2 12/1212/12 5.89ab 5.89ab 0.0027ab 0.0027ab 0.067ab  0.067ab 7.01ab 7.01ab 18/618/6 3.17cd 3.17cd 0.0024ab 0.0024ab 0.060ab 0.060ab 3.82cd 3.82cd 24/024/0 2.56d2.56d 0.0020ab 0.0020ab 0.054ab 0.054ab 3.09d3.09d FLFL 12/1212/12 4.56bc 4.56bc 0.0024ab 0.0024ab 0.061ab 0.061ab 5.41bc 5.41bc 18/618/6 4.51bc 4.51bc 0.0019ab 0.0019ab 0.058ab 0.058ab 5.36bc 5.36bc 24/024/0 6.25ab 6.25ab 0.0030ab 0.0030ab 0.092a0.092a 7.59ab 7.59ab

표 2에서 나타낸 바와 같이, 지상부와 지하부의 생체중과 지상부의 건물중은 형광등(FL) 광원의 광주기가 24/0(명기/암기)인 처리구에서 가장 높았으므로, 형광등이 백색 LED광원에 비해 광파장대역이 다양하여 식물생장에 긍정적인 효과를 나타내는 광원임을 알 수 있다. As shown in Table 2, the live weight of the above-ground and underground areas and the buildings of the above-ground area were the highest in the treatment zone where the photoperiod of the fluorescent (FL) light source was 24/0 (bright / dark), so that the fluorescent light was wider than the white LED light source. This variety can be seen that the light source showing a positive effect on plant growth.

표 3에서 나타낸 바와 같이, 엽장은 형광등 광원의 광주기가 24/0(명기/암기)인 처리구에서 가장 높았고, 모든 인공광원은 광조사 시간이 길어짐에 따라 엽장이 증가하였으며 특히 형광등 처리구에서 엽면적, 엽수, 엽록소 함량이 가장 높았으므로, 형광등이 상추 생장에 효율적인 인공광원임을 알 수 있다.As shown in Table 3, the leaves were the highest in the treatment group with photoperiod 24/0 (light / memory) of the fluorescent light source, and all the artificial light sources increased with increasing light irradiation time, especially the leaf area and number of leaves. , The highest chlorophyll content, it can be seen that the fluorescent light source is an efficient artificial light source for lettuce growth.

표 4에서 나타낸 바와 같이, 각 인공광원의 종류와 광조사 시간에 따른 처리별 기공전도도, 증산율, CO2 흡수량에서는 뚜렷한 경향이 없었다.As shown in Table 4, the porosity, transpiration rate and CO 2 of each artificial light source according to the treatment type and light irradiation time There was no obvious tendency in the amount of absorption.

또한, 상기 실시예 2 내지 4를 통해, 상추의 재배에 적합한 광원이 형광등임을 확인하였으므로, 형광등의 광주기를 각각 명기/암기 12/12, 18/6 및 24/0으로 조절하여 조사한 후 광합성 효율이 가장 높은 광주기 조건을 확인하였다.In addition, through Examples 2 to 4, since it was confirmed that the light source suitable for the cultivation of lettuce is a fluorescent lamp, the photosynthetic efficiency after irradiation by adjusting the photoperiod of the fluorescent lamp to bright / memory 12/12, 18/6 and 24/0, respectively The highest photoperiod condition was identified.

Claims (6)

300 내지 800㎚에서 피크 파장을 가지는 형광등을 광량은 0.50 내지 9.00㎼/㎠/㎚, 광도는 95 내지 105μ㏖·m-2·s-1, 광주기의 명기를 20 내지 24 h/day로 상추에 조사하고, 온도 21 내지 23℃의 조건에서 상추를 재배하는 단계를 포함하는, 상추 재배방법.Fluorescent lamps having peak wavelengths at 300 to 800 nm have a light quantity of 0.50 to 9.00 μs / cm 2 / nm, a light intensity of 95 to 105 μmol · m −2 · s −1 , and a photoperiod of 20 to 24 h / day Irradiating to, and the step of cultivating lettuce under the conditions of temperature 21 to 23 ℃, lettuce cultivation method. 제 1항에 있어서,
상기 상추 재배방법은 상추를 암면 펠릿이 담긴 플러그 트레이에 파종한 후발아시키는 단계를 더 포함하는 것인, 상추 재배방법.
The method of claim 1,
The lettuce cultivation method further comprises the step of seeding the lettuce seedlings in a plug tray containing rock wool pellets, lettuce cultivation method.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020120057735A 2012-05-30 2012-05-30 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system KR101386930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120057735A KR101386930B1 (en) 2012-05-30 2012-05-30 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120057735A KR101386930B1 (en) 2012-05-30 2012-05-30 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system

Publications (2)

Publication Number Publication Date
KR20130134306A KR20130134306A (en) 2013-12-10
KR101386930B1 true KR101386930B1 (en) 2014-04-21

Family

ID=49981937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120057735A KR101386930B1 (en) 2012-05-30 2012-05-30 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system

Country Status (1)

Country Link
KR (1) KR101386930B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194453B1 (en) * 2018-12-06 2020-12-23 경북대학교 산학협력단 Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes
KR102373079B1 (en) * 2019-12-20 2022-03-11 주식회사 포스코 Method for cultivating leaf vegetables
CN111406628A (en) * 2020-04-30 2020-07-14 京东方后稷科技(北京)有限公司 Artificial illumination planting method for butter lettuce

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360337B1 (en) * 2000-04-27 2002-11-13 이인화 Nutrient solution disinfection and recycling system by utilizing ultraviolet light and photocatalyst effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360337B1 (en) * 2000-04-27 2002-11-13 이인화 Nutrient solution disinfection and recycling system by utilizing ultraviolet light and photocatalyst effect

Also Published As

Publication number Publication date
KR20130134306A (en) 2013-12-10

Similar Documents

Publication Publication Date Title
EP2761994B1 (en) Plant cultivation method and plant cultivation apparatus
KR20170139551A (en) Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
CN103222420B (en) Small vegetable indoor cultivation technique based on LED energy saving light source
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
Gómez et al. Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy
US9363951B2 (en) Method for cultivating plant
CN106718183B (en) Water culture seedling culture light environment and seedling culture method for lettuce vegetables
JP2007222039A (en) Plant raising method and raising house
CN114521410B (en) Laser seedling raising method and rice cultivation method based on same
US20140250781A1 (en) Novel light sources and methods for illuminating plants to achieve effective plant growth
KR101386930B1 (en) Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system
KR101386928B1 (en) Method for growing lettuce using artificial light source and CO₂in closed-type plant production system
CN111448905A (en) Light-controlled tomato seedling method and illumination equipment
RU2737174C1 (en) Method for increasing of germinating ability of winter wheat seeds
US9445549B2 (en) Method for cultivating plant
KR20160092135A (en) Lighting source for plant production and cultivation method using this
CN103960015B (en) A kind of method of beta vulgaris indoor production
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
Treder et al. The effects of LEDs on growth and morphogenesis of vegetable seedlings cultivated in growth chambers
US9392751B2 (en) Method for cultivating plant
US8826589B2 (en) Light sources and methods for illuminating plants to achieve effective plant growth
Lee et al. The effect of LED light source on the growth and yield of greenhouse grown tomato
Saengtharatip et al. Productivity and cost performance of lettuce production in a plant factory using various light-emitting-diodes of different spectra.
US20130329417A1 (en) Novel light sources and methods for illuminating plants to achieve effective plant growth
JP7236186B1 (en) Plant cultivation method and plant cultivation device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 6