KR101378201B1 - Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization - Google Patents

Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization Download PDF

Info

Publication number
KR101378201B1
KR101378201B1 KR1020120157463A KR20120157463A KR101378201B1 KR 101378201 B1 KR101378201 B1 KR 101378201B1 KR 1020120157463 A KR1020120157463 A KR 1020120157463A KR 20120157463 A KR20120157463 A KR 20120157463A KR 101378201 B1 KR101378201 B1 KR 101378201B1
Authority
KR
South Korea
Prior art keywords
titanium oxide
anodization
dsa electrode
dsa
oxide nanostructure
Prior art date
Application number
KR1020120157463A
Other languages
Korean (ko)
Inventor
신소운
최진섭
차기훈
최용욱
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120157463A priority Critical patent/KR101378201B1/en
Application granted granted Critical
Publication of KR101378201B1 publication Critical patent/KR101378201B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a production method of a titanium oxide nanostructure for a DSA electrode by a single process which can perform a catalyst coating process during an anodization process at the same time, and more specifically to a production method of a titanium oxide nanostructure for a DSA electrode by a single process which takes a major step forward from a conventional production method of a titanium oxide nanostructure for a DSA electrode performing a catalyst coating process after an anodization process, by coating a catalyst while proceeding anodization at the same time. The production method enables a user to simply produce the titanium oxide nanostructure for the DSA electrode in a short time, improves a water decomposition efficiency, and enables the user to efficiently produce hydrogen, which is a clean energy source.

Description

단일공정을 통한 DSA 전극용 티타늄 옥사이드 나노구조 제조방법{Preparation method of titanium oxide nanostructure for DSA electrode by One-step anodization}Preparation method of titanium oxide nanostructure for DSA electrode by One-step anodization}

본 발명은 양극산화 공정과 촉매코팅 공정을 각각 별도로 수행하는 기존의 2단계 티타늄 옥사이드 나노구조 제조방법을 개선하여 양극산화 시 촉매코팅도 동시에 수행할 수 있는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법에 관한 것이다.The present invention improves the conventional two-step titanium oxide nanostructure manufacturing method to perform the anodization process and the catalyst coating process separately, to prepare a titanium oxide nanostructure for a single process DSA electrode that can also be carried out at the same time catalyst coating during anodization It is about a method.

현재 알려진 청정에너지원 중에 수소는 저장과 이동이 용이한 화학연료라는 점에서 화석연료를 대체할 수 있는 가장 유망한 에너지원이다. 수소를 생산하기 위한 물분해용 전극으로 티타늄 금속을 양극산화하여 산화티타늄(TiO2) 모제를 만들고 물분해 활성을 높이기 위해 루테늄, 이리듐이나 탄탈륨과 같은 촉매를 코팅시켜 DSA(Dimensonally Stable Anode) 전극을 제조하는 방식이 잘 알려져 있다.Among the currently known clean energy sources, hydrogen is the most promising energy source to replace fossil fuels in that it is easy to store and transport. As a water decomposition electrode for producing hydrogen, titanium oxide (TiO 2 ) is produced by anodizing titanium metal and a catalyst such as ruthenium, iridium or tantalum is coated to increase water decomposition activity, thereby producing DSA (Dimensonally Stable Anode) electrode. The way to do it is well known.

한편, 한국등록특허 제1067867호에서 흑연소재 활물질과 도전재 및 결착제를 혼합하여 혼합물을 만든 후 알콜류와 함께 슬러리로 제조하는 제 1단계; 상기 제 1단계에서 혼합된 슬러리를 알콜류를 증발시키고 페이스트로 제조하는 제 2단계; 상기 제 2단계에서 제조된 페이스트된 혼합물을 얇게 펴서 전극 시트로 제조하는 제 3단계; 및 DSA 전극과 함께 상기 제 3단계에서 제조된 전극 시트를 압연하여 일체화 하는 방법으로 전극을 제조하는 제 4단계를 포함하는 레독스 흐름 전지용 흑연/DSA 일체형 전극 제조 방법을 개시하고 있다.On the other hand, Korean Patent No. 1067867, the first step of preparing a mixture with an alcohol and after mixing the graphite material active material, conductive material and binder to make a mixture; A second step of preparing the slurry mixed in the first step by evaporating an alcohol and forming a paste; A third step of thinly spreading the paste mixture prepared in the second step to form an electrode sheet; And a fourth step of manufacturing the electrode by rolling and integrating the electrode sheet prepared in the third step together with the DSA electrode.

그러나, 아직까지 양극산화 공정 시 촉매코팅을 동시에 수행할 수 있는 티타늄 옥사이드 나노구조의 제조방법은 전혀 알려진 바 없다.However, there is no known method for producing titanium oxide nanostructures that can simultaneously perform catalytic coating during anodization.

이에, 본 발명은 양극산화를 진행함과 동시에 촉매를 코팅할 수 있는 단일 공정을 통한 DSA 전극용 티타늄 옥사이드 나노구조 제조방법을 제공하는 데에 있다.Accordingly, the present invention is to provide a method for producing titanium oxide nanostructures for a DSA electrode through a single process that can be coated with a catalyst while anodizing.

상기 목적을 달성하기 위하여, 본 발명은 티타늄 기판과 전해질을 이용한 양극산화 공정을 포함하는 DSA 전극 제조방법에 있어서, 상기 양극산화 공정 시 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속의 산화물 음이온을 갖는 화합물을 전해질로 사용한 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for producing a DSA electrode comprising an anodization process using a titanium substrate and an electrolyte, the oxide anion of a lanthanide metal selected from the group consisting of ruthenium, iridium and tantalum during the anodization process It provides a method for producing a titanium oxide nanostructures for a DSA electrode in a single process, characterized in that the compound having an electrolyte as an electrolyte.

상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다:The compound having an oxide anion of the lanthanide metal may be a compound represented by Formula 1 below:

[화학식 1][Formula 1]

AMOxAMOx

A는 알칼리금속 또는 알칼리토금속에서 선택되고, M은 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속이며, x는 1 ≤ x ≤ 4의 정수일 수 있다. A is selected from alkali metals or alkaline earth metals, M is a lanthanide metal selected from the group consisting of ruthenium, iridium and tantalum, and x may be an integer of 1 ≦ x ≦ 4.

특히, 상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 KRuO4, NaRuO4, KIrO4, NaIrO4, LiTaO3, NaTaO3 및 CsTaO3에서 선택될 수 있다.In particular, the compound having an oxide anion of the lanthanide metal may be selected from KRuO 4 , NaRuO 4 , KIrO 4 , NaIrO 4 , LiTaO 3 , NaTaO 3 and CsTaO 3 .

상기 양극산화는 20V 내지 100V에서 1시간 내지 2시간 동안 수행할 수 있다.The anodization may be performed at 20V to 100V for 1 hour to 2 hours.

본 발명에 따르면, 종래 양극산화 공정 후 촉매코팅 공정을 수행하여 DSA 전극용 티타늄 옥사이드 나노구조를 제조한 방법에서 진일보하여 양극산화를 진행함과 동시에 촉매를 코팅할 수 있는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법을 제공함으로써 단시간 내에 간단하게 DSA 전극용 티타늄 옥사이드 나노구조를 제조할 수 있어 물 분해 효율을 향상시킬 수 있다.According to the present invention, the titanium oxide for DSA electrode in a single process that can be coated with a catalyst while performing anodization in the method of producing a titanium oxide nanostructure for the DSA electrode by performing a catalyst coating process after the conventional anodization process By providing an oxide nanostructure manufacturing method, the titanium oxide nanostructures for DSA electrodes can be easily produced in a short time, thereby improving water decomposition efficiency.

도 1은 0.002M의 KRuO4 전해질 용액을 이용하고 80V를 인가하여 양극산화하여 제조한 티타늄 옥사이드 나노구조의 SEM 이미지를 나타낸 것이다(a, b: 위에서 본 이미지, c: 옆에서 본 이미지).
도 2는 본 발명에 따른 티타늄 옥사이드 나노구조의 XPS 분석 결과를 나타낸 것이다.
도 3은 본 발명에 따른 티타늄 옥사이드 나노구조의 LSV 분석 결과를 나타낸 것이다(a: 0.02M의 KRuO4로 양극산화한 모제, b: 0.002M의 KRuO4로 양극산화한 모제).
도 4는 마이크로아크산화를 통해 얻어진 티타늄 옥사이드의 SEM 이미지를 나타낸 것이다.
도 5는 본 발명에 따른 티타늄 옥사이드 나노구조의 LSV 분석 결과를 마이크로아크산화를 통해 얻어진 티타늄 옥사이드와 비교하여 나타낸 것이다(a: 1M H3PO4로 양극산화한 MAO, b: 0.002M의 KRuO4로 양극산화한 모제).
Figure 1 shows a SEM image of a titanium oxide nanostructure prepared by using an 0.002M KRuO 4 electrolyte solution and anodized by applying 80V (a, b: image from above, c: image from the side).
Figure 2 shows the XPS analysis of the titanium oxide nanostructures according to the present invention.
Figure 3 shows the LSV analysis results of the titanium oxide nanostructures according to the present invention (a: a mother anodized with KRuO 4 of 0.02M, b: a mother anodized with KRuO 4 of 0.002M).
4 shows an SEM image of titanium oxide obtained through microarc oxidation.
FIG. 5 shows LSV analysis results of titanium oxide nanostructures according to the present invention in comparison with titanium oxide obtained through microarc oxidation (a: MAO anodized with 1M H 3 PO 4 , b: KRuO 4 of 0.002M). As anodized matrix).

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

일반적으로 양극산화를 수행할 때 전해질로서 인산(H3PO4)을 많이 사용하는데 이때 H+는 공기 중으로 빠져나가고, PO4 3-는 Ti에 접근하여 산화막을 만드는데 기여하는 데, 이를 착안하여 RuO4 -와 같은 음이온으로 작용할 수 있는 화합물을 이용하여 직접 양극산화를 진행한 결과, 양극산화와 동시에 촉매코팅도 가능하다는 것을 확인하여 본 발명을 완성하였다.In general, when anodizing, phosphoric acid (H 3 PO 4 ) is frequently used as an electrolyte, where H + is released into the air, and PO 4 3- contributes to Ti to form an oxide film. As a result of the direct anodization using a compound capable of acting as an anion such as 4 , the present invention was completed by confirming that anodization and catalytic coating were also possible.

따라서, 본 발명은 티타늄 기판과 전해질을 이용한 양극산화 공정을 포함하는 DSA 전극용 티타늄 옥사이드 나노구조 제조방법에 있어서, 상기 양극산화 공정 시 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속의 산화물 음이온을 갖는 화합물을 전해질로 사용한 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법을 제공한다. Accordingly, the present invention provides a method for producing a titanium oxide nanostructure for a DSA electrode including an anodization process using a titanium substrate and an electrolyte, wherein the anion oxidation process is an oxide anion of a lanthanide metal selected from the group consisting of ruthenium, iridium, and tantalum It provides a method for producing a titanium oxide nanostructures for a DSA electrode in a single process, characterized in that the compound having an electrolyte as an electrolyte.

상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다:The compound having an oxide anion of the lanthanide metal may be a compound represented by Formula 1 below:

[화학식 1][Formula 1]

AMOxAMOx

A는 알칼리금속 또는 알칼리토금속에서 선택되고, M은 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속이며, x는 1 ≤ x ≤ 4의 정수일 수 있다. A is selected from alkali metals or alkaline earth metals, M is a lanthanide metal selected from the group consisting of ruthenium, iridium and tantalum, and x may be an integer of 1 ≦ x ≦ 4.

특히, 상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 KRuO4, NaRuO4, KIrO4, NaIrO4, LiTaO3, NaTaO3 및 CsTaO3에서 선택될 수 있다.In particular, the compound having an oxide anion of the lanthanide metal may be selected from KRuO 4 , NaRuO 4 , KIrO 4 , NaIrO 4 , LiTaO 3 , NaTaO 3 and CsTaO 3 .

상기 양극산화는 20V 내지 100V에서 1시간 내지 2시간 동안 수행할 수 있으며, 바람직하게는 80V에서 2시간 동안 수행할 수 있다.
The anodization may be performed at 20V to 100V for 1 hour to 2 hours, preferably at 80V for 2 hours.

이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> DSA 전극용 티타늄 옥사이드 나노구조 제조Example 1 Preparation of Titanium Oxide Nanostructures for DSA Electrodes

전해질 용액으로 0.02M 또는 0.002M의 KRuO4 수용액을 사용하였으며, 양극으로 티타늄을 사용하였고, 80V에서 2시간 동안 양극산화를 수행하여 DSA 전극용 티타늄 옥사이드 나노구조용 티타늄 옥사이드 나노구조를 제조하였다.A 0.02M or 0.002M KRuO 4 aqueous solution was used as an electrolyte solution, titanium was used as the anode, and anodization was performed at 80 V for 2 hours to prepare titanium oxide nanostructures for titanium oxide nanostructures for DSA electrodes.

<실험예 1> DSA 전극용 티타늄 옥사이드 나노구조의 물성 평가Experimental Example 1 Evaluation of Properties of Titanium Oxide Nanostructures for DSA Electrodes

1. SEM 이미지 분석1. SEM image analysis

실시예 1에서 제조된 나노구조의 SEM 이미지(FE-SEM, 4300S, Hitachi, Japan) 를 사용하여 분석하였으며, 그 결과, 도 1a 및 도 1b는 0.002M의 KRuO4 수용액을 전해질로 사용한 경우 위에서 본 SEM 이미지이고, 도 1c는 0.002M의 KRuO4 수용액을 전해질로 사용한 경우 옆에서 본 SEM 이미지를 나타내었다. 이러한 결과로부터 690nm 두께를 갖는 산화막이 형성되었음을 확인할 수 있었으며, F-나 Cl- 이온을 첨가하지 않았기 때문에 산화막에서 용출이 일어나지 않아 기공은 형성되지 않은 것으로 보였다.SEM images of the nanostructures prepared in Example 1 (FE-SEM, 4300S, Hitachi, Japan) were analyzed using the results. As a result, FIGS. 1A and 1B were seen from above when using 0.002M of aqueous KRuO 4 solution as an electrolyte. SEM image, Figure 1c shows a SEM image seen from the side when using a 0.002M KRuO 4 aqueous solution as an electrolyte. From these results, it was confirmed that an oxide film having a thickness of 690 nm was formed. Since no F - or Cl - ions were added, elution did not occur in the oxide film, and no pores were formed.

2. XPS 분석2. XPS Analysis

실시예 1과 같이 전해질로 KRuO4를 이용하여 양극산화를 한 후 따로 촉매를 코팅하지 않아도 루테늄이 제대로 함유되었는지를 확인하기 위해, 실시예 1에서 제조된 나노구조의 XPS(X-ray Photoelectron Spectrocopy) 분석을 Electron Spectroscopy For Chemical Analysis, K-Alpha 를 사용하여 수행하였다.After anodizing with KRuO 4 as an electrolyte as in Example 1, in order to check whether ruthenium is properly contained even without coating the catalyst, the nanostructured XPS (X-ray Photoelectron Spectrocopy) prepared in Example 1 was used. Analysis was performed using Electron Spectroscopy For Chemical Analysis, K-Alpha.

그 결과, 도 2와 같이 KRuO4를 이용하여 양극산화를 한 후 따로 촉매를 입히지 않고도 33.19 원자%의 루테늄이 함유된 것을 확인할 수 있었다.As a result, after anodizing with KRuO 4 as shown in FIG. 2, it was confirmed that ruthenium contained 33.19 atomic% without applying a catalyst.

3. LSV 분석3. LSV Analysis

실시예 1과 같이 전해질로 KRuO4를 이용하여 양극산화를 한 모제를 이용하여 일정속도 전위 훑음법(linear sweep voltammetry; LSV; Autolab, PGSTAT 302N, AUTOLAB, Netherlands)을 측정하여 물 분해 효율을 분석하였다. 그 결과, 도 3(b)와 같이 0.002M의 KRuO4로 양극산화한 모제의 개시 전위(onset potential)이 도 3(a)의 0.02M의 KRuO4로 양극산화한 모제의 그것보다 훨씬 좋음을 육안으로 관측할 수 있었다. 따라서 본 연구에서는 농도 조건을 0.002M로 맞추어 실험을 진행하였다. As in Example 1, a linear sweep voltammetry (LSV; Autolab, PGSTAT 302N, AUTOLAB, Netherlands) was measured using an anodized mother using KRuO 4 as an electrolyte to analyze water decomposition efficiency. . As a result, the onset potential of the mother anodized with 0.002M KRuO 4 as shown in FIG. 3 (b) is much better than that of the mother anodized with KRuO 4 of 0.02M in FIG. 3 (a). It could be observed with the naked eye. Therefore, the experiment was conducted by adjusting the concentration condition to 0.002M.

4. 마이크로아크산화를 통한 TiO4. TiO through Microarc Oxidation 22 모제와의 비교 Comparison with Mother

일반적으로 양극산화를 통해 얻을 수 있는 TiO2 모제와의 물 분해 효율을 비교하기 위해, 고전압을 인가하여 다양한 직경의 포어를 갖는 마이크로아크산화를 통한 TiO2 모제를 제조하였다. 이때, 전해질로서 1M H3PO4와 0.5 중량% HF를 사용하여 200V에서 2시간 동안 마이크로아크산화를 수행하였다. In order to compare the water decomposition efficiency with TiO 2 mothers generally obtained through anodization, TiO 2 mothers were prepared through microarc oxidation having pores of various diameters by applying a high voltage. At this time, microarc oxidation was performed at 200V for 2 hours using 1M H 3 PO 4 and 0.5 wt% HF as the electrolyte.

도 4는 마이크로아크산화한 TiO2 모제의 SEM 이미지로서, 고전압을 인가하였기 때문에 붕괴가 일어나 많은 기공이 형성된 것을 확인할 수 있었으며, 직경은 300nm~1㎛로 다양한 크기로 형성되었다. FIG. 4 is an SEM image of the microarcated TiO 2 mother material, and it was confirmed that many pores were formed due to collapse due to the application of a high voltage, and the diameters were formed in various sizes ranging from 300 nm to 1 μm.

그리고, 도 5에서는 (a) 1M H3PO4로 마이크로아크산화한 TiO2 모제와, (b) 0.002M의 KRuO4로 양극산화한 TiO2 모제의 LSV를 분석하였다.And in Figure 5 (a) it was analyzed 1M H 3 PO 4 micro-arc and a TiO 2 moje, LSV of (b) 0.002M TiO 2 moje by anodizing a KRuO 4 of oxidized to.

이러한 결과로부터, 촉매를 코팅하지 않고 양극산화만 한 MAO와 비교하였을 때, KRuO4를 이용하여 양극산화한 모제의 개시전압과 전류 모두 효율이 훨씬 높음을 확인할 수 있었다. MAO의 SEM 이미지를 통해 MAO 구조가 상대적으로 큰 표면적을 가지므로 물 분해 효율이 더 좋을 것이라 예상되지만, 보통 물 분해 전극으로 쓰이는 티타늄 옥사이드 전극은 안정하지만 과전압이 높아 별도의 촉매를 첨가해 주어야 물 분해 효율이 향상된다. 따라서 양극산화 후 촉매를 첨가해 주는 2-step 과정으로 전극을 제조하는데 반면, 본 발명에서는 KRuO4를 가지고 직접 양극산화를 진행함으로써 1-step으로 물 분해 효율을 향상시킬 수 있었다.
From these results, it can be seen that the efficiency of both the starting voltage and the current of the mother anodized using KRuO 4 was much higher than that of MAO which was only anodized without coating the catalyst. The SEM image of MAO suggests that the MAO structure has a relatively large surface area, so that the water decomposition efficiency will be better.However, the titanium oxide electrode, which is usually used as a water decomposition electrode, is stable but has a high overvoltage. The efficiency is improved. Therefore, the electrode is manufactured by a two-step process of adding a catalyst after anodization, whereas in the present invention, by directly anodizing with KRuO 4 , water decomposition efficiency can be improved in one-step.

본 발명은 한정된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
While the invention has been described with reference to a limited number of embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (4)

티타늄 기판과 전해질을 이용한 양극산화 공정을 포함하는 DSA 전극용 티타늄 옥사이드 나노구조 제조방법에 있어서, 상기 양극산화 공정 시 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속의 산화물 음이온을 갖는 화합물을 전해질로 사용한 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법. In the method of manufacturing a titanium oxide nanostructure for a DSA electrode including an anodization process using a titanium substrate and an electrolyte, the compound having an oxide anion of a lanthanide metal selected from the group consisting of ruthenium, iridium and tantalum during the anodization Method for producing titanium oxide nanostructures for DSA electrodes in a single process, characterized in that used as. 청구항 1에 있어서, 상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법:
[화학식 1]
AMOx
A는 알칼리금속 또는 알칼리토금속에서 선택되고, M은 루테늄, 이리듐 및 탄탈륨으로 이루어진 군에서 선택된 란탄족 금속이며, x는 1 ≤ x ≤ 4의 정수임.
The method of claim 1, wherein the compound having an oxide anion of the lanthanide metal is a compound represented by Formula 1 below.
[Chemical Formula 1]
AMOx
A is selected from alkali metals or alkaline earth metals, M is a lanthanide metal selected from the group consisting of ruthenium, iridium and tantalum, and x is an integer of 1 ≦ x ≦ 4.
청구항 1 또는 청구항 2에 있어서, 상기 란탄족 금속의 산화물 음이온을 갖는 화합물은 KRuO4, NaRuO4, KIrO4, NaIrO4, LiTaO3, NaTaO3 및 CsTaO3에서 선택된 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법.The method of claim 1 or 2, wherein the compound having an oxide anion of the lanthanide metal is a single-step DSA electrode, characterized in that selected from KRuO 4 , NaRuO 4 , KIrO 4 , NaIrO 4 , LiTaO 3 , NaTaO 3 and CsTaO 3 Method for producing titanium oxide nanostructures for use. 청구항 1 또는 청구항 2에 있어서, 상기 양극산화는 20V 내지 100V에서 1시간 내지 2시간 동안 수행하는 것을 특징으로 하는 단일공정의 DSA 전극용 티타늄 옥사이드 나노구조 제조방법.The method of claim 1 or 2, wherein the anodization is performed at 20V to 100V for 1 hour to 2 hours.
KR1020120157463A 2012-12-28 2012-12-28 Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization KR101378201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120157463A KR101378201B1 (en) 2012-12-28 2012-12-28 Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120157463A KR101378201B1 (en) 2012-12-28 2012-12-28 Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization

Publications (1)

Publication Number Publication Date
KR101378201B1 true KR101378201B1 (en) 2014-03-26

Family

ID=50649556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120157463A KR101378201B1 (en) 2012-12-28 2012-12-28 Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization

Country Status (1)

Country Link
KR (1) KR101378201B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609947B1 (en) * 2014-09-30 2016-04-07 인하대학교 산학협력단 Preparing method of electrodes using a potential shock
KR101784092B1 (en) * 2016-01-29 2017-10-10 인하대학교 산학협력단 Method of Manufacturing Titanium oxide structure for Type of Microcone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890001110B1 (en) * 1983-12-27 1989-04-24 페르멜랙 덴꼬꾸 가부시끼 가이샤 Process for electrolightic treatment of metal by liquid power feeding
JPH11104648A (en) * 1997-10-08 1999-04-20 Permelec Electrode Ltd Seawater electrolyzing apparatus
JP2000271493A (en) 1999-03-25 2000-10-03 Takehisa Ito Production of photocatalytic material
JP2007098563A (en) 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890001110B1 (en) * 1983-12-27 1989-04-24 페르멜랙 덴꼬꾸 가부시끼 가이샤 Process for electrolightic treatment of metal by liquid power feeding
JPH11104648A (en) * 1997-10-08 1999-04-20 Permelec Electrode Ltd Seawater electrolyzing apparatus
JP2000271493A (en) 1999-03-25 2000-10-03 Takehisa Ito Production of photocatalytic material
JP2007098563A (en) 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609947B1 (en) * 2014-09-30 2016-04-07 인하대학교 산학협력단 Preparing method of electrodes using a potential shock
KR101784092B1 (en) * 2016-01-29 2017-10-10 인하대학교 산학협력단 Method of Manufacturing Titanium oxide structure for Type of Microcone

Similar Documents

Publication Publication Date Title
JP7423632B2 (en) Trimetallic layered double hydroxide composition
Yancey et al. Au@ Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory
Zhang et al. Controlled electrodeposition of CoMoSx on carbon cloth: A 3D cathode for highly-efficient electrocatalytic hydrogen evolution
KR20210089709A (en) Tri-metal layered double hydroxide composition
Lačnjevac et al. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO 2 nanotube arrays as interactive supports for Ir nanoparticles
US10815579B2 (en) Catalyst for water splitting and method for preparing same
US11447880B2 (en) Production of graphene materials
Shin et al. Water splitting by dimensionally stable anode prepared through micro-arc oxidation
Gim et al. RuO2-doping into high-aspect-ratio anodic TiO2 nanotubes by electrochemical potential shock for water oxidation
Shin et al. Fabrication of ruthenium-doped TiO2 electrodes by one-step anodization for electrolysis applications
CN107876071A (en) Fe2P nano-array surface modification Ni (OH)2Liberation of hydrogen catalyst and its preparation method and application
KR20150103864A (en) method of preparing electrocatalyst for hydrogen production in alkaline water electrolysis, method for controlling a electrocatalyst composition by changing electrolysis condition and electrocatalyst for hydrogen production in alkaline water electrolysis thereby
KR101378201B1 (en) Preparation method of titanium oxide nanostructure for dsa electrode by one-step anodization
Low et al. A gold-coated titanium oxide nanotube array for the oxidation of borohydride ions
Seong et al. Doping of anodic nanotubular TiO2 electrodes with MnO2 for use as catalysts in water oxidation
KR102167758B1 (en) electrode for generating chlorine using Titanium Oxide nano structure and manufaturing method of the same
CN110230072B (en) Preparation method and application of N-NiZnCu LDH/rGO nanosheet array material on foamed nickel
CN102586836A (en) Preparation method for mesoporous titanium dioxide thin film
KR101816528B1 (en) Photoelectrode and method for manufacturing oh radical using the same
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
KR101813405B1 (en) Bipolar plate based on iridium oxide coated titanium for vanadium redox flow battery and preparing method thereof
KR102358447B1 (en) Coating composition for electrolysis anode
JP2020028815A (en) Metal-supported catalyst
El-Nowihy et al. Investigating a sequentially assembled MnOx/Pt nanocatalyst as a potential anode for ethylene glycol fuel cells
KR101609947B1 (en) Preparing method of electrodes using a potential shock

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 6