KR101360152B1 - 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법 - Google Patents

억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법 Download PDF

Info

Publication number
KR101360152B1
KR101360152B1 KR1020120132026A KR20120132026A KR101360152B1 KR 101360152 B1 KR101360152 B1 KR 101360152B1 KR 1020120132026 A KR1020120132026 A KR 1020120132026A KR 20120132026 A KR20120132026 A KR 20120132026A KR 101360152 B1 KR101360152 B1 KR 101360152B1
Authority
KR
South Korea
Prior art keywords
pellets
density
silver grass
pellet
miscanthus
Prior art date
Application number
KR1020120132026A
Other languages
English (en)
Inventor
문윤호
구본철
안종웅
차영록
윤영미
박광근
최용환
박선태
안기홍
김중곤
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020120132026A priority Critical patent/KR101360152B1/ko
Application granted granted Critical
Publication of KR101360152B1 publication Critical patent/KR101360152B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/30Pressing, compressing or compacting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

본 발명은 (a) 전처리한 억새를 분쇄하여 억새분말을 얻는 단계; (b) 상기 억새분말을 압착하여 억새 압착물을 얻는 단계; 및 (c) 상기 압착된 억새 압착물을 펠릿으로 성형하는 단계; 를 포함하는 억새 펠릿의 제조방법에 관한 것이다.

Description

억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법 {An equipment and fuel pellet processing methods to increase the density of herbaceous biomass of Miscanthus, etc.}
본 발명은 억새를 이용한 연료펠릿을 제조하는 방법에 관한 것이다.
최근 원유가격이 불안정하고 쿄토 의정서 발효로 인한 CO2배출량 감축의무 등에 따라 많은 나라에서 바이오에너지에 대한 투자와 연구개발을 크게 늘리고 있다. 바이오디젤, 바이오에탄올 등 여러 가지 바이오에너지 중 바이오매스를 이용하여 열 또는 전기를 산하는 고체 바이오연료는 1990년대 후반부터 괄목할 만한 성장을 거듭하여 그 수요가 폭발적으로 증가할 것으로 예상되고 있다. 현재 가장 많이 사용되고 있는 고체 바이오연료에는 목재칩과 목재 연료펠릿이 있는데 목재펠릿은 연소버너의 조작이 쉽고 투입속도 조절로 소규모 버너에서도 열량조절이 가능하기 때문에 널리 사용되고 있다. 또한 상기와 같은 목재 연료칩 및 목재 연료펠릿에 관련된 기술(대한민국 특허출원 공개번호 10-2011-0030736호)이 공개된 바 있다. 더불어 연료펠릿은 목재 칩에 비해 밀도가 커 수송 및 저장비용을 줄일 수 있는 장점이 있다. 국내에서도 2008년부터 목질 연료펠릿을 본격적으로 생산하기 시작했으며 전체 생산능력은 2010년 12만톤 정도였으나 2011년 말에는 20만톤으로 크게 증가하였다. 동일열량 기준 연료펠릿의 가격은 2011년 5월 현재 보일러 등유의 46%, 중유의 63% 수준으로 유류에 비해 충분한 경쟁력을 가지고 있고, 향후 장기적으로 지속적인 유가상승이 예상됨에 따라 가격경쟁력은 지속적으로 높아질 것으로 예상된다.
목재는 에너지 사용 이외에 건축자재, 제지산업 원료 등 여러 가지 용도가 있어 연료펠릿 가격상승 요인으로 작용한다. 반면에 억새 등 다년생 초본계 바이오매스는 생산성이 높고 매년 수확이 가능하며 다른 작물에 비해 재배시 온실가스를 적게 배출하는 등 환경적인 장점으로 목재 연료펠릿 대체 원료로서 주목받고 있지만 밀짚 등 농업 부산물 등 다른 초본계 원료에 비해 펠릿 성형에 연구결과가 적은 실정이다. 현재 상용화된 펠릿 성형기는 주로 목재를 원료로 한 펠릿 성형을 목적으로 제작되었기 때문에 억새 등 초본류 원료의 펠릿 성형 효율은 낮다. 대표적인 초본계 바이오매스 작물인 억새는 펠릿 성형시 분쇄물의 밀도가 목재(225㎏/㎥)에 비해 낮아 단위시간당 펠릿 생산성이 낮고 투입되는 에너지도 많아 억새만을 이용한 단일 재료로 펠릿을 성형하지 못하고 밀도가 높은 톱밥과 혼합하여 성형해야 한다는 연구결과가 보고된바 있다. 그러나 밀도 등 물리적 성질이 다른 원료를 혼합하여 펠릿을 성형하려면 성형전 원료 공급 장치를 원료에 따라 별도로 설치해야 하고 두 원료를 혼합하는데 에너지도 많이 소요되므로 펠릿 가격 상승 요인이 된다. 따라서 억새 바이오매스 단일 재료로 펠릿을 성형할 수 있는 공정개발이 필요한 실정이다.
KR 10-2011-0030736 공개번호
본 발명은 밀도가 낮아 연료펠릿 성형이 어려운 억새를 기계적인 압착으로 밀도를 증가시킨 후 연료펠릿을 성형하는 제조방법을 제공하고자 한다.
본 발명은 (a) 전처리한 억새를 분쇄하여 억새분말을 얻는 단계; (b) 상기 억새분말을 압착하여 억새 압착물을 얻는 단계; 및 (c) 상기 압착된 억새 압착물을 펠릿으로 성형하는 단계; 를 포함하는 억새 펠릿의 제조방법을 제공한다.
본 발명에 따르면 억새를 연료펠릿으로 제조함으로써 새로운 대체 에너지 자원을 제공할 수 있으며, 자연을 훼손하지 않고 폐자원을 활용함으로써 친환경적인 연료를 제공할 수 있다.
도 1은 억새 줄기와 소나무 톱밥 펠릿 성형시 소요전력 및 물리적 특성 비교를 나타낸 그래프이다.
도 2는 펠릿 성형율을 나타낸 그래프이다.
도 3은 성형된 펠릿의 함수율을 나타낸 그래프이다.
도 4는 성형된 펠릿의 겉보기 밀도를 나타낸 그래프이다.
도 5는 성형된 펠릿의 내구성을 나타낸 그래프이다.
도 6은 성형된 펠릿의 발열량을 나타낸 그래프이다.
도 7은 성형된 펠릿의 회분함량을 나타낸 그래프이다.
본 발명은 억새 펠릿의 제조방법에 관한 것으로서, (a) 전처리한 억새를 분쇄하여 억새분말을 얻는 단계; (b) 상기 억새분말을 압착하여 억새 압착물을 얻는 단계; 및 (c) 상기 압착된 억새 압착물을 펠릿으로 성형하는 단계; 를 포함한다.
여기서, 억새 펠릿은 친환경 대체에너지인 억새를 작은 입자, 파티클로 분쇄, 건조 및 압축하여 작은 원통모양(pellet)으로 성형한 난방연료를 말하며, 보통 10mm 내지 64mm의 크기와 3.15mm 내지 40mm 정도의 길이를 갖는다. 또한 상기 억새라 함은 거대억새1호(특허출원 제 10-2010-0111353호), 억새2호(2010년 신규 채취한 거대억새류), 억새3호(2010년 신규 채취한 거대억새류), 일반물억새, 3배체억새, 참억새 또는 갈대 중 적어도 하나일 수 있다.
먼저 (a) 단계는, 억새를 수분함량 10 내지 15%이 되도록 건조한 후 3cm 내지 7cm 의 길이로 절단하는 단계; 상기 건조 단계를 거친 억새를 수분함량 15% 내지 20%가 되도록 증류수 첨가하여 교반시키는 단계; 및 상기 교반 단계를 거친 억새를 17℃ 내지 25℃에서 20일 내지 40일 동안 밀봉시켜 저장하는 단계; 를 포함한다.
다음으로, 상기 (a)단계는 억새를 0.1mm 내지 3mm의 크기로 분쇄하여 분말을 얻을 수 있다. 보다 구체적으로, 억새 줄기를 목재펠릿 성형 공정 중 톱밥 또는 목재 칩의 분쇄에 사용되는 20마력 헤머식 분쇄기로 분쇄하여 눈의 크기가 3mm인 스크린을 통과시켰다.
상기 (b)단계는 병렬 드럼형 압착기 또는 압착용 금형이 장착된 성형기로 압착하는 것을 특징으로 한다. 하나의 양태로서, 상기 병렬 드럼형 압착기는 2마력 내지 3마력으로 압착할 수 있으며, 이때 억새 분쇄물은 5kg/시간 내지 10kg/시간의 속도로 투입할 수 있다. 또한 다른 양태로서, 억새 분쇄물을 상기 압착용 금형이 장착된 성형기로 12마력 내지 25마력으로 압착할 수 있으며, 이때 억새 분쇄물은 40kg/시간 내지 90kg/시간의 속도로 투입할 수 있다.
여기서 금형이라 함은, 이 분야에서 통상적으로 사용하는 압착용 다이(die)일 수 있다.
이때, 병렬 드럼형 압착기 또는 압착용 금형이 장착된 성형기로 압착이 이루어진 억새 압착물의 밀도는 220g/L 내지 250g/L 일 수 있다.
또한 상기 (c)단계에서 펠릿용 성형기를 이용하여 펠릿으로 성형하는 것을 특징으로 한다. 보다 구체적으로 (b) 단계에서 얻어진 억새 압착물을 연속 공정에 의해 펠릿 성형기로 배출시킴으로서 펠릿으로 성형할 수 있다. 상기 펠릿용 성형기라 함은, 이 분야에서 통상적으로 쓰이는 펠릿용 성형기일 수 있다.
이에 더하여, 본 발명은 추가로 (d) 압착전의 억새 분쇄물, 기계적 압착을 통해 밀도가 증가된 억새 압착물 및 성형된 펠릿을 분쇄한 분쇄물을 혼합하여 펠릿을 성형하는 단계; 를 포함할 수 있다.
또한 본 발명은 상기 억새펠릿의 제조방법으로 제조된 억새 펠릿에 관한 것이다.
특히 상기 억새 펠릿은 겉보기 밀도가 578g/L 내지 658g/L, 함수율이 0.1% 내지 10% 인 것을 특징으로 하며, 상기 억새 펠릿은 발열량이 4,000㎉/㎏ 내지 4,104㎉/㎏인 것을 특징으로 한다. 이러한 펠릿은 화학적 결합물질의 첨가없이, 밀도를 증가시켜 압착하여 생산되며, 상기 열량은 난방유 0.5ℓ와 맞먹는 수치이다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
< 실시예 >
실시예 1. 목재펠릿 성형기를 이용한 억새 분쇄물의 펠릿 성형
시험 재료로 재식 2년차 포장에서 수확한 거대억새1호 줄기를 사용하였다. 거대억새1호 줄기의 수분함량을 10 내지 15%로 포장하여 건조시켜 조사료 절단기로 길이 5㎝ 이하로 절단한 후 수분함량 20%가 되도록 증류수를 첨가하여 잘 교반한 후 비닐로 밀봉하여 1개월 동안 실온(20℃)에 저장하였다.
절단된 억새 줄기는 목재펠릿 성형 공정 중 톱밥 또는 목재 칩(Chip)의 분쇄에 사용되는 20마력 헤머식 분쇄기로 분쇄하였고, 분쇄된 억새분말을 눈의 크기가 3㎜인 스크린을 통과시켰다. 대비로 사용된 원료인 재재 부산 소나무 톱밥도 억새 줄기와 동일하게 분쇄하여 사용하였다.
펠릿 성형은 25마력 3상 모터로 가동되는 목재펠릿 성형기를 사용하였다. 성형기의 다이(Die)는 크롬-니켈(Cr-Ni) 강철 재질로 직경과 두께가 각각 255㎜, 30㎜인 플랫 다이(Flat die)를 사용하였다. 다이의 홀(Hole)은 깊이와 직경이 각각 27㎜, 6㎜〔깊이/두께 비율(L/D) 4.5:1〕홀(Hole)로서, 그 수가 192개 이었다. 다이에 상응하는 롤러(Roller)는 다이와 동일한 재질인 기어식 롤러로서 기준 피치원 지름이 185.5㎜, 기어의 높이와 폭이 각각 2.5㎜, 34㎜인 것을 사용하였다.
상기 원료와 펠릿 성형기로 펠릿을 성형한 결과 소나무 톱밥은 원활하게 성형되어 펠릿으로 배출되었으나 억새 분쇄물은 펠릿으로 성형되지 않고 분말 형태로 배출되거나, 원료투입 초기에는 양호하게 성형되지만 성형시간이 10분 정도 경과하면 분말형태로 배출되거나, 또는 다이의 홀이 막혀 펠릿이 배출되지 않고 호퍼 내에 분쇄물이 정체되는 현상이 발생하였다.
실시예 2. 억새 식물체 부위별, 바이오매스 분쇄물과 톱밥의 밀도 비교
억새 분쇄물이 기존 목재펠릿 성형기로는 펠릿으로 성형되지 않는 원인을 구명하기 위해 억새 식물체 부위별, 전초 분쇄물 그리고 소나무 톱밥의 밀도를 조사하였다. 시험에 사용된 억새는 〔실시예 1〕과 동일한 거대억새1호 줄기 겉부분, 마디, 줄기 속부분, 잎과 잎집 그리고 이삭으로 분리하여 믹서로 분쇄 후 눈의 크기가 2㎜인 체로 사별하여 밀도를 측정하였다. 식물체 부위별 밀도는 사별된 분쇄물의 무게를 평량한 후 1L 용량플라스크로 용량을 측정하여 무게를 부피로 나누어 환산하였다. 억새 전초 분쇄물과 소나무 톱밥도 동일한 방법으로 밀도를 측정하였다. 모든 측정은 3반복으로 실시하여 평균과 표준편차를 구하였다.
Figure 112012095733048-pat00001
그 결과 상기 표 1에서와 같이, 억새 줄기 겉부분과 마디의 무게비율은 각각 66.0±1.2%, 14.6±0.5% 그리고 용적비율이 각각 59.8±1.4%, 8.8±0.7%로 용적비율에 비해 무게비율이 커 밀도가 각각 212±4g/L, 320±14g/L 정도 이었다. 그러나 잎과 잎집, 이삭, 줄기 속부분의 무게 비율은 각각 12.8±0.9%, 1.6±0.1%, 5.1±0.2% 이었고 용적비율이 각각 15.5±0.6%, 2.7±0.3%, 13.3±0.7로 용적비율이 무게비율보다 커 밀도가 각각 158±11g/L, 114±6g/L, 73±2g/L로 줄기의 겉부분과 마디에 비해 낮았다. 억새 전초 분쇄물은 물리적 성질이 다른 여러 식물체 부위가 혼합되어있고, 특히 밀도가 낮은 잎과 잎집, 이삭 및 줄기 속부분이 용적비율로 30% 이상 차지하고 있어 밀도가 175±8g/L로 소나무 톱밥의 267.5g/L에 비해 낮았다.
실시예3 . 펠릿 성형 전 기계적 압착에 의한 억새 분쇄물의 밀도 증가
성형 전 억새 분쇄물을 기계적인 방법으로 밀도를 증가시키기 위해 억새 분쇄물을 병렬 드럼형 압착기와 〔실시예 1〕의 성형기 다이에 압착용 다이를 장착하여 압착하였다. 병렬 드럼형 압착기는 시중 방앗간에서 사용하는 제분기의 일종으로 3마력 3상 모터가 장착된 것이었고, 압착용 다이는 직경과 깊이가 각각 8㎜, 24㎜인 홀(Hole)이 144개인 것이었다. 병렬 드럼형 압착기에 억새 분쇄물을 10㎏/시간 정도의 속도로 천천히 투입하여 원료가 충분히 압착되도록 하였다. 압착용 다이가 장착된 성형기로 압착할 때에는 원료이송 스크류의 모터속도를 3단계로 조절하여 각 단계별 시간당 투입량을 조사하였는데, 각 단계별 투입 속도를 41㎏/시간, 65㎏/시간, 83㎏/시간으로 하였다.
Figure 112012095733048-pat00002
투입 후 배출된 압착 분쇄물의 밀도는 5L 플라스틱 용기에 압착 분쇄물을 가득 채워 10㎝ 높이에서 가볍게 3회 떨어뜨려 내용물을 다진 후 용기 끝부분까지 다시 채워 평량하여 g/L로 환산하였다.
압착 전 억새 분쇄물의 밀도는 187±8g/L 이었으며, 병렬 드럼형 압착기로 압착 후 억새 분쇄물의 밀도는 230±5g/L로 증가하였다. 또한 압착용 다이가 장착된 성형기로 압착하면 투입 속도가 증가할수록 밀도도 증가하였는데 투입속도 41㎏/시간, 65㎏/시간, 83㎏/시간에서 각각 235±9g/L, 243±3/L, 249±3/L 이었다.
실시예 4. 억새 분쇄물의 밀도별 성형된 펠릿의 물리적 특성
성형기에 투입되는 억새 분쇄물의 밀도에 따른 펠릿 성형 여부와 성형된 펠릿의 물리성을 구명하기 위해 밀도를 달리하여 압착된 억새 분쇄물로 펠릿을 성형하였다.
Figure 112012095733048-pat00003
시험에 사용된 원료는 〔실시예 3〕에서 얻어진 압착 전 억새 분쇄물과 기계적인 압착으로 밀도가 증가된 분쇄물 및 기 성형된 펠릿을 다시 분쇄한 것(밀도: 394g/L)을 혼합하여 밀도를 200g/L 내지 300g/L까지 20g/L 간격으로 6수준으로 하였다.
밀도가 조절된 원료를 〔실시예 1〕과 동일한 성형용 다이가 장착된 성형기로 성형하여 펠릿 성형 여부와 성형된 펠릿의 겉보기 밀도, 함수율, 내구성 등 물리적 특성을 조사하였는데 조사방법은 목재펠릿 품질 규격 조사방법 (국립산림과학원 고시 제2009-2호, 2009)에 준하였다.
원료의 밀도가 200g/L를 투입하였을 때에는 〔실시예 1〕과 같이 펠릿이 성형되지 않았으나 220g/L 이상인 원료를 투입하였을 때에는 펠릿성형이 가능하였다. 밀도가 220g/L인 원료를 투입하였을 때 성형된 펠릿의 겉보기밀도는 578±9g/L로 2등급 목재펠릿 겉보기밀도 기준인 640g/L 보다 작았으나 240g/L 이상인 원료를 투입하였을 때에는 2등급 목재펠릿 겉보기밀도 기준 이상이었다. 함수율과 내구성은 1등급 목재펠릿 기준인 10% 이하, 97.5% 이상이었다.
실시예 5. 억새 줄기와 소나무 톱밥 펠릿 성형시 소요전력 및 물리적 특성 비교
억새 줄기의 펠릿 성형시 소요전력은 압착공정에 26.7kWh/톤이 소요되었지만 분쇄 및 성형공정시 소요 전력이 각각 83kWh/톤, 85kWh/톤으로 소나무 톱밥의 90kWh/톤, 103kWh/톤에 비해 적게 소요되어 전체 소요전력은 195kWh/톤으로 소나무 톱밥의 193kWh/톤과 비슷하였다.
또한 억새 줄기 펠릿 성형율과 내구성은 각각 99.7%, 98.0%로 소나무 톱밥 펠릿의 98.4%, 98.0%와 비슷하였다.
그 외에도 억새 펠릿과 소나무 톱밥 펠릿의 밀도와 수분함량은 각각 620g/L 이상, 10% 이하로 1등급 펠릿 기준을 충족하였다. 따라서 억새 펠릿은 소요 전력과 물리적 품질 특성이 목재 펠릿과 차이가 없어 거대억새1호 줄기를 펠릿으로 가공하는 것은 타당할 것으로 보였다(도 1).
실시예 6. 유망 바이오에너지 후보작물의 연료펠릿 품질 평가
거대억새1호 등 억새속 식물과 갈대의 펠릿 성형율은 98.4% 내지 99.8%로 양호하였으나 스위치그래스는 90.9%로 후보작물 중 가장 낮은 것을 볼 수 있었다(도 2).
또한 성형된 펠릿의 함수율에서 모든 후보작물은 8.4% 내지 9.4%로 1, 2등급 목재펠릿 및 유럽 억새펠릿 기준인 10% 이하를 충족(도 3)하였고, 펠릿의 겉보기 밀도에서 모든 억새속 식물은 유럽의 억새펠릿 기준인 580g/L 이상이었고 그 중 억새3호는 1등급 목재펠릿 기준 이상있으나 갈대와 스위치그래스는 각각 541g/L, 529g/L로 4등급, 유럽 억새펠릿 기준 이하인 것을 확인할 수 있었다(도 4).
그 외에 펠릿의 내구성에서 억새1호, 억새3호, 일반 물억새, 3배체 억새는 97.8% 내지 98.2%로 1, 2등급 목재펠릿 기준 및 유럽의 억새펠릿 기준 이상이었으나 억새2호와 참억새는 각각 97.4%, 96.4%로 3등급, 갈대와 스위치그래스는 각각 92.8%, 80.5%로 낮아 등급외로 분류된 것을 확인할 수 있었다(도 5).
펠릿의 발열량에서 억새1, 2, 3호는 4,065㎉/㎏ 내지 4101㎉/㎏으로 3, 4등급이었으나 일반 물억새와 3배체 억새, 참억새, 갈대 및 스위치그래스는 3,972㎉/㎏ 내지 4,036㎉/㎏으로 등급 이하인 것을 확인할 수 있었고(도 6), 펠릿의 회분함량에서 억새 1, 2, 3호와 일반 물억새 및 3배체억새는 2.2% 내지 2.8%로 3등급, 유럽 억새펠릿 기준 이하이었으나 참억새, 갈대 및 스위치그래스는 4.3% 내지 4.7%로 많아 6등급인 것을 확인할 수 있었다(도 7).
Figure 112012095733048-pat00004
상기 표 4 에서와 같이 펠릿의 화학적 조성에서 모든 후보작물은 탄소 43.5% 내지 44.5%, 수소 5.8% 내지 6.1%, 질소 0.2% 내지 0.5%, 산소 49.2% 내지 50.1%, 유황 0% 내지 0.1% 수준이었다.
또한 성형된 펠릿의 물리 화학적 특성을 고려해 볼 때 바이오에너지 후보작물 중 거대 억새류인 억새 1, 2, 3호가 연료펠릿 원료로 적합하다는 것을 확인할 수 있었다.

Claims (12)

  1. (a) 전처리한 억새를 분쇄하여 억새분말을 얻는 단계;
    (b) 상기 억새분말을 압착하여 220g/L 내지 250g/L 밀도의 억새 압착물을 얻는 단계; 및
    (c) 상기 압착된 억새 압착물을 펠릿으로 성형하는 단계; 를 포함하는 억새 펠릿의 제조방법.
  2. 제1항에 있어서,
    상기 (a)단계는 억새를 0.1mm 내지 3mm의 크기로 분쇄하는 억새 펠릿의 제조방법.
  3. 제1항에 있어서,
    상기 (b)단계는 병렬 드럼형 압착기 또는 압착용 금형이 장착된 성형기로 압착하는 것을 특징으로 하는 억새 펠릿의 제조방법.
  4. 제3항에 있어서,
    상기 병렬 드럼형 압착기는 2마력 내지 3마력으로 압착하는 것을 특징으로 하는 억새 펠릿의 제조방법.
  5. 제3항에 있어서,
    상기 압착용 금형이 장착된 성형기는 12마력 내지 25마력으로 압착하는 것을 특징으로 하는 억새 펠릿의 제조방법.
  6. 삭제
  7. 제1항에 있어서,
    상기 (c)단계는 펠릿용 성형기를 이용하여 펠릿으로 성형하는 것을 특징으로 하는 억새 펠릿의 제조방법.
  8. 제1항에 있어서,
    추가로 (d) 압착전의 억새 분쇄물, 기계적 압착을 통해 밀도가 증가된 억새 압착물 및 성형된 억새 펠릿을 분쇄한 분쇄물을 혼합하여 펠릿으로 성형하는 단계;를 포함하는 억새 펠릿의 제조방법.
  9. 제1항 내지 제5항, 제7항 및 제8항 중 어느 한 항에 따른 방법으로 제조된 억새 펠릿.
  10. 제9항에 있어서,
    상기 억새 펠릿은 발열량이 4,000㎉/㎏ 내지 4104㎉/㎏인 것을 특징으로 하는 억새 펠릿.
  11. 제9항에 있어서,
    상기 억새 펠릿은 겉보기 밀도가 578g/L 내지 658g/L인 것을 특징으로 하는 억새 펠릿.
  12. 제9항에 있어서,
    상기 억새 펠릿은 함수율이 0.1% 내지 10% 인 것을 특징으로 하는 억새 펠릿.
KR1020120132026A 2012-11-20 2012-11-20 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법 KR101360152B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120132026A KR101360152B1 (ko) 2012-11-20 2012-11-20 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120132026A KR101360152B1 (ko) 2012-11-20 2012-11-20 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법

Publications (1)

Publication Number Publication Date
KR101360152B1 true KR101360152B1 (ko) 2014-02-12

Family

ID=50270257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120132026A KR101360152B1 (ko) 2012-11-20 2012-11-20 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법

Country Status (1)

Country Link
KR (1) KR101360152B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542919B1 (ko) 2014-12-15 2015-08-07 (주)제영산업 기계적 물성이 향상된 친환경 복합고분자 원료 펠릿, 그 제조방법, 및 이를 이용한 섬유용 원사

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112996A (ja) * 2003-10-07 2005-04-28 Seki Shoten:Kk 固形燃料の製造方法及び固形燃料
JP2010024393A (ja) * 2008-07-23 2010-02-04 Eco-Material Inc 草本類、木材枝葉を主原料とするバイオマス燃料及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112996A (ja) * 2003-10-07 2005-04-28 Seki Shoten:Kk 固形燃料の製造方法及び固形燃料
JP2010024393A (ja) * 2008-07-23 2010-02-04 Eco-Material Inc 草本類、木材枝葉を主原料とするバイオマス燃料及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542919B1 (ko) 2014-12-15 2015-08-07 (주)제영산업 기계적 물성이 향상된 친환경 복합고분자 원료 펠릿, 그 제조방법, 및 이를 이용한 섬유용 원사

Similar Documents

Publication Publication Date Title
Samson et al. The potential of C4 perennial grasses for developing a global BIOHEAT industry
US7960325B2 (en) Densified fuel pellets
Lisowski et al. Particle size distribution and physicochemical properties of pellets made of straw, hay, and their blends
JP2015229751A (ja) 植物系バイオマス固形燃料及びその製造方法
Tabil et al. Biomass feedstock pre-processing—part 2: densification
KR20110094347A (ko) 펠릿 또는 브리켓의 생산 방법
CN102191096A (zh) 一种生物质型煤,尤其是无粘结剂生物质型煤
Brand et al. Recovery of agricultural and wood wastes: the effect of biomass blends on the quality of pellets
Tumuluru Effect of moisture content and hammer mill screen size on the briquetting characteristics of woody and herbaceous biomass
Olugbade et al. Fuel developed from rice bran briquettes and palm kernel shells
Manouchehrinejad et al. Densification of thermally treated energy cane and napier grass
EP2090641B1 (en) Densified fuel pellets
KR101360152B1 (ko) 억새 등 초본류 바이오매스 밀도를 증가시키는 장치 및 연료펠릿 제조 방법
JP5742316B2 (ja) 竹ペレット燃料の製造方法
Tumuluru Biomass Densification: Systems, Particle Binding, Process Conditions, Quality Attributes, Conversion Performance, and International Standards
El-Sayed et al. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder
KR20130000924A (ko) 팜 열매의 부산물을 이용한 고체 바이오 연료 및 이의 제조방법
TUATES et al. Physico-chemical and thermal properties of fuel briquettes derived from biomass furnaces as by-products
Saneewongnaayuttaya et al. Briquette production from rice husk by using screw compaction
Esteban et al. Influence of the size reduction of pine logging residues on the pelleting process and on the physical properties of pellets obtained
Safdar et al. Enhancing the quality of maize, wheat, rice and cotton residue briquettes by optimizing the operational parameters.
Birania et al. Development and performance evaluation of biomass pellet machine for on-farm sustainable management and valorization of paddy straw.
Bello et al. Characterization of briquettes produced from four lignocellulosic material admixtures using a hydraulic briquetting press (HBP)
Lestander Pellet and briquette production
Ali et al. Compaction characteristics of sawdust, cotton stalks, maize straw and rice straw briquettes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant