KR101338033B1 - Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same - Google Patents

Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same Download PDF

Info

Publication number
KR101338033B1
KR101338033B1 KR1020120013844A KR20120013844A KR101338033B1 KR 101338033 B1 KR101338033 B1 KR 101338033B1 KR 1020120013844 A KR1020120013844 A KR 1020120013844A KR 20120013844 A KR20120013844 A KR 20120013844A KR 101338033 B1 KR101338033 B1 KR 101338033B1
Authority
KR
South Korea
Prior art keywords
graphene
aramid
carbon nanotube
carbon
groups
Prior art date
Application number
KR1020120013844A
Other languages
Korean (ko)
Other versions
KR20130092234A (en
Inventor
정영규
전길우
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020120013844A priority Critical patent/KR101338033B1/en
Publication of KR20130092234A publication Critical patent/KR20130092234A/en
Application granted granted Critical
Publication of KR101338033B1 publication Critical patent/KR101338033B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 아라미드/그래핀/탄소나노튜브 복합체에서 아라미드 고분자 대비 그래핀과 탄소나노튜브가 혼합된 혼합 탄소나노튜브의 중량비가 동일할 경우에도 그래핀과 탄소나노튜브의 혼합 비율을 다양하게 조절하여 아라미드/그래핀/탄소나노튜브 복합체의 열적, 기계적 및 전기적 물성을 제어할 수 있는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법 및 그에 따라 제조된 아라미드/그래핀/탄소나노튜브 복합체를 제공하기 위한 것으로서, 그 기술적 구성은, 그래핀 및 탄소나노튜브가 혼합된 탄소나노입자와 아라미드 고분자를 용액혼합하여 아라미드/그래핀/탄소나노튜브 복합체를 제조하는 것을 특징으로 한다.According to the present invention, even when the weight ratio of the mixed carbon nanotubes in which graphene and carbon nanotubes are mixed with the aramid polymer in the aramid / graphene / carbon nanotube composite is the same, the mixing ratio of graphene and carbon nanotubes is variously controlled. To provide aramid / graphene / carbon nanotube composites that can control the thermal, mechanical and electrical properties of the aramid / graphene / carbon nanotube composites and aramid / graphene / carbon nanotube composites prepared accordingly For the purpose, the technical configuration, characterized in that the aramid / graphene / carbon nanotube composite by producing a mixture of carbon nanoparticles and aramid polymer mixed with graphene and carbon nanotubes.

Description

아라미드/그래핀/탄소나노튜브 복합체의 제조방법 및 그에 따라 제조된 아라미드/그래핀/탄소나노튜브 복합체{Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same}Method for producing aramid / graphene / carbon nanotube composites and aramid / graphene / carbon nanotube composites prepared according to the present invention {Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same}

본 발명은 아라미드 복합체의 제조방법 및 그에 따른 아라미드 복합체에 관한 것으로, 보다 상세하게는 그래핀과 탄소나노튜브가 혼합된 탄소나노입자를 아라미드 고분자에 용액혼합하여 아라미드 복합체를 제조하는 아라미드/그래핀/나소나노튜브 복합체의 제조방법 및 그에 따라 제조된 아라미드/그래핀/탄소나노튜브 복합체에 관한 것이다.
The present invention relates to a method for producing an aramid complex and the resulting aramid complex, and more specifically, aramid / graphene / to prepare aramid complex by solution-mixing carbon nanoparticles mixed with graphene and carbon nanotubes to an aramid polymer The present invention relates to a method for preparing a nasano nanotube composite and an aramid / graphene / carbon nanotube composite prepared accordingly.

아라미드(Aramid)는 방향족 폴리아미드 섬유를 지칭하며, 방향족 고리 사이에 아미드 결합(-CONH-)이 적어도 85% 이상 결합된 분자구조를 갖는 전방향족 폴리아미드를 총칭한다.Aramid refers to an aromatic polyamide fiber, and refers to a wholly aromatic polyamide having a molecular structure in which at least 85% or more of amide bonds (-CONH-) are bonded between aromatic rings.

이러한 아라미드는 하기 [화학식 1]로 표시되는 파라 아라미드와 [화학식 2]로 표시되는 메타 아라미드로 나뉜다.Such aramid is divided into para aramid represented by the following [Formula 1] and meta aramid represented by [Formula 2].

[화학식 1][Formula 1]

Figure 112012011015195-pat00001

Figure 112012011015195-pat00001

[화학식 2](2)

Figure 112012011015195-pat00002

Figure 112012011015195-pat00002

여기서, 파라 아라미드는 보통의 유기섬유에 비하여 매우 우수한 인장강도와 탄성률 및 내열성을 갖기 때문에 가격경쟁력이 있는 고강도, 고탄성을 요구하는 분야에 사용되고 있으며, 메타 아라미드는 우수한 내열성 및 난연성을 지니고 있으나, 강도, 신도 및 탄성률 등의 물성에서는 기존의 폴리에스테르 등과 대부분 유사하다.Here, para aramid is used in the field requiring high strength and high elasticity, which is competitive in price, because it has very excellent tensile strength, elastic modulus, and heat resistance compared to ordinary organic fibers, and meta aramid has excellent heat resistance and flame retardancy, but In terms of physical properties such as elongation and elastic modulus, most of them are similar to conventional polyesters.

그리고, 파라 아라미드는 강한 황산과 같이 유독하고, 위험한 유기 용매에 녹여 가공되는 반면에, 메타 아라미드는 디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, N-메틸-2-피롤리돈 등과 같이 유기용매에 녹여 가공할 수 있다.In addition, para aramids are processed by dissolving them in toxic and dangerous organic solvents such as strong sulfuric acid, while meta aramids are organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and the like. It can be melted and processed.

한편, 아라미드 섬유는 원사 및 직물을 포함하여 부직포, 라미네이팅, 스테이플(Staple), 종이(Paper) 등의 형태로 높은 탄성률과 더불어 탁월한 강도, 강성, 내약품성, 낮은 전기전도성, 수축성, 치수안정성, 절단저항성 및 난연성 등의 특성으로 인하여 섬유보강 고무복합재료 등의 각종 복합재료, 로프, 케이블, 방탄방호용 및 내마찰재 등의 복합소재와 레저-스포츠용 장비 등의 용도로 사용된다.On the other hand, aramid fibers, including yarns and fabrics in the form of nonwovens, laminating, staples, paper, etc., with high elastic modulus, excellent strength, rigidity, chemical resistance, low electrical conductivity, shrinkage, dimensional stability, cutting Due to its properties such as resistance and flame retardancy, it is used for various composite materials such as fiber reinforced rubber composite materials, composite materials such as ropes, cables, antiballistic protection and friction materials, and leisure-sport equipment.

또한, 자동차, 정보통신, 우주항공, 국방, 레저 및 특수산업 등 다양한 관련 산업분야에서 사용이 확대되고 있으며, 고부가가치 소재로 각광을 받고 있다.In addition, it is being widely used in various related industries such as automobile, information and communication, aerospace, defense, leisure and special industries, and is attracting attention as a high value-added material.

뿐만 아니라, 아라미드 필름과 플라스틱은 자기테이프용, 이형필름, 점착테이프, 절연재료 및 복합재료로 사용된다.In addition, aramid film and plastic are used as magnetic tape, release film, adhesive tape, insulating material and composite materials.

한편, 그래핀은 탄소원자들이 벌집모양의 육각형 그물처럼 배열된 판상 형태로 넓은 표면적을 가지고 있다. 이러한 그래핀이 적층되어 쌓여 있는 구조를 가지는 것이 흑연(Graphite)이다.Graphene, on the other hand, has a large surface area in the form of a plate with carbon atoms arranged like a honeycomb hexagonal net. Graphite has a structure in which graphene is stacked and stacked.

여기서, 그래핀은 ~104 S/cm의 높은 전기전도도를 갖으며, ~1 TPa의 탁월한 영탄성률을 갖으며, 매우 높은 열안정성을 갖으며, 열적/기계적/전기적 특성이 비슷한 탄소나노튜브와 비교하였을 경우, 가격이 매우 저렴하다.
Here, graphene has a high electrical conductivity of ~ 10 4 S / cm, has an excellent Young's modulus of ~ 1 TPa, has a very high thermal stability, carbon nanotubes and similar thermal, mechanical and electrical properties In comparison, the price is very low.

한편, 탄소나노튜브(Carbon nanotube, CNT)는 지금 현존하는 물질 중 결함이 없는 거의 완벽한 신소재로 각광받고 있는 소재로서, 전기전도도가 구리와 유사하고, 열전도율은 자연계에서 가장 뛰어난 다이아몬드와 같으며, 강도는 철강보다 100배 뛰어나다.Meanwhile, carbon nanotube (CNT) is a material that is spotlighted as an almost perfect new material without defects among existing materials, and its electrical conductivity is similar to that of copper, and the thermal conductivity is the most excellent diamond in nature. Is 100 times better than steel.

이러한 탄소섬유는 1%만 변형시켜도 절단되는 반면에, 탄소나노튜브는 15%가 변형되어도 견딜 수 있을 정도로 매우 안정하다. 여기서, 탄소나노튜브는 판상의 그래핀 시트가 나노미터 크기의 직경으로 둥글게 말린 형태이며, 이 그래핀 시트가 말리는 각도 및 구조에 따라서 금속 또는 반도체의 특성을 보인다.The carbon fiber is cut even when only 1% is deformed, whereas the carbon nanotube is very stable enough to withstand 15% deformation. Here, the carbon nanotubes have a plate-shaped graphene sheet roundly dried to a diameter of nanometer size, and show the characteristics of a metal or a semiconductor depending on the angle and structure of the graphene sheet being dried.

또한, 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(Single-walled Carbon Nanotube, 이하 “SWCNT”라고 한다.)와 다중벽 탄소나노튜브(Multi-walled Carbon Nanotube, 이하 “MWCNT”라고 한다)로 구분한다. 본 발명의 배경이 되는 기술은 미국 특허출원공개공보 US2011/0024158호 및 대한민국 공개특허공보 제10-2010-0108868호에 개시되어 있다.
In addition, single-walled carbon nanotubes (hereinafter referred to as "SWCNT") and multi-walled carbon nanotubes (hereinafter referred to as "MWCNT"), depending on the number of bonds forming a wall. Separate by. The background technology of the present invention is disclosed in US Patent Application Publication No. US2011 / 0024158 and Korean Patent Publication No. 10-2010-0108868.

미국 특허출원공개공보 US2011/0024158호United States Patent Application Publication No. US2011 / 0024158 대한민국 공개특허공보 제10-2010-0108868호Republic of Korea Patent Publication No. 10-2010-0108868

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 그래핀, 단일벽 탄소나노튜브(SWCNT : Single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT : Multi-walled carbon nanotube) 및 다양한 화학종(알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기 등을 포함하는 화합물)으로 표면 개질된 그래핀, 탄소나노튜브(SWCNT : Single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT : Multi-walled carbon nanotube)로 이루어진 군에서 선택된 1종의 그래핀과 1종의 탄소나노튜브를 혼합한 탄소나노입자를 기능성 보강제로 사용하고, 아라미드 고분자를 매트릭스로 하는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법 및 그에 따라 제조된 아라미드/그래핀/탄소나노튜브 복합체를 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems described above, graphene, single-walled carbon nanotubes (SWCNT: Single-walled carbon nanotube), multi-walled carbon nanotubes (MWCNT) and various Graphene, surface-modified carbon nanotubes (SWCNT), multi-walled with chemical species (compounds containing alkyl, allyl, carboxyl, hydroxyl, amine, epoxy, urethane, urea, etc.) Carbon nanoparticles mixed with one type of graphene and one type of carbon nanotubes selected from the group consisting of multi-walled carbon nanotubes (MWCNT) are used as functional reinforcing agents, and aramids having aramid polymer as matrix An object of the present invention is to provide a method for preparing a graphene / carbon nanotube composite and an aramid / graphene / carbon nanotube composite prepared accordingly.

그리고, 본 발명은, 아라미드/그래핀/탄소나노튜브 복합체에서 아라미드 고분자 대비 그래핀과 탄소나노튜브가 혼합된 혼합 탄소나노튜브의 중량비가 동일할 경우에도 그래핀과 탄소나노튜브의 혼합 비율을 다양하게 조절하여 아라미드/그래핀/탄소나노튜브 복합체의 열적, 기계적 및 전기적 물성을 제어할 수 있는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법 및 그에 따라 제조된 아라미드/그래핀/탄소나노튜브 복합체를 제공하는 것을 목적으로 한다.
In addition, the present invention, even if the weight ratio of the mixed carbon nanotubes in which the graphene and carbon nanotubes are mixed with the aramid polymer in the aramid / graphene / carbon nanotube composite, the mixing ratio of graphene and carbon nanotubes vary To control the thermal, mechanical and electrical properties of the aramid / graphene / carbon nanotube composite to control the aramid / graphene / carbon nanotube composite and aramid / graphene / carbon nanotube composite prepared accordingly The purpose is to provide.

상기한 바와 같은 목적을 달성하기 위하여 본 발명은, 그래핀 및 탄소나노튜브가 혼합된 탄소나노입자와 아라미드 고분자를 용액혼합하여 아라미드/그래핀/탄소나노튜브 복합체를 제조한다.In order to achieve the object as described above, the present invention, a mixture of carbon nanoparticles and aramid polymer in which graphene and carbon nanotubes are mixed to prepare an aramid / graphene / carbon nanotube composite.

본 발명의 적절한 실시 형태에 따르면, 상기 아라미드 고분자의 분자쇄 구조는 하기구조식의 반복단위로 이루어진 군에서 선택된 적어도 하나 이상의 구조를 85% 이상 갖도록 이루어진다.According to a preferred embodiment of the present invention, the molecular chain structure of the aramid polymer is made to have at least 85% or more of at least one structure selected from the group consisting of repeating units of the following structural formula.

Figure 112012011015195-pat00003
Figure 112012011015195-pat00003

본 발명의 다른 적절한 실시 형태에 따르면, 상기 그래핀 및 탄소나노튜브가 혼합된 탄소나노입자의 조성비는 복합체 전체중량 대비 0.01 내지 50.0 중량%이며, 상기 혼합 탄소나노입자를 구성하는 그래핀:탄소나노튜브의 중량 비율은 0.001:99.999 내지 99.999:0.001로 이루어진다.According to another suitable embodiment of the present invention, the composition ratio of the carbon nanoparticles mixed with the graphene and carbon nanotubes is 0.01 to 50.0% by weight based on the total weight of the composite, graphene: carbon nano to constitute the mixed carbon nanoparticles The weight ratio of the tubes consists of 0.001: 99.999 to 99.999: 0.001.

본 발명의 또 적절한 실시 형태에 따르면, 상기 그래핀은 알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 및 우레아기 화합물로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물로 표면 개질된 그래핀이고, 상기 탄소나노투브는 알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 및 우레아기 화합물로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물로 표면 개질된 SWCNT 또는 MWCNT이다.According to another suitable embodiment of the present invention, the graphene is surface modified with one or two or more compounds selected from the group consisting of alkyl group, allyl group, carboxyl group, hydroxyl group, amine group, epoxy group, urethane group, and urea group compound Is a graphene, and the carbon nanotube is surface-modified SWCNT or MWCNT with one or two or more compounds selected from the group consisting of alkyl, allyl, carboxyl, hydroxyl, amine, epoxy, urethane, and urea compounds to be.

본 발명의 또 적절한 실시 형태에 따르면, 상기 아라미드/그래핀/탄소나노튜브 복합체의 용액혼합은 0 내지 150℃의 온도에서 물, 디메틸포름아미드, 디메틸아세트아미드, 황산, 디메틸설폭사이드, N-메틸-2-피롤리돈으로 이루어진 군에서 선택된 적어도 1종의 용매와 LiCl 및 CaCl2로 이루어진 군에서 선택된 적어도 1종의 염을 이용하여 제조된다.According to another suitable embodiment of the present invention, the solution mixture of the aramid / graphene / carbon nanotube complex is water, dimethylformamide, dimethylacetamide, sulfuric acid, dimethyl sulfoxide, N-methyl at a temperature of 0 to 150 ℃ It is prepared using at least one solvent selected from the group consisting of -2-pyrrolidone and at least one salt selected from the group consisting of LiCl and CaCl 2 .

본 발명의 또 다른 적절한 실시 형태에 따르면, 아라미드/그래핀/탄소나노튜브 복합체의 제조방법에 의하여 제조되어 섬유, 필름 또는 플라스틱 제품에 포함되는 것을 특징으로 한다.
According to another suitable embodiment of the present invention, the aramid / graphene / carbon nanotube composite is manufactured by the method, characterized in that it is included in a fiber, film or plastic product.

이상에서 설명한 바와 같이 상기와 같은 구성을 갖는 본 발명은, 아라미드 단독 고분자보다 우수한 열안정성, 기계적 물성, 전기전도성 및 전기발열 특성을 갖으며, 이로 인해 섬유, 필름, 플라스틱 등에 적용될 경우에도 열안정성, 기계적 물성, 전기전도성 및 전기발열 특성을 유지할 수 있다는 등의 효과를 거둘 수 있다.
As described above, the present invention having the configuration as described above has superior thermal stability, mechanical properties, electrical conductivity, and heat generation characteristics than the aramid homopolymer, and therefore, even when applied to fibers, films, plastics, etc. Mechanical properties, electrical conductivity and electrical heating properties can be maintained and the like.

도 1은 본 발명에 의한 아라미드/그래핀/탄소나노튜브 복합체의 부피전기저항을 나타내는 도면,
도 2는 본 발명에 의한 아라미드/그래핀/탄소나노튜브 복합체의 다양한 인가전압 조건에서 시간에 따른 적기발열 특성을 나타내는 도면.
1 is a view showing the volume electrical resistance of the aramid / graphene / carbon nanotube composite according to the present invention,
Figure 2 is a view showing the timely heat generation characteristics with time under various applied voltage conditions of the aramid / graphene / carbon nanotube composite according to the present invention.

이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the scope of the present invention, but is merely an example, and various modifications can be made without departing from the technical spirit of the present invention.

본 발명에 적용되는 "아라미드/그래핀/탄소나노튜브"는 아라미드 고분자에 그래핀과 탄소나노튜브 혼합 보강제를 복합하여 제조된 물질을 지칭하며, 본 발명에서 서술한 "아라미드(Aramid)"는 85% 이상의 아미드 결합(-CONH-)이 두 개의 방향족 고리에 직접 연결된 합성 고분자를 지칭한다."Aramid / graphene / carbon nanotubes" applied to the present invention refers to a material prepared by combining a graphene and carbon nanotube mixed adjuvant in the aramid polymer, "Aramid" described in the present invention is 85 Refers to synthetic polymers in which at least% amide bonds (-CONH-) are directly connected to two aromatic rings.

본 발명에 적용된 아라미드는 분자쇄 구조가 하기 [화학식 3] 내지 [화학식 6]에 표시된 반복 단위구조로 이루어진 군에서 선택된 하나 이상의 구조를 85% 이상 갖는 것이 바람직하다.
The aramid applied to the present invention preferably has a molecular chain structure of 85% or more of at least one structure selected from the group consisting of repeating unit structures shown in the following [Formula 3] to [Formula 6].

[화학식 3](3)

Figure 112012011015195-pat00004

Figure 112012011015195-pat00004

[화학식 4][Chemical Formula 4]

Figure 112012011015195-pat00005

Figure 112012011015195-pat00005

[화학식 5][Chemical Formula 5]

Figure 112012011015195-pat00006

Figure 112012011015195-pat00006

[화학식 6][Chemical Formula 6]

Figure 112012011015195-pat00007

Figure 112012011015195-pat00007

본 발명에 적용된 그래핀은, 탄소 원자들이 육각형 모양의 벌집 모양을 이룬 평면 구조의 판상입자로써 내열성, 전기전도성, 열전도성 및 기계적 물성이 우수하다.Graphene applied to the present invention is a plate-like particle having a planar structure in which carbon atoms form a hexagonal honeycomb shape, and is excellent in heat resistance, electrical conductivity, thermal conductivity, and mechanical properties.

또한, 그래핀은 다양한 화학종(알킬기, 아릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 우레아기 등을 포함하는 화합물)으로 표면 개질이 가능하다.In addition, graphene can be surface modified with various chemical species (compounds including alkyl groups, aryl groups, carboxyl groups, hydroxyl groups, amine groups, epoxy groups, urethane groups, urea groups, and the like).

한편, 탄소나노튜브는, 판상의 그래핀 시트가 원통으로 말린 형태의 탄소입자로써 단일벽 탄소나노튜브(Single-walled carbon nanotube : 이하, 'SWCNT'라고 함) 및 다중벽 탄소나노튜브(Multi-walled carbon nanotube : 이하, 'MWCNT'라고 함)가 있다.On the other hand, carbon nanotubes are carbon particles in the form of a cylindrical graphene sheet rolled into a cylinder, and single-walled carbon nanotubes (hereinafter referred to as 'SWCNT') and multi-walled carbon nanotubes (Multi- walled carbon nanotubes (hereinafter referred to as 'MWCNT').

상기한 바와 같은, SWCNT 및 MWCNT로 이루어지는 탄소나노튜브들은 다양한 화학종(알칼기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기 및 우레아기 등을 포함하는 화합물)으로 표면 개질이 가능하고, 전기전도성, 내열성 및 기계적 물성이 매우 우수하다.
As described above, carbon nanotubes made of SWCNT and MWCNT can be surface modified with various chemical species (compounds including alkali groups, allyl groups, carboxyl groups, hydroxyl groups, amine groups, epoxy groups, urethane groups, urea groups, etc.) Excellent electrical conductivity, heat resistance and mechanical properties.

이하, 본 발명에 의한 아라미드/그래핀/탄소나노튜브 복합체의 제조방법을 설명한다.Hereinafter, the preparation method of the aramid / graphene / carbon nanotube composite according to the present invention.

이를 위하여 본 발명에 적용되는 그래핀의 제조방법을 먼저 설명한다. To this end, a method of manufacturing graphene applied to the present invention will be described first.

여기서, 그래핀의 제조방법은, 먼저 그래핀과 탄소나노튜브가 혼합된 탄소나노입자와 아라미드 단독고분자를 조합하되, 상기 탄소나노입자와 아라미드 단독고분자는 0.001 내지 99.999 : 99.999 내지 0.001의 중량% 범위에서 다양하게 조합하여 제조하는 것이 바람직하나, 보다 바람직하게는 상기 탄소나노입자는 복합체 총 중량 대비 0.01 내지 50.00 중량% 범위에서 조합하여 제조한다.Here, the method for producing graphene, but first carbon nanoparticles and aramid homopolymers are mixed with graphene and carbon nanotubes, the carbon nanoparticles and aramid homopolymers are 0.001 to 99.999: 99.999 to 0.001% by weight It is preferable to prepare in various combinations from, but more preferably the carbon nanoparticles are prepared by combining in a range of 0.01 to 50.00% by weight relative to the total weight of the composite.

여기서, 상기 그래핀과 탄소나노튜브가 다양한 중량 비율로 혼합된 탄소나노입자와 아라미드 고분자의 혼합은 용액혼합으로 실시하는 것이 바람직하다.Here, the mixing of the carbon nanoparticles and the aramid polymer in which the graphene and the carbon nanotubes are mixed in various weight ratios is preferably performed by solution mixing.

그리고, 용액혼합은 물, 디메틸포름아미드, 디메틸아세트아미드, 황산, 디메틸설폭사이드 및 N-메틸-2-피롤리돈과 같은 용매 또는 이들의 혼합 용매들 이용하여 실시하는 것이 바람직하다.The solution mixing is preferably carried out using a solvent such as water, dimethylformamide, dimethylacetamide, sulfuric acid, dimethyl sulfoxide and N-methyl-2-pyrrolidone or mixed solvents thereof.

특히, 용액혼합 시 아라미드의 용해성을 향상시키기 위하여 LiCl 또는 CaCl2와 같은 염을 전체 중량 대비 0.01 내지 50.00 중량%로 첨가하는 것이 바람직하고, 0.1 내지 20.0 중량%를 첨가하는 것이 보다 바람직하다.In particular, in order to improve the solubility of aramid during solution mixing, it is preferable to add a salt such as LiCl or CaCl 2 in an amount of 0.01 to 50.00% by weight, and more preferably 0.1 to 20.0% by weight.

또한, 용액혼합은 0 내지 150℃의 온도범위에서 실시하는 것이 바람직하며, 이때 용매의 중량은 전체 용액의 중량 대비 20.00 내지 99.99 중량%로 이루어지는 것이 보다 바람직하다.
In addition, the solution mixing is preferably carried out at a temperature range of 0 to 150 ℃, wherein the weight of the solvent is more preferably made of 20.00 to 99.99% by weight relative to the weight of the total solution.

실시예Example 1~9 및  1-9 and 비교예Comparative Example 1 One

본 발명 실시예를 위한 아라미드 고분자는 시그마알드리치(주) 제품을 사용하였다. 탄소나노입자의 하나로써 그래핀은 시그마알드리치(주)에서 구입한 천연 그라파이트를 이용하여 산처리 및 열팽창(1050℃, 30초) 공정을 통해 직접 제조하였다.Aramid polymer for the present invention was used by Sigma Aldrich Co., Ltd. product. As one of the carbon nanoparticles, graphene was directly prepared by acid treatment and thermal expansion (1050 ° C., 30 seconds) using natural graphite purchased from Sigma Aldrich Co., Ltd.

또 다른 탄소나노입자로서의 탄소나노튜브는 한화나노텍사의 MWCNT(모델명 : CM-250)을 사용하였으며, 직경 10~15nm의 제품을 사용하였다.Carbon nanotubes as another carbon nanoparticles were manufactured by Hanwha Nanotech's MWCNT (model name: CM-250), and products having a diameter of 10 to 15 nm were used.

그리고, 용액혼합에서 용매와 염으로 디메틸아세트아미드와 LiCl을 사용하였다.Dimethylacetamide and LiCl were used as a solvent and a salt in solution mixing.

용액혼합에서 아라미드와 혼합 탄소나노입자:용매:염의 비율은 10:88:2의 중량비로 하여 80℃에서 약 24시간 동안 교반하였다.In the solution mixture, the ratio of aramid and mixed carbon nanoparticles: solvent: salt was stirred at 80 ° C. for about 24 hours at a weight ratio of 10: 88: 2.

용액혼합에서의 아라미드 고분자와 혼합 탄소나노입자(그래핀+MWCNT)의 중량 비율은 99.0:1.0으로 하였으며, 혼합 탄소나노입자에서 그래핀과 MWCNT의 상대적인 중량비는 아래 [표 1]에서와 같이 다양하게 조절하였다.The weight ratio of the aramid polymer and the mixed carbon nanoparticles (graphene + MWCNT) in the solution mixture was 99.0: 1.0, the relative weight ratio of graphene and MWCNT in the mixed carbon nanoparticles is various as shown in Table 1 below Adjusted.

제조된 용액혼합은 초음파 처리 및 교반 공정을 통해 탄소나노입자(그래핀+MWCNT)를 균일하게 분산시켰다.The prepared solution mixture was uniformly dispersed carbon nanoparticles (graphene + MWCNT) through the sonication and stirring process.

적절한 양의 용액혼합을 샤알레에 부은 후 80 내지 160℃의 온도에서 통풍 건조 및 진공 건조하고, 80℃의 증류수를 통해 세수하여 용매를 완전히 제거함으로써 두께가 약 0.1mm인 아라미드/그래핀/MWCNT 복합체를 제조하였다.
An appropriate amount of solution mixture is poured into a chale, followed by air drying and vacuum drying at a temperature of 80 to 160 ° C., washing with distilled water at 80 ° C. to completely remove the solvent, thereby obtaining aramid / graphene / MWCNT having a thickness of about 0.1 mm. The complex was prepared.

아라미드
(중량%)
Aramid
(weight%)
탄소나노입자
(그래핀+MWCNT)
(중량%)
Carbon nanoparticles
(Graphene + MWCNT)
(weight%)
그래핀:MWCNT
(중량비율)
Graphene: MWCNT
(Weight ratio)
비교예 1Comparative Example 1 100100 -- -- 실시예 1Example 1 99.099.0 1.01.0 100:0100: 0 실시예 2Example 2 99.099.0 1.01.0 90:1090:10 실시예 3Example 3 99.099.0 1.01.0 80:2080:20 실시예 4Example 4 99.099.0 1.01.0 70:3070:30 실시예 5Example 5 99.099.0 1.01.0 50:5050:50 실시예 6Example 6 99.099.0 1.01.0 30:7030:70 실시예 7Example 7 99.099.0 1.01.0 20:8020:80 실시예 8Example 8 99.099.0 1.01.0 10:9010:90 실시예 9Example 9 99.099.0 1.01.0 0:1000: 100

실험예Experimental Example 1(전기전도성 측정) 1 (conductivity measurement)

아라미드/그래핀/MWCNT 복합체의 전기전도성을 측정하기 위하여 전기저항 측정기(Keithley 8009 resistivity test fixture, Keithley 2400 sourcemeter/2181 nanovoltmeter)를 이용하였다.An electrical resistance meter (Keithley 8009 resistivity test fixture, Keithley 2400 sourcemeter / 2181 nanovoltmeter) was used to measure the electrical conductivity of the aramid / graphene / MWCNT composite.

비교예 1에서 나타난 바와 같이, 아라미드 단독고분자는 ~1016Ω.cm의 부피전기저항값을 나타낸다.As shown in Comparative Example 1, the aramid homopolymer exhibited a volume electrical resistance value of ˜10 16 Ω · cm.

도 1은 본 발명에 의한 아라미드/그래핀/탄소나노튜브 복합체의 부피전기저항을 나타내는 도면으로서, 다양한 중량 비율의 그래핀과 MWCNT가 혼합된 탄소나노입자 1.0 중량%가 도입된 아라미드/탄소나노입자 복합체의 부피저항을 나타내는 도면이다.1 is a view showing the volume electrical resistance of the aramid / graphene / carbon nanotube composite according to the present invention, aramid / carbon nanoparticles introduced 1.0 wt% carbon nanoparticles mixed with graphene and MWCNT of various weight ratios It is a figure which shows the volume resistance of a composite.

도면에서 도시하고 있는 바와 같이, 혼합된 탄소나노입자(그래핀+MWCNT)에서 MWCNT의 중량 비율 변화에 따라 복합체의 부피전기저항값이 달라지는 결과로부터 아라미드/그래핀/MWCNT 복합체의 전기전도성은 혼합된 탄소나노입자의 조성비 변화에 따라 쉽게 제어할 수 있음을 알 수 있다.As shown in the figure, the electrical conductivity of the aramid / graphene / MWCNT composite from the mixed carbon nanoparticles (graphene + MWCNT) as a result of the change in the volumetric resistance value of the composite according to the weight ratio change of MWCNT It can be seen that it can be easily controlled according to the composition ratio of the carbon nanoparticles.

예를 들면, 실시예 1에서 나타난 바와 같이, 그래핀:MWCNT의 중량비가 100:0일 경우, 아라미드/그래핀/MWCNT 복합체의 부피전기저항은 ~1010Ω.cm를 나타내고 있는 반면에, 실시예 2에서 나타난 바와 같이, 그래핀:MWCNT의 중량비가 90:10일 경우, 아라미드/그래핀/MWCNT 복합체의 부피전기저항은 ~105Ω.cm를 나타내고, 실시예 9에서 나타난 바와 같이, 그래핀:MWCNT의 중량비가 0:100일 경우, 아라미드/그래핀/MWCNT 복합체의 부피전기저항은 ~101Ω.cm을 나타내는 등 부피전기저항이 급격히 낮아짐을 알 수 있다.For example, as shown in Example 1, when the weight ratio of graphene: MWCNT is 100: 0, the volume resistivity of the aramid / graphene / MWCNT composite shows ˜10 10 Ω.cm, while As shown in Example 2, when the weight ratio of graphene: MWCNT is 90:10, the volume electrical resistance of the aramid / graphene / MWCNT composite shows ˜10 5 Ω.cm, as shown in Example 9, When the weight ratio of fin: MWCNT is 0: 100, it can be seen that the volume electrical resistance of the aramid / graphene / MWCNT composite decreases rapidly, such as ˜10 1 Ω.cm.

이로부터, 혼합 탄소나노입자(그래핀+MWCNT)에서 MWCNT의 함량이 많아질수록 복합체의 부피전기저항이 지속적으로 낮아짐을 알 수 있다.
From this, it can be seen that as the content of MWCNT increases in the mixed carbon nanoparticles (graphene + MWCNT), the volume electrical resistance of the composite is continuously lowered.

실험예Experimental Example 2( 2( 전기발열Electricity generation 특성 측정) Characteristic measurement)

아라미드/그래핀/MWCNT 복합체의 전기발열 특성을 열화상 카메라를 사용하여 측정하였다.The electrothermal properties of the aramid / graphene / MWCNT composites were measured using a thermal imaging camera.

도 2는 본 발명에 의한 아라미드/그래핀/탄소나노튜브 복합체의 다양한 인가전압 조건에서 시간에 따른 적기발열 특성을 나타내는 도면으로서, 실시예 6에서 나타난 바와 같이, 그래핀:MWCNT의 중량비가 30:70인 혼합 탄소나노입자를 1.0 중량%로 함유한 아라미드/그래핀/MWCNT 복합체에 대하여 상온 25℃에서 7 내지 90[V]의 다양한 전압을 인가하였을 때 복합체의 시간에 따른 온도 상승을 나타낸 것이다.2 is a view showing the timely heat generation characteristics with time under various applied voltage conditions of the aramid / graphene / carbon nanotube composite according to the present invention, as shown in Example 6, the weight ratio of graphene: MWCNT is 30: The aramid / graphene / MWCNT composite containing 70 wt% of mixed carbon nanoparticles was shown to increase in temperature with time of the composite when various voltages of 7 to 90 [V] were applied at 25 ° C. at room temperature.

아라미드/그래핀/MWCNT 또는 아라미드/MWCNT 복합체와는 달리 아라미드 단독고분자와 아라미드/그래핀 복합체의 경우, 인가 전압에 의한 온도 상승은 일어나지 않는 것을 알 수 있다.Unlike aramid / graphene / MWCNT or aramid / MWCNT complex, it can be seen that in the case of the aramid homopolymer and the aramid / graphene complex, a temperature increase due to an applied voltage does not occur.

본 발명에 의한 아리미드/그래핀/탄소나노튜브 복합체의 제조방법에 따라 제조된 아라미드/그래핀/MWCNT 나노복합체는 상기 실험예에서 결과로 입증되듯이 기존의 아라미드 단독고분자보다 우수한 전기전도성, 전기발열 특성과 더불어 향상된 내열성과 기계적 물성을 가진다.The aramid / graphene / MWCNT nanocomposite prepared according to the method for preparing the arimid / graphene / carbon nanotube composite according to the present invention has superior electrical conductivity and electrical conductivity as compared to conventional aramid homopolymers, as demonstrated in the above experimental example. In addition to exothermic properties, it has improved heat resistance and mechanical properties.

따라서, 필름, 섬유 및 플라스틱 등 다양한 분야에 유용하게 적용될 수 있다.
Therefore, it can be usefully applied to various fields such as film, fiber and plastic.

본 발명은 특정의 실시예와 관련하여 도시 및 설명하지만, 첨부 특허청구의 범위에 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것은 당업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It will be easy for anyone to know.

Claims (6)

그래핀 및 탄소나노튜브가 혼합된 탄소나노입자와 아라미드 고분자를 용액혼합하여 아라미드/그래핀/탄소나노튜브 복합체를 제조하되,
상기 아라미드/그래핀/탄소나노튜브 복합체의 용액혼합은 0 내지 150℃의 온도에서 물, 디메틸포름아미드, 디메틸아세트아미드, 황산, 디메틸설폭사이드, N-메틸-2-피롤리돈으로 이루어진 군에서 선택된 적어도 1종의 용매와 LiCl 및 CaCl2로 이루어진 군에서 선택된 적어도 1종의 염을 이용하여 제조되는 것을 특징으로 하는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법.
To prepare aramid / graphene / carbon nanotube composite by mixing the carbon nanoparticles and aramid polymer mixed with graphene and carbon nanotubes,
The solution mixture of the aramid / graphene / carbon nanotube complex is in the group consisting of water, dimethylformamide, dimethylacetamide, sulfuric acid, dimethyl sulfoxide, N-methyl-2-pyrrolidone at a temperature of 0 to 150 ℃ A method for producing an aramid / graphene / carbon nanotube complex, characterized in that it is prepared using at least one solvent selected from the group consisting of at least one solvent selected from LiCl and CaCl 2 .
청구항 1에 있어서,
상기 아라미드 고분자의 분자쇄 구조는 하기구조식의 반복단위로 이루어진 군에서 선택된 적어도 하나 이상의 구조를 85% 이상 갖도록 이루어지는 것을 특징으로 하는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법.
Figure 112012011015195-pat00008

The method according to claim 1,
The molecular chain structure of the aramid polymer is a method for producing an aramid / graphene / carbon nanotube composite, characterized in that it has at least 85% or more of the structure selected from the group consisting of repeating units of the following structural formula.
Figure 112012011015195-pat00008

청구항 1에 있어서,
상기 그래핀 및 탄소나노튜브가 혼합된 탄소나노입자의 조성비는 복합체 전체중량 대비 0.01 내지 50.0 중량%이며, 상기 혼합 탄소나노입자를 구성하는 그래핀:탄소나노튜브의 중량 비율은 0.001:99.999 내지 99.999:0.001로 이루어지는 것을 특징으로 하는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법.
The method according to claim 1,
The composition ratio of the carbon nanoparticles in which the graphene and carbon nanotubes are mixed is 0.01 to 50.0% by weight based on the total weight of the composite, and the weight ratio of graphene: carbon nanotubes constituting the mixed carbon nanoparticles is 0.001: 99.999 to 99.999 Method for producing an aramid / graphene / carbon nanotube composite, characterized in that consisting of: 0.001.
청구항 1에 있어서,
상기 그래핀은 알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 및 우레아기 화합물로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물로 표면 개질된 그래핀이고, 상기 탄소나노튜브는 알킬기, 알릴기, 카르복실기, 수산기, 아민기, 에폭시기, 우레탄기, 및 우레아기 화합물로 이루어진 군에서 선택된 1종 또는 2종 이상의 화합물로 표면 개질된 SWCNT 또는 MWCNT인 것을 특징으로 하는 아라미드/그래핀/탄소나노튜브 복합체의 제조방법.
The method according to claim 1,
The graphene is graphene surface-modified with one or two or more compounds selected from the group consisting of alkyl groups, allyl groups, carboxyl groups, hydroxyl groups, amine groups, epoxy groups, urethane groups, and urea group compounds, wherein the carbon nanotubes are Aramid / graphene / characterized in that the SWCNT or MWCNT surface-modified with one or two or more compounds selected from the group consisting of alkyl, allyl, carboxyl, hydroxyl, amine, epoxy, urethane, and urea compounds Method for producing a carbon nanotube composite.
삭제delete 제 1항의 아라미드/그래핀/탄소나노튜브 복합체의 제조방법에 의하여 제조되고, 섬유, 필름 또는 플라스틱 제품에 포함되는 것을 특징으로 하는 아라미드/그래핀/탄소나노튜브 복합체.
Aramid / graphene / carbon nanotube composites prepared by the method of claim 1, wherein the aramid / graphene / carbon nanotube composite, characterized in that included in the fiber, film or plastic products.
KR1020120013844A 2012-02-10 2012-02-10 Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same KR101338033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120013844A KR101338033B1 (en) 2012-02-10 2012-02-10 Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120013844A KR101338033B1 (en) 2012-02-10 2012-02-10 Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same

Publications (2)

Publication Number Publication Date
KR20130092234A KR20130092234A (en) 2013-08-20
KR101338033B1 true KR101338033B1 (en) 2013-12-06

Family

ID=49217122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120013844A KR101338033B1 (en) 2012-02-10 2012-02-10 Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same

Country Status (1)

Country Link
KR (1) KR101338033B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557461B1 (en) * 2013-11-28 2015-10-06 한화케미칼 주식회사 Tire curing bladder and method of preparing the same
WO2015122641A1 (en) * 2014-02-13 2015-08-20 전자부품연구원 Heating paste composition, surface type heating element using same, and potable low-power heater
CN109651810B (en) * 2018-12-24 2021-05-11 东华大学 Poly (m-phenylene isophthalamide) heat-conducting composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100099586A (en) * 2009-03-03 2010-09-13 한국과학기술연구원 Graphene composite nanofiber and the preparation method thereof
US20110024158A1 (en) * 2009-01-05 2011-02-03 Tsotsis Thomas K Carbon-nanotube/graphene-platelet-enhanced, high-conductivity wire
KR101108425B1 (en) 2008-11-11 2012-01-30 코오롱인더스트리 주식회사 Method of manufacturing composite fiber of carbon nanotube and aramid
KR101182380B1 (en) 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108425B1 (en) 2008-11-11 2012-01-30 코오롱인더스트리 주식회사 Method of manufacturing composite fiber of carbon nanotube and aramid
US20110024158A1 (en) * 2009-01-05 2011-02-03 Tsotsis Thomas K Carbon-nanotube/graphene-platelet-enhanced, high-conductivity wire
KR20100099586A (en) * 2009-03-03 2010-09-13 한국과학기술연구원 Graphene composite nanofiber and the preparation method thereof
KR101182380B1 (en) 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes

Also Published As

Publication number Publication date
KR20130092234A (en) 2013-08-20

Similar Documents

Publication Publication Date Title
Choudhary et al. Polymer/carbon nanotube nanocomposites
Liu et al. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications
Alarifi Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads
Chou et al. Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes
Miller et al. Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites
Kodjie et al. Morphology and crystallization behavior of HDPE/CNT nanocomposite
Liu et al. Interlocked CNT networks with high damping and storage modulus
Mandal et al. Ionic liquid integrated multiwalled carbon nanotube in a poly (vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement
Lu et al. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation
Liu et al. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes
Saeed et al. Preparation of multiwalled carbon nanotube/nylon‐6 nanocomposites by in situ polymerization
US20120282453A1 (en) Carbon nanotube composites and methods and apparatus for fabricating same
Katihabwa et al. Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
Ahmad et al. Exfoliated graphene reinforced polybenzimidazole nanocomposite with improved electrical, mechanical and thermal properties
KR101295699B1 (en) meta-Aramid/Carbon Nanotube Composites and Method for Preparing the Same
Kausar Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond
KR101338033B1 (en) Aramid composites reinforced with mixed carbon nanomaterials of graphene and carbon nanotube and process for producing the same
KR101234257B1 (en) Aramid/Graphene Composites and Method for Preparing the Same
KR20180039329A (en) Graphene/polymer composite fiber and the manufacturing method therefor
CN115851242A (en) Aramid fiber carbon nano dispersion liquid and preparation method thereof
Verdejo et al. Carbon nanotube reinforced rubber composites
CN115746352A (en) Composite heat-conducting film and preparation method and application thereof
KR20160125651A (en) Carbon nanomaterial reformed with functional group comprising aromatic hetero ring and polarity group, carbon nanomaterial-polymer composite material, and preparing methods thereof
Yun et al. Morphological effects of alkylated multiwalled carbon nanotubes on poly (L-lactic acid)-based composites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee