KR101337967B1 - Manufacturing Mothod of F-dopped Tin oxide film with bending processability - Google Patents

Manufacturing Mothod of F-dopped Tin oxide film with bending processability Download PDF

Info

Publication number
KR101337967B1
KR101337967B1 KR1020110068782A KR20110068782A KR101337967B1 KR 101337967 B1 KR101337967 B1 KR 101337967B1 KR 1020110068782 A KR1020110068782 A KR 1020110068782A KR 20110068782 A KR20110068782 A KR 20110068782A KR 101337967 B1 KR101337967 B1 KR 101337967B1
Authority
KR
South Korea
Prior art keywords
transparent conductive
conductive film
tin oxide
fto
fluorine
Prior art date
Application number
KR1020110068782A
Other languages
Korean (ko)
Other versions
KR20130008190A (en
Inventor
철 규 송
성 환 박
보 민 김
Original Assignee
(주)솔라세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)솔라세라믹 filed Critical (주)솔라세라믹
Priority to KR1020110068782A priority Critical patent/KR101337967B1/en
Publication of KR20130008190A publication Critical patent/KR20130008190A/en
Application granted granted Critical
Publication of KR101337967B1 publication Critical patent/KR101337967B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 굽힘 가공성을 가지는 저저항 고투과율 FTO 투명전도막 제조 방법으로, 불소가 도핑된 산화주석 투명전도막을 상압 CVD 및 스프레이 파이로졸법에 의하여 투명기판위에 증착하는 단계; 상기 불소가 도핑된 산화주석 박막을 air 분위기하에서 후 열처리하여 곡면가공 또는 굽힘성형하는 단계를 포함하여 구성되는 것을 특징으로 한다.The present invention provides a method for producing a low resistance high transmittance FTO transparent conductive film having bending workability, comprising: depositing a fluorine-doped tin oxide transparent conductive film on a transparent substrate by atmospheric pressure CVD and spray pyrosol method; The fluorine-doped tin oxide thin film is subjected to post-heat treatment in an air atmosphere, characterized in that it comprises a step of forming a curved surface or bending.

Description

굽힘 가공성을 가지는 저저항 고투과율 FTO 투명전도막 제조 방법{Manufacturing Mothod of F-dopped Tin oxide film with bending processability}Manufacturing method of low resistance high transmittance FTO transparent conductive film having bending workability {Manufacturing Mothod of F-dopped Tin oxide film with bending processability}

본 발명에서는 불소가 도핑된 산화주석 박막(FTO ; Fluorine-doped Tin Oxide)을 제조 후 굽힘 가공하는 방법에 관한 것으로, 상세하게는 (1) 불소가 도핑된 산화주석박막을 투명기판위에 증착하는 단계; 및 (2) 상기 불소가 도핑된 산화주석 박막을 air 분위기하에서 후 열처리하여 곡면가공 하는 단계를 포함하는 불소가 도핑된 산화주석 박막에 관한 것이다.The present invention relates to a method of bending and fabricating a fluorine-doped tin oxide thin film (FTO; Fluorine-doped Tin Oxide), specifically, (1) depositing a fluorine-doped tin oxide thin film on a transparent substrate ; And (2) relates to a fluorine-doped tin oxide thin film comprising the step of post-heat-treating the fluorine-doped tin oxide thin film in an air atmosphere.

투명전도성 산화막(TCO: Transparent conducting oxide) 재료는 주로 n-type semiconductor를 중심으로 연구 되어 왔으며, 태양전지(Solar Cell), 전자차폐(Electromagnetic Shielding), 디스플레이장치의 액정디스플레이(LCD: Liquid Crystal Display), 플라즈마디스플레이 패널(PDP: Plasma Display Panel), 유기발광 디스플레이(OLED: Organic Electro Luminescence Display)등의 사용되고 있다.Transparent conducting oxide (TCO) materials have been studied mainly on n-type semiconductors, and are used in liquid crystal displays (LCDs) of solar cells, electromagnetic shielding, and display devices. , Plasma display panels (PDPs), organic electroluminescent displays (OLEDs), and the like are used.

일반적으로 널리 알려진 산화주석(SnO2), 산화아연(ZnO) 및 산화인듐(In2O3)과 같은 산화물 투명전도막이 제조되고 있으며, 그중 산화인듐은 거의 모든 용도에서 사용되는 투명전도막 재료로서 산화인듐 투명전도막 재료의 우수한 전기적 비저항 및 높은 투과도로 인해 이를 대체할 물질이 없을 정도로 뛰어난 물성을 지니고 있다. In general, oxide transparent conductive films such as tin oxide (SnO 2), zinc oxide (ZnO), and indium oxide (In 2 O 3) have been manufactured. Among them, indium oxide is a transparent conductive film material used in almost all applications. Due to the excellent electrical resistivity and high permeability of the membrane material, it has excellent physical properties that no material can replace.

하지만, 산화인듐 투명전도막의 원료물질인 인듐의 경우 매장량이 한정되어 있는 고갈자원으로서, 매우 높은 가격으로 판매되고 있으며, 이로 인해 제조단가가 많이 증가 되고 있는 추이이다. However, indium, which is a raw material of the indium oxide transparent conductive film, is a depleted resource with limited reserves, and is sold at a very high price, thereby increasing the manufacturing cost.

투명전도막의 제조방법으로는 스프레이 열분해법(SPD: Spray Pyrolysis Deposition), 상압 화학 기상 증착법(APCVD: Atmospheric Chemical Vapor Deposition), 화학 기상 증착법(CVD:Chemical Vapor Deposition), 금속 유기 화학 기상 증착법(MOCVD: Metal Organic Chemical Vapor Deposition), 분자선 적층법(Molecular Beam Epitaxy), 금속유기분자선 적층법(Metal Organic Molecular Beam Epitaxy), 펄스 레이저 증착법(Pulsed Laser Deposition), 원자층 증착법 (ALD), 스퍼터링법(Sputtering)등과 같은 코팅 기술이 산업적으로 활발하게 연구되고 있다. 그 중 FTO 제조 공정 기술의 대표적 코팅방법으로는 스프레이 열분해법(Sparay pyrolysis Deposition)과 상압 화학 기상증착법(Atmospheric Chemical Vapor Deposition)을 통하여 제조된다. 전자인 경우 액상 FTO 프리커서 용액을 기상으로 미스트화(마이크로 액적 : Sn, F 프리커서, 용매, 첨가물 등 혼합액 상태)시켜 가열된 기판위에 보내서 코팅하는 기술이며, 후자인 경우 Sn과 F 함유 프리커서를 분자단위에서 증발시켜 가열된 기판위로 보내서 코팅하는 기술이다. Manufacturing methods of the transparent conductive film include spray pyrolysis deposition (SPD), atmospheric chemical vapor deposition (APCVD), chemical vapor deposition (CVD), and metal organic chemical vapor deposition (MOCVD). Metal Organic Chemical Vapor Deposition, Molecular Beam Epitaxy, Metal Organic Molecular Beam Epitaxy, Pulsed Laser Deposition, Atomic Layer Deposition (ALD), Sputtering Coating techniques such as the like are being actively researched industrially. Among them, typical coating methods of the FTO manufacturing process technology are prepared through spray pyrolysis deposition and atmospheric chemical vapor deposition. In the former case, the liquid FTO precursor solution is misted in a gaseous phase (microdroplets: Sn, F precursor, solvent, additives, etc.) and then coated onto a heated substrate. In the latter case, Sn and F-containing precursors are coated. Is a technique of coating by evaporating at a molecular level and sending it onto a heated substrate.

FTO 투명전도막은 고온 내열성과 뛰어난 내화학성 및 내부식성을 갖추고 있어 600도 내외에서 곡면 성형이 가능하다. 이에 따라서 곡면이 가져다주는 자유로운 외형곡선을 적용하기위해 곡면 태양전지, 곡면 로이 글라스, 곡면 건축물, 자동차, 고속열차, 비행기 등에 많은 연구가 진행되고 있다.FTO transparent conductive film has high temperature heat resistance, excellent chemical resistance and corrosion resistance, and can be curved around 600 degrees. Accordingly, many researches are being conducted on curved solar cells, curved Roy glass, curved buildings, automobiles, high-speed trains, and airplanes to apply the free contour curves brought by curved surfaces.

통상적으로 ITO 투명전도막은 150 ℃이상의 온도에서 가열하여 성형할 경우 ITO의 전기적 물성이 바뀌고 열화되는 문제점이 있다. 그 이유로서 ITO 투명전도막은 우수한 전기적 특성 및 광 투과도를 갖고 있는 반면 내열성, 내화학성, 내마모성이 약한 문제점을 가지고 있기 때문이다.In general, when the ITO transparent conductive film is formed by heating at a temperature of 150 ° C. or higher, there is a problem that the electrical properties of the ITO are changed and deteriorated. This is because the ITO transparent conductive film has excellent electrical properties and light transmittance, but has weak problems of heat resistance, chemical resistance, and abrasion resistance.

그러므로 굽힘 가공이 가능한 투명전도막 재료로서는 기타 투명전도막들과 차별화 되는 고온 내열성 (약 500도), 내화학성/내부식성이 요구되어진다. FTO 투명 전도막은 고온에 대한 장기 안정성이 높고 투명하면서 전기를 통하는 우수한 투명전극소재로 많이 알려져 있다.Therefore, as a transparent conductive film material that can be bent, high temperature heat resistance (about 500 degrees) and chemical resistance / corrosion resistance that are differentiated from other transparent conductive films are required. FTO transparent conductive film is known to be a good transparent electrode material with high long-term stability to high temperature, transparent and electricity.

따라서 본 발명의 목적은 스프레이 파이로졸 방식을 이용하여 박막 결정성, 표면 모폴로지, 전기적 특성 및 광 투과도가 향상되고 굽힘 가공성이 뛰어난 불소가 도핑된 산화주석 박막을 제조하는데 있다. Accordingly, an object of the present invention is to produce a fluorine-doped tin oxide thin film having excellent bending processability and improved thin film crystallinity, surface morphology, electrical properties and light transmittance using a spray pyrosol method.

본 발명에서는 불소가 도핑된 산화주석 투명전도막을 상압 CVD 및 스프레이 파이로졸법에 의하여 투명한 기판위에 증착시키는 단계와 상기 제작된 불소가 도핑된 산화주석 박막을 air 분위기 하에서 열처리하고 굽힘성형을 하는 단계를 포함한다.In the present invention, the step of depositing a fluorine-doped tin oxide transparent conductive film on a transparent substrate by atmospheric pressure CVD and spray pyrosol method and the step of heat-treating and bending the fluorine-doped tin oxide thin film in an air atmosphere Include.

상기 불소가 도핑된 산화주석을 굽힘 성형하기위한 열처리 온도 범위는 유리의 연화점보다 낮은 온도에서 기판의 변형이 쉽게 일어나지 않을 정도의 온도인 400 ~ 700도로 승온 하였으며, 결정구조가 안정하게 유지되도록 450도에서 일정시간 유지시킨 후에 승온 한다. 이때 열처리 분위기는 air로 하였으며, 일정시간을 유지시키지 않고 열처리온도로 상승시킬 수도 있다. 이때 상기 열처리 분위기는 air로 한정하지는 않는다. The heat treatment temperature range for bending and forming the fluorine-doped tin oxide was raised to 400 to 700 degrees, which is a temperature at which the substrate is not easily deformed at a temperature lower than the softening point of glass, and 450 degrees to maintain a stable crystal structure. The temperature is maintained after maintaining a certain time at. At this time, the heat treatment atmosphere was air, and the temperature may be raised to the heat treatment temperature without maintaining a predetermined time. At this time, the heat treatment atmosphere is not limited to air.

구체적으로는 불소가 도핑된 산화주석 박막의 안정화를 위해 온도(400~450℃)까지 일정온도로 승온을 시킨 후에 박막을 1시간 유지시키며, 400~700도까지 승온하고 유지 후에 서냉 시킨다. (2step)Specifically, in order to stabilize the fluorine-doped tin oxide thin film, the temperature is raised to a constant temperature up to a temperature (400 to 450 ° C.), and the thin film is maintained for 1 hour. The temperature is raised to 400 to 700 degrees and then cooled slowly after holding. (2step)

또 다른 방법으로는 열적 안정성을 비교, 평가하기 위해 400~700도까지 승온시킨 다음 일정시간(1시간) 유지 후에 서냉 시킨다. (1step)Another method is to raise the temperature to 400 ~ 700 degrees to compare and evaluate the thermal stability, and then cooled slowly after maintaining a certain time (1 hour). (1 step)

상기 투명 전도막을 굽힘 성형하기 위한 기판으로 소다라임 유리(Sodalime Glass), 저철분 유리(Low-Fe Glass), 석영 유리(Fused Silica Glass), 실리케이트 유리(Silicate Glass)등을 포함한다. 또한 굽힘성형 투명전도막 코팅재료로서 FTO, ITO, AZO, ZnO, SnO2, IZO, GZO, TiO2, SiO2 등과 같이 한정되지는 않는다.Substrates for bending the transparent conductive film may include soda lime glass, low iron glass, quartz glass, silicate glass, and the like. In addition, the bending transparent conductive film coating material is not limited to FTO, ITO, AZO, ZnO, SnO2, IZO, GZO, TiO2, SiO2 and the like.

본 발명에서는 열처리 공정을 통해서 박막 결정에 손상 없이 굽힘 성형이 가능한 불소함유 산화주석 박막을 제조할 수 있었으며, 이에 따라서 곡면이 가져다주는 자유로운 외형곡선을 제품화할 수 있어, 그 적용 분야가 다양해 질것으로 기대된다. In the present invention, it was possible to produce a fluorine-containing tin oxide thin film that can be bent without damage to the thin film crystals through the heat treatment process, and thus it is possible to commercialize a free contour curve brought by the curved surface, and the application field is expected to be diversified. do.

도 1은 불소가 도핑된 산화주석 박막의 열처리 시간에 따른 온도 사이클 A 타입 (2step 승온).
도 2는 불소가 도핑된 산화주석 박막의 열처리 시간에 따른 온도 사이클 B 타입 (1step 승온).
도 3은 본 발명에서 제조된 굽힘 가공한 FTO 투명전도막의 디지털 사진.
도 4는 열처리에 따른 불소가 도핑된 산화주석 박막의 XRD Pattern 결정구조.
도 5는 본 발명에서 열처리에 따른 박막의 표면 미세구조 FE-SEM 이미지.
도 6은 본 발명에서 열처리에 따른 박막의 단면 미세구조 및 박막 두께분석 FE-SEM 이미지.
도 7은 본 발명에서 열처리에 따른 박막의 투과도.
도 8은 본 발명에서 A타입의 방법으로 진행한 열처리에 따른 박막의 비저항 분포도.
도 9는 본 발명에서 B타입의 방법으로 진행한 열처리에 따른 박막의 면저항 분포도.
1 is a temperature cycle A type (2 step temperature increase) according to the heat treatment time of the fluorine-doped tin oxide thin film.
2 is a temperature cycle B type (1 step temperature increase) according to the heat treatment time of the fluorine-doped tin oxide thin film.
Figure 3 is a digital photograph of the bent FTO transparent conductive film prepared in the present invention.
4 is an XRD Pattern crystal structure of a fluorine-doped tin oxide thin film according to heat treatment.
Figure 5 is a surface microstructure FE-SEM image of the thin film according to the heat treatment in the present invention.
Figure 6 is a cross-sectional microstructure and thin film thickness analysis FE-SEM image of the thin film according to the heat treatment in the present invention.
Figure 7 is the transmittance of the thin film according to the heat treatment in the present invention.
Figure 8 is a resistivity distribution of the thin film according to the heat treatment proceeded by the method of the A type in the present invention.
9 is a sheet resistance distribution diagram of the thin film according to the heat treatment proceeded by the method of the B type in the present invention.

실시예 1: FTO 투명전도막 형성 공정Example 1: FTO transparent conductive film forming process

본 발명의 스프레이 파이로졸 코팅방법에 있어서 산화주석의 전구체는 SnCl4·5H2O, (C4H9)2Sn(CH3COO)2, (CH3)2SnCl2, (C4H9)3SnH, SnCl4 등 주석 함유 유기금속 화합물이 사용될 수 있다. 산화주석에 도핑되는 불소 공급원으로 작용하는 불소 화합물로는 NH4F, CF3Br, CF2Cl2, CH3CClF2, CF3COOH, CH3CHF2, HF 등 다양한 불소 공급원이 사용될 수 있으며, 특별히 한정되지 않는다. Sn/F 비율은 소정의 비율이 되도록 혼합하여 FTO 프리커서를 제조한다. 용매는 물과 알콜, 또는 이들의 혼합 시스템을 사용할 수 있으나 안정성 측면에서는 물과 에탄올 시스템을 사용할 수 없고 물과 에탄올을 혼합하여 사용할 수 있다. 통상적으로 5wt% 에탄올 (H2O비)이 용매로 사용될 수 있다.In the spray pyrosol coating method of the present invention, tin-containing organometallic compounds such as SnCl 4 · 5H 2 O, (C 4 H 9) 2 Sn (CH 3 COO) 2, (CH 3) 2 SnCl 2, (C 4 H 9) 3 SnH, and SnCl 4 can be used. . Various fluorine sources, such as NH4F, CF3Br, CF2Cl2, CH3CClF2, CF3COOH, CH3CHF2, HF, may be used as the fluorine compound that serves as a fluorine source doped with tin oxide, and is not particularly limited. The Sn / F ratio is mixed so as to be a predetermined ratio to produce an FTO precursor. The solvent may be water and alcohol, or a mixing system thereof, but in terms of stability, water and ethanol system may not be used, and water and ethanol may be mixed. Typically 5 wt% ethanol (H 2 O ratio) may be used as the solvent.

FTO 전구체 용액은 노즐 (스프레이 노즐, 초음파 스프레이 노즐, 초음파 미스트 분무)을 통하여 캐리어 가스와 함께 기판에 분무되며, 분무된 마이크로 액적은 기판상에 증착된다. 이 때 증착챔버에는 적절한 배기 시스템을 주어 반응가스 및 미반응체를 뽑아내준다. 노즐을 통하여 전구체 마이크로 액적을 형성하는 방법은 일반적인 스프레이 노즐 및 슬릿 노즐을 사용할 수 있으나 이와 같은 방법은 비교적 큰 액적이 형성되는 경향이 있다. 좀 더 미세한 액적을 형성시키기 위해서는 초음파 분무를 통하여 초미세 미스트 전구체를 1차적으로 형성시키고 이를 캐리어 가스 시스템 및 벤트 시스템을 통하여 적절하게 증착 챔버로 수송하는 것이 바람직하다. The FTO precursor solution is sprayed onto the substrate along with the carrier gas through a nozzle (spray nozzle, ultrasonic spray nozzle, ultrasonic mist spray), and the sprayed micro droplets are deposited on the substrate. At this time, the deposition chamber is provided with an appropriate exhaust system to extract the reaction gas and the unreacted material. The method of forming the precursor microdroplets through the nozzle may use a general spray nozzle and a slit nozzle, but such a method tends to form relatively large droplets. In order to form finer droplets, it is desirable to first form the ultrafine mist precursor via ultrasonic spraying and transport it to the deposition chamber as appropriate through the carrier gas system and the vent system.

실시예 2: FTO 프리커서 제조 방법Example 2: FTO Precursor Manufacturing Method

FTO 프리커서 용액은 SnCl4·5H20를 3차 증류수에 녹여 0.68 M이 되게 하고 F 도핑제로서 NH4F를 에탄올 용매에 녹여 1.2 M로 한 후 이 두 용액을 혼합 교반시키고, 필터링 하여 제조한다. 또한 코팅용액은 SnCl4·5H2O를 순수한 D.I 물에 5%의 에탄올을 혼합한 용매에 0.68M이 되도록 혼합하고 교반하여 제조하였으며, F의 소스로는 NH4F를 F/Sn의 비가 1.76이 되도록 하여 합성한다. 또한 전구체 용액은 다양한 형태의 FTO막을 제조하기 위하여 상기 용액 조성 이외에도 알콜류, 에틸렌 글리콜(Ethylene glycol)를 부수적으로 첨가할 수 있다.FTO precursor solution was prepared by dissolving SnCl 4 · 5H20 in tertiary distilled water to 0.68 M and dissolving NH 4 F in ethanol as an F dopant to 1.2 M, then mixing and stirring the two solutions and filtering. In addition, the coating solution was prepared by mixing and stirring SnCl 4 · 5H 2 O to 0.68M in a solvent mixed with 5% ethanol in pure DI water, and synthesized by using NH 4 F as the source of F such that the ratio of F / Sn was 1.76. . In addition, the precursor solution may additionally add alcohols, ethylene glycol (Ethylene glycol) in addition to the solution composition in order to prepare a variety of forms of FTO film.

F 도핑량을 조절하기 위하여 NH4F의 량을 0.1에서 3 M까지 변화시키거나 불산(HF)를 0-2M 첨가할 수도 있다. 따라서 본 FTO 막 제조용 프리커서 용액은 위에서 보여준 조성에 한정되는 것은 아니다.
In order to control the amount of F doping, the amount of NH 4 F may be changed from 0.1 to 3 M, or 0-2 M of hydrofluoric acid (HF) may be added. Therefore, the precursor solution for preparing the FTO membrane is not limited to the composition shown above.

실시예 3: FTO 박막의 굽힘 성형 방법Example 3: Bending Forming Method of FTO Thin Film

실시 예1에서 제조된 FTO 투명전도막을 굽힘 성형이 가능한 금형 용기(일정한 곡률반경 유지)에 올려놓고 열처리가 가능한 인라인 열처리로(belt furnace)또는 열처리 분위기가 가능한 일정 챔버 안에서 성형후 열처리 조건에 따른 특성을 평가 한다. 이때 분위기는 air로 하였으며, 분위기는 N2, Ar, H2, NH3, O2, CO2, O3, CO, CH4, C3H8, C4H10등이 가능하며, 위와 같이 한정되는 것은 아니다. The FTO transparent conductive film prepared in Example 1 was placed in a mold container (maintaining a constant radius of curvature) capable of bending molding, and then subjected to heat treatment conditions after molding in an inline furnace (belt furnace) capable of heat treatment or in a predetermined chamber capable of a heat treatment atmosphere. Evaluate. At this time, the atmosphere was air, and the atmosphere may be N2, Ar, H2, NH3, O2, CO2, O3, CO, CH4, C3H8, C4H10, and the like, but is not limited to the above.

후열처리Post heat treatment
온도(℃), Temperature (° C), AirAir
450450 500500 550550 600600 700700

열처리 타입Heat treatment type
AA A, BA, B A, BA, B A, BA, B A, BA, B

SampleSample Carrier concentration (cm-3)Carrier concentration (cm -3 ) Electron mobility (cm2/Vs)Electron mobility (cm 2 / Vs) Electrical resistivity (Ohmcm)Electrical resistivity (Ohmcm) Electrical sheet resistance (Ohm/□)Electrical sheet resistance (Ohm / □) Thickness
(nm)
Thickness
(nm)
후열처리전Before after heat treatment -6.53E+20-6.53E + 20 29.629.6 3.23E-043.23E-04 5.95.9 600600 A1_450A1_450 -6.60E+20-6.60E + 20 32.132.1 2.95E-042.95E-04 6.06.0 550550 A2_500A2_500 -5.13E+20-5.13E + 20 34.134.1 3.57E-043.57E-04 7.17.1 550550 A3_550A3_550 -4.76E+20-4.76E + 20 33.133.1 3.96E-043.96E-04 8.28.2 550550 A4_600A4_600 -4.03E+20-4.03E + 20 28.728.7 5.41E-045.41E-04 9.89.8 590590 A5_700A5_700 -1.83E+20-1.83E + 20 16.616.6 2.05E-032.05E-03 26.926.9 700700

Transmission (%)Transmission (%) 550nm550 nm 650nm650nm 800nm800nm 후열처리 전Before after heat treatment 75.875.8 78.678.6 78.378.3 A1_450A1_450 76.776.7 78.878.8 80.480.4 A2_500A2_500 79.679.6 83.583.5 80.580.5 A3_550A3_550 81.681.6 85.585.5 81.481.4 A4_600A4_600 82.082.0 84.884.8 81.881.8 A5_700A5_700 80.780.7 83.283.2 82.982.9

비교예 1: Comparative Example 1:

실시예 2에서 제조된 프리커서 조건으로 실시예 1의 방법으로 불소가 도핑된 산화주석 박막을 형성한다. 이렇게 제조된 FTO 투명전도막은 굽힘 성형 열처리 온도 조건별, 450도에서는 A타입이 있으며(1step), 500도 이상의 온도에서는 A와 B타입 모두 승온한다.(참조: 표1) 열처리 공정온도에 따라서 박막의 두께 및 표면저항의 변화가 나타나고 전자 홀 특성 분석시 전자이동도 및 캐리어 농도 그리고 비저항의 변화값을 나타내었다. 상세하게는 위의 조건을 따른다. (참조: 표 2)A fluorine-doped tin oxide thin film was formed by the method of Example 1 under the precursor condition prepared in Example 2. The FTO transparent conductive film thus prepared has a type A at 450 ° C (1 step) for each bending heat treatment temperature condition, and both types A and B are heated at a temperature of 500 ° C or higher (see Table 1). The thickness and surface resistance of the film were changed and the electron mobility, the carrier concentration and the specific resistance of the electron hole were analyzed. In detail, the above conditions are followed. (See Table 2)

표 3에서는 열처리 온도에 따른 박막의 광 투과도를 550nm, 650nm, 800nm 파장대별로 투과도를 나타내고 있으며, 대부분 80%의 광 투과도를 보인다.In Table 3, the light transmittance of the thin film according to the heat treatment temperature is shown for each wavelength range of 550 nm, 650 nm, and 800 nm, and most of the light transmittance is 80%.

도 1, 도 2는 실시예1에서 제작된 FTO 투명전도막을 열처리 A 타입과 B타입으로 제작하여 모식화한 그래프이다.1 and 2 are graphs obtained by fabricating the FTO transparent conductive film prepared in Example 1 by heat treatment A type and B type.

이렇게 제작된 굽힘가공된 FTO 투명전도막을 디지털 사진으로 도3에 도시하였다.The bent FTO transparent conductive film thus produced was shown in FIG. 3 as a digital photograph.

상기 FTO 투명전도막은 (110), (200), (310)등의 결정에서 주 피크를 나타낸다. (참조: 도4)The FTO transparent conductive film shows a main peak in crystals such as (110), (200), and (310). (See Fig. 4)

도 5에서는 A타입의 조건으로 열처리한 FTO투명전도막의 표면의 모폴로지를 나타내고 있다. 결정의 크기는 300~400nm이며, 결정의 크기가 열처리 온도에 따라서 성장하지 않고 비슷한 크기를 나타내고 있어 승온에 따른 박막 결정 손상이 없는 것으로 보인다.In FIG. 5, the morphology of the surface of the FTO transparent conductive film heat-treated on condition A type is shown. The size of the crystal is 300-400 nm, and the size of the crystal does not grow according to the heat treatment temperature.

도 6에서는 열처리 온도에 따른 박막두께를 FE-SEM으로 측정한 것이다. 상기 FTO 투명전도막은(열처리 전 FE-SEM 이미지 생략) 550~700nm의 박막두께를 나타내며, 열처리 전후의 변화는 없는 것으로 판단된다. In FIG. 6, the thickness of the thin film according to the heat treatment temperature is measured by FE-SEM. The FTO transparent conductive film (without FE-SEM image before heat treatment) exhibits a thin film thickness of 550 to 700 nm, and it is judged that there is no change before and after heat treatment.

상기 FTO 투명전도막은 약 75~80%의 투과도를 나타내며(참조: 도7), 비저항 측정시 A타입의 경우 450~600도 까지 변화가 없는 것을 보이며(3.23~5.4×10-4), 굽힘 성형시 전기적인 특성 변화없이 열처리 성형이 가능한 것으로 판단된다.(참조: 도8) 특히, 600도 내외에서 성형시 뛰어난 전기적 특성 및 광 투과도를 나타낸다. (광 투과도 81%) The FTO transparent conductive film exhibits a transmittance of about 75 to 80% (see Fig. 7), and shows no change to 450 to 600 degrees in the case of the A-type when measuring the resistivity (3.23 to 5.4 x 10 < -4 >). It is judged that heat treatment molding can be performed without changing electrical characteristics at the time (see FIG. 8). In particular, it exhibits excellent electrical characteristics and light transmittance when forming at around 600 degrees. (81% of light transmittance)

B타입의 조건으로 굽힘 성형시 전기적인 특성의 변화가 많이 나타나는 것을 알 수 있으며, 600도 이상의 온도에서는 면저항이 2배이상 증가하는 나타내었다. (참조: 도9) It can be seen that a lot of changes in the electrical properties during bending molding under the condition of type B, and the sheet resistance is more than doubled at a temperature of more than 600 degrees. (See Fig. 9)

따라서 본 발명의 굽힘 가공성이 뛰어난 FTO 투명전도막을 단계적으로 열처리하여 박막 결정을 안정화 시키고, 이후 승온하여 곡면과 같은 자유로운 외형곡선을 나타내어 상업적으로 이용 가능한 다양한 FTO 기판을 제조할 수 있다.
Therefore, the FTO transparent conductive film having excellent bending processability of the present invention may be thermally treated to stabilize the thin film crystals, and then, the temperature may be raised to show a free contour curve such as a curved surface, thereby manufacturing various commercially available FTO substrates.

Claims (6)

굽힘 가공성을 가지는 저저항 고투과율 FTO 투명전도막 제조 방법에 있어서,
불소가 도핑된 산화주석 투명전도막을 상압 CVD 및 스프레이 파이로졸법에 의하여 투명기판 위에 증착하는 단계;
상기 불소가 도핑된 산화주석 박막을 air 분위기하에서 후 열처리하여 곡면가공 또는 굽힘성형하는 단계; 및
결정구조가 안정하게 유지되도록 450도에서 일정시간 유지시킨 후에 승온하는 단계를 포함하여 구성되는 것을 특징으로 하는 굽힘 가공성을 가지는 저저항 고투과율 FTO 투명전도막 제조 방법.
In the low resistance high transmittance FTO transparent conductive film manufacturing method which has bending workability,
Depositing a fluorine-doped tin oxide transparent conductive film on the transparent substrate by atmospheric pressure CVD and spray pyrosol method;
Performing post-heat treatment on the fluorine-doped tin oxide thin film in an air atmosphere to form curved surfaces or bends; And
A method of manufacturing a low resistance high transmittance FTO transparent conductive film having bending workability, comprising the step of: after heating for a predetermined time at 450 degrees to maintain a stable crystal structure.
삭제delete 삭제delete 제 1항에 있어서, 불소가 도핑된 산화주석 박막의 안정화를 위해 온도(400~450℃)까지 일정온도로 승온을 시킨 후에 박막을 1시간 유지시키며, 400~700도까지 승온하고 유지 후에 서냉 시키는 단계를 더 포함하는 것을 특징으로 하는 저저항 고투과율 FTO 투명전도막 제조 방법.The method of claim 1, wherein the temperature of the fluorine-doped tin oxide thin film to stabilize the temperature (400 ~ 450 ℃) to stabilize the temperature after maintaining the thin film for 1 hour, the temperature is raised to 400 ~ 700 degrees and then cooled slowly after holding Low resistance high transmittance FTO transparent conductive film production method further comprising the step. 제 1항에 있어서, 상기 투명 전도막을 굽힘 성형하기 위한 기판으로 소다라임 유리(Sodalime Glass), 저철분 유리(Low-Fe Glass), 석영 유리(Fused Silica Glass), 실리케이트 유리(Silicate Glass)등을 포함하는 것을 특징으로 하는 저저항 고투과율 FTO 투명전도막 제조 방법.According to claim 1, wherein the substrate for bending the transparent conductive film, soda lime glass (Sodalime Glass), Low-Fe glass (Fused Silica Glass), silicate glass (Silicate Glass) and the like A low resistance high transmittance FTO transparent conductive film production method comprising a. 제 1항에 있어서, 굽힘성형 투명전도막 코팅재료로서 FTO, ITO, AZO, ZnO, SnO2, IZO, GZO, TiO2, SiO2 등을 포함하는 것을 특징으로 하는 저저항 고투과율 FTO 투명전도막 제조 방법.The method of manufacturing a low resistance high transmittance FTO transparent conductive film according to claim 1, comprising FTO, ITO, AZO, ZnO, SnO 2, IZO, GZO, TiO 2, SiO 2, or the like as the bending transparent conductive film coating material.
KR1020110068782A 2011-07-12 2011-07-12 Manufacturing Mothod of F-dopped Tin oxide film with bending processability KR101337967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110068782A KR101337967B1 (en) 2011-07-12 2011-07-12 Manufacturing Mothod of F-dopped Tin oxide film with bending processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110068782A KR101337967B1 (en) 2011-07-12 2011-07-12 Manufacturing Mothod of F-dopped Tin oxide film with bending processability

Publications (2)

Publication Number Publication Date
KR20130008190A KR20130008190A (en) 2013-01-22
KR101337967B1 true KR101337967B1 (en) 2013-12-09

Family

ID=47838340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110068782A KR101337967B1 (en) 2011-07-12 2011-07-12 Manufacturing Mothod of F-dopped Tin oxide film with bending processability

Country Status (1)

Country Link
KR (1) KR101337967B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968818B1 (en) * 2017-05-29 2019-04-12 서울과학기술대학교 산학협력단 Method for manufacturing transparent conducting electrodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294673A (en) * 1992-04-17 1993-11-09 Asahi Glass Co Ltd Production of glass coated with transparent electrically conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294673A (en) * 1992-04-17 1993-11-09 Asahi Glass Co Ltd Production of glass coated with transparent electrically conductive film

Also Published As

Publication number Publication date
KR20130008190A (en) 2013-01-22

Similar Documents

Publication Publication Date Title
US9236157B2 (en) Transparent electrically conducting oxides
JP5541921B2 (en) Method of making a low resistivity doped zinc oxide coating and articles formed by the method
JP2013509352A (en) Conductive metal oxide film and photovoltaic device
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
US7989024B2 (en) Method of making a low-resistivity, doped zinc oxide coated glass article and the coated glass article made thereby
JP2002146536A (en) Low-temperature deposition method for thin film of tin oxide
EP2699522A1 (en) Method for coating substrates
KR20110089354A (en) Conductive film formation on glass
KR20110135612A (en) Processing of fto film on physically stabilized ultra-flexible thin substrate
GB2428689A (en) Process for preparing transparent conducting metal oxides
KR101337967B1 (en) Manufacturing Mothod of F-dopped Tin oxide film with bending processability
JP2015124117A (en) Method of producing metal oxide thin film
KR101466842B1 (en) Method of fabricating zinc oxide based thin film for transparent electrode
US8337943B2 (en) Nano-whisker growth and films
KR101359913B1 (en) The manufacturing method of low-resistance, high transmittance, flexible FTO(F-doped Tin Oxide) transparent conductive film including carbon nanotubes
JPWO2008117605A1 (en) Large-area transparent conductive film and method for producing the same
KR101135792B1 (en) Producing Method of Double-Layered FTO Film
CN107195389B (en) The preparation method of metal oxynitride transparent conductive film
KR101573902B1 (en) Method for fabricating fluorine-doped tin oxide film with high transmittance
KR20150025580A (en) MANUFACTURING METHOD FOR PREPARING ZnO THIN FILMS AND ZnO THIN FILMS THEREOF
CN103011262B (en) The preparation method of tin ash base conductive material
KR20130008191A (en) Manufacturing mothod of curved surface f-dopped tin oxide film with nonlinear in-line lifting
KR101279610B1 (en) Thin film deposition method of the hard substrates and the transparent conductive substrate
KR20110127890A (en) Multi-functional fto film with nanostructures
KR20130134584A (en) The method to improve the visible light transmittance of polyimide substrate, pi-ceramic substrate, pi-ceramic-fto transparent film and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee