KR101326254B1 - Low Dielectric Thin Films and Method for Preparing the Same - Google Patents
Low Dielectric Thin Films and Method for Preparing the Same Download PDFInfo
- Publication number
- KR101326254B1 KR101326254B1 KR1020110018455A KR20110018455A KR101326254B1 KR 101326254 B1 KR101326254 B1 KR 101326254B1 KR 1020110018455 A KR1020110018455 A KR 1020110018455A KR 20110018455 A KR20110018455 A KR 20110018455A KR 101326254 B1 KR101326254 B1 KR 101326254B1
- Authority
- KR
- South Korea
- Prior art keywords
- low dielectric
- thin film
- allyl
- group
- oxide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 저유전 박막 및 그 제조방법에 관한 것으로, 보다 상세하게는, 알릴기가 함유된 실란 화합물 및 기공형성 물질을 플라즈마 화학증착시켜 제조되는 저유전 박막 및 그 제조방법에 관한 것이다.
본 발명에 따른 저유전 박막의 제조방법은 선형 또는 비선형 형태의 유·무기 전구체를 이용하여 종래에 비해 유전상수가 월등히 낮은 동시에 열적으로 안정한 저유전 박막을 제조할 수 있고, 스핀 캐스팅법에서 발생되는 전·후 처리에 대한 복잡한 공정을 줄일 수 있으며, 열처리와 같은 과정을 통하여 박막의 유전상수 및 기계적 특성을 개선시켜 반도체 장치 제조 등에 유용하게 이용할 수 있는 효과가 있다.The present invention relates to a low dielectric thin film and a method for manufacturing the same, and more particularly, to a low dielectric thin film produced by plasma chemical vapor deposition of a silane compound and a pore-forming material containing an allyl group, and a method of manufacturing the same.
In the method of manufacturing a low dielectric thin film according to the present invention, by using an organic or inorganic precursor having a linear or nonlinear shape, a low dielectric thin film having a significantly lower dielectric constant than that of the related art and a thermally stable low dielectric thin film may be produced. It is possible to reduce the complicated process for the pre- and post-treatment, and to improve the dielectric constant and mechanical properties of the thin film through a process such as heat treatment, there is an effect that can be usefully used in the manufacture of semiconductor devices.
Description
본 발명은 저유전 박막 및 그 제조방법에 관한 것으로, 보다 상세하게는, 알릴기가 함유된 실란 화합물 및 기공형성 물질을 플라즈마 화학증착시켜 제조되는 저유전 박막 및 그 제조방법에 관한 것이다.
The present invention relates to a low dielectric thin film and a method for manufacturing the same, and more particularly, to a low dielectric thin film produced by plasma chemical vapor deposition of a silane compound and a pore-forming material containing an allyl group, and a method of manufacturing the same.
최근에 초고밀도(ULSI) 반도체 소자의 집적회로에 사용되는 다층 금속 막의 신호 지연(RC delay)을 줄이기 위해 금속 배선에 사용되는 층간 절연막을 저유전 상수(k≤2.7)를 갖는 물질로 형성하는 연구가 활발히 행해지고 있다. 이러한 저유전 박막을 불소(F)가 도핑된 산화막(SiO2)과 불소가 도핑된 비정질 탄소(a-C:F)막과 같이 무기 물질로 형성하거나 유기 물질로 형성하기도 한다. 상대적으로 낮은 유전 상수를 지니며 열적 안정성이 뛰어난 중합체 박막을 유기 물질로 주로 사용한다.In recent years, in order to reduce the signal delay (RC delay) of multi-layer metal films used in integrated circuits of ultra high density (ULSI) semiconductor devices, a research has been carried out to form interlayer insulating films used for metal wiring with materials having a low dielectric constant (k≤2.7). Is being actively performed. The low dielectric thin film may be formed of an inorganic material or an organic material, such as an oxide film doped with fluorine (SiO 2 ) and an amorphous carbon (aC: F) doped with fluorine. Polymer films with relatively low dielectric constant and excellent thermal stability are mainly used as organic materials.
이제까지 층간 절연막으로 주로 사용되고 있던 실리콘 다이옥사이드(silicon dioxide; SiO2) 또는 실리콘 옥시플루오라이드(silicon oxyfluoride; SiOF)는 0.5㎛ 이하의 초고집적 회로 제조시 높은 캐패시턴스(capacitance), 긴 저항-전류지연시간(RC delay time) 등의 문제점으로 인하여, 최근에는 이를 새로운 저유전 물질로 대체하려는 연구가 활발히 진행되고 있지만 구체적인 해결책은 제시하지 못하고 있다.Silicon dioxide (SiO 2 ) or silicon oxyfluoride (SiOF), which has been mainly used as an interlayer insulating film, has high capacitance and long resistance-current delay time in the manufacture of ultra-high density circuits of 0.5 μm or less. Due to problems such as RC delay time, researches to replace it with a new low dielectric material have been actively conducted, but no specific solution has been proposed.
현재 SiO2의 대체 물질로서 고려되고 있는 저유전체 물질로는, 주로 스핀 코팅(spin coating)에 이용되는 BCB(benzocyclobutene), SILK(공급처: 다우케미칼), FLARE(fluorinated poly(arylene ether), 공급처: 얼라이드 시그날(Allied Signals)), 폴리이미드 등과 같은 유기 중합체, 화학증착법(chemical vapor deposition; CVD)에 이용되는 블랙 다이아몬드(Black Diamond, 공급처: Applied Materials), 코랄(Coral, 공급처: 노벨루스(Novellus)), SiOF, 알킬-실란(alkyl silane) 및 파릴렌(parylene), 및 크세로겔(xerogel) 또는 에어로겔(aerogel)과 같은 다공질 박막 물질이 있다.Low dielectric materials that are currently considered as alternatives to SiO 2 include BCB (benzocyclobutene), SILK (Dow Chemical), FLARE (fluorinated poly (arylene ether), mainly used for spin coating. Allied Signals), organic polymers such as polyimide, and the like Black Diamond (Applied Materials), Coral (Novellus) used for chemical vapor deposition (CVD) ), SiOF, alkyl-silanes and parylenes, and porous thin film materials such as xerogels or aerogels.
여기서, 대부분의 중합체 박막은 중합체를 화학적으로 합성하고 기판 위에 스핀 코팅(spin coating)한 후 경화(cure)시키는 스핀 캐스팅(spin casting)의 방법으로 형성한다. 이러한 방법으로 형성된 저유전 상수를 갖는 물질은 막내에 수 나노미터(nm) 크기의 기공이 형성되기 때문에 박막 밀도가 감소하여 저유전 상수를 갖는 유전체로 형성된다. 일반적으로 스핀 코팅에 의해 증착되는 상기 유기 중합체들은 유전상수가 대체적으로 낮고, 평탄도(planarization)도 우수한 장점을 갖지만, 내열 한계 온도가 420℃ 보다 낮아 열적 안정성이 열악하기 때문에 응용성면에서 부적합하고, 기공은 크기가 크고 이것으로 인하여 막 내에 균일하게 분포되지 않기 때문에 소자 제조시 여러 가지 어려움을 가지고 있다. Here, most polymer thin films are formed by a method of chemically synthesizing a polymer, spin coating on a substrate, and then spin casting. The material having the low dielectric constant formed in this way is formed into a dielectric having the low dielectric constant because the thin film density decreases because pores of several nanometers (nm) are formed in the film. In general, the organic polymers deposited by spin coating have advantages of low dielectric constant and excellent planarization, but they are not suitable in terms of application due to poor thermal stability due to lower heat limit temperature of less than 420 ° C. Since pores are large in size and because of this, they are not uniformly distributed in the film, there are various difficulties in manufacturing the device.
또한, 상하 배선 물질과의 접착이 불량하고, 유기 고분자 박막 특유의 열경화에 의한 고응력이 발생하며, 주위 수분의 흡착으로 인해 유전상수가 변하여 소자의 신뢰성이 떨어지는 등의 문제점을 갖는다.In addition, the adhesion to the upper and lower wiring material is poor, high stress due to the thermal curing peculiar to the organic polymer thin film, the dielectric constant is changed due to the adsorption of the ambient moisture, such as the reliability of the device is poor.
따라서, 한국등록특허 제0987183호는 플라즈마 헥사메틸디실록산 또는 3,3-디메틸-1-부텐을 플라즈마로 화학증착시키는 저유전 플라즈마 중합체 박막 및 그 제조방법을 개시하고 있고, 한국등록특허 제0697669호는 데카메실사이클로펜타실옥제인과 사이클로헥산 전구체를 플라즈마 화학증착시키는 저유전 플라즈마 중합체 박막의 제조방법 및 이로부터 제조된 저유전 박막을 개시하고 있으며, 한국공개특허 제2003-0002993호에는 하나 이상의 비닐이나 에티닐기를 포함하는 실리콘 또는 실리케이트 전구체 물질을 플라즈마 화학증착하여 저유전체 박막을 제조하는 방법이 개시되어 있으나, 이들 모두 낮은 유전 상수에서 기계적 물성이 현저히 낮아지는 문제점이 있다.
Accordingly, Korean Patent No. 0987183 discloses a low dielectric plasma polymer thin film for chemically depositing plasma hexamethyldisiloxane or 3,3-dimethyl-1-butene with plasma, and a method of manufacturing the same. Korean Patent No. 0697669 Discloses a method for preparing a low dielectric plasma polymer thin film for plasma chemical vapor deposition of decamesylcyclopentaxylzeane and a cyclohexane precursor, and a low dielectric thin film prepared therefrom, and Korean Unexamined Patent Publication No. 2003-0002993 Although a method of preparing a low dielectric thin film by plasma chemical vapor deposition of a silicon or silicate precursor material including an ethynyl group has been disclosed, all of them have a problem in that mechanical properties are significantly lowered at low dielectric constants.
또한, 미국공개특허 제2006-0079099호, 미국공개특허 제2009-0146265호 및 미국공개특허 제2009-0203225호는 SiCOH 매트릭스 및 유기 포로젠 기능을 가지는 단일 이작용기 전구체를 사용하여 플라즈마 화학증착시켜 제조되는 SiCOH 박막의 제조방법이 개시되어 있으나, 상기 제조방법은 단일 전구체 사용으로 인하여 매트릭스 전구체와 포로젠(porogen) 전구체의 비율을 조절할 수 없어 유전상수를 낮추는데 한계가 있다는 문제점이 있다.
In addition, US Patent Publication No. 2006-0079099, US Publication No. 2009-0146265 and US Publication No. 2009-0203225 are prepared by plasma chemical vapor deposition using a single bifunctional precursor having a SiCOH matrix and organic porogen function. Although a method of manufacturing a SiCOH thin film is disclosed, the manufacturing method has a problem in that it is impossible to control the ratio of the matrix precursor and the porogen (porogen) precursor due to the use of a single precursor, thereby limiting the dielectric constant.
이에, 본 발명자들은 상기 종래기술의 문제점을 해결하고자 예의 노력한 결과, 산화기체 존재하에 알릴기가 함유된 실란 화합물 및 기공형성 물질을 플라즈마로 화학증착시켜 저유전 박막을 제조할 경우, 기존 스핀캐스팅 법에서 발생되는 전·후 처리에 대한 복잡한 공정을 줄일 수 있고, 유전상수 및 기계적 특성을 개선시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have made diligent efforts to solve the problems of the prior art, in the case of producing a low dielectric thin film by chemical vapor deposition of a silane compound and a pore-forming material containing an allyl group in the presence of an oxidizing gas, in the conventional spin casting method The present invention has been completed by confirming that it is possible to reduce the complicated process for the generated pre and post treatment, and to improve the dielectric constant and mechanical properties.
본 발명의 주된 목적은 간단한 공정으로 박막의 유전상수와 기계적 물성을 향상시킬 수 있는 저유전 박막 및 그 제조방법을 제공하는데 있다.
It is a main object of the present invention to provide a low-k dielectric thin film and a method of manufacturing the same, which can improve the dielectric constant and mechanical properties of the thin film by a simple process.
상기와 같은 목적을 달성하기 위하여, 본 발명은 산화기체 존재하에 1:0.1 내지 1:10의 비율의 알릴기가 함유된 실란 화합물 및 기공형성 물질을 플라즈마로 화학증착시킨 다음, 열처리하는 단계를 포함하는 저유전 박막의 제조방법을 제공한다.
In order to achieve the above object, the present invention includes the step of chemically depositing a silane compound and pore-forming material containing an allyl group in a ratio of 1: 0.1 to 1:10 in the presence of an oxidizing gas, followed by heat treatment. It provides a method for producing a low dielectric thin film.
본 발명은 또한, 산화기체 존재하에 알릴기가 함유된 실란 화합물 및 기공형성 물질이 1:0.1 내지 1:10 비율로 플라즈마로 화학증착시킨 다음, 열처리하여 제조되고, 2.4 이하의 상대 유전상수, 4.0 ~ 8.5GPa의 탄성율 및 0.4~1.0GPa의 강도를 가지는 것을 특징으로 하는 저유전 박막을 제공한다.
The present invention also provides a silane compound containing an allyl group and a pore-forming material in the presence of an oxidizing gas, which is prepared by chemical vapor deposition with plasma at a ratio of 1: 0.1 to 1:10, and then heat-treated, and has a relative dielectric constant of 2.4 or less, 4.0 to It provides a low-k dielectric thin film having an elastic modulus of 8.5 GPa and a strength of 0.4 ~ 1.0 GPa.
본 발명에 따른 저유전 박막의 제조방법은 선형 또는 비선형 형태의 유·무기 전구체를 이용하여 종래에 비해 유전상수가 월등히 낮은 동시에 열적으로 안정한 저유전 박막을 제조할 수 있고, 스핀 캐스팅법에서 발생되는 전·후 처리에 대한 복잡한 공정을 줄일 수 있으며, 열처리와 같은 과정을 통하여 박막의 유전상수 및 기계적 특성을 개선시켜 반도체 장치 제조 등에 유용하게 이용할 수 있는 효과가 있다.
In the method of manufacturing a low dielectric thin film according to the present invention, by using an organic or inorganic precursor having a linear or nonlinear shape, a low dielectric thin film having a significantly lower dielectric constant than that of the related art and a thermally stable low dielectric thin film may be produced. It is possible to reduce the complicated process for the pre- and post-treatment, and to improve the dielectric constant and mechanical properties of the thin film through a process such as heat treatment, there is an effect that can be usefully used in the manufacture of semiconductor devices.
도 1은 본 발명에 따른 저유전 박막의 제조에 사용되는 다이렉트 플라즈마 장치의 계략도이다.
도 2는 본 발명에 따른 저유전 박막의 제조에 사용되는 리모트 플라즈마 장치의 계략도이다.
도 3은 본 발명에 따른 제조방법으로 제조된 저유전 박막의 O2/ATMS 유량비에 대한 유전상수 변화를 나타낸 그래프이다.
도 4는 본 발명에 따른 제조방법으로 제조된 저유전 박막의 O2/ATMS 유량비에 대한 탄소함량 변화를 나타낸 그래프이다.
도 5는 본 발명에 따른 제조방법으로 제조된 저유전 박막의 O2/ATMS 유량비에 대한 굴절률 변화를 나타낸 그래프이다.
도 6은 본 발명에 따른 저유전 박막의 제조 조건을 나타낸 표이다.
도 7은 본 발명에 따른 제조방법으로 제조된 저유전 박막의 탄성율 및 경도를 나타낸 표이다.
도 8은 본 발명에 따른 제조방법으로 제조된 저유전 박막의 AB/ATMOS 유량비에 대한 유전상수 변화를 나타낸 그래프이다.
도 9는 본 발명에 따른 제조방법으로 제조된 저유전 박막의 AB/ATMOS 유량비에 대한 굴절률 변화를 나타낸 그래프이다.
도 10은 본 발명에 따른 제조방법으로 제조된 저유전 박막의 CHO/ATMS 유량비에 대한 유전상수 변화를 나타낸 그래프이다.
도 11은 본 발명에 따른 제조방법으로 제조된 저유전 박막의 CHO/ATMS 유량비에 대한 굴절률 변화를 나타낸 그래프이다.
도 12는 본 발명에 따른 제조방법으로 제조된 저유전 박막의 열처리 전후의 두께 유지율을 나타낸 그래프이다.1 is a schematic diagram of a direct plasma apparatus used for producing a low dielectric thin film according to the present invention.
2 is a schematic diagram of a remote plasma apparatus used for producing a low dielectric thin film according to the present invention.
3 is a graph showing the change in dielectric constant with respect to the O 2 / ATMS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
Figure 4 is a graph showing the carbon content change with respect to the O 2 / ATMS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
Figure 5 is a graph showing the refractive index change with respect to the O 2 / ATMS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
6 is a table showing the manufacturing conditions of the low-k dielectric thin film according to the present invention.
7 is a table showing the modulus and hardness of the low-k dielectric thin film manufactured by the manufacturing method according to the present invention.
8 is a graph showing a change in dielectric constant with respect to the AB / ATMOS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
9 is a graph showing the refractive index change with respect to the AB / ATMOS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
10 is a graph showing a change in dielectric constant with respect to the CHO / ATMS flow rate ratio of the low dielectric thin film prepared by the manufacturing method according to the present invention.
11 is a graph showing the refractive index change with respect to the CHO / ATMS flow rate ratio of the low-k dielectric thin film manufactured by the manufacturing method according to the present invention.
12 is a graph showing the thickness retention rate before and after heat treatment of the low-k dielectric thin film manufactured by the manufacturing method according to the present invention.
본 발명은 일 관점에서 산화기체 존재하에 1:0.1 내지 1:10의 비율의 알릴기가 함유된 실란 화합물 및 기공형성 물질을 플라즈마 화학증착시킨 다음, 열처리하는 단계를 포함하는 저유전 박막의 제조방법에 관한 것이다.The present invention provides a method for manufacturing a low dielectric thin film, comprising: plasma chemically depositing a silane compound and a pore-forming material containing an allyl group in a ratio of 1: 0.1 to 1:10 in the presence of an oxidizing gas, and then performing a heat treatment. It is about.
구체적으로, 플라즈마 중합(plasma polymerization)이 가능한 알릴기가 함유된 유기 실란 화합물은 박막의 매트릭스 역할을 하고, 여기에 상기 알릴기가 함유된 유기 실란 화합물과 상용성이 우수한 알릴기가 함유된 벤젠 화합물, 에폭시기가 함유된 비선형 탄화수소 화합물 등과 같은 기공형성 물질을 주입하므로써 박막에 나노 기공을 형성시켜 플라즈마 화학증착시 낮은 유전상수와 높은 기계적 물성을 가지는 SiCOH 계열의 저유전 박막을 제조한다.
Specifically, the allyl group-containing organic silane compound capable of plasma polymerization acts as a matrix of the thin film, and the allyl group-containing benzene compound and epoxy group have excellent compatibility with the allyl group-containing organic silane compound. By injecting pore-forming materials, such as non-linear hydrocarbon compounds, to form nano-pores in the thin film to produce a SiCOH-based low dielectric thin film having a low dielectric constant and high mechanical properties during plasma chemical vapor deposition.
도 1 및 도 2는 본 발명에서 사용할 수 있는 플라즈마 증착장치의 개략도로, 도 1의 플라즈마 증착장치는 다이렉트(direct) 플라즈마 방식의 장치이고, 도 2의 플라즈마 증착장치는 리모트(remote) 플라즈마 방식의 장치이다. 1 and 2 are schematic diagrams of a plasma deposition apparatus that can be used in the present invention, wherein the plasma deposition apparatus of FIG. 1 is a direct plasma apparatus, and the plasma deposition apparatus of FIG. 2 is a remote plasma apparatus. Device.
상기 다이렉트 플라즈마 방식의 플라즈마 증착장치는 산화기체 및 반응물질(알릴기가 함유된 실란 화합물 등)이 합쳐진 후 함께 장치의 상부로 공급되고, 상기 리모트 플라즈마 방식의 플라즈마 장치는 산화기체와 반응물질(알릴기가 함유된 실란 화합물 등)이 별도의 공급장치를 통해서 장치로 공급되는 것으로 예를 들면, 산화기체는 플라즈마 증착장치의 상부로 공급되고, 반응물질은 장치의 측면에서 확산 링을 통해 공급될 수 있다.
The direct plasma plasma deposition apparatus is supplied with an oxidizing gas and a reactant (such as a silane compound containing an allyl group) and then supplied to the upper portion of the apparatus. The remote plasma plasma apparatus includes an oxidizing gas and a reactant (allyl group). Contained silane compound, etc.) is supplied to the device through a separate supply device. For example, oxidizing gas may be supplied to the top of the plasma deposition device, and reactants may be supplied through a diffusion ring on the side of the device.
본 발명에 따른 플라즈마 화학증착은 전술된 플라즈마 증착장치를 사용하고, 상기 플라즈마 증착장치는 0.1~10 Torr의 압력하에 기판의 온도는 100~300℃이고, 알릴기가 함유된 실란 화합물과 산화기체의 비율은 1:0.1~1:10이며, 플라즈마의 강도는 30~100W 조건으로 플라즈마 반응시켜 SiCOH 계열의 저유전 박막을 증착시킨다. 이때, 플라즈마 증착장치의 압력이 0.1 Torr 미만이면, 박막의 증착속도가 현저히 낮아지는 문제점이 발생되고, 10 Torr를 초과하면 박막이 불균일해지는 문제점이 발생되며, 플라즈마 증착장치의 기판의 온도가 100℃ 미만이면 박막의 기계적 물성이 떨어지는 문제점이 발생되고, 300℃를 초과하면 박막의 증착속도가 낮아지는 문제점이 있다.Plasma chemical vapor deposition according to the present invention uses the above-described plasma deposition apparatus, the plasma deposition apparatus is a temperature of the substrate 100 ~ 300 ℃ under a pressure of 0.1 ~ 10 Torr, the ratio of the silane compound and oxidizing gas containing allyl group Is 1: 0.1 to 1:10 and the intensity of the plasma is 30 ~ 100W conditions by plasma reaction to deposit a SiCOH-based low dielectric thin film. At this time, if the pressure of the plasma deposition apparatus is less than 0.1 Torr, a problem that the deposition rate of the thin film is significantly lowered, and if the pressure exceeds 10 Torr, a problem that the thin film is uneven occurs, the temperature of the substrate of the plasma deposition apparatus is 100 ℃ If it is less than the problem occurs that the mechanical properties of the thin film is lowered, if it exceeds 300 ℃ there is a problem that the deposition rate of the thin film is lowered.
또한, 알릴기가 함유된 실란 화합물과 산화기체의 비율이 1:0.1 미만이면 Si-O 네트워크가 잘 형성되지 않는 문제점이 발생되고, 1:10을 초과하면, 박막의 유전상수가 낮아지지 않는 문제점이 발생될 수 있으며, 플라즈마 강도가 30W 미만이면 박막의 형성이 잘 안되는 문제가 발생되고, 100W를 초과하면 유전상수가 높아지는 문제점이 발생된다.In addition, when the ratio of the silane compound containing an allyl group and the oxidizing gas is less than 1: 0.1, a problem occurs that Si-O network is not well formed, and when the ratio exceeds 1:10, the dielectric constant of the thin film is not lowered. If the plasma intensity is less than 30W, the problem of poor formation of the thin film is generated, and if the value exceeds 100W, the dielectric constant is increased.
본 발명에 있어서, 상기 산화기체는 SiCOH 박막의 Si-O 네트워크가 원활하게 형성되게 하는 것으로, O2, N2O, O3, H2O2, CO2, 수증기 및 이들의 혼합기체로 구성된 군에서 선택된다.
In the present invention, the oxidizing gas is a Si-O network of the SiCOH thin film to be formed smoothly, consisting of O 2 , N 2 O, O 3 , H 2 O 2 , CO 2 , water vapor and a mixture of these Selected from the group.
본 발명에 있어서, 상기 알릴기가 함유된 실란 화합물은 알릴트리메틸실란(allyltrimethylsilane), 알릴트리에틸실란(allyltriethylsilane), 알릴트리메톡시실란(allyltrimethoxysilane), 알릴트리에톡시실란(allyltriethoxysilane), 알릴트리프로필실란(allyltripropylsilane), 알릴트리프로폭시실란(allyltripropoxysilane) 및 이들의 혼합물로 이루어진 군으로부터 선택된다.
In the present invention, the allyl group-containing silane compound is allyltrimethylsilane (allyltrimethylsilane), allyltriethylsilane (allyltriethylsilane), allyltrimethoxysilane (allyltrimethoxysilane), allyltriethoxysilane (allyltriethoxysilane), allyltripropylsilane (allyltripropylsilane), allyltripropoxysilane, and mixtures thereof.
본 발명에 있어서, 상기 기공형성 물질은 알릴기가 함유된 유기 실란 화합물과 함께 플라즈마 화학증착시켜 박막을 형성하고, 열처리시에 제거되어 제조된 박막에 나노크기의 기공을 형성시켜 절연성이 우수한 박막을 제조할 수 있다.In the present invention, the pore-forming material is plasma chemical vapor deposition together with the allyl group-containing organic silane compound to form a thin film, and nano-sized pores are formed on the thin film prepared by heat treatment to prepare a thin film having excellent insulation can do.
이때, 알릴기가 함유된 유기 실란 화합물 및 기공형성 물질의 비율은 1:0.1 내지 1:10로, 기공형성 물질이 상기 범위보다 소량으로 첨가되는 경우에는 유전상수를 낮추기 어렵고, 상기 범위보다 과량으로 첨가되는 경우에는 다공성이 너무 높아 층간 절연막에 요구되는 절연 특성 및 화학물질에 대한 내성을 얻기 어렵다.
At this time, the ratio of the allyl group-containing organic silane compound and the pore-forming material is 1: 0.1 to 1:10, and when the pore-forming material is added in a smaller amount than the above range, it is difficult to lower the dielectric constant, and it is added in excess of the above range. In this case, the porosity is so high that it is difficult to obtain the insulation properties and chemical resistance required for the interlayer insulating film.
상기 기공형성 물질은 알릴기가 함유된 벤젠 화합물, 에폭시기가 함유된 비선형 탄화수소 화합물, 시클로헥산(cyclohexane), 톨루엔(toluene), 노보넨(norbornene), 터피넨(terpinene), 자일렌(xylene), 선형의 알켄, 비선형의 불포화 탄화수소 및 이들의 혼합물로 구성된 군에서 선택된다.The pore-forming material may be a benzene compound containing an allyl group, a nonlinear hydrocarbon compound containing an epoxy group, cyclohexane, toluene, norbornene, terpinene, xylene, linear Alkenes, nonlinear unsaturated hydrocarbons and mixtures thereof.
상기 알릴기가 함유된 벤젠 화합물은 알릴벤젠(allylbenzene), 1-알릴-2-메틸벤젠(1-allyl-2-methylbenzene), 1-알릴-3-메틸벤젠(1-allyl-3-methylbenzene), 4-알릴-1,2-디메톡시벤젠(4-allyl-1,2-dimethoxybenzene), 부테닐벤젠(butenylbenzene), 펜테닐벤젠(pentenylbenzene) 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 바람직하게는 알릴벤젠(allylbenzene), 1-알릴-2-메틸벤젠(1-allyl-2-methylbenzene), 1-알릴-3-메틸벤젠(1-allyl-3-methylbenzene) 및 4-알릴-1,2-디메톡시벤젠(4-allyl-1,2-dimethoxybenzene)이다.The allyl group-containing benzene compound may be allylbenzene, 1-allyl-2-methylbenzene, 1-allyl-3-methylbenzene, 1-allyl-3-methylbenzene, 4-allyl-1,2-dimethoxybenzene, butenylbenzene, pentenylbenzene, and mixtures thereof, preferably Allylbenzene, 1-allyl-2-methylbenzene, 1-allyl-3-methylbenzene and 4-allyl-1,2- Dimethoxybenzene (4-allyl-1,2-dimethoxybenzene).
또한, 상기 에폭시기가 함유된 비선형 탄화수소 화합물은 시클로헥센옥사이드(cyclohexene oxide), 시클로펜텐옥사이드(cyclopentene oxide), 시클로부텐옥사이드(cyclobutene oxide), 시클로프로펜옥사이드(cyclopropene oxide), 시클로옥텐옥사이드(cyclooctene oxide) 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 바람직하게는 시클로헥센옥사이드(cyclohexene oxide), 시클로펜텐옥사이드(cyclopentene oxide) 및 시클로옥텐옥사이드(cyclooctene oxide)이다.In addition, the non-linear hydrocarbon compound containing the epoxy group is cyclohexene oxide (cyclohexene oxide), cyclopentene oxide (cyclopentene oxide), cyclobutene oxide (cyclobutene oxide), cyclopropene oxide (cyclopropene oxide), cyclooctene oxide (cyclooctene oxide) ) And mixtures thereof, and preferably cyclohexene oxide, cyclopentene oxide and cyclooctene oxide.
또한, 상기 선형의 알켄은 에텐(ethene), 프로펜(propene), 부텐(butene), 펜텐(pentene), 헥센(hexene), 옥텐(octene) 및 이들의 혼합물로 구성된 군에서 선택되고, 상기 비선형의 불포화 탄화수소는 시클로프로펜(cyclopropene), 시클로부텐(cyclobutene), 시클로펜텐(cyclopentene), 시클로헥센(cyclohexene), 시클로옥텐(cyclooctene) 및 이들의 혼합물로 구성된 군에서 선택된다.
In addition, the linear alkene is selected from the group consisting of ethene, propene, butene, pentene, hexene, octene and mixtures thereof, and the nonlinear The unsaturated hydrocarbon of is selected from the group consisting of cyclopropene, cyclobutene, cyclopentene, cyclopentene, cyclohexene, cyclooctene and mixtures thereof.
일반적으로 스핀 코팅을 이용한 나노 기공형성 방법은 매트릭스 수지와 기공형성 물질과의 상용성에 따라 상분리 정도가 결정되는데, 건조 반응 및 경화 반응 중에 축합반응으로 인하여 고분자 수지의 관능기 수가 감소하고 매트릭스의 환경이 변화하여 미세 환경을 정확하게 제어하기 어렵고, 상 분리가 발생할 수 있다는 문제점이 있다. In general, the nanopore forming method using spin coating determines the degree of phase separation according to the compatibility between the matrix resin and the pore-forming material. Therefore, it is difficult to accurately control the microenvironment, and there is a problem that phase separation may occur.
그러나, 본 발명에 따른 기공형성 물질 및 알릴기가 함유된 유기 실란 화합물의 조합은 알릴기가 함유된 유기 실란 화합물과 기공형성 물질의 분자들 사이의 상호 결합(cross-linking)이 쉽게 이루어지므로 플라즈마 화학증착으로 제조된 저유전 박막은 알릴기가 함유된 유기 실란 화합물을 사용함으로써 우수한 열적, 기계적 특성을 가지는 동시에 기공형성 물질로 인해 상분리 없이 박막내에 균일하게 나노크기의 기공을 형성시킬 수 있어 박막의 유전상수와 기계적 물성을 향상시킬 수 있다.
However, the combination of the pore-forming material and allyl group-containing organic silane compound according to the present invention is easy to cross-linking between the molecules of the allyl group-containing organic silane compound and the pore-forming material plasma plasma deposition The low dielectric thin film manufactured by using an allyl group-containing organic silane compound has excellent thermal and mechanical properties and can form nano-sized pores uniformly in the thin film without phase separation due to the pore-forming material. Mechanical properties can be improved.
또한, 본 발명에 따라 제조된 박막은 100℃ ~ 600℃에서 0.5시간 ~ 8시간 동안, 바람직하게는 420℃에서 2시간 동안 열처리함으로써 낮은 유전상수 값을 가지는 동시에 열적으로 안정성이 우수한 저유전 박막을 제조할 수 있다. 특히, 100℃ ~ 600℃에서 1 분간 순간 열처리를 하거나, 10초 이내로 스파이크 열처리(spike annealing)하는 방법을 이용함으로써 짧은 시간에도 우수한 유전 특성을 가지는 박막을 제조할 수 있다.
In addition, the thin film prepared according to the present invention is heat-treated at 100 ℃ to 600 ℃ for 0.5 hours to 8 hours, preferably at 420 ℃ for 2 hours to have a low dielectric constant film having a low dielectric constant value and excellent thermal stability It can manufacture. In particular, by using a method of instantaneous heat treatment at 100 ℃ to 600 ℃ for one minute, or spike annealing within 10 seconds can be produced a thin film having excellent dielectric properties even in a short time.
본 발명은 또 다른 관점에서, 산화기체 존재하에 알릴기가 함유된 실란 화합물 및 기공형성 물질이 1:0.1 내지 1:10 비율로 플라즈마로 화학증착시킨 다음, 열처리하여 제조되고, 2.4 이하의 상대 유전상수, 4.0 ~ 8.5GPa의 탄성율 및 0.4~1.0 GPa의 강도를 가지는 것을 특징으로 하는 저유전 박막에 관한 것이다.
In still another aspect, the present invention provides a silane compound and all pore-forming material containing an allyl group in the presence of an oxidizing gas, which are prepared by chemical vapor deposition in a plasma at a ratio of 1: 0.1 to 1:10, and then heat-treated, and a relative dielectric constant of 2.4 or less. And a modulus of elasticity of 4.0 to 8.5 GPa and a strength of 0.4 to 1.0 GPa.
본 발명에 따른 저유전 박막은 유전상수가 2.4 이하로 낮으며, 상기 유전상수는 압력, 온도, 반응물질들의 유량 등 플라즈마 증착시 공정 조건 및 증착 후의 열처리 온도를 조절함으로써 제어될 수 있다. 예를 들어, 산화기체의 양이 반응물질의 양보다 많을수록 즉, 반응물질들의 유량이 클수록 박막 내에 탄소의 함량이 적어 유전상수가 낮아지고, 굴절률 또한 감소된다. 또한, 열처리 후의 박막은 탄소의 함량 및 굴절률이 더 감소된다.
The low dielectric film according to the present invention has a low dielectric constant of 2.4 or less, and the dielectric constant may be controlled by controlling process conditions during plasma deposition such as pressure, temperature, flow rate of reactants, and heat treatment temperature after deposition. For example, the greater the amount of oxidizing gas than the amount of reactant, that is, the greater the flow rate of the reactants, the lower the carbon content in the thin film, resulting in a lower dielectric constant and a lower refractive index. In addition, the thin film after the heat treatment further reduces the carbon content and the refractive index.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.
실시예Example
1: One:
저유전Low oil field
박막 1의 제조 Preparation of
도 1에 도시된 다이렉트 플라즈마 장치를 사용하여 박막을 증착시켰으며, 반응물질로서는 알릴트리메틸실란(allytrimethylsilane, ATMS)를, 산화기체로는 산소(O2)를 사용하였다. 이때 산소와 ATMS의 유량비(O2/ATMS)를 0.5 내지 20의 범위로 조절하면서 막 성장이 진행되는 동안 반응기 내의 증착조건은 압력 1 Torr, 온도 30℃ 및 플라즈마 파워 30W로 유지하였다. 증착 후, 아르곤 분위기하에서 상기 증착된 박막을 열처리하여 저유전 박막을 제조하였다. 이때, 증착시 산소와 ATMS의 유량비(O2/ATMS)에 따른 박막의 유전 상수 변화, 상대적인 탄소 함량(Si-CH3/Si-O) 변화 및 굴절률 변화를 각각 도 3, 도 4 및 도 5에 나타내었다.A thin film was deposited using the direct plasma apparatus shown in FIG. 1, and allyltrimethylsilane (ATMS) was used as a reactant, and oxygen (O 2 ) was used as an oxidizing gas. At this time, while controlling the flow rate ratio (O 2 / ATMS) between oxygen and ATMS in the range of 0.5 to 20, the deposition conditions in the reactor were maintained at a pressure of 1 Torr, a temperature of 30 ° C., and a plasma power of 30 W during the film growth. After deposition, the deposited thin film was heat-treated in an argon atmosphere to prepare a low dielectric thin film. At this time, the dielectric constant change, relative carbon content (Si-CH 3 / Si-O) change and refractive index change of the thin film according to the flow rate ratio (O 2 / ATMS) of oxygen and ATMS during deposition are shown in FIGS. 3, 4, and 5, respectively. Shown in
그 결과, 도 3에 나타난 바와 같이, 상기와 같이 제조된 박막의 유전상수는 3.4 ~ 4.2인 것으로 나타났고, 420℃에서 1시간 동안 열처리한 후의 박막 유전상수는 2.5 ~ 2.7인 것으로 나타나 열처리를 통해 박막의 유전상수가 감소됨을 알 수 있었다. As a result, as shown in Figure 3, the dielectric constant of the thin film prepared as described above was found to be 3.4 ~ 4.2, the thin film dielectric constant after the heat treatment for 1 hour at 420 ℃ appeared to be 2.5 ~ 2.7 through heat treatment It was found that the dielectric constant of the thin film was reduced.
도 4에 나타난 바와 같이, O2/ATMS의 유량비가 증가할수록, 즉 산소의 양이 상대적으로 많아질수록 박막 내에 함입되는 탄소의 함량은 적어지며, 또한 열처리 후에 박막내에 탄소의 함량은 더 감소됨을 알 수 있었고, 도 5에 나타난 바와 같이, O2/ATMS의 유량비가 증가할수록, 박막의 밀도를 나타내는 굴절률은 감소됨을 알 수 있었으며, 열처리 후의 굴절률은 더 감소함을 알 수 있었다.As shown in FIG. 4, as the flow rate ratio of O 2 / ATMS increases, that is, as the amount of oxygen is relatively increased, the carbon content in the thin film decreases, and the carbon content in the thin film further decreases after heat treatment. As shown in FIG. 5, as the flow rate ratio of O 2 / ATMS increased, the refractive index indicating the density of the thin film was decreased, and the refractive index after the heat treatment was further decreased.
또한, 도 6에 나타난 각 공정 조건 및 조건으로 제조된 박막의 기계적 물성 변화를 도 7에 나타내었다. 도 7의 sample 1 및 2를 비교하면, O2/ATMS의 유량비가 증가할수록 탄성율과 경도가 증가함을 알 수 있었고, 도 7의 sample 1 및 3을 비교하면, 플라즈마 파워가 증가할수록 탄성율과 경도 개선됨을 알 수 있었다. 또한, 도 7의 sample 3 및 4를 비교하면, 증착온도가 증가할수록 탄성율과 경도가 현저히 증가함을 알 수 있었고, 모든 샘플의 경우 열처리 후에 기계적 물성이 증가함을 알 수 있었다. 이에 공정 조건으로 박막의 기계적 물성을 조절할 수 있으며, 증착온도가 200℃로 조절하여 박막을 제조한 경우, 상기 제조된 박막은 탄성율이 9 ~ 11Gpa이고, 경도가 1 ~ 1.6Gpa인 것으로 나타나, 우수한 기계적 물성을 가짐을 확인할 수 있었다.
In addition, the mechanical properties of the thin film manufactured under the respective process conditions and conditions shown in FIG. 6 are shown in FIG. 7. Comparing
실시예Example
2: 2:
저유전Low oil field
박막 2의 제조 Preparation of
실시예 1과 동일한 제조방법으로 제조하되, 반응물질을 알릴트리메톡시실란(allytrimethoxysilane, ATMOS)과 알릴벤젠(allylbenzene, AB)의 조합을 사용하였다. 증착시 산소(O2) 함량은 고정하고 AB/ATMOS 유량비를 조절하여 박막의 유전 상수 변화와 굴절률의 변화를 도 8 및 도 9에 나타내었다.Prepared in the same manner as in Example 1, the reaction was used a combination of allyltrimethoxysilane (allytrimethoxysilane, ATMOS) and allylbenzene (allylbenzene, AB). Oxygen (O 2) content during the deposition was fixed, and the AB / ATMOS flow rate ratio was adjusted to show the change in dielectric constant and refractive index of the thin film in FIGS. 8 and 9.
도 8 및 도 9에 나타난 바와 같이, AB/ATMOS 유량비가 증가할수록 열처리 전후의 굴절률의 변화가 커지며, 열처리 후의 유전 상수가 2.2 이하인 것으로 나타났다.
As shown in FIG. 8 and FIG. 9, as the AB / ATMOS flow rate ratio increases, the change in refractive index before and after the heat treatment increases, and the dielectric constant after the heat treatment is 2.2 or less.
실시예Example
3: 3:
저유전Low oil field
박막 3의 제조 Preparation of
실시예 1과 동일한 제조방법으로 제조하되, 반응물질을 ATMS와 시클로헥센옥사이드(cyclohexene oxide, CHO)의 조합을 사용하였다. 증착시 산소(O2) 함량은 고정하고 CHO/ATMS 유량비를 조절하여 박막의 유전 상수 변화와 굴절률의 변화, 열처리 후 박막 두께 변화율을 도 10 내지 12에 나타내었다.Prepared in the same manner as in Example 1, the reaction was used a combination of ATMS and cyclohexene oxide (cyclohexene oxide, CHO). Oxygen (O2) content during deposition was fixed and the CHO / ATMS flow rate ratio was adjusted to show the change in dielectric constant and refractive index of the thin film and the thickness change rate after heat treatment in FIGS. 10 to 12.
도 10 및 도 11에 나타난 바와 같이, CHO/ATMS 유량비가 증가할수록 유전 상수가 감소하며, 열처리 전후의 굴절률 변화가 커짐을 알 수 있었고, 열처리 전의 유전상수는 2.3 ~ 3.0으로 나타난 반면, 열처리 후의 유전상수는 2.0 ~ 2.8인 것으로 나타났다.As shown in FIG. 10 and FIG. 11, the dielectric constant decreases as the CHO / ATMS flow rate increases, and the change in refractive index before and after the heat treatment is increased. The dielectric constant before the heat treatment is found to be 2.3 to 3.0, whereas The constant was found to be 2.0 to 2.8.
또한, 표 1의 조건으로 제조된 박막의 탄성율, 경도 및 저유전 상수를 측정한 결과, 유전상수가 2.4인 박막(샘플: 9a)의 경우 8.4Gpa의 탄성율 및 0.75Gpa의 강도를 가지는 것으로 나타났다(표 2).In addition, as a result of measuring the elastic modulus, hardness and low dielectric constant of the thin film prepared under the conditions of Table 1, the thin film having a dielectric constant of 2.4 (sample: 9a) was found to have an elastic modulus of 8.4 Gpa and an intensity of 0.75 Gpa ( Table 2).
5
6
7
8
9
도 12는 CHO/ATMS 박막의 열처리 후, 박막의 두께 유지율을 나타내며, 실험 범위에서 열처리 후의 두께 유지율은 90%이상으로 매우 우수한 것으로 나타났다.
12 shows the thickness retention rate of the thin film after the heat treatment of the CHO / ATMS thin film, the thickness retention after the heat treatment in the experimental range was found to be very excellent as 90% or more.
비교예Comparative Example : : 저유전Low oil field 박막의 비교 Comparison of Thin Films
하기 표 3은 상기 실시예 1 내지 3에서 제조된 저유전 박막과 한국등록특허 제0697669호 및 미국공개특허 제2006-0079099호에서 개시하고 있는 저유전체 박막의 상대 유전상수, 탄성율 및 강도를 비교한 것이다. Table 3 compares the relative dielectric constants, modulus, and strength of the low dielectric thin films prepared in Examples 1 to 3 and the low dielectric thin films disclosed in Korean Patent No. 0697669 and US Patent Publication No. 2006-0079099. will be.
상기 표 3에 나타난 바와 같이, 실시예 3에서 제조된 저유전 박막의 경우 상대 유전상수(2.0)가 다른 저유전 박막보다 상대 유전상수가 낮은 것을 알 수 있었고, 실시예 1의 경우 탄성율 및 강도 역시 우수함을 알 수 있었다. 특히, 실시예 3의 경우 낮은 유전 상수에서 탄성율 및 강도가 우수함을 확인할 수 있었다.
As shown in Table 3, in the case of the low dielectric thin film manufactured in Example 3, it was found that the relative dielectric constant (2.0) was lower than that of the other low dielectric thin films. It was found to be excellent. In particular, in the case of Example 3, it was confirmed that the elastic modulus and strength is excellent at a low dielectric constant.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be.
Claims (20)
A method of manufacturing a low dielectric thin film comprising the step of chemically depositing a silane compound and a pore-forming material containing an allyl group at a flow rate of 1: 0.1 to 1:10 in the presence of an oxidizing gas, followed by heat treatment.
According to claim 1, wherein the allyl group-containing silane compound is allyltrimethylsilane (allyltrimethylsilane), allyltriethylsilane (allyltriethylsilane), allyltrimethoxysilane (allyltrimethoxysilane), allyltriethoxysilane (allyltriethoxysilane), allyltripropyl A method of manufacturing a low dielectric thin film, characterized in that selected from the group consisting of silane (allyltripropylsilane), allyltripropoxysilane (allyltripropoxysilane) and mixtures thereof.
The method of claim 1, wherein the pore-forming material is a benzene compound containing an allyl group, a non-linear hydrocarbon compound containing an epoxy group, cyclohexane, toluene, norbornene, terpinene, xyl A method for producing a low dielectric thin film, characterized in that it is selected from the group consisting of xylene, linear alkenes, nonlinear unsaturated hydrocarbons, and mixtures thereof.
According to claim 3, wherein the allyl group-containing benzene compound is allylbenzene (allylbenzene), 1-allyl-2-methylbenzene (1-allyl-2-methylbenzene), 1-allyl-3-methylbenzene (1-allyl -3-methylbenzene, 4-allyl-1,2-dimethoxybenzene, butenylbenzene, pentenylbenzene and mixtures thereof Method for producing a low dielectric thin film, characterized in that selected.
The method of claim 3, wherein the non-linear hydrocarbon compound containing an epoxy group is cyclohexene oxide (cyclohexene oxide), cyclopentene oxide (cyclopentene oxide), cyclobutene oxide (cyclobutene oxide), cyclopropene oxide (cyclopropene oxide), cyclooctene A method of manufacturing a low dielectric thin film, characterized in that selected from the group consisting of oxides (cyclooctene oxide) and mixtures thereof.
The linear alkene of claim 3 is selected from the group consisting of ethene, propene, butene, pentene, hexene, octene and mixtures thereof. Method for producing a low dielectric thin film, characterized in that.
The method of claim 3, wherein the non-linear unsaturated hydrocarbon is selected from the group consisting of cyclopropene, cyclobutene, cyclopentene, cyclopentene, cyclohexene, cyclooctene, and mixtures thereof Method for producing a low dielectric thin film, characterized in that selected.
The method of claim 1, wherein the oxidizing gas is selected from O 2 , N 2 O, O 3 , H 2 O 2 , CO 2 , water vapor, and a mixture thereof.
According to claim 1, wherein the chemical vapor deposition using a plasma deposition apparatus, the plasma deposition apparatus is a pressure of 0.1 ~ 10 Torr, the temperature of the substrate is 100 ~ 300 ℃, allyl group containing silane compound and oxide gas A flow rate ratio is 1: 0.1-1: 10, and a plasma power is 30-100W manufacturing method of the low dielectric thin film characterized by the above-mentioned.
The method of claim 1, wherein the heat treatment is performed at 100 to 600 ° C. for 0.5 to 8 hours.
The silane compound and the pore-forming material containing the allyl group in the presence of an oxidizing gas are chemically deposited by plasma at a flow rate of 1: 0.1 to 1:10, and then subjected to heat treatment. Low dielectric film, characterized in that having a strength of 0.4 ~ 1.0 GPa.
12. The method of claim 11, wherein the allyl group-containing silane compound is allyltrimethylsilane (allyltrimethylsilane), allyltriethylsilane (allyltriethylsilane), allyltrimethoxysilane (allyltrimethoxysilane), allyltriethoxysilane (allyltriethoxysilane), allyltripropyl Low dielectric film, characterized in that selected from the group consisting of silane (allyltripropylsilane), allyltripropoxysilane (allyltripropoxysilane) and mixtures thereof.
The method of claim 11, wherein the pore-forming material is a benzene compound containing an allyl group, a non-linear hydrocarbon compound containing an epoxy group, cyclohexane, toluene, norbornene, terpinene, xyl Low dielectric thin film, characterized in that selected from the group consisting of xylene, linear alkene, nonlinear unsaturated hydrocarbons and mixtures thereof.
The method of claim 13, wherein the allyl group-containing benzene compound is allylbenzene, 1-allyl-2-methylbenzene, 1-allyl-3-methylbenzene (1-allyl) -3-methylbenzene, 4-allyl-1,2-dimethoxybenzene, butenylbenzene, pentenylbenzene and mixtures thereof Low dielectric film, characterized in that selected.
The method of claim 13, wherein the allyl group-containing benzene compound is allylbenzene, 1-allyl-2-methylbenzene, 1-allyl-3-methylbenzene (1-allyl) -3-methylbenzene, 4-allyl-1,2-dimethoxybenzene, butenylbenzene, pentenylbenzene and mixtures thereof Low dielectric film, characterized in that selected.
The method of claim 13, wherein the non-linear hydrocarbon compound containing the epoxy group is cyclohexene oxide (cyclohexene oxide), cyclopentene oxide (cyclopentene oxide), cyclobutene oxide (cyclobutene oxide), cyclopropene oxide (cyclopropene oxide), cyclooctene Low dielectric film, characterized in that selected from the group consisting of oxides (cyclooctene oxide) and mixtures thereof.
The method of claim 13, wherein the linear alkene is selected from the group consisting of ethene, propene, butene, pentene, hexene, octene and mixtures thereof Low dielectric film, characterized in that.
The method of claim 13, wherein the non-linear unsaturated hydrocarbon is selected from the group consisting of cyclopropene, cyclobutene, cyclopentene, cyclohexene, cyclooctene, and mixtures thereof Low dielectric film, characterized in that selected.
The low dielectric film of claim 11, wherein the oxidizing gas is selected from O 2 , N 2 O, O 3 , H 2 O 2 , CO 2 , water vapor, and a mixture thereof.
The low dielectric film of claim 11, wherein the heat treatment is performed at 100 to 600 ° C. for 0.5 to 8 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110018455A KR101326254B1 (en) | 2011-03-02 | 2011-03-02 | Low Dielectric Thin Films and Method for Preparing the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110018455A KR101326254B1 (en) | 2011-03-02 | 2011-03-02 | Low Dielectric Thin Films and Method for Preparing the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120099926A KR20120099926A (en) | 2012-09-12 |
KR101326254B1 true KR101326254B1 (en) | 2013-11-11 |
Family
ID=47109754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110018455A KR101326254B1 (en) | 2011-03-02 | 2011-03-02 | Low Dielectric Thin Films and Method for Preparing the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101326254B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231714A (en) | 2001-02-02 | 2002-08-16 | Fujitsu Ltd | Low permittivity insulating film forming composition and semiconductor device including low permittivity insulating film formed of the composition |
JP2008019436A (en) | 2007-07-02 | 2008-01-31 | Mitsubishi Electric Corp | Raw material for forming low dielectric constant material |
KR100845941B1 (en) | 2007-03-27 | 2008-07-14 | 성균관대학교산학협력단 | Manufacturing method of low-k thin films and after annealing processes using rta, low-k thin films manufactured therefrom |
-
2011
- 2011-03-02 KR KR1020110018455A patent/KR101326254B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231714A (en) | 2001-02-02 | 2002-08-16 | Fujitsu Ltd | Low permittivity insulating film forming composition and semiconductor device including low permittivity insulating film formed of the composition |
KR100845941B1 (en) | 2007-03-27 | 2008-07-14 | 성균관대학교산학협력단 | Manufacturing method of low-k thin films and after annealing processes using rta, low-k thin films manufactured therefrom |
JP2008019436A (en) | 2007-07-02 | 2008-01-31 | Mitsubishi Electric Corp | Raw material for forming low dielectric constant material |
Also Published As
Publication number | Publication date |
---|---|
KR20120099926A (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3762304B2 (en) | Method for forming low dielectric constant interlayer insulating film | |
TWI425569B (en) | Ultraviolet assisted pore sealing of porous low k dielectric films | |
TWI324381B (en) | Low k and ultra low k sicoh dielectric films and methods to form the same | |
US7098149B2 (en) | Mechanical enhancement of dense and porous organosilicate materials by UV exposure | |
KR100751990B1 (en) | A process for capping an extremely low dielectric constant film and a substrate produced therefrom | |
TWI250221B (en) | Mechanical enhancer additives for low dielectric films | |
EP1457583B1 (en) | Mechanical enhancement of dense and porous organosilicate materials by UV exposure | |
TW200307761A (en) | Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants | |
TW201022466A (en) | Dielectric barrier deposition using oxygen containing precursor | |
TW200409738A (en) | Low dielectric constant material and method of processing by CVD | |
KR20040012661A (en) | Multiphase low dielectric constant material and method of deposition | |
KR100962044B1 (en) | Plasma polymerized thin film and manufacturing method thereof | |
KR100845941B1 (en) | Manufacturing method of low-k thin films and after annealing processes using rta, low-k thin films manufactured therefrom | |
KR101326254B1 (en) | Low Dielectric Thin Films and Method for Preparing the Same | |
KR20200027703A (en) | Plasma polymerized thin film having low dielectric constant and preparing method thereof | |
KR101506801B1 (en) | Plasma polymerized thin film having high hardness and low dielectric constant and manufacturing method thereof | |
KR100987183B1 (en) | Plasma polymerized thin film and manufacturing method thereof | |
KR101894904B1 (en) | Method of sealing open pores on surface of porous dielectric material | |
US20230227611A1 (en) | Plasma polymerized thin film and preparing method thereof | |
KR100697669B1 (en) | MANUFACTURING METHOD OF LOW-k PLASMA POLYMERIZED THIN FILMS AND LOW-k THIN FILMS MANUFACTURED THEREFROM | |
US9371430B2 (en) | Porous film with high hardness and a low dielectric constant and preparation method thereof | |
KR20230113130A (en) | Plasma polymerized thin film and preparing method thereof | |
KR100924558B1 (en) | Method for manufacturing of dielectrics for semiconductor device | |
KR100818114B1 (en) | Template derivative forming ultra-low dielectrics and method of forming ultra-low dielectrics using the same | |
KR20100027443A (en) | Semiconductor device, and method of fabricating thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160922 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170926 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |