KR101319540B1 - Method for manufacturing vapor-permeable and waterproof sheet - Google Patents

Method for manufacturing vapor-permeable and waterproof sheet Download PDF

Info

Publication number
KR101319540B1
KR101319540B1 KR1020120091249A KR20120091249A KR101319540B1 KR 101319540 B1 KR101319540 B1 KR 101319540B1 KR 1020120091249 A KR1020120091249 A KR 1020120091249A KR 20120091249 A KR20120091249 A KR 20120091249A KR 101319540 B1 KR101319540 B1 KR 101319540B1
Authority
KR
South Korea
Prior art keywords
moisture
web layer
waterproof fabric
producing
nanofibers
Prior art date
Application number
KR1020120091249A
Other languages
Korean (ko)
Inventor
천석원
박대근
한진규
박종수
Original Assignee
(주)우리나노필
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)우리나노필 filed Critical (주)우리나노필
Priority to KR1020120091249A priority Critical patent/KR101319540B1/en
Application granted granted Critical
Publication of KR101319540B1 publication Critical patent/KR101319540B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/552Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving by applying solvents or auxiliary agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C15/00Calendering, pressing, ironing, glossing or glazing textile fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: A production method of a breathable waterproof fabric is provided to have excellent water repellency through prevention of a capillary phenomenon or slipping over between laminated fabrics and to have comfortable sensation. CONSTITUTION: A production method of a breathable waterproof fabric includes the following steps. A nano-fiber web layer with thickness of 2-50 micro meters is formed laminating nano fibers with a size of 50-1000 nano meters. A mixed solution, in which a good solvent which melts nano fibers and a non solvent or a vacant solvent are mixed to form a bonding between the nano fibers at least after completion of laminating the nano fibers, is supplied to the nano fiber web layer. The nano fiber web layer in which the mixed solution is supplied is dried applying heat.

Description

투습방수 원단을 제조하는 방법{METHOD FOR MANUFACTURING VAPOR-PERMEABLE AND WATERPROOF SHEET}METHOD FOR MANUFACTURING VAPOR-PERMEABLE AND WATERPROOF SHEET}

본 개시는 전체적으로 투습방수 원단을 제조하는 방법에 관한 것으로, 특히, 나노섬유로부터 형성된 웹층으로 된 투습방수 원단을 제조하는 방법에 관한 것이다. The present disclosure relates generally to a method for manufacturing a moisture-permeable waterproof fabric, and more particularly, to a method for manufacturing a water-permeable waterproof fabric having a web layer formed from nanofibers.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Herein, the background art relating to the present disclosure is provided, and these are not necessarily meant to be known arts.

투습방습 원단으로 나노섬유로 이루어진 웹층이 고려되고 있다. 이러한 나노섬유 웹층은 전기방사(electro-spinning) 또는 전기브로우 방사(electroblow-spinning)에 의해 제조될 수 있다. 그러나 이러한 기술을 이용하여 제조된 기존의 투습방수 원단은 기공 크기가 작다고 하더라도 모세관 현상으로 인하여 물이 스며들어 충분한 방수 성능을 얻을 수 없으며, 강도가 약한 단점도 있다. 또한 힘이 가해질 경우 섬유간 슬립의 발생으로 인하여 기공이 벌어져 방수도가 저하되는 단점이 있으며, 방사 공정에서 부득이 하게 발생하는 핀홀에 의해서도 방수성이 저하되는 문제가 발생할 수 있다.A web layer made of nanofibers is considered as a moisture-proof and moisture-proof fabric. Such nanofiber web layers may be prepared by electrospinning or electroblow-spinning. However, the conventional moisture permeable and waterproof fabric manufactured using such a technology can not obtain sufficient waterproof performance due to the water penetration due to the capillary phenomenon even if the pore size is small, and there is also a disadvantage that the strength is weak. In addition, when the force is applied, there is a disadvantage in that the pores are opened due to the occurrence of slip between the fibers and the waterproofness is lowered, and the waterproofness may also be reduced by the pinhole inevitably generated in the spinning process.

상기의 문제점을 해결하기 위하여 나노섬유 웹층의 표면에 얇은 PU 혹은 PVdF 층을 코팅하여 제작된 투습방수 원단이 제작되고 있다. 한국 등록특허공보 제10-0993943호에는 전기방사된 나노섬유 웹층에 수분산 폴리우레탄(PUD)을 부분 코팅하여 방수성 및 내구성이 향상된 투습방수 원단 제조기술이 제시되어 있다. 그러나 이 기술에서는 나노섬유 웹층으로 제조된 원단의 가장 중요한 특징인 기공을 막아 투습도가 감소하는 단점이 있으며, 나노섬유의 경량성 또한 감소하여 쾌적성이 감소하며 추가 코팅공정을 통한 제조 단가가 증가하는 등의 문제가 있다. 또한 나노섬유 웹층 이면에 코팅층을 추가할 경우 나노섬유 웹층 내부에 남아있는 서로 물리적인 힘에 의해 교락되지 않은 섬유상에 의하여 세탁 후 나노섬유 웹층의 기공 및 모폴로지 변화에 의하여 방수성이 현격히 감소하는 단점이 있다.In order to solve the above problems, a breathable and waterproof fabric made by coating a thin PU or PVdF layer on the surface of a nanofiber web layer has been produced. Korean Patent Registration No. 10-0993943 discloses a technique of manufacturing a moisture permeable and waterproof fabric having improved waterproofness and durability by partially coating a water dispersed polyurethane (PUD) on an electrospun nanofiber web layer. However, this technology has the disadvantage of reducing the moisture permeability by blocking the pores which are the most important feature of the fabric made of the nanofiber web layer, the lightness of the nanofiber is also reduced to reduce the comfort and increase the manufacturing cost through additional coating process There is a problem. Further, when the coating layer is added to the back surface of the nanofiber web layer, there is a disadvantage that the waterproof property of the nanofiber web layer due to the pore and the morphology of the nanofiber web layer is remarkably reduced due to the fibrous structure not intertwined by the physical forces remaining in the nanofiber web layer .

도 1은 전기방사 장치의 일 예를 나타내는 도면으로서, 전기방사 장치(40)는 용융 상태의 섬유 원료용 고분자 물질을 공급하기 위한 공급 유니트(110)와, 공급 유니트(110)로부터 공급된 고분자 용액을 하전된 필라멘트 또는 섬유 형태로 토출시키기 위한 복수의 방사노즐들(122)을 구비하는 방사 유니트(120)와, 방사 유니트(120)로부터 방사된 필라멘트를 소정 두께로 누적시키기 위해 방사노즐들(122)과 소정간격 이격 배치된 컬렉터(130)와, 방사 유니트(120)의 적어도 양측에 설치된 제어 유니트(140)와, 필라멘트 스트림을 둘러싸도록 제어 유니트(140)와 컬렉터(130) 사이에 설치된 유도 유니트(150)와, 방사 유니트(120)와 컬렉터(130) 사이의 공간으로 공기를 주입하고, 이 공간 내의 용매를 증발시켜 외부로 배출시키기 위한 공조 유니트(160)를 구비한다. 공급 유니트(110)는 섬유 원료가 되는 고분자 물질이 용해된 용액이 저장되는 저장 용기(112)와, 저장 용기(112)에 저장된 용액을 가압하여 방사 유니트(120)측으로 정량 공급하기 위한 펌프(114) 및 용액을 각각의 노즐들로 분배하기 위한 분배기(116) 및 이송관(118)을 구비한다. 방사 유니트(120)는 공급 유니트(110)로부터 공급되는 섬유 원료 용액을 하전시킨 상태에서 미세 필라멘트 형태로 컬렉터(130) 방향으로 방사하는 기능을 수행한다. 방사 유니트(120)는 복수의 방사노즐들(122)이 배치된 적어도 하나 이상의 방사노즐팩(126)을 구비한다. 방사노즐팩(126)을 구성하는 방사노즐들(122)의 개수 또는 방사 유니트(120)를 구성하는 방사노즐팩(126)의 개수는 제조될 웹의 사이즈나 두께, 생산속도 등을 종합적으로 고려하여 결정된다. 여러 고분자 물질이 방사될 경우에, 별도의 방사노즐팩이 구비될 수 있다. 컬렉터(130)는 방사 유니트(120)에 인가되는 전압에 대하여 전위차를 갖도록 접지되거나, 혹은 음극성(-)의 전압으로 인가될 수 있다. 컬렉터(130)는 방사 유니트(120)로부터 토출된 하전 필라멘트를 집적하기 위한 것으로서, 예컨대, 롤러(132)와 같은 이송수단을 통해 컨베이어 벨트 방식으로 연속적으로 이동되도록 구성할 수 있다. 제어 유니트(140)는 각각의 방사노즐들(122)로부터 방사되는 필라멘트 스트림이 서로 반발하여 퍼지는 것과 같이 경로를 벗어나는 경우를 방지하기 위한 것이며, 제어 유니트(140)는 방사노즐팩(126)의 적어도 길이 방향의 양측에 설치된다. 유도 유니트(150)는 제어유니트(140)와 동일한 극성의 전압이 인가된다. 유도 유니트(150)는 연신되는 하전 필라멘트 스트림의 둘레에 설치되어 스트림의 진행 방향을 가이드하기 위한 것이다. 유도 유니트(150)는 도체판 혹은 도체봉의 형태로 마련된다. 유도 유니트(150)는 하전 필라멘트와 동일 극성으로 대전됨으로써 컬렉터(130) 상면의 제한된 영역에 필라멘트가 집적되도록 유도한다. 공조 유니트(160)는 방사 유니트(120)와 컬렉터(130) 사이의 공간에서 하전 필라멘트에 용해되어 있는 용매를 휘발시켜 외부로 배기시키기 위한 것으로서, 예를 들어, 흡입팬, 배기팬과 같은 용매 흡,배기 수단과 다수의 공기유입슬롯(162)을 구비한다. 양극성(+) 전압은 고전압 유니트(170)의 출력 전압에 의해 여기된다. 고전압 유니트(170)는 10kV 내지 120kV 범위의 직류 전압을 출력한다. 공급 유니트(110)에 저장된 원료 용액이 펌프(114)와 분배기(116)를 통해 방사 유니트(120)로 정량공급되면, 방사 유니트(120)의 각각의 방사노즐팩(126) 내부의 통전부를 통해 용액이 하전 된다. 이어서, 하전 상태의 용액은 방사노즐(122)의 캐피러리 튜브를 통과하면서 미세 필라멘트 형태로 컬렉터(130) 측으로 토출된다. 여기서, 컬렉터(130)와 하전 필라멘트 간에 형성되는 강력한 전기장에 의해 필라멘트는 나노급의 직경이 되도록 연신되면서 방사된다. 이러한 방사과정에 있어서, 필라멘트간의 반발력으로 인해 진행 경로를 벗어나 외곽으로 퍼지려는 스트림은 제어 유니트(140)에 의해 원위치로 돌아가게 되고 올바른 진행 경로를 유지할 수 있게 된다. 한편, 컬렉터(130) 상측에는 토출되는 스트림을 둘러싸도록 유도 유니트(150)가 설치되어 있으므로, 유도 유니트(150)에 의해 경로를 벗어나려고 하는 스트림은 컬렉터(130) 상의 제한된 집적 영역에 유도된다. 상기와 같이 유도된 필라멘트들은 컨베이어 벨트 혹은 회전드럼 형태의 컬렉터(130) 상에 연속적으로 집적되거나, 아니면, 롤러(180)에 의해 이송되는 필름, 모조지, 부직포와 같은 기재(182)의 상면에 집적되어 나노섬유로 이루어지는 웹상의 다공막으로 제조된다. 이러한 전기방사 장치의 일 예가 미국 등록특허공보 제7,351,052호에 제시되어 있다.Fig. 1 shows an example of an electrospinning device. The electrospinning device 40 includes a supply unit 110 for supplying a polymer material for a fiber material in a molten state, a polymer solution supplied from the supply unit 110 A plurality of spinning nozzles 122 for discharging filaments from the spinning unit 120 in the form of charged filaments or fibers and spinning nozzles 122 for accumulating the filaments emitted from the spinning unit 120 to a predetermined thickness, A control unit 140 installed at least on both sides of the radiation unit 120 and a control unit 140 installed between the control unit 140 and the collector 130 so as to surround the filament stream, And an air conditioning unit 160 for injecting air into a space between the radiation unit 120 and the collector 130, and evaporating the solvent in the space to discharge the air to the outside. The supply unit 110 is a storage container 112 for storing a solution in which a polymer material as a fiber raw material is dissolved, and a pump 114 for pressurizing and supplying the solution stored in the storage container 112 to the spinning unit 120. ) And a distributor 116 and a delivery tube 118 for dispensing the solution to the respective nozzles. The spinning unit 120 performs a function of spinning in the direction of the collector 130 in the form of fine filaments in a state in which the fiber raw material solution supplied from the supply unit 110 is charged. The radiation unit 120 has at least one radiation nozzle pack 126 in which a plurality of radiation nozzles 122 are disposed. The number of the spinning nozzles 122 constituting the spinning nozzle pack 126 or the number of the spinning nozzle packs 126 constituting the spinning unit 120 is determined in consideration of the size, . When a plurality of polymer materials are emitted, a separate spinning nozzle pack may be provided. The collector 130 may be grounded to have a potential difference with respect to a voltage applied to the radiation unit 120, or may be applied with a negative voltage. The collector 130 is for accumulating the charged filaments discharged from the spinning unit 120, and may be configured to continuously move in a conveyor belt manner through a transfer means such as a roller 132, for example. The control unit 140 is for preventing a case in which the filament stream radiated from each of the spinning nozzles 122 rebounds from each other and spreads out from the path, and the control unit 140 includes at least a portion of the spinning nozzle pack 126. It is provided on both sides of the longitudinal direction. Induction unit 150 is applied with a voltage of the same polarity as the control unit 140. The induction unit 150 is installed around the elongated charged filament stream to guide the traveling direction of the stream. Induction unit 150 is provided in the form of a conductor plate or a conductor rod. The induction unit 150 is charged with the same polarity as the charged filament to induce the filament to be integrated in a limited area of the upper surface of the collector 130. The air conditioning unit 160 is to volatilize the solvent dissolved in the charged filament in the space between the spinning unit 120 and the collector 130 to exhaust it to the outside, for example, to absorb the solvent such as a suction fan and an exhaust fan. , Exhaust means and a plurality of air inlet slots 162. The positive voltage is excited by the output voltage of the high voltage unit 170. The high voltage unit 170 outputs a DC voltage in the range of 10 kV to 120 kV. When the raw material solution stored in the supply unit 110 is quantitatively supplied to the spinning unit 120 through the pump 114 and the distributor 116, the energization unit inside each spinning nozzle pack 126 of the spinning unit 120 is provided. The solution is charged. Subsequently, the charged solution is discharged toward the collector 130 in the form of fine filaments while passing through the capillary tube of the spinning nozzle 122. Here, the filaments are radiated while being stretched to a nanoscale diameter by a strong electric field formed between the collector 130 and the charged filaments. In this spinning process, due to the repulsive force between the filaments, the stream to be spread out of the traveling path to the outside is returned to the original position by the control unit 140 to maintain the correct traveling path. On the other hand, the induction unit 150 is installed above the collector 130 to surround the discharged stream, so that the stream which is about to go out of the path by the induction unit 150 is guided to the limited integration region on the collector 130. The filaments derived as described above are continuously integrated on the collector 130 in the form of a conveyor belt or a rotating drum or on the upper surface of the substrate 182 such as a film, a mock paper, or a nonwoven fabric conveyed by the roller 180. Thus, a porous web is formed of nanofibers. An example of such an electrospinning apparatus is shown in US Patent No. 7,351,052.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described later in the Specification for Implementation of the Invention.

여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).SUMMARY OF THE INVENTION Herein, a general summary of the present disclosure is provided, which should not be construed as limiting the scope of the present disclosure. of its features).

본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 투습방수 원단을 제조하는 방법에 있어서, 50~1,000nm인 나노섬유를 적층하여, 두께 2~50um의 나노섬유 웹층을 형성하는 단계; 적어도 나노섬유의 적층이 완료된 후에, 나노섬유 간의 본딩을 형성하도록, 나노섬유를 용융시키는 양용매와, 나노섬유의 용융이 상대적으로 어려운 비용매 또는 빈용매가 혼합된 혼합 용액을 나노섬유 웹층에 공급하는 단계; 그리고, 혼합 용액이 공급된 나노섬유 웹층에 열을 가하여 건조시키는 단계;를 포함하는 것을 특징으로 하는 투습방수 원단을 제조하는 방법이 제공된다.According to one aspect of the present disclosure (According to one aspect of the present disclosure), in the method of manufacturing a moisture-permeable waterproof fabric, by laminating nanofibers of 50 ~ 1,000nm, to form a nanofiber web layer of 2 ~ 50um thickness Doing; After the lamination of the nanofibers is completed, a mixed solution containing a good solvent for melting the nanofibers and a nonsolvent or a poor solvent in which the nanofibers are relatively difficult to melt is formed to form a bonding between the nanofibers to the nanofiber web layer. Doing; And, by applying heat to the nanofiber web layer supplied with the mixed solution and dried; there is provided a method for producing a moisture-permeable waterproof fabric comprising a.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This will be described later in the Specification for Implementation of the Invention.

도 1은 전기방사 장치의 일 예를 나타내는 도면,
도 2는 본 개시에 따른 전기방사 장치의 일 예를 나타내는 도면,
도 3은 방수도, 투습도의 측정결과를 나타내는 표,
도 4는 실시예 1에 따라 제조된 나노섬유 웹층의 후처리 전 표면의 전자현미경(SEM) 사진,
도 5는 실시예2에 따라 후처리된 나노섬유 웹층의 표면의 전자현미경(SEM) 사진,
도 6은 실시예3에 따라 후처리된 나노섬유 웹층의 표면의 전자현미경(SEM) 사진.
1 is a view showing an example of an electrospinning device,
2 is a view showing an example of an electrospinning device according to the present disclosure,
3 is a table showing the measurement results of waterproofness and moisture permeability;
Figure 4 is an electron microscope (SEM) photograph of the surface before the post-treatment of the nanofiber web layer prepared according to Example 1,
5 is an electron micrograph (SEM) photograph of the surface of the nanofiber web layer post-treated according to Example 2,
6 is an electron micrograph (SEM) photograph of the surface of the nanofiber web layer post-treated according to Example 3.

이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).The present disclosure will now be described in detail with reference to the accompanying drawing (s).

투습방수 원단은 평균 직경이 50~1,000nm인 나노섬유에 의해 구성된다. 1,000nm 초과하는 섬유직경으로 구성된 웹은 기공 크기가 너무 커져 방수기능이 불량해서 투습방수원단으로 기능하기가 어렵고, 내수압 특성도 나빠질 수 있다. 또한 섬유직경이 50nm보다 작아지면, 기공 크기가 너무 작아지는 문제점을 가진다. 이러한 수치범위를 갖는 나노섬유들에 의해 형성된 투습방수 원단에는 직경 0.01~2um의 무수한 많은 기공들이 존재하며, 바람직하게는 0.05~1um 범위로 형성되는 것이 바람직하다. 기공 직경이 0.05um이하로 너무 작으면 통기성 및 투습성이 떨어져 격한 운동에 의해 순간적으로 많은 땀이 발생할 때 짧은 시간에 땀 배출 기능이 떨어지며, 기공 직경이 1um이상으로 크면 높은 압력 범위에서 방수 기능이 떨어져 내수압 기능을 감소시킨다. 이에 따라 투습방수 원단은 인체에서 발생하는 직경 0.0004㎛의 땀이나 습기는 통과시키고, 자연 상태에서 발생하는 직경 50~600㎛의 안개나 빗방울 등의 수분 입자는 차단하여 투습 기능과 방수 기능을 모두 제공하게 된다. 여기에 전체 공극률은 투습방수 기능 및 보온성, 경량성을 감안할 때 50~90%인 것이 바람직하다. 50%이하의 공극률은 통기량이 낮아 나노섬유의 장점인 쾌적성 및 경량성이 떨어진다. 이를 보완하기 위해 두께가 얇아져야 하는데 그렇게 되면 내수압에 나쁜 영향으로 나타나며 기계적 강도가 떨어져 작업중 처리가 힘들어진다. 또한 공극률이 낮아지면 내부 공기층이 줄어들게 되고 내외부의 온도 차이에도 열손실을 막아주는 공기층이 줄어들면 보온성이 떨어지는 효과로 나타난다. 90% 이상의 공극률은 기계적 강도가 떨어져 작업성이 나빠지며 내수압이 떨어지고 통기량이 너무 높아 보온성이 오히려 떨어진다. 투습방수 원단의 두께는 섬유의 적층량에 의해 결정되는데 투습도와 내수압 특성을 고려하여 2~50㎛ 정도가 적당하나, 이보다 바람직하게는 5~30㎛ 두께가 적당하다. 투습방수 원단의 전체적인 두께가 너무 얇으면 방수성을 보증할 수 없으며 기계적 강도가 약해져 작업 중 찢어지는 문제가 수반되며, 두께가 50um이상으로 두꺼워지면 제조단가가 급격하게 증가되고 단위면적당 원단 무게가 증가되어 경량화에 불리해진다.Water-permeable waterproof fabric is composed of nanofibers with an average diameter of 50-1,000 nm. Webs composed of fiber diameters exceeding 1,000 nm have a pore size that is too large to function as a breathable and waterproof fabric, and water pressure characteristics may be deteriorated. Further, if the fiber diameter is smaller than 50 nm, the pore size becomes too small. In the moisture-permeable and waterproof fabric formed by the nanofibers having such a numerical range, there are a myriad of numerous pores having a diameter of 0.01 to 2 μm, preferably in the range of 0.05 to 1 um. If the pore diameter is less than 0.05um, ventilation and moisture permeability will be deteriorated. If sweating occurs momentarily due to heavy exercise, sweat discharge function will be shortened in a short time. If pore diameter is bigger than 1um, Decrease water pressure function. As a result, the breathable and waterproof fabric passes through the sweat and moisture of 0.0004 μm in diameter generated by the human body and blocks the moisture particles such as fog and raindrops of 50 to 600 μm in diameter generated in the natural state and provides both the waterproof function and the waterproof function . The total porosity is preferably 50 to 90% in consideration of the moisture permeable and waterproof function, warmth and light weight. The porosity of 50% or less has a low air permeability, resulting in poor comfort and light weight, which are advantages of nanofibers. In order to compensate for this, the thickness must be thinned, which causes bad influence on the water pressure. In addition, when the porosity is lowered, the inner air layer is reduced, and when the air layer which prevents the heat loss from being caused by the temperature difference between inside and outside is decreased, The porosity of 90% or more has poor mechanical strength, poor workability, low water pressure, and high aeration rate, resulting in poor thermal insulation. The thickness of the moisture-permeable and waterproof fabric is determined by the lamination amount of the fibers. The thickness of the moisture-permeable and waterproof fabric is suitably about 2 to 50 μm in consideration of the moisture permeability and the water pressure resistance, but more preferably 5 to 30 μm. If the overall thickness of the breathable and waterproof fabric is too thin, waterproofness can not be guaranteed, the mechanical strength is weakened, and the tearing is accompanied by the problem. When the thickness is more than 50um thick, the manufacturing cost increases sharply and the fabric weight per unit area increases It is disadvantageous in weight reduction.

이와 같이 제조되어진 나노섬유 웹층은 작은 기공 크기와 높은 기공율, 3차원 네트워크 구조에도 불구하고 높은 압력의 수압에 섬유간 미끌림이 발생되어 내수도에 취약한 문제가 있으며, 세탁으로 인해 섬유와 섬유간에 간격이 벌어지거나 섬유 얽힘에 의해 초기에 비해 발수성이 저하되는 문제가 있다. 따라서 섬유와 섬유 표면간 결합력을 높여 나노섬유 웹층 또는 투습방습 원단의 내구성을 높여 발수성 및 내수도, 내세탁성을 개선하면서 장점인 투습도, 경량성, 쾌적성을 유지하는 후처리 공정을 적용한다. 후처리 공정으로 나노섬유 웹층의 용액 함침이나 용액 분사에 의한 섬 간 결합을 유도하며, 이를 통하여 보다 우수한 성능의 나노섬유 웹으로 된 투습방수 원단을 제조한다.The nanofiber web layer manufactured as described above has a problem of being vulnerable to water resistance due to the slippage between the fibers at high pressure water pressure despite the small pore size, high porosity, and the three-dimensional network structure. There is a problem that the water repellency is lowered than the initial stage due to the opening or fiber entanglement. Therefore, by increasing the bonding strength between the fiber and the fiber surface to increase the durability of the nanofiber web layer or the moisture-permeable moisture-proof fabric to improve the water repellency, water resistance, washing resistance while applying the post-treatment process to maintain the advantages of moisture permeability, light weight, comfort. The post-treatment process induces the bond between the islands by solution impregnation or solution injection of the nanofiber web layer, thereby producing a moisture-permeable waterproof fabric made of nanofiber web of better performance.

투습방수 원단을 이루는 섬유의 원료가 되는 고분자 물질로는 일반적으로 폴리우레탄(PU), TPU(Thermoplastic polyurethane) 또는 이들을 포함한 이성분 이상의 혼합 물질이 사용되어진다. 우레탄은 섬유간 마찰이 크고 표면 점착성이 있어 섬유가닥간 연결력이 형성되나 강한 힘에 의해 섬유가닥간 미끄럼이 발생되고 이때 부분적으로 기공이 열려 내수압이 떨어지는 현상이 나타난다. 뿐만 아니라 세탁 후에는 섬유간 변형이 더욱 심해져 기공이 불균일해지고 내수압은 현저히 떨어지는 원인이 된다. 이러한 이유로 표면 마찰 또는 점착성이 없는 소재로 형성된 나노섬유 웹의 문제점들은 더욱 심각하여 나노섬유 웹으로 투습방수 원단 적용이 불가능하지만 상기 용액 함침 및 용액 분사 기술은 섬유간 결합을 유발시켜 이러한 문제점들을 현격하게 완화시키면서 다른 소재들이 지닌 장점을 활용할 수 있게 한다. 특히 불소계 수지는 발수성, 발오성이 우수하여 투습방수용 소재에 적합하지만 나노섬유 웹으로 제조된 불소계 섬유는 자기들끼리의 결합력이 없어 섬유간 미끌림 현상이 나타나 투습방수용으로 사용되기에 한계가 있었다. 본 개시에 의하면, 이러한 문제점을 해결함과 동시에 소재 장점을 살릴 수 있다. 폴리우레탄과 더불어 나노섬유에 사용될 수 있는 소재로는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오르 프로필렌 공중합체(PVdF-HFP) 등의 불소계 고분자, 나일론 등의 아미드(amide)계 고분자, 폴리아크릴로니트릴(PAN) 등의 아크릴계고분자, 폴리이서설폰(Poly ehtersulfone)과 같은 설폰계 고분자, 폴리에틸렌테레플탈레이트(PET)와 같은 폴리에스터계 고분자, 폴리비닐알코올(PVA), 등 용제에 녹을 수 있거나 또는 전기방사가 가능한 고분자는 모두 사용가능하다.In general, a high molecular material used as a raw material of the fibers forming the moisture-permeable waterproof fabric is polyurethane (PU), TPU (Thermoplastic polyurethane), or a mixture of two or more components including them. Urethane has high friction between the fibers and surface adhesion, so that the connection force is formed between the fiber strands, but the sliding force is generated between the fiber strands due to the strong force. In addition, after washing, deformation of the fibers becomes more severe, which causes non-uniformity of the pores and causes the water pressure to drop significantly. For this reason, the problems of nanofiber webs formed of materials without surface friction or adhesion are more serious, and it is impossible to apply a moisture-permeable fabric to nanofiber webs. It alleviates the benefits of other materials. Particularly, the fluororesin is suitable for the waterproofing and waterproofing material because of its excellent water repellency and ductility. However, the fluororesin made from the nanofiber web has no binding force between the fibers and slip between the fibers. According to the present disclosure, it is possible to solve such a problem and to take advantage of the material advantages. In addition to polyurethane, materials that can be used for nanofibers include fluorine-based polymers such as polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), and amides such as nylon. Polymer, acrylic polymer such as polyacrylonitrile (PAN), sulfon polymer such as poly ehtersulfone, polyester polymer such as polyethylene terephthalate (PET), polyvinyl alcohol (PVA), etc. Any polymer that can be dissolved in the solvent or capable of electrospinning can be used.

도 2는 본 개시에 따른 전기방사 장치의 일 예를 나타내는 도면으로서, 저장 용기(112)에서 펌프(114)로 이송된 고분자 용액은 방사노즐들(122)에서 방사가 이루어지며, 컬렉터(130)에서 적층되어 나노섬유 웹층으로 제조가 되며, 이때 방사노즐들(122) 중단부 및 말단부에 용액 분사기(60)가 설치된다. 용액분사기(60)는 스프레이 분사 혹은 전기분사 방식으로 하는 것이 바람직하다. 용액은 용액 탱크(50)에서 용액 분사기(60)로 이송되며, 용액의 혼합 비율 및 분사량에 따라 처리 효과가 변한다. 용매는 나노섬유의 원료에 따라 정해지는데 예를 들어, 폴리우레탄을 나노섬유 원료로 사용하는 경우 양용매인 디메틸아세트아미드(DMAc, Dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide)와 아세톤(Acetone), 메틸에틸케톤(Methyl ethyl ketone), 톨루엔(Toluene) 등을 사용하고, 빈용매(Poor solvent) 또는 비용매의 아이소프로필알콜(IPA, Iso-propyl alcohol), 에틸알콜(Ethyl alcohol), 메틸알콜(Methyl alcohol), 물(Water) 등을 사용한다. 용액의 혼합 비율은 양용매 1~50%, 비용매 50~99%인 것이 바람직하며, 더욱 바람직하게는 양용매 1~40%, 비용매 60~99%이다. 용액의 분사량은 분사장치에 따라 분사량이 변하므로 따로 명시하지 않는다. 용액 분사에서 사용되어지는 혼합 용액 비율은 후단에 기술하는 함침 방법과 비교하여 통상적으로 양용매 함량이 많은 것이 좋다. 전기분사에서는 특히 그러한데 분사 과정에서 용액증발이 급격히 이루어지고 혼합 용액에서 비용매의 경우 대체적으로 끓는점이 낮아 더 빠른 증발이 이루어지기 때문이다.2 is a view showing an example of the electrospinning apparatus according to the present disclosure, the polymer solution transferred from the storage container 112 to the pump 114 is made to spin in the spinning nozzles 122, the collector 130 Stacked in the nanofiber web layer is manufactured, wherein the spray nozzles 122, the stopper and the distal end of the solution injector 60 is installed. The solution injector 60 is preferably spray sprayed or electrosprayed. The solution is transferred from the solution tank 50 to the solution injector 60, and the treatment effect varies depending on the mixing ratio and the injection amount of the solution. The solvent is determined according to the raw material of the nanofibers. For example, when polyurethane is used as the raw material of the nanofibers, the good solvents are dimethylacetamide (DMAc, Dimethylacetamide), dimethylformamide (DMF, N, N-dimethylformamide) and acetone ( Acetone), methyl ethyl ketone, toluene, etc. are used, and isopropyl alcohol (IPA, Iso-propyl alcohol), ethyl alcohol (Ethyl alcohol), Methyl alcohol, water, etc. are used. The mixing ratio of the solution is preferably 1 to 50% of a good solvent and 50 to 99% of a nonsolvent, and more preferably 1 to 40% of a good solvent and 60 to 99% of a nonsolvent. The injection amount of the solution is not specified because the amount of injection varies depending on the injection device. The proportion of the mixed solution used in the solution injection is generally good in a good solvent content compared to the impregnation method described later. This is particularly the case with electrospraying, as the solution evaporates rapidly during the spraying process, and the non-solvents in the mixed solution generally have a lower boiling point, resulting in faster evaporation.

경우에 따라서 용액 분사기(60) 대신 용액 함침 방법을 사용할 수 있다. 컬렉터(130)에서 이송된 나노섬유 웹층은 함침조(70)로 이송되며, 용액 혼합 비율 및 함침 시간에 따라 처리 효과가 달라진다. 용액 혼합 비율은 용매 1~40% 비용매 60~99%인 것이 바람직하며, 더욱 바람직하게는 용매 2~20% 비용매 80~98%이다. 함침 시간은 1~30초인 것이 바람직하며, 더욱 바람직하게는 2~15초이다. 함침 시간이 지나치게 길면 나노섬유의 과도한 용해로 인하여 투습도의 저하가 발생할 수 있으며 나노섬유 웹층의 경량화 특성을 발휘할 수 없다. 바람직하게는 함침조(70)에서 이송된 나노섬유 웹층은 스퀴징 롤(80; Squeezing Roll) 사이를 지나간다. 이때 나노섬유 웹층에 함유되어 있는 용액은 스퀴징 롤(80)에 의하여 내부 및 외부에 빠르고 균일하게 확산되어 투습방수 원단의 균제도 유지가 쉬워지게 되므로 나노섬유 웹층의 과도한 용해 효과를 적절하게 조절할 수 있게 되며, 균일한 품질을 지니는 원단을 제조할 수 있게 된다. 스퀴징 롤(80)을 통과한 나노섬유 웹층은 이후 건조부(90)로 유도된다. 건조부(90)로는 폴리우레탄(PU), 폴리비닐리덴 플루오라이드(PVdF) 혹은 폴리비닐리덴 플루오라이드-헥사플루오르 프로필렌 공중합체(PVdF-HFP)와 같은 나노섬유 웹층이 용매에 의하여 수축하는 성질을 보완하기 위해 벨트 캘린더(Belt Calendar)를 사용하는 것이 바람직하다. 건조기(90)를 통과하는 나노섬유 웹층은 건조기(90)의 양쪽 벨트에 의해 형태가 고정된 상태로 건조가 이루어진다. 건조기(90)를 통과할 때 양쪽 벨트 사이의 압력 및 온도에 따라 건조 효과 및 형태 안정성 확보 효과가 달라진다. 나노섬유 웹층에 힘이나 열을 가하게 되면 원단은 그 상태로 변형이 이루어지게 되고 또한 원단 자체적으로 발생하고 있는 수축 때문에 변형의 예측은 쉽지 않으며 이러한 변형의 결과로 원단에 주름이 발생하거나 혹은 작업 중 원단이 찢어지는 현상이 발생한다. 이러한 문제점을 해결하기 위하여 건조기(90), 바람직하게는 벨트 캘린더를 사용하였으며 벨트 캘린더를 통한 형태 안정성 확보로 인하여 이러한 문제점이 해결가능하다. 벨트 사이의 압력은 0.5~10kgf/cm2인 것이 바람직하며, 더욱 바람직하게는 1~5kgf/cm2이다. 벨트 압력이 낮으면 나노섬유 웹층의 고정 효과가 적어, 형태 안정성 유지가 힘들며, 압력이 너무 높으면 나노섬유 웹층의 공극율이 감소하여 투습도가 나빠지게 된다. 벨트 사이의 온도는 50~150℃인 것이 바람직하며, 더욱 바람직하게는 80~110℃이다. 벨트 사이의 온도가 낮으면 건조가 완벽히 이루어지지 않으며, 온도가 너무 높으면 나노섬유가 녹을 수가 있다.In some cases, a solution impregnation method may be used instead of the solution injector 60. The nanofiber web layer transferred from the collector 130 is transferred to the impregnation tank 70, and the treatment effect varies depending on the solution mixing ratio and the impregnation time. The solution mixing ratio is preferably 1% to 40% nonsolvent 60% to 99% solvent, more preferably 80% to 98% solvent 2% to 20% nonsolvent. The impregnation time is preferably 1 to 30 seconds, more preferably 2 to 15 seconds. If the impregnation time is too long, the water permeability may be lowered due to excessive dissolution of the nanofibers, and the weight reduction characteristics of the nanofiber web layer may not be exhibited. Preferably, the nanofiber web layer transferred from the impregnation tank 70 passes between squeezing rolls 80. At this time, the solution contained in the nanofiber web layer is quickly and uniformly diffused inside and outside by the squeegee roll 80, so that it is easy to maintain the evenness of the moisture-permeable waterproof fabric, so that the excessive dissolution effect of the nanofiber web layer can be properly controlled. It is possible to manufacture a fabric having a uniform quality. The nanofiber web layer passing through the squeegee roll 80 is then directed to the drying section 90. The drying unit 90 is characterized in that the nanofiber web layer such as polyurethane (PU), polyvinylidene fluoride (PVdF) or polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) shrinks by solvent. It is desirable to use a belt calendar to supplement. The nano-fiber web layer passing through the dryer 90 is dried in a state where the shape is fixed by both belts of the dryer 90. The drying effect and the form stability ensuring effect vary depending on the pressure and the temperature between the both belts when passing through the dryer (90). When a force or heat is applied to the nanofiber web layer, the fabric is deformed in that state, and the deformation of the fabric is not easily predicted due to the contraction occurring in the fabric itself. As a result of this deformation, wrinkles occur in the fabric, This tearing phenomenon occurs. In order to solve such a problem, a dryer 90, preferably a belt calender, is used, and such a problem can be solved by securing the form stability through a belt calender. The pressure between the belts is preferably 0.5 to 10 kgf / cm 2 , more preferably 1 to 5 kgf / cm 2 . If the belt pressure is low, the fixation effect of the nanofiber web layer is small and the shape stability can not be maintained. If the pressure is too high, the porosity of the nanofiber web layer is decreased and the moisture permeability is deteriorated. The temperature between the belts is preferably 50 to 150 ° C, more preferably 80 to 110 ° C. If the temperature between the belts is low, drying is not perfect. If the temperature is too high, the nanofibers can melt.

이하 , 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나 본 개시는 실시예에만 한정되는 것을 아니다.Hereinafter, the present invention will be described in detail through examples. However, the present disclosure is not limited only to the examples.

실시예Example 1.  One.

나노섬유 Nanofiber 웹층의Web layer 제조 Produce

열가소성 폴리우레탄수지(TPU)를, N,N-디틸메틸포름아마이드(DMF)와 아세톤(Acetone)이 무게비 50:50으로 섞인 혼합 용매에 섞어, 15중량% 농도를 갖도록 방사 용액을 제조하였다. 이때, 제조된 방사 용액을 레오미터(Rheometer DV, Brookfield co., USA)를 이용하며 측정한 점도가 300 센티포아스(cps), 컨덕터비티 메터(Conductivity meter, CM-40G, TOA electronicsCo., Japan)로 측정한 전기 전도도가 0.52 mS/m이다. 이 방사 용액을 도 2에 도시된 전기방사 장치의 저장 용기(112)에 투입하여 도 4에 도시된 것과 같은 나노섬유를 제조하였다. A thermoplastic polyurethane resin (TPU) was mixed with a mixed solvent of N, N-dimethylmethylformamide (DMF) and acetone (Acetone) in a weight ratio of 50:50 to prepare a spinning solution having a concentration of 15 wt%. The prepared spinning solution was measured using a rheometer (Rheometer DV, Brookfield co., USA) with a viscosity of 300 centipoise (cps) and a conductivity meter (CM-40G, TOA electronicsCo., Japan ) Is 0.52 mS / m. This spinning solution was put into a storage container 112 of the electrospinning apparatus shown in Fig. 2 to produce nanofibers as shown in Fig.

나노섬유 Nanofiber 웹층의Web layer 후처리 After treatment

본 실시예에서 함침 방법으로 후처리를 진행하였으며, 혼합 용액 제조를 위해서, 양용매로서 아세톤(Acetone)을, 비용매로서 아이소프로필알콜(IPA)을 사용하여 용매/비용매 무게비율을 5/95로 제조하여 함침조(70)에 투입하고, 함침조(70)의 온도는 25℃, 함침 시간은 10초가 되도록 설정하였으며, 함침조(70)를 지나온 나노섬유 웹층은 형태유지가 되면서, 건조되도록 벨트 캘린더로 된 건조기(90)를 통하여 건조 공정을 거쳤고, 이때 압력은 1.5kgf/㎠, 온도는 90℃로 설정했다.
In the present embodiment, the post-treatment was performed by the impregnation method, and in order to prepare a mixed solution, the solvent / non-solvent weight ratio was 5/95 using acetone as a good solvent and isopropyl alcohol (IPA) as a nonsolvent. Prepared and added to the impregnation tank 70, the temperature of the impregnation tank 70 was set to 25 ℃, the impregnation time was set to 10 seconds, the nanofiber web layer passing through the impregnation tank 70 is kept in shape, so as to dry The drying process was performed through the dryer 90 of the belt calender, and the pressure was set to 1.5 kgf / cm <2> and the temperature to 90 degreeC.

실시예Example 2.  2.

실시예 1과 같은 방법으로 나노섬유 웹층을 제조하여, 실시예 1과 같은 방법으로 후처리를 하였다. 이때 사용되어진 양용매 아세톤과 비용매 IPA 사용 비율은 10/90 무게비로 제조하였다.
A nanofiber web layer was prepared in the same manner as in Example 1, and the post-treatment was performed in the same manner as in Example 1. The ratio of both solvent acetone and nonpolymer IPA used was 10/90 weight ratio.

실시예Example 3. 3.

실시예 1과 같은 방법으로 나노섬유 웹층을 제조하여 실시예 1과 같은 방법으로 후처리를 하였다 이때 사용되어진 양용매 아세톤과 비용매 IPA 사용 비율은 20/80 무게비로 제조하였다.
The nanofiber web layer was prepared in the same manner as in Example 1, and the post-treatment was performed in the same manner as in Example 1. The ratio of the good solvent acetone used and the non-solvent IPA was prepared at a weight ratio of 20/80.

이때, 함침 조건은 나노섬유가 완전히 용해되지 않도록 섬유간 본딩이 형성되는 조건이어야만 한다. At this time, the impregnation conditions should be a condition that the inter-fiber bonding is formed so that the nanofibers are not completely dissolved.

도 4는 실시예 1에 따라 제조된 나노섬유 웹층의 후처리 전 표면의 전자현미경(SEM) 사진으로서, 200~400nm 직경의 나노섬유로 집적된 망상 구조 웹의 형상이 확인되었고 이 웹을 실시예 2의 방법으로 후처리한 결과를 도 5로 확인하였다. 나노섬유 표면이 리멜팅되어 이웃한 섬유와 본딩을 형성하여 원하는 본딩 구조를 확인할 수 있었고, 이보다 양용매 함량을 높인 실시예 3에 따라 제조된 나노섬유도 완전히 용해되지는 않고, 섬유 형태가 일부 남아있고 기공도 남아있는 것을 도 6에서 확인할 수 있다.Figure 4 is an electron micrograph (SEM) of the surface before the post-treatment of the nanofiber web layer prepared according to Example 1, the shape of the network structure web integrated with nanofibers of 200 ~ 400nm diameter was confirmed and this web After the post-treatment by the method of 2 was confirmed in FIG. The surface of the nanofibers was remelted to form a bonding with neighboring fibers, thereby confirming the desired bonding structure, and the nanofibers prepared according to Example 3, in which the good solvent content was higher, were not completely dissolved, and some fiber forms remained. It can be seen in Figure 6 that the pores remain.

도 3에는 후처리 실시 전 나노섬유 웹층과 실시예1, 2, 3에 의해 혼합 용액에 함침 처리된 샘플의 분석결과를 나타내었다. 투습도는 KS K 0594:2008 염화칼슘법에 의한 시험방법으로 평가하였고, 내수도는 KSK ISO 811:2009에 의해 측정하였으며, 통기도는 Capillary Flow Porometer(PMI)로 나노섬유 웹층에 1~10 PSI 공기압을 가해 Gas permeability 방법에 의해 측정하였다. 용액 함침 처리가 진행된 실시예 2 및 실시예 3 샘플은 일부기공이 막히고 작아져 투습도 및 통기도가 감소되었고 반면 섬유간 본딩이 형성된 결과로 내수압 증가를 확인할 수 있었다. 실시예 3의 경우 섬유의 멜팅이 너무 진행되어 내수압은 많은 증가를 보였지만 투습도 및 통기도의 감소 또한 많이 되어 나노섬유의 장점이 약화되었다. 반면 실시예 2의 경우 내수압은 73.7% 증가할 때 투습도의 감소는 7.4%로 투습방수 원단으로 적합성이 확인되었다.Figure 3 shows the analysis results of the sample impregnated in the mixed solution by the nanofiber web layer and Examples 1, 2, 3 before the post-treatment. The water permeability was measured by the KS K 0594: 2008 Calcium Chloride Test Method. The internal water content was measured by KSK ISO 811: 2009 and the air permeability was measured by applying a 1-10 PSI air pressure to the nanofiber web layer with a Capillary Flow Porometer (PMI) Gas permeability method. Samples of Examples 2 and 3 in which the solution impregnation process was performed, some pores were clogged and small, and the moisture permeability and air permeability were reduced, whereas the increase in the water pressure was confirmed as a result of the inter-fiber bonding. In the case of Example 3, the melting of the fiber was so advanced that the water pressure increased a lot, but the moisture permeability and the air permeability were also decreased, thereby weakening the advantages of the nanofibers. On the other hand, in the case of Example 2, when the water pressure increased by 73.7%, the decrease in moisture permeability was 7.4%, and the suitability was confirmed as the waterproof fabric.

이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Various embodiments of the present disclosure will be described below.

(1) 투습방수 원단을 제조하는 방법에 있어서, 50~1,000nm인 나노섬유를 적층하여, 두께 2~50um의 나노섬유 웹층을 형성하는 단계; 적어도 나노섬유의 적층이 완료된 후에, 나노섬유 간의 본딩을 형성하도록, 나노섬유를 용융시키는 양용매와, 나노섬유의 용융이 상대적으로 어려운 비용매 또는 빈용매가 혼합된 혼합 용액을 나노섬유 웹층에 공급하는 단계; 그리고, 혼합 용액이 공급된 나노섬유 웹층에 열을 가하여 건조시키는 단계;를 포함하는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(1) a method of manufacturing a moisture-permeable waterproof fabric, comprising the steps of: laminating nanofibers having a thickness of 50 to 1,000 nm to form a nanofiber web layer having a thickness of 2 to 50 um; After the lamination of the nanofibers is completed, a mixed solution containing a good solvent for melting the nanofibers and a nonsolvent or a poor solvent in which the nanofibers are relatively difficult to melt is formed to form a bonding between the nanofibers to the nanofiber web layer. Doing; And drying the heat by applying heat to the nanofiber web layer supplied with the mixed solution. 2.

(2) 건조시키는 단계에 앞서, 혼합 용액이 나노섬유 웹층으로 퍼지도록 가압하는 단계;를 더 포함하는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(2) prior to drying, pressurizing the mixed solution to spread to the nanofiber web layer; method for producing a moisture-permeable waterproof fabric further comprising.

(3) 건조시키는 단계에서 벨트 캘린더가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(3) a method for producing a moisture-permeable waterproof fabric, characterized in that the belt calender is used in the drying step.

(4) 가압하는 단계에서 스퀴징 롤이 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(4) a method for producing a moisture-permeable waterproof fabric, characterized in that the squeegee roll is used in the pressing step.

(5) 혼합 용액을 공급하는 단계에서 함침조가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(5) a method for producing a moisture-permeable waterproof fabric, characterized in that the impregnation tank is used in the step of supplying a mixed solution.

(6) 혼합 용액을 공급하는 단계에서 용액 분사기가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법. (6) a method for producing a moisture-permeable waterproof fabric, characterized in that a solution injector is used in the step of supplying a mixed solution.

(7) 용액 분사기를 이용하여, 혼합 용액이 나노섬유 적층 중 및 완료 후에 나노섬유 웹층에 공급되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법. 도 2에 도시된 바와 같이, 용액 분사기(60)를 이용하여, 나노섬유 웹층의 흐름(화살표 방향)에 있어서, 중류 및 하류에 혼합 용액을 공급함으로써, 나노섬유 웹층 전체에 골고루 혼합 용액을 공급할 수 있게 된다.(7) A method for producing a moisture-permeable waterproof fabric, wherein a mixed solution is supplied to the nanofiber web layer during and after the nanofiber lamination using a solution injector. As shown in FIG. 2, by using the solution injector 60, the mixed solution may be supplied evenly and downstream of the nanofiber web layer in the flow (arrow direction) of the nanofiber web layer to uniformly supply the mixed solution to the entire nanofiber web layer. Will be.

(8) 나노섬유는 전기방사를 통해 적층되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(8) The method for producing a moisture-permeable waterproof fabric, characterized in that the nanofibers are laminated by electrospinning.

(9) 나노섬유는 폴리우레탄, 불소계 고분자, 아미드(amide)계 고분자, 아크릴계고분자, 설폰계 고분자, 폴리에스터계 고분자, 폴리비닐알코올(PVA) 중의 적어도 하나로 이루어지는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(9) The nanofiber is made of at least one of polyurethane, fluorine-based polymer, amide (amide) -based polymer, acrylic polymer, sulfone-based polymer, polyester-based polymer, polyvinyl alcohol (PVA) How to.

(10) 나노섬유는 폴리우레탄으로 이루어지며, 양용매로 디메틸아세트아미드(DMAc, Dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide)와 아세톤(Acetone), 메틸에틸케톤(Methyl ethyl ketone), 또는 톨루엔(Toluene)이 사용되고, 빈용매(Poor solvent) 또는 비용매로는 아이소프로필알콜(IPA, Iso-propyl alcohol), 에틸알콜(Ethyl alcohol), 메틸알콜(Methyl alcohol) 또는 물(Water)이 사용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.(10) Nanofiber is composed of polyurethane, and good solvents include dimethylacetamide (DMAc, Dimethylacetamide), dimethylformamide (DMF, N, N-dimethylformamide), acetone, and methyl ethyl ketone. , Or toluene is used, and as a poor solvent or non-solvent, isopropyl alcohol (IPA, Iso-propyl alcohol), ethyl alcohol, methyl alcohol or water Method for producing a moisture-permeable waterproof fabric, characterized in that it is used.

본 개시에 따른 하나의 투습방수 원단을 제조하는 방법에 의하면, 기존의 폴리우레탄(PU) 혹은 폴리비닐리덴플루오라이드(PVdF) 고분자 코팅이 아닌 순수 용매만을 이용한 표면 및 내부처리 기술을 제공함으로써, 기존의 제조 공정을 단순화하고 제조비용이 감소되며, 기존의 코팅 방식의 후처리 나노섬유 원단에 비하여 얇고 가벼워 쾌적성을 제공한다. According to the method of manufacturing a moisture-permeable waterproof fabric according to the present disclosure, by providing a surface and internal treatment technology using only a pure solvent, not a conventional polyurethane (PU) or polyvinylidene fluoride (PVdF) polymer coating, It simplifies the manufacturing process and reduces the manufacturing cost, and provides comfort and thinner and lighter than the conventional post-treatment nanofiber fabric.

또한, 용매처리 비율, 시간, 온도 등을 변경하여 다양한 물성의 나노섬유 웹을 제조 할 수 있다. In addition, it is possible to manufacture a nanofiber web of various physical properties by changing the solvent treatment ratio, time, temperature and the like.

본 개시에 따른 하나의 투습방수 원단을 제조하는 방법에 의하면, 모세관 현상 방지 및 적층 섬유간의 슬립 방지를 통하여 우수한 방수성을 지니며, 기존 PTFE 혹은 PU로 제작된 투습방수 소재에 비교하여 월등히 우수한 투습도, 보온성, 쾌적성을 갖는 것을 특징으로 한다. 일반 나노섬유 웹 또는 부직포 와 같이 섬유가닥 하나하나가 교락이 되지 않고 섬유간 적절히 접합이 되어 있기 때문에 세탁 후에도 나노섬유들 간에 손상이 없어 초기 방수성이 유지되는 효과가 있으며 가공 처리에 따른 투습성, 보온성의 감소가 적어 쾌적감이 뛰어난 나노섬유 웹으로 제조된 투습방수 원단을 제공하는 효과를 제공한다.According to the method of manufacturing a moisture-permeable waterproof fabric according to the present disclosure, it has excellent waterproofness by preventing capillary phenomenon and preventing slip between laminated fibers, and excellent moisture permeability compared to the conventional moisture-proof waterproof material made of PTFE or PU, It is characterized by having heat retention and comfort. Since each fiber strand is not entangled and properly bonded between fibers like general nanofiber webs or nonwoven fabrics, there is no damage between nanofibers after washing, thus maintaining the initial waterproof property. Less reduction provides the effect of providing a moisture-permeable waterproof fabric made of nanofiber web with excellent comfort.

저장 용기(112) 펌프(114) 건조기(90)Storage Containers 112 Pumps 114 Dryers 90

Claims (10)

투습방수 원단을 제조하는 방법에 있어서,
50~1,000nm인 나노섬유를 적층하여, 두께 2~50um의 나노섬유 웹층을 형성하는 단계;
적어도 나노섬유의 적층이 완료된 후에, 나노섬유 간의 본딩을 형성하도록, 나노섬유를 용융시키는 양용매와, 나노섬유의 용융이 상대적으로 어려운 비용매 또는 빈용매가 혼합된 혼합 용액을 나노섬유 웹층에 공급하는 단계; 그리고,
혼합 용액이 공급된 나노섬유 웹층에 열을 가하여 건조시키는 단계;를 포함하는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
In the method of manufacturing a moisture-permeable waterproof fabric,
Stacking 50 nm to 1000 nm nanofibers to form a nanofiber web layer having a thickness of 2 μm to 50 μm;
After the lamination of the nanofibers is completed, a mixed solution containing a good solvent for melting the nanofibers and a nonsolvent or a poor solvent in which the nanofibers are relatively difficult to melt is formed to form a bonding between the nanofibers to the nanofiber web layer. Making; And,
Drying by applying heat to the nanofiber web layer supplied with the mixed solution; Method for producing a moisture-permeable waterproof fabric comprising a.
청구항 1에 있어서,
건조시키는 단계에 앞서, 혼합 용액이 나노섬유 웹층으로 퍼지도록 가압하는 단계;를 더 포함하는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Prior to the drying step, the mixed solution is pressurized to spread to the nanofiber web layer; method for producing a moisture-permeable waterproof fabric further comprising.
청구항 1에 있어서,
건조시키는 단계에서 벨트 캘린더가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Method for producing a moisture-permeable waterproof fabric, characterized in that the belt calender is used in the drying step.
청구항 2에 있어서,
가압하는 단계에서 스퀴징 롤이 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 2,
Method of producing a moisture-permeable waterproof fabric, characterized in that the squeegee roll is used in the pressing step.
청구항 1에 있어서,
혼합 용액을 공급하는 단계에서 함침조가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Method for producing a moisture-permeable waterproof fabric, characterized in that the impregnation tank is used in the step of supplying a mixed solution.
청구항 1에 있어서,
혼합 용액을 공급하는 단계에서 용액 분사기가 이용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Method for producing a moisture-permeable waterproof fabric, characterized in that the solution injector is used in the step of supplying a mixed solution.
청구항 6에 있어서,
용액 분사기를 이용하여, 혼합 용액이 나노섬유 적층 중 및 완료 후에 나노섬유 웹층에 공급되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method of claim 6,
Using a solution injector, wherein the mixed solution is supplied to the nanofiber web layer during and after the nanofiber lamination.
청구항 1에 있어서,
나노섬유는 전기방사를 통해 적층되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Nanofiber is a method for producing a waterproof moisture-permeable fabric, characterized in that laminated through the electrospinning.
청구항 1에 있어서,
나노섬유는 폴리우레탄, 불소계 고분자, 아미드(amide)계 고분자, 아크릴계고분자, 설폰계 고분자, 폴리에스터계 고분자, 폴리비닐알코올(PVA) 중의 적어도 하나로 이루어지는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Nanofiber is a method for producing a moisture-permeable waterproof fabric, characterized in that made of at least one of polyurethane, fluorine-based polymer, amide (amide) polymer, acrylic polymer, sulfone polymer, polyester polymer, polyvinyl alcohol (PVA).
청구항 1에 있어서,
나노섬유는 폴리우레탄으로 이루어지며,
양용매로 디메틸아세트아미드(DMAc, Dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide)와 아세톤(Acetone), 메틸에틸케톤(Methyl ethyl ketone), 또는 톨루엔(Toluene)이 사용되고,
빈용매(Poor solvent) 또는 비용매로는 아이소프로필알콜(IPA, Iso-propyl alcohol), 에틸알콜(Ethyl alcohol), 메틸알콜(Methyl alcohol) 또는 물(Water)이 사용되는 것을 특징으로 하는 투습방수 원단을 제조하는 방법.
The method according to claim 1,
Nanofiber is made of polyurethane,
As a good solvent, dimethylacetamide (DMAc, Dimethylacetamide), dimethylformamide (DMF, N, N-dimethylformamide) and acetone, methyl ethyl ketone, or toluene are used.
As a poor solvent or non-solvent, isopropyl alcohol (IPA, Iso-propyl alcohol), ethyl alcohol (Ethyl alcohol), methyl alcohol (Methyl alcohol) or water (Water) How to make a fabric.
KR1020120091249A 2012-08-21 2012-08-21 Method for manufacturing vapor-permeable and waterproof sheet KR101319540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120091249A KR101319540B1 (en) 2012-08-21 2012-08-21 Method for manufacturing vapor-permeable and waterproof sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120091249A KR101319540B1 (en) 2012-08-21 2012-08-21 Method for manufacturing vapor-permeable and waterproof sheet

Publications (1)

Publication Number Publication Date
KR101319540B1 true KR101319540B1 (en) 2013-10-17

Family

ID=49638753

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120091249A KR101319540B1 (en) 2012-08-21 2012-08-21 Method for manufacturing vapor-permeable and waterproof sheet

Country Status (1)

Country Link
KR (1) KR101319540B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109001A (en) * 2006-05-09 2007-11-15 정지수 Method for producing a polyurethane resin film
KR20100019170A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR20100019172A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
JP2011523981A (en) 2008-05-13 2011-08-25 リサーチ・トライアングル・インスティチュート Porous and non-porous nanostructures and their applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109001A (en) * 2006-05-09 2007-11-15 정지수 Method for producing a polyurethane resin film
JP2011523981A (en) 2008-05-13 2011-08-25 リサーチ・トライアングル・インスティチュート Porous and non-porous nanostructures and their applications
KR20100019170A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR20100019172A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web

Similar Documents

Publication Publication Date Title
CN107107546B (en) Moisture-permeability waterproof fabric and its manufacturing method
JP2016193205A (en) Bulk fill materials and structure
US10648105B2 (en) Nanofiber based composite false twist yarn and manufacturing method therefor
KR102109725B1 (en) Breathable and Waterproof Fabric and Manufacturing Method thereof
KR102109727B1 (en) Method of manufacturing Breathable and waterproof fabric
KR101234044B1 (en) Ultraviolet-curable type fabric for waterproof and breathable and preparing the same
CN103963393A (en) Waterproof and moisture permeable composite membrane and preparation method thereof
KR20100027338A (en) Laminating method using electrospinning
RU2415208C1 (en) High-strength light nonwoven fabric from spunbonded web, method of its production and its application
KR101962451B1 (en) Non-swelling porous film and manufacturing method tereof and its use using the same
JP2015038263A (en) Moisture-permeable waterproof fabric and production method thereof
KR101106679B1 (en) Polyurethane nano fiber web and water-proof/moisture-permeable fabric comprising the same
KR101646710B1 (en) Mask pack and method for manufacturing the same
KR101450217B1 (en) An apparatus for electrospinning
KR101400280B1 (en) An apparatus for electrospinning
KR101319540B1 (en) Method for manufacturing vapor-permeable and waterproof sheet
KR100476461B1 (en) A process of preparing for non-woven fabric composed nano fiber
KR100658499B1 (en) Method of manufacturing mats coated with nanofibers and mats manufactured thereby
KR102142897B1 (en) Functional non-woven fabric
KR101319541B1 (en) Method for manufacturing vapor-permeable and waterproof sheet
KR100702604B1 (en) A Method For Producing a Nano-filament Composite Fabric And the Nano-filament Composite Fabric Produced by the Same
KR20140069511A (en) An apparatus for electrospinning
KR20150108293A (en) Breathable and waterproof fabric for improved adhesive strength and method of manufacturing the same
KR101866340B1 (en) An airpermeable and waterproof textile for clothes
KR20090129039A (en) Water-proof and moisture-permeable fabric

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161012

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180711

Year of fee payment: 5

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200312

Year of fee payment: 7