KR101316068B1 - Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same - Google Patents

Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same Download PDF

Info

Publication number
KR101316068B1
KR101316068B1 KR1020100120927A KR20100120927A KR101316068B1 KR 101316068 B1 KR101316068 B1 KR 101316068B1 KR 1020100120927 A KR1020100120927 A KR 1020100120927A KR 20100120927 A KR20100120927 A KR 20100120927A KR 101316068 B1 KR101316068 B1 KR 101316068B1
Authority
KR
South Korea
Prior art keywords
weight
aluminum
titanium
silicon
boron
Prior art date
Application number
KR1020100120927A
Other languages
Korean (ko)
Other versions
KR20120059256A (en
Inventor
박훈모
심재혁
서진유
이영수
Original Assignee
현대자동차주식회사
한국과학기술연구원
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 한국과학기술연구원, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020100120927A priority Critical patent/KR101316068B1/en
Priority to US13/026,604 priority patent/US20120134874A1/en
Publication of KR20120059256A publication Critical patent/KR20120059256A/en
Application granted granted Critical
Publication of KR101316068B1 publication Critical patent/KR101316068B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides

Abstract

본 발명은 알루미늄 81 ~ 93 중량%, 규소 5 ~ 13 중량%, 티타늄 1 ~ 3 중량% 및 붕소 1 ~ 3 중량% 를 포함하는 알루미늄 주조재에 관한 것이다. 본 발명은 탄소나노튜브(CNT) 등의 고가재료를 사용하지 않으면서도 종래의 알루미늄 합금에 비해 탄성이 뛰어나며, 또한 종래의 알루미늄 합금의 경우, 저압주조공정에서만 적용될 수 있는 한계가 있었으나, 본 발명에서 제공하는 알루미늄 재료는 고압주조를 포함하는 일반적인 주조공정에서 모두 적용이 가능하다. The present invention relates to an aluminum casting comprising 81 to 93% by weight of aluminum, 5 to 13% by weight of silicon, 1 to 3% by weight of titanium and 1 to 3% by weight of boron. The present invention is excellent in elasticity compared to the conventional aluminum alloy without using expensive materials such as carbon nanotubes (CNT), and in the case of the conventional aluminum alloy, there was a limit that can be applied only in a low pressure casting process, in the present invention Providing aluminum material can be applied to all the general casting process including high pressure casting.

Description

티타늄 붕화물을 포함하는 알루미늄 주조재 및 그의 제조 방법 {Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same} Aluminum Casting Material Comprising Titanium Borides And Manufacturing Method thereof {Aluminum Casting Material Comprising Titanium Boride and Manufacturing Method of the Same}

본 발명은 티타늄 붕화물을 포함하는 고탄성 알루미늄 복합재료에 관한 것이다.
The present invention relates to a high elastic aluminum composite including titanium boride.

환경 및 연비규제에 능동적으로 대응하기 위하여 차량경량화 필요성이 요구되어 알루미늄 소재와 같은 경량금속의 차량적용이 확대되고 있으나, 기존 알루미늄 적용 자동차 부품은 파괴시점의 물성지표인 인장강도 향상에 초점을 맞춘 고강도와 부품 생산품질의 안정화 공정 개발 위주로 진행되었기 때문에, 대부분 자동차 부품의 하우징류, 차체 및 일부 샤시 부품에만 제한적으로 적용되어 왔다. 지금까지 기존의 고강도 소재를 적용하여 경량화를 시도하는 경우에는 부품의 핵심 성능인 내구성과 소음/진동(NVH)특성을 충분히 만족하지 못하므로 보강설계가 불가피하므로 경량화 효과를 충분히 구현할 수 없으며 그 적용이 제한적이다. 이러한 문제점을 극복하고 차량경량화를 통한 환경 및 연비규제에 능동적으로 대응하기 위해서는 강성 및 NVH특성에 주요한 영향을 미는 고탄성 알루미늄 소재가 필수적이다. In order to proactively respond to environmental and fuel regulations, the application of lightweight metals such as aluminum materials is expanding, and the application of lightweight metals such as aluminum materials is expanding. However, existing aluminum parts have high strength with a focus on improving tensile strength, which is a property index at the time of breakdown. Since the process has been focused on the development of the stabilization process for the production quality of parts and components, it has been applied to most housing parts, body parts, and some chassis parts of most automobile parts. Until now, when attempting to reduce the weight by applying the existing high strength material, it is inevitable to satisfy the durability and noise / vibration (NVH) characteristics, which are the core performances of the parts, so that the reinforcement design is inevitable, and thus the weight reduction effect cannot be sufficiently realized. Limited. In order to overcome these problems and proactively cope with environmental and fuel efficiency regulations through lightweight vehicles, highly elastic aluminum materials, which have a major influence on stiffness and NVH characteristics, are essential.

이에 대한 종래기술을 살펴보면 미국공개특허 제2010-210454호에서는 8.0 ~ 11.5 중량%의 규소, 망간, 마그네슘, 철, 구리, 아연, 티타늄, 몰리브덴, 지르코늄, 스트론튬 또는 나트륨, 칼슘, 갈륨인화물, 인듐인화물과 1 ~ 2 중량%의 티타늄 및 1 ~ 2 중량%의 붕소(B)를 알루미늄 모합금에 첨가되는 알루미늄 주조재에 대해 기재하고 있다. 또한 미국공개특허 제2004-115515호에서는 규소를 12 ~ 15중량% 함유하며, 티타늄이 TiB2 형태로 0.1 중량% 이하 함유된 알루미늄 주조재를 제시하고 있다.In the prior art, US Patent Publication No. 2010-210454 discloses 8.0 to 11.5% by weight of silicon, manganese, magnesium, iron, copper, zinc, titanium, molybdenum, zirconium, strontium or sodium, calcium, gallium phosphide, and indium phosphide. And 1 to 2 weight percent titanium and 1 to 2 weight percent boron (B) are described for the aluminum casting material added to the aluminum master alloy. In addition, US Patent Publication No. 2004-115515 discloses an aluminum casting material containing 12 to 15 wt% of silicon and containing 0.1 wt% or less of titanium in the form of TiB 2 .

다만 상기 종래기술들의 경우 알루미늄 기지(matrix)와의 젖음성에서 차이가 있어, 분산이 원활하지 아니한 문제가 있었으며, 과공정 알루미늄 주조재의 경우, 저압주조공정에 국한되고 조대 규소 입자에 의하여 가공이 난이한 문제가 있었다.
However, the prior art has a problem in that the wettability with the aluminum matrix (matrix), there is a problem that the dispersion is not smooth, in the case of the over-process aluminum casting, limited to the low-pressure casting process and difficult to process by coarse silicon particles There was.

본 발명은 알루미늄 주조재에 있어서, 고탄성을 가지고, 고압주조 및 일반주조공정도 적용이 가능한 알루미늄 주조재를 제공하는 것에 그 목적이 있다. 또한 본 발명은 상기 알루미늄 주조재의 제조 방법을 제공하는 것에 목적이 있다.An object of the present invention is to provide an aluminum casting material having a high elasticity and to which a high pressure casting and a general casting process can be applied. Moreover, an object of this invention is to provide the manufacturing method of the said aluminum casting material.

상기 목적을 달성하기 위하여 본 발명은 알루미늄(Al) 81 ~ 93 중량%, 규소(Si) 5 ~ 13 중량%, 티타늄(Ti) 1 ~ 3 중량% 및 붕소(B) 1 ~ 3 중량%를 포함하는 알루미늄 주조재를 제공한다.In order to achieve the above object, the present invention includes 81 to 93% by weight of aluminum (Al), 5 to 13% by weight of silicon (Si), 1 to 3% by weight of titanium (Ti) and 1 to 3% by weight of boron (B). It provides an aluminum casting material.

또한 본 발명은 상기 알루미늄 주조재를 제조하는 방법에 관한 것이다.
The present invention also relates to a method for producing the aluminum casting.

본 발명은 탄소나노튜브(CNT) 등의 고가재료를 사용하지 않으면서도 종래의 알루미늄 합금에 비해 탄성이 뛰어나며, 또한 종래의 알루미늄 합금의 경우, 저압주조공정에서만 적용될 수 있는 한계가 있었으나, 본 발명에서 제공하는 알루미늄 재료는 고압주조를 포함하는 일반적인 주조공정에서 모두 적용이 가능하다.
The present invention is excellent in elasticity compared to the conventional aluminum alloy without using expensive materials such as carbon nanotubes (CNT), and in the case of the conventional aluminum alloy, there was a limit that can be applied only in a low pressure casting process, in the present invention Providing aluminum material can be applied to all the general casting process including high pressure casting.

도 1은 실시예 5의 주조재를 주조 적용한 표면의 주사전자현미경(SEM) 이미지이다.
도 2는 실시예 5의 주조재를 주조 적용한 표면의 주사전자현미경(SEM) 이미지이다.
도 3은 실시예 1의 주조재를 주조 적용한 상부 표면의 주사전자현미경(SEM) 이미지이다.
도 4는 실시예 1의 주조재를 주조 적용한 하부 표면의 주사전자현미경(SEM) 이미지이다.
도 5는 비교예 3의 주조재를 주조 적용한 표면의 주사전자현미경(SEM) 이미지이다.
1 is a scanning electron microscope (SEM) image of the surface of the cast material of Example 5 applied.
FIG. 2 is a scanning electron microscope (SEM) image of the surface to which the cast material of Example 5 is cast.
3 is a scanning electron microscope (SEM) image of the upper surface of the cast material of Example 1 applied.
Figure 4 is a scanning electron microscope (SEM) image of the lower surface of the cast material of Example 1 applied.
FIG. 5 is a scanning electron microscope (SEM) image of a surface to which the cast material of Comparative Example 3 is cast.

본 발명은 알루미늄 81 ~ 93 중량%, 규소 5 ~ 13 중량%. 티타늄 1 ~ 3 중량% 및 붕소 1 ~ 3 중량%를 포함하는 알루미늄 주조재에 관한 것이다.The present invention is 81 to 93% by weight of aluminum, 5 to 13% by weight of silicon. It relates to an aluminum casting comprising 1 to 3% by weight of titanium and 1 to 3% by weight of boron.

이하 상기 구성요소별로 구체적으로 상술하겠다.Hereinafter, the components will be described in detail.

상기 규소는 강도와 주조성에 주요한 역할을 하는데 본 발명에서는 규소를 5 ~ 13중량% 사용하는 것이 바람직하다. 규소가 5 중량% 미만인 경우에는 충분한 강화효과와 주조성에 문제가 있을 수 있으며, 13중량%를 초과하는 경우에는 종래의 기술들과 같이, 저압주조공정에 국한되고, 고압주조공정 등 일반적인 고생산성 공정에 적용이 불가능하거나, 조대 규소 입자가 형성되어 성형성과 가공성에 문제를 발생시킬 수 있으므로, 5.0 ~ 13.0 중량%를 포함하는 것이 바람직하다. 보다 바람직하게는 5.0 ~ 8.0 중량%가 포함될 수 있다.The silicon plays a major role in strength and castability in the present invention, it is preferable to use 5 to 13% by weight of silicon. If the silicon is less than 5% by weight, there may be a problem in sufficient reinforcing effect and castability, and in the case of more than 13% by weight, it is limited to the low pressure casting process, as in the conventional techniques, and general high productivity such as the high pressure casting process. Since it is not applicable to the process or coarse silicon particles are formed, which may cause problems in formability and processability, it is preferable to include 5.0 to 13.0% by weight. More preferably, 5.0 to 8.0 wt% may be included.

상기 티타늄 및 붕소는 알루미늄 주조재 내에서 TiB2 화합물을 형성함으로써, 알루미늄 주조재의 탄성 향상에 역할을 하게 된다. 본 발명에서는 티타늄 및 붕소를 각각 1 ~ 3 중량% 사용함으로써 고탄성을 구현하고자 하였다. 보다 바람직하게는 각각 2 ~ 3 중량% 사용할 수 있다.The titanium and boron are TiB 2 in aluminum casting By forming the compound, it plays a role in improving the elasticity of the aluminum casting material. In the present invention, to achieve high elasticity by using 1 to 3% by weight of titanium and boron, respectively. More preferably 2 to 3% by weight can be used respectively.

상기 알루미늄 주조재에서 상기 알루미늄, 규소, 티타늄, 붕소에 더하여 철(Fe), 구리(Cu), 망간(Mn), 마그네슘(Mg), 니켈(Ni), 아연(Zn) 등의 물질이 강도, 신율, 피로, 내식성 등 다양한 구조재료로서의 특성 향상 목적을 위해 추가로 포함될 수 있다. 이 때 각각의 물질은 전체 알루미늄 주조재 100 중량부에 대해 0.1 ~ 5 중량부 첨가될 수 있다.
In addition to the aluminum, silicon, titanium, and boron in the aluminum casting material, materials such as iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), nickel (Ni), zinc (Zn), etc. It may be further included for the purpose of improving the properties as a variety of structural materials such as elongation, fatigue, corrosion resistance. At this time, each material may be added 0.1 to 5 parts by weight based on 100 parts by weight of the total aluminum casting.

또한 상기 주조재는 알루미늄 및 규소가 포함된 용탕에 분말형태의 티타늄과 붕소를 투여하는 방식으로 제조할 수 있다. 또한, 알루미늄 및 규소가 포함된 용탕에 알루미늄 80 ~ 96 중량%, 티타늄 2 ~ 10 중량%, 붕소 2 ~ 10 중량%가 포함된 알루미늄 모합금을 투여하는 방식으로 제조할 수도 있다. 후자의 방법의 경우, 조대 TiB2가 생기지 아니하고, 10㎛ 이하의 균일한 TiB2 입자가 형성되어 탄성, 강도 내마모성 등의 특성 향상에 유리하게 된다.In addition, the casting material may be prepared by administering titanium and boron in powder form to the molten metal containing aluminum and silicon. In addition, it may be prepared by administering an aluminum mother alloy containing 80 to 96% by weight of aluminum, 2 to 10% by weight of titanium, and 2 to 10% by weight of boron in the molten aluminum and silicon. In the latter method, coarse TiB 2 does not occur, and uniform TiB 2 particles of 10 μm or less are formed, which is advantageous for improving properties such as elasticity and strength wear resistance.

이하 본 발명을 구체적인 실시예를 들어 상세히 설명하고자 하지만, 본 발명의 권리범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to specific examples, but the scope of the present invention is not limited to these examples.

실시예Example 1 ~ 4  1-4

하기 표 1에 기재된 조성에 따라 알루미늄 주조재를 제조하였다. 하기 알루미늄 및 규소를 포함하는 용탕을 제조한 후, 분말형태의 티타늄 및 붕소 등 나머지 물질을 700℃에서 투입하였다.An aluminum casting was prepared according to the composition shown in Table 1 below. After preparing a molten metal including the aluminum and silicon, the remaining materials such as powder titanium and boron were added at 700 ° C.

단위(g)Unit (g) 규소silicon iron 구리Copper 망간manganese 마그네슘magnesium 니켈nickel 아연zinc 티타늄titanium 붕소boron 알루미늄aluminum 실시예 1Example 1 1212 -- -- -- -- -- -- 1.71.7 1.71.7 84.684.6 실시예 2Example 2 1212 1.31.3 33 0.50.5 0.30.3 0.50.5 1.01.0 1.31.3 1.31.3 77.277.2 실시예 3Example 3 7.07.0 0.20.2 0.20.2 0.10.1 0.30.3 0.050.05 0.10.1 3.03.0 3.03.0 86.0586.05 실시예 4Example 4 6.06.0 1.01.0 3.03.0 0.50.5 0.10.1 0.350.35 1.01.0 3.03.0 3.03.0 82.0582.05

실시예Example 5 5

상기 실시예 1과 동일한 조성으로 제조하였으나, 알루미늄 및 규소를 포함하는 용탕을 제조한 후, 티타늄 2~10 중량%, 붕소 2~10 중량% 및 알루미늄 80~96 중량% 을 포함하는 알루미늄 모합금을 700℃에서 투입하였다.
Although manufactured in the same composition as in Example 1, after producing a molten metal containing aluminum and silicon, an aluminum mother alloy containing 2 to 10% by weight of titanium, 2 to 10% by weight of boron and 80 to 96% by weight of aluminum It was introduced at 700 ℃.

비교예Comparative Example 1 ~ 3  1-3

상기 실시예 1과 동일하게 실시하되 하기 표 2에 기재된 조성에 따라 알루미늄 주조재를 제조하였다.To carry out the same as in Example 1, but according to the composition shown in Table 2 to produce an aluminum casting.

단위(g)Unit (g) 규소silicon iron 구리Copper 망간manganese 마그네슘magnesium 니켈nickel 아연zinc 티타늄titanium 붕소boron 알루미늄aluminum 비교예 1Comparative Example 1 1212 -- -- -- -- -- -- -- -- 8888 비교예 2Comparative Example 2 1212 1.31.3 33 0.50.5 0.30.3 0.50.5 1.01.0 -- -- 79.879.8 비교예 3Comparative Example 3 1717 0.50.5 4.54.5 0.20.2 0.50.5 0.10.1 0.20.2 0.0070.007 0.0070.007 77.077.0

실험예Experimental Example 1 : 탄성 비교 1: elasticity comparison

상기 실시예 1 ~ 2 및 비교예 1 ~ 2에서 제조한 주조재를 시편으로 제조한 후, 초음파 공명 분광법방식으로 탄성을 비교하여 그 결과를 하기 표 3에 나타내었다. 초음파 공명 분광법은 직사각형의 시편의 모서리에서 초음파를 투과하여 재료내에서 공명시킨 후 나타나는 스펙트럼을 통해 탄성계수를 측정하는 방법이다. After the cast materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were prepared as specimens, the elasticity was compared by ultrasonic resonance spectroscopy, and the results are shown in Table 3 below. Ultrasonic resonance spectroscopy is a method of measuring the modulus of elasticity through the spectrum appearing after resonating in the material by transmitting ultrasonic waves at the edge of the rectangular specimen.

보정치Correction 측정치Measure 종탄성계수(GPa)Young's modulus of elasticity (GPa) 종탄성계수(GPa)Young's modulus of elasticity (GPa) 횡탄성계수(GPa)Lateral modulus of elasticity (GPa) 부피탄성계수(GPa)Bulk modulus of elasticity (GPa) 밀도(g/cc)Density (g / cc) 실시예 1Example 1 9090 8282 3131 7575 2.602.60 비교예 1Comparative Example 1 8282 7272 2929 5151 2.552.55 실시예 2Example 2 8686 7474 2929 5454 2.522.52 비교예 2Comparative Example 2 7676 6868 2828 4343 2.572.57

상기 표 3에서 나타나듯이, 동일한 조성에서 티타늄 및 붕소의 투입 여부에 따라 탄성이 약 10 ~ 15% 향상된다는 것을 확인할 수 있으며, 기존 알루미늄 주조재 (75GPa)보다는 20% 탄성 향상을 구현할 수 있었다.
As shown in Table 3, it can be seen that the elasticity is improved by about 10 to 15% according to the input of titanium and boron in the same composition, it was possible to implement a 20% elastic improvement than the existing aluminum casting (75GPa).

실험예Experimental Example 2 : 주조적용 시 미세조직 비교 2: microstructure comparison in casting application

상기 실시예 1 및 실시예 5의 주조재를 시편으로 만든 후 그 표면을 주사전자현미경(SEM)으로 관찰하여 그 이미지를 도 1 ~ 4에 나타내었다. 도 1 ~ 4에서도 알 수 있듯이, 실시예 5의 경우, 확대 하더라도 균일한 상태를 확인할 수 있으나, 실시예 1의 경우, 조대 TiB2가 침강하여 조직이 불균일 함을 확인할 수 있다. 실시예 5에서 나타나는 균일한 조직 특성은 실시예 5의 제조 방법이 가공성 및 기계적 특성에 유리함을 증명한다.After making the cast material of Example 1 and Example 5 as a specimen, the surface was observed by scanning electron microscopy (SEM) and the image is shown in FIGS. 1 to 4. As can be seen from Figures 1 to 4, in the case of Example 5, even if enlarged, it is possible to confirm a uniform state, in the case of Example 1, it can be confirmed that the coarse TiB 2 is settled, the tissue is uneven. The uniform tissue properties shown in Example 5 demonstrate that the manufacturing method of Example 5 is advantageous for processability and mechanical properties.

또한, 비교예 3의 주조재를 시편으로 만든 후 그 표면을 주사전자현미경(SEM)으로 관찰하여 그 이미지를 도 5에 나타내었다. 조대한 규소입자가 생성되어 일부 탄성은 증가할 수 있으나 불균일한 미세조직과 조대한 규소입자로 인하여 가공성과 성형성에 문제를 발생할 수 있음을 확인할 수 있다. 또한 규소입자 분포 및 형상제어를 위해서 저압주조만 가능한 공정 제약의 문제점도 가지고 있다. In addition, after the cast material of Comparative Example 3 was made into a specimen, the surface thereof was observed with a scanning electron microscope (SEM), and the image is shown in FIG. 5. Coarse silicon particles may be generated to increase some elasticity, but it may be confirmed that problems may occur in workability and formability due to uneven microstructure and coarse silicon particles. In addition, there is a problem of process constraints that can only be low pressure casting for silicon particle distribution and shape control.

Claims (4)

알루미늄 81 ~ 87 중량%, 규소 10 ~ 12 중량%. 티타늄 2 ~ 3 중량% 및 붕소 1 ~ 3 중량%를 포함하는 알루미늄 주조재.
81-87 weight percent aluminum, 10-12 weight percent silicon. An aluminum casting comprising 2-3 wt% titanium and 1-3 wt% boron.
알루미늄 86 ~ 91 중량%, 규소 5 ~ 8 중량%, 티타늄 2 ~ 3 중량% 및 붕소 1 ~ 3 중량%를 포함하는 것을 특징으로 하는 알루미늄 주조재.
An aluminum casting material comprising 86 to 91% by weight of aluminum, 5 to 8% by weight of silicon, 2 to 3% by weight of titanium, and 1 to 3% by weight of boron.
제1항 또는 제2항에 있어서, 철, 구리, 망간, 마그네슘, 니켈 또는 아연이 주조재 100 중량부에 대해 0.1 ~ 5 중량부 더 포함되는 것을 특징으로 하는 알루미늄 주조재.
The aluminum casting material according to claim 1 or 2, further comprising 0.1 to 5 parts by weight of iron, copper, manganese, magnesium, nickel or zinc, based on 100 parts by weight of the casting material.
제1항 또는 제2항의 알루미늄 주조재를 제조하는 방법으로서, 알루미늄 및 규소를 포함하는 용탕에, 알루미늄 80 ~ 96 중량%, 티타늄 2 ~ 10 중량% 및 붕소 2 ~ 10 중량%를 포함하는 알루미늄 모합금을 투입하는 것을 특징으로 하는 제조 방법.
A method for producing the aluminum casting material according to claim 1, wherein the molten aluminum containing silicon and silicon comprise 80 to 96% by weight of aluminum, 2 to 10% by weight of titanium and 2 to 10% by weight of boron. A manufacturing method characterized by injecting an alloy.
KR1020100120927A 2010-11-30 2010-11-30 Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same KR101316068B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100120927A KR101316068B1 (en) 2010-11-30 2010-11-30 Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same
US13/026,604 US20120134874A1 (en) 2010-11-30 2011-02-14 Aluminum casting material comprising titanium boride and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100120927A KR101316068B1 (en) 2010-11-30 2010-11-30 Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same

Publications (2)

Publication Number Publication Date
KR20120059256A KR20120059256A (en) 2012-06-08
KR101316068B1 true KR101316068B1 (en) 2013-10-11

Family

ID=46126810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100120927A KR101316068B1 (en) 2010-11-30 2010-11-30 Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same

Country Status (2)

Country Link
US (1) US20120134874A1 (en)
KR (1) KR101316068B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558693B1 (en) * 2013-12-17 2015-10-07 현대자동차주식회사 Method for producing aluminium alloy
KR20150126474A (en) 2014-05-02 2015-11-12 현대자동차주식회사 High elastic aluminum alloy
KR101664586B1 (en) * 2014-11-19 2016-10-25 현대자동차주식회사 Aluminum alloy for engine piston of automobile and method for producing the same
KR20180126206A (en) * 2017-05-17 2018-11-27 엘에스전선 주식회사 Aluminum alloy for cable's conductor
US10190535B2 (en) 2015-08-13 2019-01-29 Hyundai Motor Company Hypereutectic aluminum-silicon-based alloy having superior elasticity and wear resistance

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130058997A (en) * 2011-11-28 2013-06-05 현대자동차주식회사 Aluminum alloy and method for producing the same
KR101491216B1 (en) * 2012-12-13 2015-02-11 현대자동차주식회사 High elastic aluminum alloy and method for producing the same
CN103602847B (en) * 2013-12-09 2015-12-09 国家电网公司 The Single Walled Carbon Nanotube utilizing boride coated prepares the method for carbon-nanotube-modialuminum aluminum material
KR101637639B1 (en) 2014-02-27 2016-07-07 현대자동차주식회사 High elasticity aluminum alloy including titanium compound and method for producing the same
KR101601518B1 (en) * 2014-10-30 2016-03-09 현대자동차주식회사 High elastic and high ductile aluminum alloy
JP6738125B2 (en) 2014-11-19 2020-08-12 現代自動車株式会社Hyundai Motor Company Aluminum alloy for automobile outer panel and manufacturing method thereof
KR101637735B1 (en) 2014-11-19 2016-07-08 현대자동차주식회사 Aluminum alloy having excellent formability and elasticity, and method for producing the same
KR101628537B1 (en) * 2014-11-20 2016-06-09 현대자동차주식회사 High elasticity and strength aluminum alloy and manufacturing method thereof
CN105671350A (en) * 2015-03-19 2016-06-15 中信戴卡股份有限公司 Aluminum alloy refiner, preparation method therefor and use thereof
CN105369086A (en) * 2015-12-23 2016-03-02 常熟市虹桥铸钢有限公司 Low-pressure casting technology for automobile alloy hubs
CN110184514A (en) * 2019-05-16 2019-08-30 江苏理工学院 A kind of in-situ nano TiC particle REINFORCED Al-Cu based composites and preparation method thereof
CN111074116A (en) * 2020-01-16 2020-04-28 苏州先准电子科技有限公司 Electronic packaging high-silicon aluminum-based composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192780A (en) * 1992-12-25 1994-07-12 Toyota Motor Corp High heat and wear resistance aluminum alloy and powder thereof
JP2002339030A (en) 2001-05-17 2002-11-27 Yamaha Motor Co Ltd Aluminum alloy for diecasting
JP2004523357A (en) * 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU990856A1 (en) * 1981-09-18 1983-01-23 Гомельский политехнический институт Aluminium master alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192780A (en) * 1992-12-25 1994-07-12 Toyota Motor Corp High heat and wear resistance aluminum alloy and powder thereof
JP2004523357A (en) * 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy
JP2002339030A (en) 2001-05-17 2002-11-27 Yamaha Motor Co Ltd Aluminum alloy for diecasting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558693B1 (en) * 2013-12-17 2015-10-07 현대자동차주식회사 Method for producing aluminium alloy
KR20150126474A (en) 2014-05-02 2015-11-12 현대자동차주식회사 High elastic aluminum alloy
US10392681B2 (en) 2014-05-02 2019-08-27 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
US11066729B2 (en) 2014-05-02 2021-07-20 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
KR101664586B1 (en) * 2014-11-19 2016-10-25 현대자동차주식회사 Aluminum alloy for engine piston of automobile and method for producing the same
US10190535B2 (en) 2015-08-13 2019-01-29 Hyundai Motor Company Hypereutectic aluminum-silicon-based alloy having superior elasticity and wear resistance
KR20180126206A (en) * 2017-05-17 2018-11-27 엘에스전선 주식회사 Aluminum alloy for cable's conductor
KR102344357B1 (en) 2017-05-17 2021-12-27 엘에스전선 주식회사 Aluminum alloy for cable's conductor

Also Published As

Publication number Publication date
KR20120059256A (en) 2012-06-08
US20120134874A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
KR101316068B1 (en) Aluminium Casting Material Comprising Titanium Boride and Manufacturing Method of the Same
KR101337994B1 (en) Graphene/metal nanocomposite powder and method of manufacturing thereof
US20140234160A1 (en) Aluminum casting alloys containing vanadium
DE102011012142B3 (en) Aluminum matrix composite, semi-finished aluminum matrix composite material and process for its production
KR100961081B1 (en) Zinc-aluminium alloys with high strength and low density
KR20150127887A (en) Aluminum alloy with excellent castability and mechanical property and method of manufacturing thereof
CN112775440A (en) Selective laser melting aluminum alloy and additive manufacturing method
CN114182141A (en) Novel high-strength and high-toughness heat-resistant aluminum-silicon casting alloy
US20130136651A1 (en) Aluminum alloy and method for producing the same
US11066729B2 (en) High-elasticity aluminum alloy and method of manufacturing the same
KR101356162B1 (en) Aluminum alloy with high-strength at high-temperature
WO2009133920A1 (en) High‑hardness shot material
KR101583886B1 (en) Aluminum alloy and vehicle part using the same
CN106399727A (en) Needle bar linking rod
KR102010307B1 (en) Manufacturing method of aluminum-titanium composite and aluminum-titanium composite manufactured by the same
JP2016098435A (en) Aluminum alloy for automobile outer sheet and manufacturing method therefor
KR20100102301A (en) Wear-resistant aluminum alloy for vehicles
KR101080926B1 (en) The preparation method of ceramic/metal composite powders for metal materials to enhance the mechanical properties
KR100909699B1 (en) Aluminum alloy with improved impact energy and extrusion made from the same
RU2700341C1 (en) Composition of composite material based on aluminum alloy
KR20120008778A (en) High strength cast al alloy and nuckle for suspension of vehicle
KR102585810B1 (en) High strength-low expansion alloy for die casting
JP5515944B2 (en) Aluminum alloy
JP2023150911A (en) 3d print-shaping powder metal material made of aluminum alloy, and lamination shaping method
KR101637645B1 (en) Method for manufacturing high elastic aluminum alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190926

Year of fee payment: 7