KR101312583B1 - Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature - Google Patents

Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature Download PDF

Info

Publication number
KR101312583B1
KR101312583B1 KR1020060073384A KR20060073384A KR101312583B1 KR 101312583 B1 KR101312583 B1 KR 101312583B1 KR 1020060073384 A KR1020060073384 A KR 1020060073384A KR 20060073384 A KR20060073384 A KR 20060073384A KR 101312583 B1 KR101312583 B1 KR 101312583B1
Authority
KR
South Korea
Prior art keywords
fuel
nuclear
current
low temperature
powder
Prior art date
Application number
KR1020060073384A
Other languages
Korean (ko)
Other versions
KR20080012489A (en
Inventor
황일순
정승호
이나영
오영진
임준
배주동
Original Assignee
황일순
이나영
배주동
정승호
임준
오영진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황일순, 이나영, 배주동, 정승호, 임준, 오영진 filed Critical 황일순
Priority to KR1020060073384A priority Critical patent/KR101312583B1/en
Publication of KR20080012489A publication Critical patent/KR20080012489A/en
Application granted granted Critical
Publication of KR101312583B1 publication Critical patent/KR101312583B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/60Metallic fuel; Intermetallic dispersions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 금속 분말 형태의 원료를 원통형 금형에 장전하고 상하로 전류를 인가하며 압축하여 저온에서 입자간의 접합을 형성함으로써 기포를 함유하는 금속 핵연료봉을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a metal fuel rod containing bubbles by loading a raw material in the form of metal powder into a cylindrical mold, applying a current up and down, and compressing to form a bond between particles at low temperature.

차세대 원자력발전의 연료로써 금속 핵연료가 개발되고 있다. 금속 핵연료의 원료는 일반적으로 건식분리공정(pyrochemical process)을 사용하여 제조되며 그 결과 금속 분말 형태를 갖는다. 지금까지 개발된 금속핵연료의 제조는 금속분말을 고온 가압하여 고화하거나 고온 용해하여 주조하는 방법을 사용하여 왔다. 그러나 핵변환 등을 통하여 사용된 핵연료 물질을 지속적으로 재순환하여야 하는 경우, 분말에 내재하는 아메리슘(Am) 등과 같은 휘발성 원소들의 기화로 인하여 핵물질의 유실이 문제되므로 핵연료의 회수율 증가와 핵비확산성을 증진하기 위하여 비휘발성 저온 공정의 사용이 바람직하다.Metallic fuels are being developed as fuel for the next generation of nuclear power. Raw materials for metal fuels are generally manufactured using a pyrochemical process and consequently take the form of metal powders. The production of the metal fuel developed until now has been using a method of solidifying or hot-melting the metal powder by casting at high temperature. However, if the spent fuel material must be continuously recycled through nuclear conversion, the loss of nuclear material is a problem due to the vaporization of volatile elements such as americium (Am) in the powder. The use of a nonvolatile low temperature process is preferred to promote.

본 발명에서는 금속분말을 비전도성 재료로 제작된 튜브에 장전하고 상하에 봉상의 전도성 전극을 압축하면서 간헐적으로 전류를 인가하여 핵연료봉의 온도를 핵물질이 휘발하지 않는 저온 영역 내에 유지하면서 분말을 접합하여 핵비확산성을 갖추며 적절한 밀도를 갖는 봉상의 금속 핵연료봉을 제조하는 방법을 고안하였다.In the present invention, the metal powder is loaded into a tube made of a non-conductive material and the powder is bonded while intermittently applying current while compressing the rod-shaped conductive electrodes on the upper and lower sides to maintain the temperature of the nuclear fuel rod in a low temperature region where the nuclear material does not volatilize. A method of manufacturing a rod-shaped metal nuclear fuel rod with nuclear non-proliferation and proper density was devised.

Description

핵원료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법{Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature}Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature}

도1은 분말 원료에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조법 개략도.1 is a schematic diagram of a method for manufacturing a low-temperature non-proliferative metal fuel that simultaneously applies a current and a compressive force to a powder raw material.

도2는 본 발명에 따른 저온 핵비확산성 금속핵연료 제조를 위한 시스템 구성도.Figure 2 is a system configuration for producing a low temperature nuclear non-proliferating metal fuel according to the present invention.

<도면 주요 부분에 대한 부호의 설명>DESCRIPTION OF THE REFERENCE SYMBOLS

(1) 가압 구동축 (2) 절연된 압축력 및 전류 전달부(1) pressure drive shaft (2) insulated compression force and current transfer

(3) 분위기 조절용 밀폐 상자 (4) 압축봉 (Plunger)(3) Airtight Seal Box (4) Plunger

(5) 절연된 봉상 핵연료 금형 (Die) (6) 장전된 핵연료 분말(5) Insulated rod fuel molds (Die) (6) Loaded fuel powder

(7) 냉각장치 (8) 분위기 조절용 기체 출입구(7) Cooling system (8) Gas entrance for atmosphere control

(9) 전류 연결선(9) current connection wire

사용후 핵연료 등 장수명의 방사성을 갖는 고준위 방사성 폐기물을 핵변환장 치에서 단수명의 핵물질로 변환하여 초기 고준위폐기물을 극히 소량의 고준위폐기물을 포함하도록 하거나 전체를 중저준위폐기물로 변환하는 기술이 개발되고 있다. 이 과정에서 핵변환용 핵연료를 금속형태로 만들면 용융염을 이용하는 건식공정을 최대 활용하는 장점을 지닌다. 핵변환장치에서 모든 고준위폐기물이 한 번에 소멸되지 않으므로 잔여 고준위폐기물을 수거하여 다시 건식공정을 통하여 금속핵연료로 만들고 핵변환장치에서 반복적으로 연소시키는 과정을 밟는다. 이때 건식공정에서 수거되는 핵연료물질은 금속분말이며 우라늄, 플루토늄, 넵티늄, 아메리슘, 큐리움 등의 다양한 핵종을 포함한다. 현재 개발 중인 핵연료 제조방법은 진공용해주조법으로 수거된 분말을 진공로에 장전하고 유도전기를 이용하여 섭씨 1500도 내외의 고온에서 용융시킨 후 주조하여 봉상의 고밀도 핵연료를 얻는다. 상기한 방법은 고온 공정이므로 아메리슘 등의 휘발성 물질의 유실을 불러일으켜 핵확산저항성과 고준위페기물의 소멸효율을 떨어뜨리는 단점이 있다. A technology is developed to convert long-lived radioactive waste, such as spent nuclear fuel, from a nuclear conversion device into a short-lived nuclear material, so that the initial high-level waste contains only a small amount of high-level waste, or the whole is converted to low-level waste. . In this process, making the nuclear fuel for conversion into metal form has the advantage of making the most of the dry process using molten salt. Since all high-level wastes do not disappear at once in the nuclear converter, the remaining high-level wastes are collected, dried again into metal fuel, and repeatedly burned in the nuclear converter. At this time, the nuclear fuel material collected in the dry process is a metal powder and includes various nuclides such as uranium, plutonium, neptinium, americium and curium. In the nuclear fuel production method currently being developed, the powder collected by the vacuum molten metal casting method is loaded into a vacuum furnace, melted at a high temperature of about 1500 degrees Celsius using induction electricity, and cast to obtain a rod-shaped high density nuclear fuel. Since the above method is a high temperature process, it causes a loss of volatile substances such as americium, and thus has the disadvantage of lowering the nuclear diffusion resistance and the extinction efficiency of the high level waste.

본 발명은 저온에서 전류를 이용하여 분말 입자간의 접합을 형성함으로써 밀도가 상당히 높은 핵연료를 제조하되 휘발성 핵물질의 유실을 원천적으로 예방하여 핵확산저항성의 증진 및 고준위폐기물 소멸 효율을 높이는 것을 목적으로 한다.The present invention aims to produce a nuclear fuel with a high density by forming a junction between powder particles using a current at a low temperature, but to prevent the loss of volatile nuclear materials at the source, thereby enhancing the nuclear proliferation resistance and increasing the efficiency of high level waste extinction. .

상기한 바와 같은 목적을 달성하기위하여, 본 발명은 분말 원료에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법 및 장치를 제공하 는데, 상기 제조방법은 진공의 밀폐상자에 봉입된 핵연료 금형에 핵연료 분말을 장전한후 밀폐상차를 봉입하는 단계와;In order to achieve the object as described above, the present invention provides a method and apparatus for manufacturing a low temperature nuclear non-proliferative metal fuel that simultaneously applies a current and a compressive force to the powder raw material, the manufacturing method is a nuclear fuel encapsulated in a sealed box of vacuum Loading the fuel powder into the mold and then sealing the sealed phase difference;

상기 핵연료 분말에 전류를 단속적으로 가하는 단계와;Intermittently applying a current to the fuel powder;

상기 전류를 가하는 단계와 동시에 위에서 아래로의 압축력을 가하는 단계Applying a compressive force from top to bottom simultaneously with applying the current

를 포함할 수 있다. . &Lt; / RTI &gt;

상기 금형내의 온도는 상온이상 섭씨 600도 이하일 수 있다. The temperature in the mold may be above room temperature 600 degrees Celsius or less.

상기 압축력은 대기압 이상 50000psi 이하일 수 있다. The compressive force may be greater than or equal to atmospheric pressure and less than 50000 psi.

상기 핵연료 금형 주위에 냉각을 위한 냉각장치를 형성하여 초기에는 저온형성을 위한 물, 저온가스중 어느 하나를 공급하고, 공정진행중에는 냉각을 위한 냉매를 제공하는 것일 수 있다. Forming a cooling device for cooling around the nuclear fuel mold may initially supply any one of water and low temperature gas for low temperature formation, and may provide a refrigerant for cooling during the process.

또한, 분말 원료에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조장치로서, In addition, as a low-temperature non-proliferative metal fuel manufacturing apparatus that applies a current and a compressive force to the powder raw material at the same time,

원통형의 핵연료 금형과Cylindrical fuel molds

상기 금형내에 제공되는 핵연료 분말에 수직방향의 압축력을 제공하기 위하여 상기 금형의 상부에 위치하여 가압구동축에 연결된 압축봉과;A compression rod positioned at an upper portion of the mold and connected to a pressure driving shaft to provide a compression force in a vertical direction to the nuclear fuel powder provided in the mold;

상기 금형을 초기에는 저온으로 유지하고 공정중에는 냉각을 위한 냉매를 유통시키기 위하여 상기 금형의 외부에 형성된 냉각관과;A cooling tube formed outside the mold to keep the mold at a low temperature initially and to distribute a refrigerant for cooling during the process;

상기 금형내에 전류를 흘리기 위하여 상기 핵연료 금형의 상단과 하단에 연결된 전류연결선을 포함할 수 있다. It may include a current connecting line connected to the top and bottom of the nuclear fuel mold in order to flow the current in the mold.

이하 첨부한 도면을 참고로 하여 본 발명을 상세하게 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

본 발명의 설비, 제조 방법 및 절차는 다음과 같다.The equipment, manufacturing method and procedure of the present invention are as follows.

1. 통전압축식 분말야금설비1. Powder-voltage powder metallurgy equipment

(1) 대상 금속 핵연료봉의 치수에 적합한 길이와 직경의 절연 금형을 충분한 강도의 재료를 이용하여 제작한다. 이때 전도성 소재의 금형의 경우, 내면에 비전도성의 세라믹 또는 고강도 합성수지로 제작된 절연튜브를 삽입한다.(1) Insulation molds of length and diameter suitable for the dimensions of the target metal nuclear fuel rods are made of materials of sufficient strength. At this time, in the case of a conductive material mold, an insulating tube made of non-conductive ceramic or high strength synthetic resin is inserted into the inner surface.

(2) 압축력 및 전류 전달부도 충분한 강도와 절연성을 갖도록 제작한다.(2) Compression force and current transmitting part are also manufactured to have sufficient strength and insulation.

(3) 압축 구동축은 Servo-electric형 또는 Servo-hydraulic형으로 구동 하중 및 구동변위를 연속적으로 측정하고 통합제어장치와 정보를 교류하여 구동축의 궤환 제어가 가능한 방법으로 제작한다.(3) Compression drive shaft is manufactured by Servo-electric type or Servo-hydraulic type to measure drive load and drive displacement continuously and exchange information with integrated control device to control drive shaft feedback.

(4) 분위기 조정상자는 금속핵연료의 산화를 막기 위한 환원성 기체 환경을 유지할 수 있도록 제작한다. 이를 위하여 초기 내부 공기를 제거하기 위한 진공 펌프와 산소 농도 제어를 위한 기체 주입구를 갖추어야 한다.(4) Atmosphere control boxes are to be constructed to maintain a reducing gas environment to prevent oxidation of metal fuel. To this end, a vacuum pump for removing initial internal air and a gas inlet for oxygen concentration control should be provided.

(5) 전류 공급 장치는 대상 핵연료의 전기저항을 토대로 단기 통전 시에 핵연료의 용융이 발생하지 않도록 용량을 결정한다.(5) The current supply device determines the capacity of the fuel to prevent the melting of the fuel during short-term energization based on the electrical resistance of the target fuel.

(6) 전류제어장치는 상태 진단 장치로부터 받은 온도, 변위, 저항, 내압 등의 정보를 토대로 최적의 공정을 위한 가변적 전류 및 시간의 펄스 전류를 인가할 수 있도록 제작된다.(6) The current controller is designed to apply variable current and time pulse current for optimal process based on information such as temperature, displacement, resistance, and breakdown voltage received from the state diagnosis device.

(7) 금형 냉각장치는 초기에 물 또는 저온 가스 등으로 저온으로 형성하고 공정 진행중에 발생하는 열을 제거할 수 있도록 제작된다.(7) The mold cooling device is initially formed at low temperature with water or low temperature gas, and is manufactured to remove heat generated during the process.

2. 핵비확산성 금속핵연료 제작 공정2. Nuclear Non-Proliferative Metal Fuel Manufacturing Process

(1) 최종 금속핵연료의 설계 밀도와 칫수를 토대로 핵연료의 무게를 정량하여 분말을 장전하고 밀폐상자에 봉입하여 환원분위기를 형성한다. (1) Based on the design density and dimensions of the final metal fuel, the weight of the nuclear fuel is quantified to load the powder and sealed in an airtight box to form a reducing atmosphere.

(2) 금형 냉각장치에 초기에 물 또는 저온 가스 등으로 저온으로 형성하고 공정 진행 중에 발생하는 열을 제거할 수 있도록 냉매를 연속적으로 공급한다.(2) The mold cooling device is initially formed at low temperature with water or low temperature gas, and the refrigerant is continuously supplied to remove heat generated during the process.

(3) 전류와 압축변위를 단속적으로 가하여 분말입자의 접합을 진척시킨다. 구동축의 변위와 고동 하중을 측정하여 순간 밀도를 평가한다. (3) Promote the joining of powder particles by intermittently applying current and compression displacement. Instantaneous density is evaluated by measuring the displacement of the drive shaft and the dynamic load.

(4) 밀도가 설계치에 도달할 때까지, 위 (3)의 공정을 반복한다.(4) Repeat the above step (3) until the density reaches the design value.

도1에는 핵연료 제작을 위한 장치의 간략도가 도시되어 있는데, 핵연료의 제작을 위해서는 원통형의 핵연료 금형(5)에 핵연료 분말을 장전하고 압축봉(4)으로 핵연료를 수직방향으로 압축하게 되는데 이러한 압축력은 상부의 가압구동축(1)으로부터 발생해서 압축봉(4)에 전달된다. 이때 압축봉이 압축력을 장전된 분말에 가해지는데 압축력은 단속적으로 핵연료 분말에 전해지며 동시에 전류 상기 핵연료 분말에 인가되며 핵연료 분말의 밀도가 정해진 설계치에 도달할때까지 압축력과 전류가 단속적으로 인가된다. Figure 1 is a simplified diagram of a device for producing a nuclear fuel, in order to produce a nuclear fuel is loaded with a fuel powder in a cylindrical fuel mold (5) and the fuel is compressed in a vertical direction with a compression rod (4) this compression force Is generated from the upper pressure drive shaft (1) and transmitted to the compression rod (4). At this time, the compression rod is applied to the loaded powder, the compression force is intermittently transmitted to the fuel powder and at the same time the current is applied to the fuel powder, the compression force and the current is applied intermittently until the density of the fuel powder reaches a predetermined design value.

이때, 금형의 주위에 형성된 금형냉각장치는 압축공정이 진행되면서 발생할 수 있는 열을 외부로 빼내기 위해 물, 공기 등의 냉매를 사용하여 금형을 냉각시키며 금형내의 온도는 상온이상 섭씨 600도가 넘지 않도록 한다. 또한 압축봉에 의해 가해지는 압축력은 대기압 이상 50000psi이하가 되도록 한다. At this time, the mold cooling apparatus formed around the mold cools the mold by using a refrigerant such as water and air to draw out heat generated during the compression process to the outside, and the temperature in the mold is not higher than 600 degrees Celsius above room temperature. . In addition, the compressive force applied by the compression rod is to be at least 50000psi above atmospheric pressure.

도2은 본 발명에 의한 장치를 구동하기 위한 장치의 블록도를 도시한다. 압축구동장치에 의해서 압축력을 제공하는 압축봉을 구동시키며 전류제어장치에 의하여 핵연료 분말에 전류를 단속적으로 제공하게 되며 금형내의 온도, 압력 등을 상태진단장치가 체크하고 여기서의 데이터를 바탕으로 통합공정제어장치가 압축구동장치와 전류제어장치를 구동시키는 궤환제어를 행한다. 2 shows a block diagram of an apparatus for driving the apparatus according to the present invention. Compression driving device drives the compression rod that provides the compressive force. Current control device intermittently supplies the current to the nuclear fuel powder. The condition diagnosis device checks the temperature and pressure in the mold and integrates the process based on the data. The control unit performs feedback control to drive the compression drive unit and the current control unit.

상기한 바와 같은 발명에 의하여 저온에서 전류를 이용하여 분말 입자간의 접합을 형성함으로써 밀도가 상당히 높은 핵연료를 제조하되 휘발성 핵물질의 유실을 원천적으로 예방하여 핵확산저항성의 증진 및 고준위폐기물 소멸 효율을 높이는 효과를 갖는다.According to the invention as described above, by forming a junction between the powder particles by using a current at a low temperature to produce a nuclear fuel with a high density, but to prevent the loss of volatile nuclear material at the source to increase the nuclear proliferation resistance and to increase the efficiency of high-level waste extinction Has an effect.

Claims (5)

핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법으로서, As a low temperature nuclear non-proliferative metal fuel manufacturing method that applies a current and a compressive force to the fuel powder at the same time, 진공의 밀폐상자에 봉입된 핵연료 금형에 핵연료 분말을 장전한후 밀폐상차를 봉입하는 단계와;Loading nuclear fuel powder into a nuclear fuel mold encapsulated in a vacuum sealed box and then encapsulating the sealed phase difference; 상기 핵연료 분말에 전류를 단속적으로 가하는 단계와;Intermittently applying a current to the fuel powder; 상기 전류를 가하는 단계와 동시에 위에서 아래로의 압축력을 가하는 단계Applying a compressive force from top to bottom simultaneously with applying the current 를 포함하는, 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법A method of manufacturing a low temperature nuclear non-proliferative metal fuel comprising simultaneously applying a current and a compressive force to a nuclear fuel powder 제1항에 있어서 상기 금형내의 온도는 상온 이상 섭씨 600도 이하인, 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법The method of claim 1, wherein the temperature in the mold is at least 600 degrees Celsius above room temperature. 제1항에 있어서, 상기 압축력은 대기압이상이며 50000psi이하인, 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법The method of claim 1, wherein the compressive force is greater than atmospheric pressure and less than 50000 psi, simultaneously applying current and compression force to the fuel powder. 제1항에 있어서, 상기 핵연료 금형 주위에 냉각을 위한 냉각장치를 형성하여 초기에는 저온형성을 위한 물, 저온가스중 어느 하나를 공급하고, 공정진행중에는 냉각을 위한 냉매를 제공하는 것을 특징으로 하는, 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조방법The method of claim 1, wherein a cooling device for cooling is formed around the nuclear fuel mold to initially supply one of water and low temperature gas for low temperature formation, and provide a refrigerant for cooling during the process. Method for Manufacturing Low Temperature Nuclear Non-Proliferative Metal Fuel by Simultaneously Applying Current and Compression Force to Fuel Fuel Powders 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조장치로서,  It is a low-temperature non-proliferative metal fuel manufacturing apparatus that applies the current and compression force to the fuel powder at the same time, 원통형의 핵연료 금형과Cylindrical fuel molds 상기 금형내에 제공되는 핵연료 분말에 수직방향의 압축력을 제공하기 위하여 상기 금형의 상부에 위치하여 가압구동축에 연결된 압축봉과;A compression rod positioned at an upper portion of the mold and connected to a pressure driving shaft to provide a compression force in a vertical direction to the nuclear fuel powder provided in the mold; 상기 금형을 초기에는 저온으로 유지하고 공정중에는 냉각을 위한 냉매를 유통시키기 위하여 상기 금형의 외부에 형성된 냉각관과;A cooling tube formed outside the mold to keep the mold at a low temperature initially and to distribute a refrigerant for cooling during the process; 상기 금형내에 전류를 흘리기 위하여 상기 핵연료 금형의 상단과 하단에 연결된 전류연결선을 포함하는, 핵연료 분말에 전류 및 압축력을 동시에 적용하는 저온 핵비확산성 금속핵연료 제조장치Low temperature nuclear non-proliferative metal fuel production apparatus for applying current and compression force simultaneously to the fuel powder, including a current connecting line connected to the top and bottom of the fuel mold in order to flow the current in the mold
KR1020060073384A 2006-08-03 2006-08-03 Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature KR101312583B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060073384A KR101312583B1 (en) 2006-08-03 2006-08-03 Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060073384A KR101312583B1 (en) 2006-08-03 2006-08-03 Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature

Publications (2)

Publication Number Publication Date
KR20080012489A KR20080012489A (en) 2008-02-12
KR101312583B1 true KR101312583B1 (en) 2013-09-30

Family

ID=39340600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060073384A KR101312583B1 (en) 2006-08-03 2006-08-03 Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature

Country Status (1)

Country Link
KR (1) KR101312583B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985636B1 (en) * 2009-01-15 2010-10-05 한국수력원자력 주식회사 Method of pressure differential injection casting by non-vaccum melting for volatile loss control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090018396A (en) * 2007-08-17 2009-02-20 한국원자력연구원 Fuel rod coated with oxide film on inner surface of the cladding and its manufacturing method
KR20100083930A (en) * 2009-01-15 2010-07-23 한국원자력연구원 Method of pressure differential injection casting by non-vaccum melting for volatile loss control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090018396A (en) * 2007-08-17 2009-02-20 한국원자력연구원 Fuel rod coated with oxide film on inner surface of the cladding and its manufacturing method
KR20100083930A (en) * 2009-01-15 2010-07-23 한국원자력연구원 Method of pressure differential injection casting by non-vaccum melting for volatile loss control

Also Published As

Publication number Publication date
KR20080012489A (en) 2008-02-12

Similar Documents

Publication Publication Date Title
US4264556A (en) Thermal isostatic densifying method and apparatus
CN103329209B (en) Improve control rod drive coil block and its manufacture method of thermostability
CN100388394C (en) DC voltage/current heating/gelling/curing of resin encapsulated distribution transformer coils
CN105449420A (en) Slender hole glass-sealing multi-pin electrical connector and preparation method of slender hole glass-sealing multi-pin electrical connector
CN107394283A (en) A kind of Compact type liquid metal battery and its assembly method
KR101312583B1 (en) Manufacturing non-proliferational nuclear metallic fuel applying electric current and compressive force to metallic powder at low temperature
WO2014034875A1 (en) Solidified radioactive waste and method for manufacturing same
US2893061A (en) Method for encapsulating electrical equipment
CN112358295A (en) Gadolinium zirconate-based nuclear waste solidified body and preparation method thereof
CN103014853B (en) Polycrystalline silicon ingot casting device
CN205404369U (en) Gas protection case and high temperature, anaerobic fused salt corrosion test device
CN106910589B (en) A kind of manufacturing method of electromagnetic coil assembly and the component
CN205115572U (en) Metallic glass system of smelting
CN205029901U (en) Novel explosion -proof energy -conserving electromagnetic heating stick
CN105890341A (en) Vertical vibration conveying continuous sintering kiln
CN203432297U (en) Push plate type microwave high-temperature multipurpose furnace
CN203444768U (en) Cermet-sintered high-temperature-resistant and high-pressure-resistant electrical penetration assembly
Ringwood et al. Uniaxial hot-pressing in bellows containers
US3470303A (en) Vertical tube electric furnace
US3387079A (en) Process for the fusion of metal oxides
JPS55100145A (en) Compression molding of emulsion polymer powder of tetrafluoruethylene resin
US4660625A (en) Heat transport system, method and material
CN109590177A (en) One kind pressing into cavate glue-pouring device and glue-pouring method
US3656231A (en) Method of insulating electrical conductors
US11968899B2 (en) Method and device for the generation of electricity directly from heat

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee