KR101305183B1 - Nonaqueous electrolyte for lithium battery - Google Patents

Nonaqueous electrolyte for lithium battery Download PDF

Info

Publication number
KR101305183B1
KR101305183B1 KR1020100123451A KR20100123451A KR101305183B1 KR 101305183 B1 KR101305183 B1 KR 101305183B1 KR 1020100123451 A KR1020100123451 A KR 1020100123451A KR 20100123451 A KR20100123451 A KR 20100123451A KR 101305183 B1 KR101305183 B1 KR 101305183B1
Authority
KR
South Korea
Prior art keywords
carbonate
solvent
electrolyte
lipf
lithium
Prior art date
Application number
KR1020100123451A
Other languages
Korean (ko)
Other versions
KR20120062262A (en
Inventor
안승호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020100123451A priority Critical patent/KR101305183B1/en
Publication of KR20120062262A publication Critical patent/KR20120062262A/en
Application granted granted Critical
Publication of KR101305183B1 publication Critical patent/KR101305183B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬전지용 비수전해질에 관한 것으로 카보네이트계 용매와 술폰계 용매를 포함하는 용매; 상기 전해액에 용해되는 리튬염을 포함하는 용질; 을 포함하는 전해액에 상기 술폰계 용매가 분해되는 전위보다 높은 전위에서 분해되는 첨가제를 포함하는 리튬전지용 비수전해질을 제공하여,
카보네이트계 용매에 테트라메틸술폰과 같은 술폰계 용매와 다이비닐 애디페이트(ADV), 알리 메틸 카보네이트(AMC), LiTFSI를 첨가하여 고체전해질막(SEI)를 형성함으로써 술폰계 용매가 분해되는 것을 방지하는 효과가 있다.
The present invention relates to a nonaqueous electrolyte for lithium batteries, comprising: a solvent comprising a carbonate solvent and a sulfone solvent; A solute containing a lithium salt dissolved in the electrolyte solution; Providing a non-aqueous electrolyte for a lithium battery comprising an additive which is decomposed at a potential higher than the potential at which the sulfone solvent is decomposed in an electrolyte solution including
A sulfone solvent such as tetramethylsulfone and divinyl adipate (ADV), alimethyl carbonate (AMC), and LiTFSI are added to the carbonate solvent to form a solid electrolyte membrane (SEI) to prevent the decomposition of the sulfone solvent. It works.

Description

리튬전지용 비수전해질{NONAQUEOUS ELECTROLYTE FOR LITHIUM BATTERY}Non-aqueous electrolyte for lithium battery {NONAQUEOUS ELECTROLYTE FOR LITHIUM BATTERY}

본 발명은 리튬전지용 비수전해질에 관한 것으로 보다 상세하게는 일반적인 전해액에 술폰계 용매와 술폰계 용매가 분해되는 전위보다 높은 전위에서 분해되는 첨가제를 넣어 주어 안정한 SEI를 형성시키는 리튬전지용 비수전해질에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to a non-aqueous electrolyte for lithium batteries in which an additive decomposed at a potential higher than a potential at which a sulfone solvent and a sulfone solvent are decomposed to form a stable SEI. .

일반적으로 2차전지란 1차전지와는 달리 재충전이 가능하여 반영구적으로 사용할 수 있는 화학전지를 말하는데, 최근에는 노트북, 이동통신기기, 디지털카메라 등의 대량 보급에 따라 그 시장규모가 기하급수적으로 커지고 있다. In general, a secondary battery is a chemical battery that can be recharged and used semi-permanently unlike a primary battery. Recently, the market size of a secondary battery is growing exponentially due to mass distribution of laptops, mobile communication devices, and digital cameras. .

이와 같은 2차전지는 음극(cathode) 재료, 양극(anode) 재료에 따라 납축전지, 니켈-카드뮴(Ni-Cd)전지, 니켈-수소(Ni-MH)전지, 리튬전지 등이 있으며, 전극재료의 고유특성에 의해 전위와 에너지 밀도가 결정된다. 특히 리튬전지는 리튬의 낮은 산화환원 전위와 분자량으로 인해 에너지 밀도가 높기 때문에 휴대용 전자기기의 구동 전원으로 많이 사용되고 있다.Such secondary batteries include lead-acid batteries, nickel-cadmium (Ni-Cd) batteries, nickel-hydrogen (Ni-MH) batteries, and lithium batteries, depending on the cathode material and the anode material. The intrinsic properties determine the potential and energy density. In particular, lithium batteries have been widely used as a driving power source for portable electronic devices because of their high energy density due to the low redox potential and molecular weight of lithium.

이러한 리튬 2차전지 중에서 특히 비수 전해액(nonaqueous electrolyte)을 이용한 리튬 2차전지는 양극(anode)으로서 금속에 리튬금속 혼합산화물이 사용되며, 음극(cathode)으로서 탄소재료 등을 사용하며, 이들 양극과 음극 사이에는 유기 용매에 리튬염을 적당히 용해시킨 전해액(electrolyte)이 위치한다.Among these lithium secondary batteries, a lithium secondary battery using a nonaqueous electrolyte, in particular, a lithium metal mixed oxide is used for the metal as an anode, and a carbon material is used as a cathode. In between are electrolytes in which lithium salts are appropriately dissolved in an organic solvent.

상기의 리튬 2차전지의 전해액 용매로는 에틸렌 카보네이트(ethylene carbonate), 디메틸 카보네이트(Dimethylcarbonate), 디에틸 카보네이트(Diethyl carbonate) 등의 비수성(nonaqueous) 카보네이트계 유기용매가 사용된다. As the electrolyte solvent of the lithium secondary battery, a nonaqueous carbonate organic solvent such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, or the like is used.

이와 같은 리튬 2차전지의 작동원리를 살펴보면, 전해액 내에서 이온 상태로 존재하는 리튬이온(Li+)이 충전(charge)시에는 양극에서 음극으로, 방전(discharge)시에는 음극에서 양극으로 이동하면서 전기를 발생시킨다. Looking at the operation principle of such a lithium secondary battery, the lithium ion (Li +) present in the ionic state in the electrolyte is moved from the positive electrode to the negative electrode when charged (charge), and from the negative electrode to the positive electrode during discharge (electricity) Generates.

이 때, 전자는 양극과 음극을 이어주는 도선을 따라 리튬이온과 같은 방향으로 움직인다.At this time, the electrons move in the same direction as lithium ions along the lead connecting the anode and the cathode.

상기와 같이 리튬이온 전지의 충전상태에서는 양전극으로 사용되는 리튬 금속산화물로부터 나온 리튬이온(Li+)이 음전극으로 사용되는 탄소 전극으로 이동하며 인터칼레이션(intercalation) 되는데, 이때 리튬이온은 반응성이 강하므로 탄소 음전극과 반응하여 Li2CO3, LiO, LiOH 등과 같은 물질을 음전극의 표면에 생성하게 되는데, 이들은 음전극의 표면에 피막을 형성하게 된다.As described above, in the state of charge of the lithium ion battery, lithium ions (Li +) from the lithium metal oxide used as the positive electrode move to the carbon electrode used as the negative electrode and are intercalated. In this case, lithium ions are highly reactive. Reaction with the carbon negative electrode generates materials such as Li 2 CO 3 , LiO, LiOH, etc. on the surface of the negative electrode, which forms a film on the surface of the negative electrode.

이와 같이 생성된 피막을 고체전해질막(SEI; Solid Electrolyte Interface)이라고 하는데, 이들 SEI 필름은 음극 표면을 보호해주는 일종의 보호막으로서의 역할을 하게 된다.The film thus produced is called a solid electrolyte interface (SEI), and these SEI films serve as a kind of protective film to protect the surface of the cathode.

즉, SEI 필름은 충방전 중 리튬이온과 음전극 또는 다른 물질과의 반응을 막아주고, 이온터널(ion tunnel)의 역할을 수행하여 리튬이온만을 통과시키는 역할을 하게 된다.That is, the SEI film prevents the reaction between lithium ions and the negative electrode or other materials during charge and discharge, and serves to pass only lithium ions by acting as an ion tunnel.

이온터널 효과는 리튬이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들(예; 에틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트 등)이 음전극과 함께 코인터칼레이션(co-intercalation)되어 음전극의 구조를 붕괴시키는 것을 막아준다.The ion tunnel effect is characterized by co-intercalation of organic solvents (e.g. ethylene carbonate, dimethyl carbonate, diethyl carbonate, etc.) of high molecular weight electrolytes that solvate lithium ions and move together. This prevents the structure of the negative electrode from collapsing.

일단, SEI 필름이 형성되고 나면 리튬 이온은 다시 음전극이나 다른 물질과 부반응을 하지 않게 되어 리튬 이온의 양을 가역적으로 유지시키게 된다.Once the SEI film is formed, the lithium ions do not react side-by-side with the negative electrode or any other material, thereby reversibly maintaining the amount of lithium ions.

즉, 음전극의 탄소재료는 과충전시 전해액과 반응하여 음전극 표면에 보호필름인 SEI 필름을 형성하여, 더 이상의 전해액의 분해가 발생하지 않고 안정적인 충방전을 유지할 수 있도록 해준다.That is, the carbon material of the negative electrode reacts with the electrolyte during overcharge to form a protective film SEI film on the surface of the negative electrode, thereby maintaining stable charge and discharge without further decomposition of the electrolyte.

현재 사용 되는 리튬 2차전지는 보통 4.2~4.3V 까지 충전이 가능하며, 4.3V 이상으로 충전하면 좀 더 많은 에너지를 사용할 수 있다. 그러나 이와 같은 유기용매들은 4.3V 이상 충전시 전해액이 분해되어 사이클 열화를 일으키게 되는 문제가 있다.Currently used lithium secondary batteries can be charged up to 4.2 ~ 4.3V, and more energy can be used by charging more than 4.3V. However, these organic solvents have a problem in that the electrolyte is decomposed when the charge is more than 4.3V causing cycle degradation.

상기의 문제를 해결하기 위하여 산화전위가 높은 술폰(Sulfone)계 유기 용매를 섞어주면 고전위에서 전해질이 양극 계면에서 분해되는 현상을 억제해 줄 수 있으나 술폰계 유기 용매는 산화전위가 높은 대신 환원전위도 높기 때문에 음극계면에서 전해질이 분해되는 현상이 발생하여 사이클 열화를 발생시키는 문제가 있다.In order to solve the above problem, the sulfonic acid solvent having a high oxidation potential may be mixed to suppress the decomposition of the electrolyte at the anode interface at high potential, but the sulfonic organic solvent has a high reduction potential instead of a high oxidation potential. Because of the high phenomenon that the electrolyte is decomposed in the negative electrode interface, there is a problem that causes cycle degradation.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 술폰이분해되는 전위보다 높은 전위에서 분해되는 첨가제를 넣어 안정적인 고체전해질막(SEI)를 형성하여 술폰계 용매가 분해되는 것을 방지하는 리튬전지용 비수전해질을 제공하는데 그 목적이 있다.The present invention has been made in order to solve the above problems, a lithium battery for preventing the decomposition of the sulfone solvent by forming a stable solid electrolyte membrane (SEI) by putting an additive that is decomposed at a potential higher than the sulfone decomposition potential. The purpose is to provide a nonaqueous electrolyte.

상기와 같은 목적을 달성하기 위한 본 발명의 실시예는 카보네이트계 용매와 술폰계 용매를 포함하는 용매; 상기 전해액에 용해되는 리튬염을 포함하는 용질; 을 포함하는 전해액에 상기 술폰계 용매가 분해되는 전위보다 높은 전위에서 분해되는 첨가제를 포함하는 리튬전지용 비수전해질을 제공한다.Embodiment of the present invention for achieving the above object is a solvent comprising a carbonate solvent and a sulfone solvent; A solute containing a lithium salt dissolved in the electrolyte solution; It provides a non-aqueous electrolyte for a lithium battery comprising an additive that is decomposed at a potential higher than the potential at which the sulfone solvent is decomposed in the electrolyte solution.

본 발명에 따른 실시예의 첨가제는 첨가제는 다이비닐 애디페이트(Divinyl Adipate) 및 비닐렌 카보네이트(Vinylene Carbonate)인 것을 특징으로 한다.The additive of the embodiment according to the present invention is characterized in that the additives are divinyl adipate (Divinyl Adipate) and vinylene carbonate (Vinylene Carbonate).

본 발명에 따른 실시예의 첨가제는 알리 메틸 카보네이트(Ally Methyl Carbonate) 및 비닐렌 카보네이트(Vinylene Carbonate)인 것을 특징으로 한다.The additive of the embodiment according to the present invention is characterized in that the ali methyl carbonate (Ally Methyl Carbonate) and vinylene carbonate (Vinylene Carbonate).

본 발명에 따른 실시예의 리튬염은 LiPF6 , LiTFSI 로부터 선택되는 어느 하나 이상인 것을 특징으로 한다.Lithium salt of the embodiment according to the invention is characterized in that any one or more selected from LiPF 6 , LiTFSI.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6을 용해시킨 LiPF6 0.8~2M의 전해액 100 중량부에 대하여 다이비닐 애디페이트(Divinyl Adipate)를 0. 1 내지 5중량부와 비닐렌 카보네이트 2중량부를 첨가하는 것을 특징으로 한다.The non-aqueous electrolyte of the embodiment according to the present invention is LiPF 6 0.8-2 M in which LiPF 6 is dissolved as a solute in a solvent in which a cyclic carbonate, a chain carbonate, and a sulfone are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively. Divinyl adipate (0.1-5 parts by weight and 2 parts by weight of vinylene carbonate) is added to 100 parts by weight of the electrolyte solution.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6을 용해시킨 LiPF6 1M의 전해액 100 중량부에 알리 메틸 카보네이트(Ally Methyl Carbonate)를 0.1 내지 5중량부와 비닐렌 카보네이트를 0.1내지 5중량부를 첨가하는 것을 특징으로 한다.Embodiment, the non-aqueous electrolyte comprises a cyclic carbonate, chain carbonate, sulfone, each one according to the invention: an electrolytic solution of 1 ~ 5 LiPF 6 1M solution dissolving LiPF 6 as a solute in a solvent mixture in a volume ratio of: 1-7 It is characterized by adding 0.1 to 5 parts by weight of ali methyl carbonate (Ally Methyl Carbonate) and 0.1 to 5 parts by weight of vinylene carbonate.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6 LiTFSI를 용해시킨 LiPF6 0.8~2M, LiTFSI 0.2~1M의 전해액 100 중량부에 알리 메틸 카보네이트(Ally Methyl Carbonate)를 0.1 내지 5중량부와 비닐렌 카보네이트를 0.1내지 5중량부를 첨가하는 것을 특징으로 한다.Non-aqueous electrolyte of the embodiment according to the present invention is LiPF 6 and as a solute in a solvent in which a cyclic carbonate, a chain carbonate, and a sulfone are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively. It is characterized in that 0.1 to 5 parts by weight of Ali Methyl Carbonate and 0.1 to 5 parts by weight of vinylene carbonate are added to 100 parts by weight of an electrolyte solution of LiPF 6 0.8-2 M and LiTFSI 0.2-1 M in which LiTFSI is dissolved. .

본 발명에 따른 실시예의 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트로부터 선택되는 하나 이상이고, 사슬형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트로부터 선택되는 하나 이상인 것을 특징으로 한다.The cyclic carbonate solvent of the embodiment according to the present invention is at least one selected from ethylene carbonate, propylene carbonate, pentylene carbonate, the chain carbonate solvent is dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl At least one selected from carbonate and ethylpropyl carbonate.

이상 설명한 바와 같이 본 발명은 카보네이트계 용매에 테트라메틸술폰과 같은 술폰계 용매와 다이비닐 애디페이트, 알리 메틸 카보네이트, LiTFSI를 첨가하여 고체전해질막(SEI)를 형성함으로써 술폰계 용매가 분해되는 것을 방지하는 효과가 있다.As described above, the present invention prevents decomposition of the sulfone solvent by forming a solid electrolyte membrane (SEI) by adding a sulfone solvent such as tetramethyl sulfone, divinyl adipate, alimethyl carbonate, and LiTFSI to the carbonate solvent. It is effective.

도 1은 본 발명에 따른 실험예와 비교예의 용량유지율을 비교한 그래프이다.1 is a graph comparing the capacity retention rate of the experimental example and the comparative example according to the present invention.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.Such an embodiment may be embodied in various different forms as one of ordinary skill in the art to which the present invention pertains, and is not limited to the embodiments described herein.

본 발명에 따른 실시예는 음극계면에서 안정한 고체전해질막(SEI)을 형성하기 전에 술폰계 용매가 먼저 분해되어 음극계면에서 불안정한 고체전해질막이 형성되지 않도록 술폰계 용매가 분해되는 전위보다도 더 높은 전위에서 분해되는 첨가제를 넣어 주어 안정한 고체전해질막을 형성시키는 리튬전지의 비수전해질에 관한 것이다.The embodiment according to the present invention is at a potential higher than that at which the sulfone solvent is decomposed so that the sulfone solvent is first decomposed before the formation of a stable solid electrolyte membrane (SEI) at the cathode interface so that an unstable solid electrolyte membrane is not formed at the cathode interface. The present invention relates to a nonaqueous electrolyte of a lithium battery in which an additive decomposed is formed to form a stable solid electrolyte film.

일반적으로 리튬 2차전지에 사용되는 기본전해액은 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 및 케톤계 용매로 이루어진 군에서 선택되는 하나 이상의 용매를 포함하는 비수성 유기용매와, 상기 비수성 유기용매에 용해되어 있는 리튬염을 포함한다.In general, the basic electrolyte solution used in the lithium secondary battery is a non-aqueous organic solvent including at least one solvent selected from the group consisting of a carbonate solvent, an ester solvent, an ether solvent, and a ketone solvent, and the non-aqueous organic solvent. Lithium salt dissolved in a solvent is included.

본 발명에 따른 실시예에서는 술폰계 용매가 분해되는 전위보다 높은 전위에서 안정한 고체전해질막을 형성시켜주는 첨가제로서 다이비닐 애디페이트(Divinyl Adipate)와 알리 메틸 카보네이트(Ally Methyl Carbonate)를 사용하였다.In the embodiment of the present invention, divinyl adipate and ali methyl carbonate were used as additives to form a stable solid electrolyte membrane at a potential higher than that at which the sulfone solvent was decomposed.

본 발명에 따른 제1실시예에서는 비수전해질의 용매로서 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 사용하며 그 비율은 각각 1 : 1~7 : 1~5의 부피비로 혼합하여 제조한다. 이 때, 사슬형 카보네이트계의 양이 7을 초과하면 고전위에서 분해 되는 현상이 발생하고, 술폰계의 비율이 5를 초과하면 이온전도도가 저하되어 이온의 이동에 문제가 발생하게 된다. In the first embodiment according to the present invention is used as a solvent of the non-aqueous electrolyte cyclic carbonate-based, chain carbonate-based, sulfone-based and the ratio is prepared by mixing in a volume ratio of 1: 1 to 7: 1 to 5, respectively. At this time, when the amount of the chain carbonate is more than 7, the phenomenon of decomposition at high potential occurs. When the ratio of sulfone is more than 5, the ionic conductivity is lowered, which causes problems in the movement of ions.

또한, 환형 카보네이트계가 혼합 용매에서 30%를 초과할 시에는 잘 용해되지 않는 경우가 발생한다. 특히 에틸렌카보네이트는 상온에서 고체로 존재하므로 하므로 지나치게 많은 양을 첨가하면 문제가 발생할 수 있다.In addition, when the cyclic carbonate system exceeds 30% in the mixed solvent, it is difficult to dissolve. In particular, since ethylene carbonate is present as a solid at room temperature, adding too much may cause problems.

상기 환형 카보네이트계 용매는 통상적으로 리튬 2차전지에 사용되는 용매로서 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트 등으로부터 선택되는 하나 이상의 유기용매이다.The cyclic carbonate-based solvent is typically one or more organic solvents selected from ethylene carbonate, propylene carbonate, pentylene carbonate, and the like as a solvent used in a lithium secondary battery.

또한, 상기 사슬형 카보네이트계 용매 역시 통상적으로 리튬 2차전지에 사용되는 용매로서, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트 등으로부터 선택되는 하나 이상의 유기용매이다.In addition, the chain carbonate-based solvent is also a solvent commonly used in lithium secondary batteries, at least one organic selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, etc. Solvent.

또한, 본 발명에 따른 실시예에서는 리튬염의 용질을 LiPF6, LiTFSI를 사용하였으나, 이는 본 발명에 따른 일실시예에 불과하므로 이에 한정되지 않고, 본 발명이 속하는 기술분야인 리튬 2차전지에 사용되는 전해액을 제조하기 위한 용질로서 사용되는 리튬염이라면 본 발명의 기술적 사상을 해하지 않는 것이라면 어느 것이든지 무관하다.In addition, the embodiment according to the present invention used LiPF 6, LiTFSI as the solute of the lithium salt , but this is not limited to the embodiment according to the present invention, it is used in the lithium secondary battery of the technical field to which the present invention belongs. Any lithium salt may be used as long as it does not impair the technical idea of the present invention as long as it is a lithium salt used as a solute for producing an electrolyte solution.

상기의 첨가제인 다이비닐 애디페이트(Divinyl Adipate)와 알리 메틸 카보네이트(Ally Methyl Carbonate)의 효과를 알아보기 위하여 다음과 같은 실험을 하였다.In order to determine the effects of the additives (Divinyl Adipate) and Ali Methyl Carbonate (Divinyl Adipate), the following experiment was carried out.

[실시예1][Example 1]

에틸렌카보네이트(ethylene carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 테트라메틸술폰(tetramethyl sulfone)를 1 : 4 : 4의 비율로 혼합한 용매에 LiPF6을 용질로서 용해시킨 LiPF6 1M의 전해액 100 중량부에 다이비닐 애디페이트(Divinyl Adipate)를 2 중량부 첨가하고 비닐렌 카보네이트를 2중량부를 첨가하여 리튬전지용 비수전해질을 제조하였다.Ethylene carbonate (ethylene carbonate), ethyl methyl carbonate (ethylmethyl carbonate), tetramethyl sulfone (tetramethyl sulfone) a 1: 4: electrolyte 100 in which LiPF 6 1M dissolving as a solute of LiPF 6 in a solvent mixture in a ratio of 4 parts by weight To the lithium battery non-aqueous electrolyte was prepared by adding 2 parts by weight of divinyl adipate and 2 parts by weight of vinylene carbonate.

[실시예2][Example 2]

에틸렌카보네이트(ethylene carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 테트라메틸술폰(tetramethyl sulfone)를 1 : 4 : 4의 비율로 혼합한 용매에 LiPF6을 용질로서 용해시킨 LiPF6 1M의 전해액 100 중량부에 알리 메틸 카보네이트(Ally Methyl Carbonate)를 2중량부 첨가하고 비닐렌 카보네이트를 2중량부를 첨가하여 리튬전지용 비수전해질을 제조하였다.Ethylene carbonate (ethylene carbonate), ethyl methyl carbonate (ethylmethyl carbonate), tetramethyl sulfone (tetramethyl sulfone) a 1: 4: electrolyte 100 in which LiPF 6 1M dissolving as a solute of LiPF 6 in a solvent mixture in a ratio of 4 parts by weight 2 parts by weight of Ali Methyl Carbonate and 2 parts by weight of vinylene carbonate were added to prepare a nonaqueous electrolyte for lithium batteries.

[실시예3][Example 3]

에틸렌카보네이트(ethylene carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 테트라메틸술폰(tetramethyl sulfone)를 1 : 4 : 4의 비율로 혼합한 용매에 용질로서 LiPF6, LiTFSI를 용해시켜 각각 LiPF6 0.9M, LiTFSI 0.1M의 전해액 100 중량부에 알리 메틸 카보네이트(Ally Methyl Carbonate)를 2중량부 첨가하고 비닐렌 카보네이트를 2중량부를 첨가하여 리튬전지용 비수전해질을 제조하였다.LiPF 6 and LiTFSI were dissolved as a solute in a solvent in which ethylene carbonate, ethylmethyl carbonate, and tetramethyl sulfone were mixed at a ratio of 1: 4: 4 and LiPF 6 0.9M, 2 parts by weight of Ali Methyl Carbonate and 2 parts by weight of vinylene carbonate were added to 100 parts by weight of an electrolyte solution of LiTFSI 0.1M to prepare a nonaqueous electrolyte for lithium batteries.

또한, 상기 실시예1 내지 3과 비교하기 위하여 종래의 전해액인 하기의 비교예1에 의한 전해액을 제조하였다.In addition, in order to compare with Examples 1 to 3, an electrolyte solution according to Comparative Example 1, which is a conventional electrolyte solution, was prepared.

[비교예1][Comparative Example 1]

에틸렌카보네이트, 에틸메틸카보네이트를 3 : 7의 비율로 혼합한 용매에 용질로서 LiPF6을 1M 용해액 100 중량부에 비닐렌 카보네이트를 2중량부 첨가하여 비수전해액을 제조하였다.A nonaqueous electrolyte was prepared by adding 2 parts by weight of vinylene carbonate to 100 parts by weight of 1M solution of LiPF 6 as a solute in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a ratio of 3: 7.

상기 실시예 1 내지 3와 비교예1에서 제조된 전해액의 전기 화학적 특성을 측정하기 위하여 음극으로는 흑연계 활물질을 사용하고, 양극으로는 LiNi1/3Co1/3Mn1/3O2 활물질을 사용하고, 전해질로는 실시예1 내지 3, 비교예 1을 사용하여 코인셀 타입의 전지를 제조하였다. In order to measure the electrochemical characteristics of the electrolyte solutions prepared in Examples 1 to 3 and Comparative Example 1, a graphite-based active material was used as a cathode, a LiNi 1/3 Co 1/3 Mn 1/3 O 2 active material was used as an anode, and as an electrolyte. Coin cell type batteries were prepared using Examples 1 to 3 and Comparative Example 1.

본 발명에 따른 제1실시예에서는 상기의 유기용매에 용질로서 LiPF6를 용질로서 용해시켜 LiPF6 0.8~2M을 제조하는데, LiPF6의 농도가 0.8M보다 작은 경우에는 이온전도도가 떨어질 수 있고, 2M을 초과하는 경우에는 고전위시 분해되는 현상이 커질 수 있다.In the first embodiment according to the invention if by dissolving LiPF 6 as a solute as a solute in the organic solvent for the production of LiPF 6 0.8 ~ 2M, the concentration of LiPF 6 is less than 0.8M, the ionic conductivity may be compromised, If it exceeds 2M, the decomposition phenomenon at high potential may increase.

그리고, 다이비닐 애디페이트의 비율을 상기 유기용매와 용질에 의해 제조된 전해액 100 중량부에 대하여 0.1 내지 5 중량부를 첨가하는데, 이는 0.1 중량부보다 적은 양을 첨가하면 피막이 얇게 형성되어 본 발명에 따른 효과를 얻을 수 없고, 5중량부를 초과하는 경우에는 음극에서 두꺼운 피막을 형성하여 리튬이온의 이동을 방해할 수 있기 때문이다.In addition, 0.1 to 5 parts by weight of the divinyl adipate is added to 100 parts by weight of the electrolyte prepared by the organic solvent and the solute, which is added in an amount less than 0.1 parts by weight to form a thin film according to the present invention. It is because an effect cannot be obtained and when it exceeds 5 weight part, a thick film may be formed in a negative electrode and it may interfere with the movement of lithium ion.

본 발명에 따른 제2실시예에서는 상기 제1실시예에서 제조된 전해액 100 중량부에 알리 메틸 카보네이트를 0.1 내지 5 중량부를 첨가하는데, 이는 0.1 중량부보다 적은 양을 첨가하면 피막이 얇게 형성되어 본 발명에 따른 효과를 얻을 수 없고, 5 중량부를 초과하는 경우에는 음극에서 두꺼운 피막을 형성하여 리튬이온의 이동을 방해할 수 있기 때문이다.In the second embodiment according to the present invention, 0.1 to 5 parts by weight of ali methyl carbonate is added to 100 parts by weight of the electrolyte prepared in the first embodiment, which is thinner when the amount is added. This is because it is not possible to obtain an effect, and when it exceeds 5 parts by weight, a thick film may be formed at the negative electrode, thereby preventing the movement of lithium ions.

본 발명에 따른 제3실시예에서는 상기 제1실시예에서 제조된 용매에 LiPF6 및 LiTFSI를 용질로서 용해시켜 각각 LiPF6 0.8~2M, LiTFSI 0.2~1M의 전해액을 제조한다. 상기 전해액 100 중량부에 대하여 알리 메틸 카보네이트를 0.1 내지 5 중량부를 첨가하는데, 이는 0.1 중량부보다 적은 양을 첨가하면 피막이 얇게 형성되고, 5 중량부를 초과하는 경우에는 음극에서 두꺼운 피막을 형성하여 리튬이온의 이동을 방해할 수 있기 때문이다. The third embodiment according to the present invention are prepared in the above and the LiPF 6 was dissolved as a solute LiTFSI each LiPF 6 0.8 ~ 2M, 0.2 ~ 1M electrolyte solution of LiTFSI to the solvent prepared in the first embodiment. 0.1 to 5 parts by weight of ali methyl carbonate is added based on 100 parts by weight of the electrolyte, which is less than 0.1 parts by weight, and the film is thinly formed. When it exceeds 5 parts by weight, a thick film is formed on the cathode to form lithium ions. Because it can interfere with the movement of.

본 발명에 따른 실시예의 비닐렌 카보네이트의 중량의 수치 한정 이유도 상기의 알리 메틸 카보네이트의 수치 한정 이유와 동일하다.The reason for numerical limitation of the weight of the vinylene carbonate of the Example which concerns on this invention is the same as the reason for numerical limitation of said ali methyl carbonate.

본 발명에 따른 실시예의 전기화학적 특성 평가를 위하여 1C의 전류로 정전류 방식으로 2.5V까지 방전하였고, 1C의 전류로 4.5V까지 정전류 충전 후 0.02C의 전류에 도달할 때까지 4.5V로 정전압 충전을 하였다.In order to evaluate the electrochemical characteristics of the embodiment according to the present invention, the battery was discharged up to 2.5V with a constant current method with a current of 1C, and after charging a constant current to 4.5V with a current of 1C, constant voltage charging was performed at 4.5V until the current reached 0.02C. It was.

도 1을 살펴보면, 실시예 1 내지 3의 전해질을 사용한 경우 비교예1의 기존 전해액에 비하여 좋은 수명 특성을 나타내었다. 또한 실시예 3의 경우에는 실시예2보다 더 좋은 수명 특성을 나타내었다. Referring to Figure 1, when using the electrolyte of Examples 1 to 3 showed a good life characteristics compared to the conventional electrolyte solution of Comparative Example 1. In addition, Example 3 showed better life characteristics than Example 2.

이러한 결과로 첨가제 및 LiTFSI 에 의해 술폰계 용매가 음극계면에서 안정한 SEI를 형성하여 우수한 충방전 사이클 특성을 가짐을 알 수 있다. As a result, it can be seen that the sulfone solvent forms stable SEI at the cathode interface by the additive and LiTFSI, and has excellent charge and discharge cycle characteristics.

또한, 상기의 실험 결과를 사이클 회수에 따른 용량유지율을 하기의 표1에 나타내었다.In addition, the capacity retention rate according to the number of cycles of the above experimental results is shown in Table 1 below.

사이클cycle 특성characteristic 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 1회1 time 방전용량(mAh/g)Discharge capacity (mAh / g) 185185 187187 190190 194194 90회90 times 방전용량(mAh/g)Discharge capacity (mAh / g) 135135 139139 148148 109109 용량유지율(%)Capacity retention rate (%) 73.073.0 74.374.3 77.977.9 56.256.2

상기 표1에서 알 수 있듯이, 기본전해액에 다이비닐 애디페이트, 알리 메틸 카보네이트를 첨가제로서 첨가하면 리튬전지의 사이클 효율이 향상되고, 특히 용질로서 LiTFSI을 추가적으로 더 첨가하면 사이클 효율이 더욱 향상됨을 알 수 있다.As can be seen from Table 1, it can be seen that the addition of divinyl adipate and alimethyl carbonate to the basic electrolyte as an additive improves the cycle efficiency of the lithium battery, and in particular, the addition of LiTFSI as a solute further improves the cycle efficiency. have.

특히, 알리 메틸 카보네이트와 LiTFSI를 사용한 경우에는 90회를 충전하더라도 용량이 77.9%까지 유지됨을 알 수 있다.In particular, in the case of using ali methyl carbonate and LiTFSI it can be seen that the capacity is maintained up to 77.9% even after 90 charges.

이는 상기 첨가제가 술폰계의 용매가 분해되는 전위보다 높은 전위에서 분해되어 안정한 고체전해질막을 형성하기 때문이다. 이 때, 리튬염인 LiTFSI를 첨가해주면 더욱 효율이 향상된다. This is because the additive decomposes at a potential higher than that at which the sulfone solvent is decomposed to form a stable solid electrolyte membrane. At this time, the addition of LiTFSI, which is a lithium salt, further improves the efficiency.

Claims (8)

환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매;
전해액에 용해되는 LiPF6, LiTFSI 로부터 선택되는 어느 하나 이상의 리튬염을 포함하는 용질;
을 포함하는 전해액에 상기 술폰계 용매가 분해되는 전위보다 높은 전위에서 분해되는 다이비닐 애디페이트(Divinyl Adipate), 알리 메틸 카보네이트(Ally Methyl Carbonate) 및 비닐렌 카보네이트(Vinylene Carbonate)로부터 선택되는 하나 이상의 첨가제를 상기 전해액 100 중량부에 대해 0.1 내지 5중량부를 포함하는 리튬전지용 비수전해질.
Solvents in which cyclic carbonates, chain carbonates, and sulfones are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively;
A solute comprising at least one lithium salt selected from LiPF 6 and LiTFSI dissolved in an electrolyte;
At least one additive selected from divinyl adipate, alimethyl carbonate, and vinylene carbonate, which are decomposed at a potential higher than that at which the sulfone-based solvent is decomposed in the electrolyte solution. Non-aqueous electrolyte for lithium batteries containing 0.1 to 5 parts by weight based on 100 parts by weight of the electrolyte.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 전해액은 상기 용매에 용질로서 LiPF6을 용해시킨 LiPF6 0.8~2M인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The electrolyte solution is a lithium battery non-aqueous electrolyte, characterized in that LiPF 6 0.8 ~ 2M dissolved LiPF 6 as a solute in the solvent.
삭제delete 제1항에 있어서,
상기 전해액은 상기 용매에 용질로서 LiPF6 LiTFSI를 용해시킨 LiPF6 0.8~2M, LiTFSI 0.2~1M인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The electrolyte is LiPF 6 and solute to the solvent. LiPF 6 0.8-2 M and LiTFSI 0.2-1 M which melt | dissolved LiTFSI, The non-aqueous electrolyte for lithium batteries.
제5항 또는 제7항에 있어서,
상기 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트로부터 선택되는 하나 이상이고, 사슬형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트로부터 선택되는 하나 이상인 것을 특징으로 하는 리튬전지용 비수전해질.
The method according to claim 5 or 7,
The cyclic carbonate solvent is at least one selected from ethylene carbonate, propylene carbonate and pentylene carbonate, and the chain carbonate solvent is dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate. Non-aqueous electrolyte for lithium batteries, characterized in that at least one selected from.
KR1020100123451A 2010-12-06 2010-12-06 Nonaqueous electrolyte for lithium battery KR101305183B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100123451A KR101305183B1 (en) 2010-12-06 2010-12-06 Nonaqueous electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100123451A KR101305183B1 (en) 2010-12-06 2010-12-06 Nonaqueous electrolyte for lithium battery

Publications (2)

Publication Number Publication Date
KR20120062262A KR20120062262A (en) 2012-06-14
KR101305183B1 true KR101305183B1 (en) 2013-09-12

Family

ID=46683253

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100123451A KR101305183B1 (en) 2010-12-06 2010-12-06 Nonaqueous electrolyte for lithium battery

Country Status (1)

Country Link
KR (1) KR101305183B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)

Also Published As

Publication number Publication date
KR20120062262A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN1953264B (en) Overcharge protection in electrochemical cells
TWI537277B (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
KR101999615B1 (en) non-aqueous liquid electrolyte and lithium secondary battery comprising the same
US20060216612A1 (en) Electrolytes, cells and methods of forming passivation layers
KR102154803B1 (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery using the same
KR20090039211A (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
KR20160037101A (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20120091627A (en) Lithium ion battery including the same
KR101542071B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
KR20150051557A (en) A lithium secondary battery with enhanced performance
EP3046176B1 (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
KR100335222B1 (en) Nonaqueous Electrolyte
KR102137665B1 (en) Electrolyte solution for secondary battery and additive therefor
KR20160037100A (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101736771B1 (en) Nonaqueous Electrolyte for secondary battery and secondary battery containing the same
KR20160036807A (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
CN110582883B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
KR101305183B1 (en) Nonaqueous electrolyte for lithium battery
KR100570676B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR101251521B1 (en) Nonaqueous electrolyte for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20020086069A (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR101584850B1 (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101581782B1 (en) Electrolyte for high capacity secondary battery and secondary battery containing the same
KR100330151B1 (en) A electrolyte for a lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 7