KR101251521B1 - Nonaqueous electrolyte for lithium battery - Google Patents

Nonaqueous electrolyte for lithium battery Download PDF

Info

Publication number
KR101251521B1
KR101251521B1 KR1020100123025A KR20100123025A KR101251521B1 KR 101251521 B1 KR101251521 B1 KR 101251521B1 KR 1020100123025 A KR1020100123025 A KR 1020100123025A KR 20100123025 A KR20100123025 A KR 20100123025A KR 101251521 B1 KR101251521 B1 KR 101251521B1
Authority
KR
South Korea
Prior art keywords
carbonate
electrolyte
solvent
lipf
weight
Prior art date
Application number
KR1020100123025A
Other languages
Korean (ko)
Other versions
KR20120061650A (en
Inventor
안승호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020100123025A priority Critical patent/KR101251521B1/en
Publication of KR20120061650A publication Critical patent/KR20120061650A/en
Application granted granted Critical
Publication of KR101251521B1 publication Critical patent/KR101251521B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 2차전지용 비수전해질에 관한 것으로, 카보네이트계 용매와 상기 카보네이트계 용매에 용해되는 용질로서 리튬염을 포함하는 전해액에 술폰계 유기 용매인 테트라메틸술폰(TMS)과 양극 피막 형성 첨가제인 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 첨가하는 것을 특징으로 하는 리튬전지용 비수전해질을 제공하여,
기본전해액에 테트라메틸술폰과 같은 술폰계 용매를 첨가하고 양극 피막 형성 첨가제로서 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 첨가함으로써 고전위에서도 전해액이 분해되지 않아 에너지 밀도를 향상시키고, 우수한 충방전 사이클 특성을 갖도록 하는 효과가 있다.
The present invention relates to a nonaqueous electrolyte for a lithium secondary battery, and includes tetramethylsulfone (TMS), which is a sulfone-based organic solvent, and an anode film-forming additive in an electrolyte solution containing lithium salt as a carbonate-based solvent and a solute dissolved in the carbonate-based solvent. Providing a non-aqueous electrolyte for lithium batteries, characterized in that 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) is added,
By adding a sulfone solvent such as tetramethylsulfone to the basic electrolyte solution and adding 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) as an anode film forming additive, the electrolyte solution does not decompose at high potentials, resulting in energy density. It is effective to improve and have excellent charge / discharge cycle characteristics.

Description

리튬전지용 비수전해질{NONAQUEOUS ELECTROLYTE FOR LITHIUM BATTERY}Non-aqueous electrolyte for lithium battery {NONAQUEOUS ELECTROLYTE FOR LITHIUM BATTERY}

본 발명은 리튬전지용 비수전해질에 관한 것으로서 보다 상세하게는 기본전해액에 술폰계 용매와 양극 피막 형성 첨가제로서 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 첨가함으로써 고전위에서 전해액이 분해되는 현상을 방지하는 비수전해질에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to an electrolyte at high potential by adding 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) as a sulfone solvent and an anode film forming additive to a basic electrolyte solution. The present invention relates to a nonaqueous electrolyte which prevents the decomposition phenomenon.

일반적으로 2차전지란 1차전지와는 달리 재충전이 가능하여 반영구적으로 사용할 수 있는 화학전지를 말하는데, 최근에는 노트북, 이동통신기기, 디지털카메라 등의 대량 보급에 따라 그 시장규모가 기하급수적으로 커지고 있다. In general, a secondary battery is a chemical battery that can be recharged and used semi-permanently unlike a primary battery. Recently, the market size of a secondary battery is growing exponentially due to mass distribution of laptops, mobile communication devices, and digital cameras. .

이와 같은 2차전지는 음극(cathode) 재료, 양극(anode) 재료에 따라 납축전지, 니켈-카드뮴(Ni-Cd)전지, 니켈-수소(Ni-MH)전지, 리튬전지 등이 있으며, 전극재료의 고유특성에 의해 전위와 에너지 밀도가 결정된다. 특히 리튬전지는 리튬의 낮은 산화환원 전위와 분자량으로 인해 에너지 밀도가 높기 때문에 휴대용 전자기기의 구동 전원으로 많이 사용되고 있다.Such secondary batteries include lead-acid batteries, nickel-cadmium (Ni-Cd) batteries, nickel-hydrogen (Ni-MH) batteries, and lithium batteries, depending on the cathode material and the anode material. The intrinsic properties determine the potential and energy density. In particular, lithium batteries have been widely used as a driving power source for portable electronic devices because of their high energy density due to the low redox potential and molecular weight of lithium.

이러한 리튬 2차전지 중에서 특히 비수 전해액(nonaqueous electrolyte)을 이용한 리튬 2차전지는 양극(anode)으로서 금속에 리튬금속 혼합산화물이 코팅된 것이 사용되며, 음극(cathode)으로서 탄소재료 등을 코팅하여 사용하며, 이들 양극과 음극 사이에는 유기 용매에 리튬염을 적당히 용해시킨 전해액(electrolyte)이 위치한다.Among the lithium secondary batteries, a lithium secondary battery using a nonaqueous electrolyte, in particular, is coated with a lithium metal mixed oxide on a metal as an anode, and is coated with a carbon material as a cathode. Between these anodes and cathodes, an electrolytic solution in which lithium salts are appropriately dissolved in an organic solvent is placed.

상기의 리튬 2차전지의 전해액 용매로는 에틸렌 카보네이트(ethylene carbonate), 디메틸 카보네이트(Dimethylcarbonate), 디에틸 카보네이트(Diethyl carbonate) 등의 비수성(nonaqueous) 카보네이트계 유기용매가 사용된다. As the electrolyte solvent of the lithium secondary battery, a nonaqueous carbonate organic solvent such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, or the like is used.

이와 같은 리튬 2차전지의 작동원리를 살펴보면, 전해액 내에서 이온 상태로 존재하는 리튬이온(Li+)이 충전(charge)시에는 양극에서 음극으로, 방전(discharge)시에는 음극에서 양극으로 이동하면서 전기를 발생시킨다. Looking at the operation principle of such a lithium secondary battery, the lithium ion (Li +) present in the ionic state in the electrolyte is moved from the positive electrode to the negative electrode when charged (charge), and from the negative electrode to the positive electrode during discharge (electricity) Generates.

이 때, 전자는 양극과 음극을 이어주는 도선을 따라 리튬이온과 같은방향으로 움직인다.At this time, the electrons move in the same direction as lithium ions along the wire connecting the anode and the cathode.

현재 사용 되는 리튬 2차전지는 보통 4.2~4.3V 까지 충전이 가능하며, 4.3V 이상으로 충전하면 좀 더 많은 에너지를 사용할 수 있다. 그러나 이와 같은 유기용매들은 4.3V 이상 충전시 전해액이 분해되어 사이클 열화를 일으키게 되는 문제가 있다.Currently used lithium secondary batteries can be charged up to 4.2 ~ 4.3V, and more energy can be used by charging more than 4.3V. However, these organic solvents have a problem in that the electrolyte is decomposed when the charge is more than 4.3V causing cycle degradation.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 산화전위가 높은 술폰계 용매에 양극 피막 형성 첨가제로서 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 첨가함으로써 고전위에서 전해액 분해 현상을 억제하여 우수한 충방전 사이클 특성을 갖도록 하는 리튬전지용 비수전해질을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, by adding 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) as a positive electrode film forming additive to a sulfonic solvent having a high oxidation potential. An object of the present invention is to provide a nonaqueous electrolyte for a lithium battery which suppresses decomposition of an electrolyte and has excellent charge and discharge cycle characteristics.

상기와 같은 목적을 달성하기 위한 본 발명의 실시예는 카보네이트계 용매와 상기 카보네이트계 용매에 용해되는 용질로서 리튬염을 포함하는 전해액에 술폰계 유기 용매를 첨가하는 것을 특징으로 하는 리튬전지용 비수전해질을 제공한다.Embodiment of the present invention for achieving the above object is a non-aqueous electrolyte for a lithium battery, characterized in that the sulfonic acid-based organic solvent is added to an electrolyte solution containing a lithium salt as a carbonate solvent and a solute dissolved in the carbonate solvent. to provide.

본 발명에 따른 실시예는 비수전해질에 양극 피막 형성 첨가제를 첨가하는 것을 특징으로 한다.Embodiments according to the invention are characterized in that the addition of an anode coating forming additive to the nonaqueous electrolyte.

본 발명에 따른 실시예의 술폰계 유기 용매는 테트라메틸술폰(TMS)인 것을 특징으로 한다.The sulfone organic solvent of the embodiment according to the present invention is characterized in that tetramethylsulfone (TMS).

본 발명에 따른 실시예의 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트로부터 선택되는 하나 이상의 환형 카보네이트계 용매와, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트로부터 선택되는 하나 이상의 사슬형 카보네이트계 용매인 것을 특징으로 한다.The carbonate solvent of the embodiment according to the present invention is at least one cyclic carbonate solvent selected from ethylene carbonate, propylene carbonate, pentylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl It is characterized in that the at least one chain carbonate solvent selected from propyl carbonate.

본 발명에 따른 실시예의 리튬염은 LiPF6 또는 LiTFSI로부터 선택되는 하나 이상인 것을 특징으로 한다.The lithium salt of the embodiment according to the invention is characterized in that at least one selected from LiPF 6 or LiTFSI.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6을 용해시킨 LiPF6 0.8~2M의 전해액 100 중량부에 비닐 카보네이트(VC)를 0.1 내지 5 중량부 첨가하는 것을 특징으로 한다.The non-aqueous electrolyte of the embodiment according to the present invention is LiPF 6 0.8-2 M in which LiPF 6 is dissolved as a solute in a solvent in which a cyclic carbonate, a chain carbonate, and a sulfone are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively. 0.1 to 5 parts by weight of vinyl carbonate (VC) is added to 100 parts by weight of the electrolyte solution.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6을 용해시킨 LiPF6 1M의 전해액 100 중량부에 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)을 각각 0.1 내지 5중량부, 0.1 내지 5중량부 첨가하는 것을 특징으로 한다.Embodiment, the non-aqueous electrolyte comprises a cyclic carbonate, chain carbonate, sulfone, each one according to the invention: an electrolytic solution of 1 ~ 5 LiPF 6 1M solution dissolving LiPF 6 as a solute in a solvent mixture in a volume ratio of: 1-7 It is characterized by adding 0.1 to 5 parts by weight and 0.1 to 5 parts by weight of vinyl carbonate (VC) and 2,5-dihydrofuran (DHF), respectively, in 100 parts by weight.

본 발명에 따른 실시예의 비수전해질은 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매에 용질로서 LiPF6 및 LiTFSI를 용질로서 용해시킨 LiPF6 0.8~2M, LiTFSI 0.2~1M의 전해액 100 중량부에 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)을 각각 0.1 내지 5중량부, 0.1 내지 5중량부 첨가하는 것을 특징으로 한다.The non-aqueous electrolyte of the embodiment according to the present invention is LiPF in which LiPF 6 and LiTFSI are dissolved as a solute in a solvent in which a cyclic carbonate, a chain carbonate, and a sulfone are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively. 6 to 5 parts by weight of vinyl carbonate (VC) and 2,5-dihydrofuran (DHF) are added to 100 parts by weight of an electrolyte of 0.8 to 2 M and LiTFSI 0.2 to 1 M, respectively. .

이상 설명한 바와 같이 본 발명은 기본전해액에 테트라메틸술폰과 같은 술폰계 용매를 첨가하고 양극 피막 형성 첨가제로서 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 첨가함으로써 고전위에서도 전해액이 분해되지 않아 에너지 밀도를 향상시키고, 우수한 충방전 사이클 특성을 갖도록 하는 효과가 있다.As described above, the present invention adds a sulfone-based solvent such as tetramethylsulfone to the basic electrolyte solution and adds 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) as an anode film forming additive, and thus the electrolyte solution at high potential. This is not decomposed to improve the energy density, and has the effect of having excellent charge and discharge cycle characteristics.

도 1은 테트라메틸술폰의 효과를 알아보기 위한 실험예의 그래프이다.
도 2는 본 발명에 따른 실시예와 비교예를 비교한 그래프이다.
1 is a graph of an experimental example for examining the effect of tetramethylsulfone.
Figure 2 is a graph comparing the Example and Comparative Example according to the present invention.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.Such an embodiment may be embodied in various different forms as one of ordinary skill in the art to which the present invention pertains, and is not limited to the embodiments described herein.

본 발명에 따른 실시예는 산화전위가 높은 유기 용매를 섞어 주어 고전위에서 용매가 분해되는 현상을 방지하고, 양극 피막 형성 첨가제를 넣어 주어 양극에 피막이 형성되도록 하여 전해질의 분해 현상을 방지하는 리튬전지의 비수전해질에 관한 것이다.An embodiment according to the present invention is to prevent the decomposition of the solvent at high potential by mixing an organic solvent having a high oxidation potential, and to add a positive electrode film forming additive to form a film on the positive electrode of the lithium battery to prevent decomposition of the electrolyte It is about a nonaqueous electrolyte.

일반적으로 리튬 2차전지에 사용되는 기본전해액은 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 및 케톤계 용매로 이루어진 군에서 선택되는 하나 이상의 용매를 포함하는 비수성 유기용매와, 상기 비수성 유기용매에 용해되어 있는 리튬염을 포함하여 이루어진다.In general, the basic electrolyte solution used in the lithium secondary battery is a non-aqueous organic solvent including at least one solvent selected from the group consisting of a carbonate solvent, an ester solvent, an ether solvent, and a ketone solvent, and the non-aqueous organic solvent. It comprises a lithium salt dissolved in a solvent.

먼저, 본 발명에 따른 실시예에 사용할 산화전위가 높은 유기용매를 선택해야 한다. 이를 위하여 다음과 같이 실험을 실시하였다.First, an organic solvent having a high oxidation potential to be used in the embodiment according to the present invention should be selected. For this purpose, the experiment was carried out as follows.

[실험예1]Experimental Example 1

에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC), 글루타로나이트릴(GLN)을 1 : 2 : 2의 비율로 혼합한 용매에 용질로서 LiPF6을 용해시켜 1M의 비수전해액을 제조하였다. 1 M nonaqueous electrolyte was prepared by dissolving LiPF 6 as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC) and glutaronitrile (GLN) were mixed at a ratio of 1: 2: 2.

[실험예2] Experimental Example 2

에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC), 테트라메틸술폰(TMS), 글루타로나이트릴(GLN)을 1 : 2 : 1 : 1의 비율로 혼합한 용매에 용질로서 LiPF6을 용해시켜 1M의 비수전해액을 제조하였다.LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), tetramethyl sulfone (TMS), and glutaronitrile (GLN) were mixed at a ratio of 1: 2: 1: 1, and 1M was dissolved as a solute. A nonaqueous electrolyte solution was prepared.

[실험예3]Experimental Example 3

에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC), 테트라메틸술폰(TMS)을 1 : 2 : 2의 비율로 혼합한 용매에 용질로서 LiPF6을 용해시켜 1M의 비수전해액을 제조하였다.A 1 M nonaqueous electrolyte was prepared by dissolving LiPF 6 as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and tetramethyl sulfone (TMS) were mixed at a ratio of 1: 2: 2.

상기 실험예 1 내지 3에서 제조된 전해액의 전기 화학적 특성을 측정하기 위하여 음극으로는 흑연계 활물질을 사용하고, 양극으로는 LiNi1/3Co1/3Mn1/3O2 활물질을 사용하고, 전해질로는 실험예 1 내지 3의 전해질로 사용하여 코인셀 타입의 전지를 제조하였다. In order to measure the electrochemical properties of the electrolyte solutions prepared in Experimental Examples 1 to 3, a graphite-based active material was used as the negative electrode, a LiNi 1/3 Co 1/3 Mn 1/3 O 2 active material was used as the positive electrode, and Experimental Example 1 as the electrolyte. A coin cell type battery was prepared using the electrolyte of 3 to 3.

전기화학적 특성 평가를 위하여 상기 실험예 1 내지 3의 전해질을 갖는 리튬전지를 1C의 전류로 정전류 방식으로 2.5V까지 방전하였고, 1C의 전류로 4.5V까지 정전류 충전 후 0.02C의 전류에 도달할 때까지 4.5V로 정전압 충전을 하였다.In order to evaluate the electrochemical characteristics, the lithium battery having the electrolytes of Experimental Examples 1 to 3 was discharged to 2.5V by a constant current method with a current of 1C, and when reaching a current of 0.02C after charging a constant current to 4.5V with a current of 1C. Charged to constant voltage up to 4.5V.

상기 실험예 1 내지 3에 대한 결과를 도 1의 그래프에 나타냈다.The results for Experimental Examples 1 to 3 are shown in the graph of FIG. 1.

도 1을 살펴보면, 실험예3에서의 수명 특성이 가장 좋은 것을 알 수 있다. Looking at Figure 1, it can be seen that the lifetime characteristics in Experimental Example 3 is the best.

즉, 테트라메틸술폰(TMS)과 글루타로나이트릴(GLN)은 고전위에서 안정한 용매로 알려져 있으나 실험 결과 글루타로나이트릴(GLN)이 포함된 전해액은 수명 특성이 좋지 않았으며, 테트라메틸술폰 단독으로 사용하였을 경우에 더욱 좋은 수명 특성을 나타내는 것을 알 수 있었다.That is, tetramethylsulfone (TMS) and glutaronitrile (GLN) are known to be stable solvents at high potentials, but the experimental results show that the electrolyte solution containing glutaronitrile (GLN) did not have good life characteristics, and tetramethylsulfone alone When used, it was found to exhibit better life characteristics.

이에 본 발명에서는 상기 테트라메틸술폰을 산화전위가 높은 유기 용매로 선택하였다.Accordingly, in the present invention, the tetramethylsulfone was selected as an organic solvent having a high oxidation potential.

본 발명에 따른 실시예에서는 고전위에서 전해질 분해 현상을 방지하기 위하여 첨가제를 추가하였다. 상기에서 전해질 분해 현상은 양극에서 전해질로의 전자 이동에 의하여 발생하는 것을 말한다.In the embodiment according to the present invention, an additive was added to prevent electrolyte decomposition at high potential. Electrolytic decomposition phenomenon refers to the occurrence of the electron transfer from the anode to the electrolyte.

본 발명에 따른 실시예에서는 비수전해질의 용매로서 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 사용한다. In the embodiment according to the present invention, a cyclic carbonate type, a chain carbonate type, and a sulfone type are used as the solvent of the nonaqueous electrolyte.

상기 환형 카보네이트계 용매는 통상적으로 리튬 2차전지에 사용되는 용매로서 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트 등으로부터 선택되는 하나 이상의 유기용매이다. 상기 환형 카보네이트계가 혼합 용매에서 30부피%를 초과할 시에는 잘 용해되지 않는 경우가 발생한다. 특히 에틸렌카보네이트는 상온에서 고체로 존재하므로 지나치게 많은 양을 첨가하면 문제가 발생할 수 있다.The cyclic carbonate-based solvent is typically one or more organic solvents selected from ethylene carbonate, propylene carbonate, pentylene carbonate, and the like as a solvent used in a lithium secondary battery. When the cyclic carbonate type exceeds 30% by volume in the mixed solvent, it is difficult to dissolve. In particular, since ethylene carbonate is present as a solid at room temperature, adding too much may cause problems.

또한, 상기 사슬형 카보네이트계 용매 역시 통상적으로 리튬 2차전지에 사용되는 용매로서, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트 등으로부터 선택되는 하나 이상의 유기용매이다.In addition, the chain carbonate-based solvent is also a solvent commonly used in lithium secondary batteries, at least one organic selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, etc. Solvent.

또한, 본 발명에 따른 실시예에서는 리튬염의 용질을 LiPF6, LiTFSI를 사용하였으나, 이는 본 발명에 따른 일실시예에 불과하므로 이에 한정되지 않고, 본 발명이 속하는 기술분야인 리튬 2차전지에 사용되는 전해액을 제조하기 위한 용질로서 사용되는 리튬염이라면 본 발명의 기술적 사상을 해하지 않는 범위내의 어느 것이든지 무관하다.In addition, the embodiment according to the present invention used LiPF 6, LiTFSI as the solute of the lithium salt , but this is not limited to the embodiment according to the present invention, it is used in the lithium secondary battery which is a technical field of the present invention. Any lithium salt may be used as long as it is a lithium salt used as a solute for producing an electrolyte solution that does not impair the technical idea of the present invention.

본 발명에 따른 제1실시예에서는 비수전해질의 용매로서 환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 사용한다. 그 비율은 각각 1 : 1~7 : 1~5의 부피비로 혼합하여 제조한다. 이 때, 사슬형 카보네이트계의 양이 7을 초과하면 고전위에서 분해되는 현상이 발생하고, 술폰계의 비율이 5를 초과하면 이온전도도가 저하되어 이온의 이동에 문제가 발생하게 된다. In the first embodiment according to the present invention, a cyclic carbonate type, a chain carbonate type, and a sulfone type are used as the solvent of the nonaqueous electrolyte. The ratio is prepared by mixing in a volume ratio of 1: 1 to 7: 1 to 5, respectively. At this time, when the amount of the chain carbonate is more than 7, the phenomenon of decomposition at high potential occurs. When the ratio of sulfone is more than 5, the ionic conductivity is lowered, which causes problems in the movement of ions.

상기 제1실시예에서는 LiPF6를 용질로서 용해시켜 전해액을 LiPF6 0.8~2M을 제조하는데, LiPF6의 농도가 0.8M보다 작은 경우에는 이온전도도가 떨어질 수 있고, 2M을 초과하는 경우에는 고전위시 분해되는 현상이 커질 수 있다.In the first embodiment, LiPF 6 is dissolved as a solute to prepare an electrolyte solution of LiPF 6 0.8 to 2 M. When the concentration of LiPF 6 is less than 0.8 M, the ionic conductivity may be lowered. Decomposition may increase.

또한, 상기 전해액 100 중량부에 비닐 카보네이트(VC)를 0.1 내지 5중량부를 첨가하는데, 이는 비닐 카보네이트의 양이 0.1 중량부보다 적으면 피막이 얇게 형성되어 본 발명에 따른 효과를 얻을 수 없으며, 5 중량부를 초과하는 경우에는 음극에서 두꺼운 피막을 형성하여 리튬이온의 이동을 방해하기 때문이다.In addition, 0.1 to 5 parts by weight of vinyl carbonate (VC) is added to 100 parts by weight of the electrolyte, which is thin when the amount of vinyl carbonate is less than 0.1 parts by weight, and the effect of the present invention cannot be obtained, and 5 parts by weight. This is because when the amount is exceeded, a thick film is formed on the negative electrode to hinder the movement of lithium ions.

본 발명에 따른 제2실시예에서는 상기 제1실시예에서 제조된 용매에 용질로서 LiPF6를 첨가하여 제조한 LiPF6 1M의 전해액 100 중량부에 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)을 0.1 내지 5중량부씩 첨가하는데, 이는 비닐 카보네이트와, 2,5-다이하이드로퓨란의 양이 0.1 중량부보다 적으면 피막이 얇게 형성되고, 5 중량부를 초과하는 경우에는 음극에서 두꺼운 피막을 형성하여 리튬이온의 이동을 방해할 수 있기 때문이다.In the second embodiment according to the present invention, vinyl carbonate (VC), 2,5-dihydrofuran in 100 parts by weight of the electrolyte of LiPF 6 1M prepared by adding LiPF 6 as a solute to the solvent prepared in the first embodiment. (DHF) is added in an amount of 0.1 to 5 parts by weight, which is thin when the amount of vinyl carbonate and 2,5-dihydrofuran is less than 0.1 parts by weight, and when the amount is greater than 5 parts by weight, a thick film is formed on the cathode. This is because it may interfere with the movement of lithium ions by forming.

본 발명에 따른 제3실시예에서는 상기 제1실시예에서 제조된 용매에 전해액 100 중량부에 LiPF6 및 LiTFSI를 용질로서 용해시켜 LiPF6 0.8~2M 및 LiTFSI 0.2~1M의 전해액 100 중량부에 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)을 각각 0.1 내지 5중량부씩 첨가하여 제조한다. 상기 LiPF6 및 LiTFSI의 수치 한정에 대한 근거는 상기 제1실시예에서와 동일하고 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)의 수치 한정에 대한 근거는 상기 제2실시예에서와 동일하다.In the third embodiment according to the present invention by dissolving LiPF 6 and LiTFSI as a solute in 100 parts by weight of the electrolyte in the solvent prepared in the first embodiment as a solute of LiPF 6 0.8 ~ 2M and LiTFSI 0.2 ~ 1M in 100 parts by weight of vinyl It is prepared by adding 0.1 to 5 parts by weight of carbonate (VC) and 2,5-dihydrofuran (DHF), respectively. The basis for the numerical limitation of LiPF 6 and LiTFSI is the same as in the first embodiment, and the basis for the numerical limitation of vinyl carbonate (VC) and 2,5-dihydrofuran (DHF) is in the second embodiment. Is the same as

본 발명에 따른 제4실시예에서는 상기 제1실시예에서의 용매에 LiPF6 및 LiTFSI를 용질로서 용해시켜 각각 0.8M, 0.2M의 전해액을 제조하고 상기 전해액 100 중량부에 비닐 카보네이트(VC), 감마부틸로락톤(GBL)을 각각 2중량부, 0.2중량부를 첨가하여 리튬전지용 비수전해질을 제조하였다.In the fourth embodiment according to the present invention, by dissolving LiPF 6 and LiTFSI as a solute in the solvent of the first embodiment to prepare an electrolyte of 0.8M, 0.2M, respectively, 100 parts by weight of vinyl carbonate (VC), 2 parts by weight and 0.2 parts by weight of gamma butyrolactone (GBL) were added to prepare a nonaqueous electrolyte for lithium batteries.

본 발명에 따른 실시예에서는 양극에 피막을 형성하기 위한 첨가제로서 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 사용하였다. 상기 2,5-다이하이드로퓨란(DHF)와 감마부틸로락톤(GBL)의 효과를 알아보기 위하여 다음과 같은 실험을 하였다. In the embodiment according to the present invention, 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) was used as an additive for forming a film on the positive electrode. In order to determine the effects of the 2,5-dihydrofuran (DHF) and gamma butyrolactone (GBL) was performed as follows.

[실시예1][Example 1]

에틸렌카보네이트, 에틸메틸카보네이트, 테트라메틸술폰을 1 : 2 : 2의 비율로 혼합한 용매와, LiPF6를 용질로서 용해시킨 1M의 전해액에 비닐 카보네이트(VC)를 상기 전해액의 2중량% 첨가하여 리튬전지용 비수전해질을 제조하였다.2 weight% of vinyl carbonate (VC) was added to a 1 M electrolyte solution in which ethylene carbonate, ethyl methyl carbonate and tetramethyl sulfone were mixed at a ratio of 1: 2: 2, and a 1 M electrolyte solution in which LiPF 6 was dissolved as a solute. A battery nonaqueous electrolyte was prepared.

[실시예2][Example 2]

에틸렌카보네이트, 에틸메틸카보네이트, 테트라메틸술폰을 1 : 2 : 2의 비율로 혼합한 용매와, LiPF6를 용질로서 용해시킨 1M의 전해액에 비닐 카보네이트(VC), 2,5-다이하이드로퓨란(DHF)을 각각 상기 전해액의 2중량%, 0.2중량%를 첨가하여 리튬전지용 비수전해질을 제조하였다.Vinyl carbonate (VC), 2,5-dihydrofuran (DHF) in a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate and tetramethyl sulfone in a ratio of 1: 2: 2 and a 1 M electrolyte solution in which LiPF 6 was dissolved as a solute. ) Was added 2% by weight and 0.2% by weight of the electrolytic solution, respectively, to prepare a non-aqueous electrolyte for lithium batteries.

[실시예3][Example 3]

에틸렌카보네이트, 에틸메틸카보네이트, 테트라메틸술폰을 1 : 4 : 4의 비율로 혼합한 용매와, LiPF6를 용질로서 용해시킨 1M의 전해액에 비닐 카보네이트(VC), 감마부틸로락톤(GBL)을 각각 상기 전해액의 2중량%, 1중량%를 첨가하여 리튬전지용 비수전해질을 제조하였다.Vinyl carbonate (VC) and gamma butyrolactone (GBL) were respectively added to a solvent in which ethylene carbonate, ethyl methyl carbonate, and tetramethyl sulfone were mixed at a ratio of 1: 4: 4, and a 1 M electrolyte solution in which LiPF 6 was dissolved as a solute. 2% by weight and 1% by weight of the electrolyte was added to prepare a nonaqueous electrolyte for lithium batteries.

[실시예4]Example 4

에틸렌카보네이트, 에틸메틸카보네이트, 테트라메틸술폰을 1 : 2 : 2의 비율로 혼합한 용매와, LiPF6 와 LiTFSI(LiN(C2F 5SO3)2)를 용질로서 용해시켜 각각 0.8M, 0.2M의 전해액 100 중량부에 비닐 카보네이트(VC), 감마부틸로락톤(GBL)을 각각 2중량부, 0.2중량부를 첨가하여 리튬전지용 비수전해질을 제조하였다.Ethylene carbonate, ethyl methyl carbonate, and tetramethyl sulfone were mixed in a ratio of 1: 2: 2, and LiPF 6 and LiTFSI (LiN (C 2 F 5 SO 3 ) 2 ) were dissolved as solutes, respectively, 0.8 M and 0.2 M, respectively. 2 parts by weight and 0.2 parts by weight of vinyl carbonate (VC) and gamma butyrolactone (GBL) were respectively added to 100 parts by weight of the electrolyte solution to prepare a nonaqueous electrolyte for lithium batteries.

[비교예1][Comparative Example 1]

에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC)를 3 : 7의 비율로 혼합한 용매에 용질로서 LiPF6을 용해시킨 1M의 전해액에 비닐 카보네이트(VC)를 상기 전해액의 2중량% 첨가하여 비수전해액을 제조하였다.Non-aqueous electrolyte solution was added with 2% by weight of vinyl carbonate (VC) to 1M electrolyte solution in which LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a ratio of 3: 7. Was prepared.

상기 실시예1 내지 3과 비교예1에서 제조된 전해액의 전기 화학적 특성을 측정하기 위하여 음극으로는 흑연계 활물질을 사용하고, 양극으로는 LiNi1/3Co1/3Mn1/3O2 활물질을 사용하고, 전해질로는 실시예1 내지 4 또는 비교예1에 의해 제조된 전해질을 사용하여 코인셀 타입의 전지를 제조하였다. In order to measure the electrochemical characteristics of the electrolyte solutions prepared in Examples 1 to 3 and Comparative Example 1, a graphite-based active material was used as a negative electrode, a LiNi 1/3 Co 1/3 Mn 1/3 O 2 active material was used as the positive electrode, and the electrolyte was used. Coin cell type batteries were prepared using the electrolytes prepared according to Examples 1 to 4 or Comparative Example 1.

상기 제조된 전지의 전기화학적 특성 평가를 위하여 1C의 전류로 정전류 방식으로 2.5V까지 방전하였고, 충전은 1C의 전류로 4.5V까지 정전류 충전 후 0.02C의 전류에 도달할 때까지 4.5V로 정전압 충전을 하였다.In order to evaluate the electrochemical characteristics of the manufactured battery, the battery was discharged to 2.5V with a constant current method at a current of 1C, and the charge was charged at 4.5V until the current reached 0.02C after constant current charging to 4.5V at a current of 1C. Was done.

상기의 실험결과를 도 2에 도시하였다.The experimental results are shown in FIG. 2.

도 2를 살펴보면, 실시예1 내지 4의 전해질을 사용한 경우에는 비교예1의 전해액과 비교하여 좋은 수명 특성을 나타내었다. 또한, 실시예2,4의 경우에는 실시예1,3의 경우보다 더 좋은 수명 특성을 나타내었다. Referring to FIG. 2, when the electrolytes of Examples 1 to 4 were used, good life characteristics were compared with those of Comparative Example 1. In addition, Examples 2 and 4 showed better life characteristics than those of Examples 1 and 3.

상기와 같은 결과로 산화전위가 높은 술폰계 용매에 양극 피막 형성 첨가제로 2,5-다이하이드로퓨란(DHF)를 사용하면 고전위에서 전해액 분해 현상을 억제함으로써 우수한 충방전 사이클 특성을 갖도록 할 수 있음을 알 수 있다. As a result, the use of 2,5-dihydrofuran (DHF) as a positive electrode film-forming additive in a sulfone solvent having a high oxidation potential can provide excellent charge / discharge cycle characteristics by suppressing decomposition of the electrolyte at high potentials. Able to know.

또한, 실시예 4의 경우 실시예2의 경우보다 더 좋은 수명 특성을 나타내었는데, 상기 결과로 용질로 LiTFSI를 섞었을 때, 음극이나 양극에 좀 더 안정한 피막을 형성하는 것을 알 수 있다.In addition, Example 4 showed better life characteristics than Example 2, and as a result, when LiTFSI was mixed with the solute, it was found that a more stable film was formed on the cathode or the anode.

또한, 상기의 실험 결과를 사이클 회수에 따른 용량유지율을 하기의 표1에 나타내었다.In addition, the capacity retention rate according to the number of cycles of the above experimental results is shown in Table 1 below.

사이클cycle 특성characteristic 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 1회1 time 방전용량(mAh/g)Discharge Capacity (mAh / g) 188188 186186 187187 186186 194194 90회90 times 방전용량(mAh/g)Discharge Capacity (mAh / g) 148148 154154 141141 160160 109109 용량유지율(%)Capacity retention rate (%) 78.778.7 82.882.8 75.475.4 86.086.0 56.256.2

상기 표1에서 알 수 있듯이, 2,5-다이하이드로퓨란(DHF)을 사용한 경우에는 90회를 충전을 하더라도 용량이 82.8%까지 유지되고, LiPF6 와 LiTFSI를 용질로 사용하여 전해액을 제조하고, 비닐 카보네이트(VC), 감마부틸로락톤(GBL)을 첨가한 경우에는 용량이 86%까지 유지됨을 알 수 있다. As can be seen in Table 1, when 2,5-dihydrofuran (DHF) is used, the capacity is maintained up to 82.8% even after 90 charges, and an electrolyte is prepared using LiPF 6 and LiTFSI as a solute. When vinyl carbonate (VC) and gamma butyrolactone (GBL) were added, the capacity was maintained to 86%.

이는 테트라메틸술폰을 사용하여 고전위에서 용매가 분해되는 것을 방지함과 동시에 2,5-다이하이드로퓨란(DHF)을 첨가하여 양극에 피막을 형성하도록 함으로써 양극에서 전해질로 전자가 이동하지 못하도록 하여 전해질 분해 현상을 방지한 결과이다.This prevents the solvent from decomposing at high potential using tetramethylsulfone and at the same time adds 2,5-dihydrofuran (DHF) to form a film on the anode, thereby preventing electrons from moving from the anode to the electrolyte to decompose the electrolyte. This is the result of preventing the phenomenon.

Claims (8)

환형 카보네이트계, 사슬형 카보네이트계, 술폰계를 각각 1 : 1~7 : 1~5의 부피비로 혼합한 용매와 상기 용매에 용해되는 용질로서 LiPF6 또는 LiTFSI로부터 선택되는 하나 이상의 리튬염을 포함하는 전해액 100 중량부에 비닐 카보네이트(VC)를 0.1 내지 5 중량부 첨가하고,
양극 피막을 형성하기 위하여 상기 전해액 100 중량부에 2,5-다이하이드로퓨란(DHF) 또는 감마부틸로락톤(GBL)을 0.1 내지 5 중량부를 첨가하는 것을 특징으로 하는 리튬전지용 비수전해질.
A cyclic carbonate, a chain carbonate, and a sulfone are mixed in a volume ratio of 1: 1 to 7: 1 to 5, respectively, and at least one lithium salt selected from LiPF 6 or LiTFSI as a solute dissolved in the solvent. 0.1 to 5 parts by weight of vinyl carbonate (VC) is added to 100 parts by weight of the electrolyte,
A non-aqueous electrolyte for lithium batteries, comprising adding 0.1 to 5 parts by weight of 2,5-dihydrofuran (DHF) or gamma butyrolactone (GBL) to 100 parts by weight of the electrolyte to form a positive electrode film.
삭제delete 제1항에 있어서,
상기 술폰계 유기 용매는 테트라메틸술폰(TMS)인 것을 특징으로 하는 리튬전지용비수전해질.
The method of claim 1,
The sulfone organic solvent is tetramethyl sulfone (TMS), characterized in that the non-aqueous electrolyte for lithium batteries.
제1항에 있어서,
상기 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트, 펜틸렌카보네이트로부터 선택되는 하나 이상의 환형 카보네이트계 용매와, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트로부터 선택되는 하나 이상의 사슬형 카보네이트계 용매인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The carbonate solvent is one or more cyclic carbonate solvents selected from ethylene carbonate, propylene carbonate, pentylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate. Non-aqueous electrolyte for lithium batteries, characterized in that at least one chain carbonate solvent.
삭제delete 제1항에 있어서,
상기 전해액은 용질로서 LiPF6을 용해시킨 LiPF6 0.8~2M인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The electrolyte solution is a lithium battery non-aqueous electrolyte, characterized in that LiPF 6 0.8 ~ 2M dissolved LiPF 6 as a solute.
제1항에 있어서,
상기 전해액은 용질로서 LiPF6을 용해시킨 LiPF6 1M인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The electrolyte is a lithium battery non-aqueous electrolyte, characterized in that LiPF 6 1M dissolved LiPF 6 as a solute.
제1항에 있어서,
상기 전해액은 LiPF6 및 LiTFSI를 용질로서 용해시킨 LiPF6 0.8~2M 및 LiTFSI 0.2~1M인 것을 특징으로 하는 리튬전지용 비수전해질.
The method of claim 1,
The electrolytic solution is a non-aqueous electrolyte for lithium batteries, characterized in that LiPF 6 0.8 ~ 2M and LiTFSI 0.2 ~ 1M dissolved LiPF 6 and LiTFSI as a solute.
KR1020100123025A 2010-12-03 2010-12-03 Nonaqueous electrolyte for lithium battery KR101251521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100123025A KR101251521B1 (en) 2010-12-03 2010-12-03 Nonaqueous electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100123025A KR101251521B1 (en) 2010-12-03 2010-12-03 Nonaqueous electrolyte for lithium battery

Publications (2)

Publication Number Publication Date
KR20120061650A KR20120061650A (en) 2012-06-13
KR101251521B1 true KR101251521B1 (en) 2013-04-05

Family

ID=46612158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100123025A KR101251521B1 (en) 2010-12-03 2010-12-03 Nonaqueous electrolyte for lithium battery

Country Status (1)

Country Link
KR (1) KR101251521B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170886A (en) * 2014-04-03 2016-11-30 3M创新有限公司 Additive agent electrolyte for lithium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209780A1 (en) * 2009-02-17 2010-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. HIGH VOLTAGE ELECTROLYTE (Muldoon, Allred)

Also Published As

Publication number Publication date
KR20120061650A (en) 2012-06-13

Similar Documents

Publication Publication Date Title
CN103456991B (en) Lithium ion battery and gel electrolyte and preparation method thereof
KR100866764B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
CN103825047B (en) A kind of electrolyte for lithium ion battery
KR20090039211A (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
KR20100053971A (en) Organic electrolytic solution and lithium battery employing the same
KR20160133521A (en) Long-life lithium-ion batteries
KR102103898B1 (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP2021510904A (en) Rechargeable metal halide battery
KR20120091627A (en) Lithium ion battery including the same
KR20180136655A (en) Electrolyte for secondary battery and secondary battery comprising same
CN105789684A (en) Lithium ion secondary battery and electrolyte thereof
KR101542071B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
EP3046176B1 (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
KR102137665B1 (en) Electrolyte solution for secondary battery and additive therefor
KR101499684B1 (en) Non-aqueous electrolyte for Secondary Batteries and Secondary Batteries containing the same
KR101736771B1 (en) Nonaqueous Electrolyte for secondary battery and secondary battery containing the same
KR20190012364A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
ES2927260T3 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR101251521B1 (en) Nonaqueous electrolyte for lithium battery
KR20190135776A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing same
KR101305183B1 (en) Nonaqueous electrolyte for lithium battery
KR101813330B1 (en) Additive for electrolyte of lithium secondary battery, organic electrolytic solution comprising the same and lithium battery using the solution
KR20210020572A (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR20150050148A (en) High potential Lithium secondary battery
KR101581782B1 (en) Electrolyte for high capacity secondary battery and secondary battery containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 7