KR101302460B1 - SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound - Google Patents
SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound Download PDFInfo
- Publication number
- KR101302460B1 KR101302460B1 KR1020110101468A KR20110101468A KR101302460B1 KR 101302460 B1 KR101302460 B1 KR 101302460B1 KR 1020110101468 A KR1020110101468 A KR 1020110101468A KR 20110101468 A KR20110101468 A KR 20110101468A KR 101302460 B1 KR101302460 B1 KR 101302460B1
- Authority
- KR
- South Korea
- Prior art keywords
- thermal conductivity
- weighted
- liquid thermal
- atomic
- model
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Genetics & Genomics (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
본 발명은 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 순수한 유기화합물의 액체 열전도율(Thermal Conductivity of Liquid)를 높은 정확도로 예측하는 수학적 모형을 제공한다. 상기의 모형은 SVRC(scaled variable reduced coordinate) 모형으로서, SVRC 수식을 통하여 각 온도에서의 액체 열전도율의 값을 알 수 있도록 하여 준다. 이 같은 수식계산에는 여러 매개변수들의 값이 필요한데, 이 값들은 각 화합물에 고유하게 주어지는 값들로 본 발명에서는 이들을 얻기 위해, 상기에 언급된 조건을 만족하는 다수의 화합물들의 액체 열전도율에 대한 실험값들을 바탕으로 다중선형회귀분석법과 인공신경망기법을 사용하여 각 매개변수들에 대한 QSPR(quantitative structure-property relationship) 예측 모형들을 확립하였다. 따라서 상기의 모형은, 모형에 포함된 분자표현자들의 구체적인 값만 알 수 있다면 그 어떤 분자든, 이 분자로 순수하게 이루어진 화합물의 액체 열전도율을 예측하여 준다. 이처럼, 본 발명은 실험값이 알려지지 않은 수많은 상기 조건의 화합물에 대해서도 신뢰할만한 액체 열전도율의 값을 예측할 수 있는 방법을 제공하여 줌으로써 실험에 드는 비용과 시간을 절약하게 해주어, 관련 산업의 연구개발활동을 용이하게 하는 등의 효과를 낳는다.The present invention consists of up to five elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S), and is composed of pure molecules consisting of up to 25 atoms except hydrogen. It provides a mathematical model for predicting the thermal conductivity of organic compounds with high accuracy. The above model is a scaled variable reduced coordinate (SVRC) model, and the value of the liquid thermal conductivity at each temperature can be known through the SVRC equation. These calculations require the values of several parameters, which are values uniquely given to each compound. In order to obtain them, the present invention is based on experimental values of liquid thermal conductivity of a plurality of compounds satisfying the above-mentioned conditions. By using multiple linear regression and neural network technique, QSPR (quantitative structure-property relationship) prediction models for each parameter were established. Therefore, the model predicts the liquid thermal conductivity of a compound composed purely of this molecule, as long as the specific values of the molecular descriptors included in the model are known. As such, the present invention provides a method for predicting a reliable liquid thermal conductivity value even for a large number of compounds in which the experimental value is unknown, thereby saving the cost and time required for the experiment, and facilitating the research and development activities of related industries. It produces effects such as making it.
Description
본 발명은, 물성예측이라는 물리화학의 한 분야에 속하는 것으로 화합물의 여러 물성 중 하나인 액체 열전도율을 높은 정확도로 예측하기 위한 방법에 관한 것이다. The present invention belongs to a field of physical chemistry called physical property prediction and relates to a method for predicting with high accuracy liquid thermal conductivity, which is one of several physical properties of a compound.
화합물의 여러 물성의 정확한 값을 구체적으로 아는 것은 그 물질의 용도의 타당성을 검토하거나 합성 및 정제 과정을 설계하고 보관, 운반, 사용, 폐기의 방법과 조건을 설정하는 등, 생산과 소비의 전 과정에 걸친 제반 의사결정 사항들에 결정적이기 때문에 산업적으로나 학문적으로 매우 중요한 문제이다. 관심 있는 화합물의 관심 있는 물성의 값을 가장 정확하게 알 수 있는 방법은 역시 실험이겠으나 정제된 시료의 준비, 정확한 측정을 위한 환경의 구축 등 여러 가지 측면에서 상당한 비용과 시간이 드는 것이 사실이며 경우에 따라서는 불가능할 수도 있다. 따라서, 그 대안으로 오래 전부터 많은 연구자들이 화합물의 여러 물성의 정확한 값을 예측하고자 노력을 기울여 왔다. 이처럼 물성 예측은 오랜 역사를 가지며 끊임 없이 새로운 예측 방법들이 등장하여 현재는 물성 별로 정확도와 적용범위 등이 서로 다른 여러 예측모형들이 공존하고 있는 상황이다.Knowing the exact values of the various properties of a compound specifically involves the entire process of production and consumption, such as reviewing the feasibility of the use of the substance, designing the synthesis and purification processes, and establishing methods and conditions for storage, transport, use and disposal. It is an important issue, both industrially and academically, because it is crucial for all decision making. The most accurate way of knowing the value of the property of interest of the compound of interest is also an experiment, but it is true that it is quite costly and time consuming in many aspects, including the preparation of purified samples and the construction of an environment for accurate measurements. May not be possible. Thus, as an alternative, many researchers have long been trying to predict the exact value of various properties of a compound. As such, the prediction of physical properties has a long history, and new prediction methods are constantly appearing. At present, several prediction models with different accuracy and application range coexist.
본 발명의 관심 물성인 액체 열전도율에 대해서도 현재까지 여러 예측모형들이 제안되었다. 액체 열전도율(Thermal Conductivity of Liquid)이라 함은 순수한 물체 내부의 등온면의 단위면적을 통과하여 단위 시간에 수직으로 흐르는 열량과 이 방향에서 온도 기울기의 비, 즉 물질 속을 열이 전도하는 정도를 나타낸 수치로서 두께 1m인 판의 양면에 1K의 온도 차가 있을 때 그 판의 1 를 통해서 1초동안에 흐르는 열량을 줄(joule)로 측정한 값을 말한다. 액체 열전도율의 예측에 대한 그간의 연구결과들은 문헌[Poling B. E., Prausnitz J. M., O’Connell J. P., The Properties of Gases and Liquids(5 ed.), New York, McGraw Hill, (2000).]에 간략히 소개되어 있다. Several prediction models have been proposed to date for liquid thermal conductivity, which is a property of interest of the present invention. Thermal Conductivity of Liquid refers to the ratio of the amount of heat flowing vertically in unit time through the unit area of the isothermal surface inside a pure object and the temperature gradient in this direction, ie the degree of heat conduction in the material. If the temperature difference of 1K is on both sides of a plate 1m thick as a value, It is the value measured by joule of the amount of heat flowing in 1 second through. The results of previous studies on the prediction of liquid thermal conductivity are briefly described in Polling BE, Prausnitz JM, O'Connell JP, The Properties of Gases and Liquids (5 ed.) , New York, McGraw Hill, (2000). It is.
현재 액체 열전도율을 예측하는 모형으로 잘 알려지고 널리 쓰이는 것들은 주로 대응상태의 원리에 기반하여 개발된 수식 모형들이다. Sato는 정상 끓는점에서의 열전도율을 분자량 M을 이용하여 예측하는 다음의 수식으로 제안했다.[Maejima, T., private communication, 1973. Equation was suggested by Prof. K. Sato, of the Tokyo Institute of Technology.] Currently known and widely used models for predicting liquid thermal conductivity are mathematical models developed mainly on the basis of the state of correspondence. Sato proposed the thermal conductivity at normal boiling point by the following formula for predicting the molecular weight using M. [Maejima, T., private communication, 1973. Equation was suggested by Prof. K. Sato, of the Tokyo Institute of Technology.]
이 방법은 정상끓는점에서만 액체의 열전도율을 예측할 수 있다. This method can predict the thermal conductivity of a liquid only at its normal boiling point.
Riedel은 여러 온도에서의 액체 열전도율 을 예측하기 위해 환산온도 에 의존하는 다음과 같은 식을 제안했다.[Riedel, L., Chem. Ing. Tech., 1946, 21, 349]Riedel is a liquid thermal conductivity at different temperatures Conversion temperature to predict The following equation is proposed, depending on [Riedel, L., Chem. Ing. Tech., 1946, 21, 349]
책 The Properties of Gases and Liquids에서는 위 두 방법을 결합해서 만든 Sato-Riedel 방법은 환산온도들 과 분자량을 이용하는 다음과 같은 식을 제안하였다.[R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, 4th ed., New York: McGraw-Hill, 1987]In the book The Properties of Gases and Liquids, the Sato-Riedel method, which combines the above two methods, The following equations using and molecular weights have been proposed. [RC Reid, JM Prausnitz, and BE Poling, The Properties of Gases and Liquids , 4th ed., New York: McGraw-Hill, 1987].
이 방법은 분자량이 작은 탄화수소나 가지를 가지는 탄화수소에 대해서 좋지 않은 결과를 가지는 것으로 알려져 있다.This method is known to have poor results for hydrocarbons having a low molecular weight or hydrocarbons having branches.
또 다른 방법으로는 그룹기여(group contribution) 방법을 이용한 것이 있다. 순수한 유기화합물의 (온도나 압력에 따라 변하지 않는) 특정한 한 물성을 예측하는 그룹기여 모형의 전형적인 형태는 아래와 같은 식으로 주어 진다. Another method is to use group contribution. The typical form of a group contribution model that predicts a particular property of a pure organic compound (which does not change with temperature or pressure) is given by
물성값 를 구하기 위해서는 먼저 값을 알고자 하는 화합물의 분자를 미리 정해진 다수의 조각형식들에 맞추어 쪼갠 다음 각 조각형식들의 개수 를 구한다. 이를 다시 그 형식에 할당된 계수 와 곱한 것을 합산한 것이 예측값 가 된다. 계수 들은 실험값이 존재하는 화합물들로부터 모형이 최선의 성능을 갖도록 통계적인 방법을 통해 결정된다.Property value In order to find the value, first divide the molecule of the compound whose value you want to know according to a number of pieces. . This is again the coefficient assigned to that type Multiplying and multiplied by . Coefficient These are determined by statistical methods to ensure that the model has the best performance from the compounds with experimental values.
그룹기여 방법 중 Sastri는 액체 열전도율 λ를 예측하기 위해 온도 에 의존하는 다음과 같은 모형을 제안하였다[Sastri, S. R. S., personal communication, Regional Research Laboratory, Bhubaneswar, (1998)].Among the group contributing methods, Sastri uses the temperature to predict the liquid thermal conductivity λ. The following model is proposed which relies on Sastri, SRS, personal communication, Regional Research Laboratory, Bhubaneswar (1998).
여기서 는 각 조각형식에 할당된 계수들의 합으로서 해당 조각형식이 각각 상수 항, 환산 온도 항에 기여하는 정도를 반영하고 있다.here Is the sum of the coefficients assigned to each piece type, and each piece type has a constant term and a conversion temperature. It reflects the degree of contribution to the term.
이러한 그룹기여 방법은 그 동안 어느 정도 성공을 거둔 것이 사실이나 이론적 근거가 부족하고 때때로 조각형식에 맞추어 쪼개는 방식이 유일하지 않거나 심지어 존재하지 않는 경우가 발생하여 값의 계산이 불가능해 지기도 한다. 또한 예측성능을 높이기 위해 모형을 개선해 나갈수록 점점 더 복잡해지고 취급이 어려워지는 양상을 보인다.These group contribution methods have been somewhat successful in the past, but lack the theoretical basis, and sometimes the only way to split them into pieces is not, or even nonexistent, which makes the calculation of values impossible. Also, as the model is improved to improve the predictive performance, it becomes more complicated and difficult to handle.
액체 열전도율의 예측모형을 구축하는데 있어서 대안이 될 수 있는 다른 방법들 중의 하나는 SVRC(scaled variable reduced coordinates) 방법이다. 이 방법은 대응상태의 원리를 기반으로 화합물의 포화상태의 물성들을 다루는 통합된 골격으로서 문헌 [Shaver R. D., Robinson R. L. Jr., Gasem K. A. M., Fluid Phase Equilibria, 64: 141 (1991).]에서 제안되었으나 이 방법을 액체 열전도율에 적용한 사례는 아직 없다. 이 방법은 기본적으로 한 화합물의 포화물성 가 온도 의 다음과 같은 함수로 주어진다고 가정한다.One of the alternatives for building a predictive model of liquid thermal conductivity is the scaled variable reduced coordinates (SVRC) method. This method has been proposed in Shaver RD, Robinson RL Jr., Gasem KAM, Fluid Phase Equilibria , 64: 141 (1991) as an integrated framework for dealing with the saturation properties of compounds based on the principle of correspondence. There is no example of applying this method to liquid thermal conductivity. This method is basically a saturation property of a compound Temperature Suppose that is given by
여기서 와 는 각각 correlating 함수, scaling 지수라고 불리는 항들이며 는 일종의 환산온도(reduced temperature)이다. 아래첨자 b와 t는 각각 끓는점과 삼중점(triple point)을 의미하는 것으로 는 각각 끓는점과 삼중점에서의 온도를, 는 각각 끓는점과 삼중점에서의 값을, 는 각각 끓는점과 삼중점에서의 물성값을 뜻한다. A, B, C는 각 물성에 고유하게 주어지는 보편상수들(universal constants)로서 본 발명에서는 기화열을 예측하기 위해 그 값을 각각 1.33, 1, 0으로 정하였으며 , 즉 라고 가정하였다. 위의 수식을 통해 액체의 열전도율을 계산하기 위해서는 각 화합물에 대한 이와 같은 매개 변수들의 값을 알아야 하는데 이를 해결하는 한가지 방법은 각 매개 변수에 대한 QSPR 예측모형을 확립하는 것이다.here Wow Are terms called correlating functions and scaling indices, respectively. Is a reduced temperature. The subscripts b and t mean boiling and triple points, respectively. Are the temperatures at boiling and triple points, respectively, At boiling and triple points, respectively Value, Is the property value at boiling point and triple point respectively. A, B, and C are universal constants unique to each property. In the present invention, the values of 1.33, 1, and 0 are set to predict the heat of vaporization. , In other words Is assumed. In order to calculate the thermal conductivity of a liquid using the above equation, one must know the values of these parameters for each compound. One way to solve this problem is to establish a QSPR prediction model for each parameter.
QSPR(quantitative structure-property relationship)은 기본적으로 화합물의 물성은 그 분자의 구조적 특성들의 함수라는 가정에서부터 출발하고 있으며 서로 다른 여러 구조적 특성들을 반영하는 다양한 분자표현자(molecular descriptor)들을 이용한다. 현재까지 제안된 분자표현자들의 종류는 수천에 이르며 한 분자내의 탄소나 수소의 개수와 같은 단순한 것들로부터 분자의 모양이나 연결상태, 전기화학적 특성과 같은 복잡한 것들에 이르기까지 수많은 종류의 분자표현자들에 대한 계산법들이 개발되어 있다[Todeschini R., V. Consonni V., Molecular Descriptors for Chemoinformatics: Second, Revised and Enlarged Edition: Volume I/II, Wiley-VCH, 2009]. QSPR 예측모형은 이러한 분자표현자들 그리고 때로는 이에 더하여 화합물의 다른 물리화학적 물성들(이들 역시 구조적 특성들의 함수이다) 중 일부를 독립변수로 포함하는 함수의 형태로 제시된다. QSPR (quantitative structure-property relationship) basically starts with the assumption that the properties of a compound are a function of the structural properties of the molecule and uses various molecular descriptors that reflect different structural properties. The number of molecular descriptors proposed to date has been thousands, and many kinds of molecular descriptors range from simple ones such as the number of carbons or hydrogens in a molecule to complex ones such as the shape, connection state, and electrochemical properties of molecules. Calculation methods have been developed [Todeschini R., V. Consonni V., Molecular Descriptors for Chemoinformatics: Second, Revised and Enlarged Edition: Volume I / II , Wiley-VCH, 2009]. The QSPR prediction model is presented in the form of a function that includes some of these molecular descriptors and sometimes, in addition, some of the other physicochemical properties of the compound, which are also functions of structural properties.
이때 이러한 함수의 꼴로 가장 빈번이 채택되는 것은 아래와 같은 표현자 들의 선형 결합 함수이며 각 계수 들은 주로 다중선형회귀분석을 통해 실험데이터로부터 결정된다.The most frequently adopted form of such a function is Linear coupling function of each coefficient These are mainly determined from experimental data through multiple linear regression analysis.
QSPR 모형을 만드는 또 다른 방법은 인공신경망을 이용하는 것이다. 인공신경망 기법은 지능을 가진 인간의 신경세포를 모델링하여 인공적으로 지능을 가진 기계를 만들어 보고자 하는 인류의 오랜 연구결과의 하나로서, 20세기 중반에 처음 등장하여 현재 다방면으로 응용되고 있는 정보처리기술이다. 도 4은 인공신경망의 전형적인 한 예를 보여주고 있다. 여기서 볼 수 있듯이, 인공신경망에는 입력 데이터를 수용하는 입력층(input layer)과 출력데이터를 만드는 출력층(output layer), 이들 사이에 위치한 은닉층(hidden layer)이 존재하며 각 층은 하나 이상의 노드(node)들로 구성되어 있다. 은닉층의 각 노드들은 입력층과 출력층의 노드들과 연결되어 있으며 각 연결들에는 가중치(weight)라 불리는 양 이 부여되어 있다. 은닉층과 출력층의 각 노드들은 전 단계의 노드들로부터 이러한 연결들을 통해 입력을 받은 뒤 이를 가공하여 출력값을 만드는데 이때 활성화 함수(activation function)라 불리는 함수 를 적용한다. 이러한 인공신경망을 실제로 활용하려면 먼저, 다양한 입력값과 그 입력값에 대응하는 출력값을 함께 묶어 놓은 샘플집합을 이용하여 인공신경망을 훈련시키는 과정이 필요한데 이는 주어진 입력에 대한 인공신경망의 출력과 원하는 출력의 차이가 최소가 되도록 역전파(back propagation) 알고리즘을 사용하여 각 연결의 가중치를 최적화 하는 것을 말한다. 이러한 훈련을 거친 인공신경망은 문제해결에 필요한 규칙이나 지식을 따로 제공하지 않아도 학습을 통해서 스스로 일반적인 규칙을 수립하여 미지의 입력에 대해서도 타당성 있는 출력을 내주므로 화합물의 물성예측과 같이 기반 이론이 결여되어 있는 분야에 매우 유용한 수단으로 널리 이용되고 있다.
Another way to create a QSPR model is to use an artificial neural network. Artificial neural network technology is one of the long-standing research results of human beings who want to make intelligent machines by modeling human nerve cells with intelligence, and is an information processing technology that has been applied in various fields since the mid 20th century. . 4 shows a typical example of an artificial neural network. As can be seen, the artificial neural network has an input layer for receiving input data, an output layer for producing output data, and a hidden layer located between them, each layer having one or more nodes. ) Each node in the hidden layer is connected to nodes in the input and output layers, and each connection has a quantity called a weight. Is granted. Each node in the hidden and output layers receives input through these connections from the nodes in the previous stage and then processes it to produce an output, which is called an activation function. Is applied. In order to actually use such an artificial neural network, first, the neural network is trained using a sample set in which various input values and output values corresponding to the input values are bundled together. This means optimizing the weight of each connection using a back propagation algorithm to minimize the difference. The neural network that has undergone such training does not provide the necessary rules or knowledge to solve the problem, but it establishes general rules through learning and gives valid output for unknown inputs. It is widely used as a very useful means in the field.
본 발명이 이루고자 하는 기술적 과제는 위에서 언급된 여러 기존 모형들의 한계들을 극복하고 보다 폭넓고 보다 정확한 예측성능을 보이는, 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고, 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 순수한 유기화합물의 액체 열전도율에 대한 SVRC 모형을 구축하는 것이다. The technical problem to be solved by the present invention is to overcome the limitations of the various models mentioned above and to show more broad and more accurate predictive performance, hydrogen (H), carbon (C), nitrogen (N), oxygen (O) and sulfur. The SVRC model is constructed for the liquid thermal conductivity of a pure organic compound composed of less than five elements such as (S) and molecules having 25 or less atoms except hydrogen.
우리는 보다 많은 실험데이터를 바탕으로 보다 다양한 분자표현자들을 고려하여 SVRC 수식에 포함된 매개변수들의 값을 예측해주는 QSPR 모형들을 구축함으로써 이 목표를 달성하였다. 이것들 중 일부는 다중선형회귀분석과 인공신경망 기법을 적절히 조화시켜 얻어진 다중선형회귀-인공신경망 혼성모형인데 특히 인공신경망은 다중선형회귀모형이 반영할 수 없는 독립변수와 종속변수의 비선형적인 함수관계를 반영할 수 있다는 장점이 있어 보다 높은 예측성능을 가진 모형을 구현할 수 있게 해준다. 그러나 인공신경망은 내부적으로 규칙수립의 자유도가 높아 안정성이 다중선형회귀모형보다 떨어지는 단점이 있다. 본 발명에서는 인공신경망모형의 예측값과 다중선형회귀모형의 예측값이 큰 차이를 보일 때 다중선형회귀모형의 예측값을 채택하는 방법으로 이러한 단점을 보완하여 예측성능과 안정성의 측면에서 다중선형회귀모형과 인공신경망모형의 장점만을 살린 우수한 예측모형을 확립하였다.We achieved this goal by constructing QSPR models that predicted the values of the parameters in the SVRC equation, taking into account a wider variety of molecular descriptors based on more experimental data. Some of these are multilinear regression-artificial neural network hybrid models obtained by combining a combination of multiple linear regression and artificial neural network techniques. Especially, artificial neural networks have a nonlinear functional relationship between independent and dependent variables that cannot be reflected It has the advantage of being able to reflect, which makes it possible to implement a model with higher prediction performance. However, the artificial neural network has a disadvantage in that its stability is lower than that of the multiple linear regression model due to its high degree of freedom in rule setting. In the present invention, when the prediction value of the artificial neural network model and the prediction value of the multiple linear regression model show a large difference, the method of adopting the prediction value of the multiple linear regression model compensates for these shortcomings. We established an excellent prediction model that takes advantage of the neural network model.
예측모형을 적용할 수 있는 화합물의 범위에 위에 언급한 바와 같은 제한을 두는 이유는 주로, 사용된 분자표현자들 중 그 값을 구하기 위해서는 양자역학적 계산이 필요한 것들이 존재하는 경우, 현재의 기술수준으로는 언급된 범위를 넘어서는 화합물에 대해서는 정확도와 계산시간의 측면에서 곤란한 문제가 발행한다는 사실에 기인하고 있다. 그러나 상기의 제한범위 내라 할지라도 대단히 많은 화합물들이 존재하며 산업적으로 중요한 화합물들이 상당부분 포함되므로 본 발명이 인류사회에 큰 유익을 끼칠 수 있을 것으로 판단된다.
The reason for the limitations mentioned above on the range of compounds to which the predictive model can be applied is mainly to the current state of the art, if any of the molecular descriptors used require quantum mechanical calculations to obtain their values. Is due to the fact that for compounds outside the stated range, troubles arise in terms of accuracy and calculation time. However, even within the above limitations, since there are a great many compounds and industrially important compounds are included in a large amount, it is determined that the present invention can greatly benefit human society.
오늘날 인류는 플라스틱, 섬유, 고무, 도료, 비료, 의약품, 연료 등, 방대한 종류의 화합물에 의존하여 살아가고 있으며 이러한 경향은 더욱 심화될 것으로 예상된다. 미국 화학회(ACS)에 따르면 2010년 7월 기준으로 등록된 전체 화합물의 수는 54,000,000개를 넘는다고 한다. 이에 비해 물성값이 한가지라도 실험적으로 알려져 있는 화합물의 수는 고작해야 수만에 지나지 않는다. 화합물의 물성값은 신물질과 신약의 개발, 화학플랜트의 최적 설계, 기존 설비의 생산성 향상, 자원의 개발과 절약, 안전성 확보, 환경보호 등 인류의 보다 나은 물질생활에 필수적인 요소이다. 특히 액체 열전도율은 화학플랜트의 최적설계 프로그램으로 잘 알려진 AspenPlus 나 Pro/II 와 같은 상용 프로그램이 그 정확한 값을 절실히 요청하는 물성이다. 그러나 현재 그 실험값이 알려진 화합물의 개수는 기껏해야 수천에 불과하며 화합물에 따라서는 독성, 불안정성, 정제의 어려움 등으로 실험을 통하여 데이터를 얻는 작업이 지난한 경우도 있다. 이런 관점에서 실험을 거치지 않고도 분자에 대한 정보만으로 수많은 화합물의 액체 열전도율을 높은 정확도로 얻게 해주는 본 발명은 실험에 드는 비용과 시간을 절감해줄 뿐만이 아니라 실험이 불가능한 경우에도 그 값을 짐작하게 해주어 관련 산업의 연구개발활동을 용이하게 함은 물론 더 나아가 학계와 관(官)계 등 그 값을 필요로 하는 모든 곳에 합당한 정보를 제공하여 그 활동을 보다 원활히 수행할 수 있게 해주는 효과를 낳는다 하겠다.
Today, humans depend on a wide variety of compounds, including plastics, fibers, rubber, paints, fertilizers, medicines and fuels, and this trend is expected to intensify. According to the American Chemical Society (ACS), as of July 2010, the total number of compounds registered was over 54,000,000. In comparison, even if the physical property value is only one, the number of experimentally known compounds is only tens of thousands. The physical property value of compounds is essential for the better life of mankind, such as the development of new materials and new drugs, the optimal design of chemical plants, the improvement of the productivity of existing facilities, the development and saving of resources, the securing of safety, and the protection of the environment. In particular, liquid thermal conductivity is a property that commercial programs such as AspenPlus and Pro / II, which are well known as optimal design programs for chemical plants, are urgently requesting the exact values. However, at present, the number of compounds whose experimental values are known is only a few thousand, and depending on the compounds, the work of obtaining data through experiments may be past due to toxicity, instability, and difficulty of purification. From this point of view, the present invention, which can obtain the liquid thermal conductivity of a large number of compounds with high accuracy without any experiments, not only reduces the cost and time required for experiments, but also makes it possible to estimate the value even when the experiments are impossible. In addition to facilitating the R & D activities of the University, it will also provide the information that is appropriate to all places that need it, such as academics and academia, so that the activities can be carried out more smoothly.
도 1은 본 발명이 제공하는 액체 열전도율에 대한 SVRC 예측모형을 구축하는 과정을 흐름도로 나타낸 도면이다.
도 2는 SVRC 모형에 필요한 매개변수들 중 에 대한 다중선형회귀모형을 구축하는 과정을 흐름도로 나타낸 도면이다.
도 3은 SVRC 모형에 필요한 매개변수들 중 에 대한 다중선형회귀-인공신경망 혼성모형을 구축하는 과정을 흐름도로 나타낸 도면이다.
도 4는 본 발명에 사용된 인공신경망의 구조를 나타낸 도면이다.
도 5~8은 예로 몇몇 화합물에 대해 기존의 예측방법들 중 Sato-Riedel 모형과 본 발명이 제공하는 예측모형의 예측성능을 비교한 도면들이다.
도 9는 Sato-Riedel 모형의 11040개의 실험데이터에 대한 히스토그램 도면이다.
도 10는 SVRC 모형의 11040개의 실험데이터에 대한 히스토그램 도면이다.1 is a flowchart illustrating a process of constructing an SVRC prediction model for a liquid thermal conductivity provided by the present invention.
2 shows the parameters required for the SVRC model A flowchart illustrating a process of constructing a multilinear regression model for.
3 shows the parameters required for the SVRC model. A flowchart illustrating a process of constructing a multiple linear regression-artificial neural network hybrid model for.
Figure 4 is a view showing the structure of the artificial neural network used in the present invention.
5 to 8 are, for example, a comparison of the predictive performance of the prediction model provided by the present invention and Sato-Riedel model among the existing prediction methods for some compounds.
9 is a histogram diagram of 11040 experimental data of the Sato-Riedel model.
10 is a histogram diagram of 11040 experimental data of the SVRC model.
도 1은 액체 열전도율에 대한 SVRC 모형을 구축하는 과정을 흐름도로 간략히 표현한 것이다.Figure 1 is a simplified representation of the process of building the SVRC model for the liquid thermal conductivity.
SVRC 모형을 구축하는데 있어서 가장 먼저 해야 할 일은 단계 1에 지정된 바와 같이 실험데이터를 수집하고 검토 분류하는 일이다. 본 발명을 위해 각종 논문과 단행본, 인터넷 사이트 등을 망라하여 참고할 수 있는 모든 문헌과 자료에 대한 광범위한 조사를 벌인 결과, 총 1923개 화합물에 대한 31642개의 데이터가 수집되었다. 이렇게 수집된 데이터가 모형을 구축하는데 쓰일 수 있는 진정 타당한 값인지 다방면으로 검토하였는데 실험값이 아니거나 데이터 표기에 오류가 있었거나 동일 화합물의 비슷한 온도에 대한 값들임에도 불구하고 차이가 많이 나거나 가까운 다른 화합물들의 값에 비해 신뢰하기 어려울 정도로 동떨어진 값이거나 분자표현자들에 대한 값들이 당장 준비되기 어려운 화합물에 대한 데이터인 경우 등에 대해 면밀한 분석을 거쳐 데이터를 수정 또는 삭제하여 최종적으로 총 1127개의 화합물들에 대한 23696개의 데이터를 선정하였다. 또한 물성예측모형을 구축할 때, 샘플 화합물들을 탄소와 수소만으로 이루어진 탄화수소(hydrocarbon)들과 그렇지 않은 비탄화수소(nonhydrocarbon)들로 분류하여 따로따로 모형을 세우는 것이 예측성능의 측면에서 더 나았던 그간의 경험에 비추어 전체 데이터를 368개의 탄화수소들에 대한 7106개의 데이터 집합과 759개의 비탄화수소들에 대한 16590개의 데이터 집합으로 나누어 각각 모형을 확립하였다. 또한, 본 발명에서 ‘유기화합물’ 또는 ‘화합물’은 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고, 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 물질을 지칭한다.The first thing to do when building an SVRC model is to collect and review the experimental data as specified in
그 다음 단계는 이들 화합물들에 대한 분자표현자들의 값들을 준비하는 단계이다. 총 1978개에 달하는 다양한 분자표현자들에 대한 값들을 각 화합물들의 분자에 대한 정보를 담은 파일들로부터 컴퓨터를 이용하여 일괄적으로 계산한다. 분자의 전자구조 계산을 하기 위해서는 보통 순이론인 방법으로 슈뢰딩거(Schrodinger) 방정식을 풀어 전자에너지에 대한 해를 구하게 되지만 전자가 많은 계의 경우 전자상관관계(electron correlation)를 무시한 근사법을 적용한 하트리-포크(Hartree-Fock, HF) 방법[C.C. J. Roothan, Rev. Mod. Phys. 23, 69 (1951)]을 사용하여 해를 풀게 된다. 이런 근사법으로 인해 계산된 결과에서 근본적인 오차가 유발되어 다차원의 이론적인 섭동항을 추가한 포스트 하트리-포크(Post Hartree-Fock) 방법[C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934)]들을 사용하여 더 정확한 해를 구하긴 하지만 상대적으로 엄청나게 많은 계산량이 요구된다. 이런 방식으로는 큰 분자를 계산하기에는 비용이나 시간의 측면에서 무리가 있는 상황이다.The next step is to prepare the values of the molecular descriptors for these compounds. The values for various molecular descriptors totaling up to 1978 are computed in batches using a computer from files containing information on the molecules of each compound. In order to calculate the electronic structure of molecules, the Schrodinger equation is usually solved by a pure theory to solve the electron energy. However, in the case of systems with many electrons, Hartley uses an approximation method that ignores electron correlation. Hartree-Fock (HF) method [CC J. Roothan, Rev. Mod. Phys. 23, 69 (1951)]. This approximation introduces a fundamental error in the calculated results and adds a multidimensional theoretical perturbation term to the Post Hartree-Fock method [C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934)], to obtain a more accurate solution, but require a relatively large amount of computation. In this way, it is too costly or time-consuming to calculate large molecules.
또한 하트리-포크와 포스트 하트리-포크를 조합한 가우시안 방법[L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998)]은 에너지 예측에 있어 아주 적은 오차를 보이지만 여러 포스트 하트리-포크 방법에 대한 에너지 계산을 수행하기 때문에 더 많은 계산량이 요구된다.In addition, the Gaussian method that combines Hartley-Fork and Post Hartley-Fork [L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998) show very little error in energy prediction, but more computation is required because it performs energy calculations for several post-Hartley-Fork methods.
많은 전자로 이루어진 분자에 대한 전자들간의 상관관계를 고려하기 위해 다차원의 섭동항이 추가된 파동함수 대신 전자 밀도함수를 써서 총에너지의 범함수를 이용해서 바닥상태를 구하는 밀도 범함수 이론(density functional theory)[ R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977)]을 적용하여 계산했다. 밀도 범함수 이론의 장점은 전자밀도만 고려하면 되므로 하트리-포크(Hartree-Fock) 방법과 비슷한 수준의 계산량으로 더 정확한 결과를 얻어낼 수 있다. 전자들의 교환-상관에너지를 계산을 위해 교환 범함수들과 상관 범함수들의 조합을 사용하여 계산량을 늘이지 않고도 더 향상된 결과를 얻고 있다.Density functional theory is used to find the ground state using the function of the total energy using the electron density function instead of the wave function with the multidimensional perturbation term to consider the correlation between the electrons of the molecules of many electrons. R. Seeger and JA Pople, J. Chem. Phys. 66, 3045 (1977). The advantage of the density functional theory is that the electron density only needs to be taken into account so that more accurate results can be obtained with comparable calculations to the Hartree-Fock method. The combination of exchange functions and correlation functions for calculating the exchange-correlation energy of the electrons is used to obtain more improved results without increasing the calculation amount.
최적의 양자역학 계산방법을 선발하기 위해 선행하여 시도하였던 계산이론은 상기에 언급된 하트리-포크 방법, 다양한 포스트 하트리-포크 방법, 가우시안(G2, G3) 방법, 다양한 범함수 조합의 밀도 범함수 이론 등이다. 이 중에서 계산시간 대비 가장 성능이 우수한 밀도 범함수 이론의 한가지 방법을 선발하였다.The computational theories previously attempted to select an optimal quantum mechanical calculation method are the density ranges of the aforementioned Hartley-Fork method, various Post-Hartley-Fork methods, Gaussian (G2, G3) methods, and various combinations of functional functions. Function theory. Among them, one method of density functional theory, which is the best performance calculation time, was selected.
따라서 본 발명에서는 상용 양자역학 계산 프로그램을 이용하여 지정된 밀도 범함수 이론의 계산방법을 적용하여 분자구조에 대한 최적화 및 진동수 계산을 수행하게 된다.Therefore, in the present invention, the optimization of the molecular structure and the frequency calculation are performed by applying the calculation method of the specified density functional theory using a commercial quantum mechanical calculation program.
최적화된 구조에서는 상기의 물성정보 뿐 만 아니라 분자의 특성을 반영하는 여러 의미있는 수치로 나타내는 분자표현자(molecular descriptor)들을 얻을 수 있다. 2차원 구조의 특징을 표현할 수 있는 분자표현자들도 있고 3차원 구조의 특징을 표현하는 분자표현자들도 있다. 크게 나누어 총 24개의 범주로 나누고 각 범주에 상세한 표현자들을 포함한다. 분자 표현자 값을 계산한 후에 이들 중 적합하지 않은 것, 즉 모든 샘플 화합물에 대해 값이 동일하게 나와 모형의 독립변수가 될 수 없는 것들을 추려 내었다. 이는 관련 없는 분자표현자가 예측모형에 포함되는 것을 막아 모형의 신뢰도를 높이는 동시에 이렇게 분자표현자의 개수를 줄임으로써 최적 모형을 찾는 데 드는 계산 시간을 줄일 수 있기 때문이다.In the optimized structure, not only the above physical information but also molecular descriptors represented by various meaningful values reflecting the characteristics of the molecules can be obtained. Some molecular descriptors can express the characteristics of two-dimensional structures, while others represent the characteristics of three-dimensional structures. Divided into 24 categories, including detailed presenters in each category. After calculating the molecular descriptor values, we picked out those that were not suitable, that is, the values were the same for all sample compounds and could not be independent variables in the model. This is because it prevents irrelevant molecular expressions from being included in the prediction model, thereby increasing the reliability of the model and reducing the computation time required to find the optimal model by reducing the number of molecular expressions.
그 다음인 단계 4는 실험데이터를 토대로 각 매개변수에 대한QSPR 모형을 확립하는데 필요한 자료를 준비하는 단계이다. SVRC 수식으로 액체 열전도율을 계산하기 위해서는 정상끓는점과 삼중점에서의 액체 열전도율 의 값과 α의 값이 필요하다. 삼중점의 온도를 정확히 예측하는 것은 일반적으로 매우 어려운 일임이 잘 알려져 있으며 따라서 본 발명에서는 삼중점 대신 정상끓는점의 0.65배( )를 액체 열전도율곡선의 시작 온도로 잡았는데, 샘플 화합물들에 대해 이 지점들의 평균은 삼중점의 평균과 거의 일치한다. 이제 SVRC 모형을 완성하기 위해서는 나머지 매개변수들인 α, 에 대한 QSPR 예측모형을 확립하여야 한다. 이러한 QSPR 예측모형을 확립하기 위해서는 각 매개변수 별로 여러 화합물들에 대한 해당 값들의 집합을 마련하여야 하는데, 에 대해서는 먼저 액체 열전도율의 전형적인 곡선을 각 화합물의 실험데이터에 맞춘 뒤, 그 곡선에서 온도가 , 가 되는 지점의 값을 취하였으며, α에 대해서는 비선형방정식의 수치해법을 통하여 아래의 식에서 의 값을 각 온도에 대해 구한 뒤, 이러한 값들이 이루는 선에서 온도가 인 지점의 값을 각각 취하였다.Step 4 is followed by preparing data needed to establish a QSPR model for each parameter based on the experimental data. To calculate the liquid thermal conductivity with the SVRC formula, the liquid thermal conductivity at normal boiling point and triple point We need the value of and the value of α. It is well known that it is generally very difficult to accurately predict the temperature of the triple point, so in the present invention it is 0.65 times the normal boiling point instead of the triple point ( ) Is taken as the starting temperature of the liquid thermal conductivity curve, for the sample compounds the mean of these points is nearly identical to the mean of the triple point. Now, to complete the SVRC model, the remaining parameters α, You should establish a QSPR prediction model for. In order to establish the QSPR prediction model, a set of corresponding values for various compounds should be prepared for each parameter. For, we first fit a typical curve of liquid thermal conductivity to the experimental data of each compound, and then the temperature , The value of the point at is taken, and for α, through the numerical solution of nonlinear equations, Is obtained for each temperature, and then the temperature The value of the phosphorus point was taken respectively.
이렇게 QSPR 예측모형을 확립하기 위한 자료로 쓰기 위해 한 화합물의 실험데이터로부터 각 매개변수들의 값을 구할 수 있으려면 그 화합물의 실험데이터가 비교적 넓은 온도 범위에 걸쳐 고루 분포하면서 데이터에 노이즈(noise)가 적어야 하는데 상대적으로 이런 조건을 만족하는 실험데이터가 존재하는 화합물들의 개수는 많지 않으므로 실제 각 매개변수의 QSPR 예측모형에 샘플로 참여하는 화합물의 개수는 전체 화합물의 개수보다 상당히 줄어들게 된다.In order to be able to obtain the value of each parameter from the experimental data of a compound to use as a data for establishing the QSPR prediction model, the experimental data of the compound is distributed evenly over a relatively wide temperature range, Since the number of compounds with relatively few experimental data satisfying these conditions exists, the number of compounds participating in the QSPR prediction model of each parameter is significantly reduced than the total number of compounds.
단계 5는 각 매개변수에 대한 QSPR 모형을 구축하는 단계이다. 본 발명에서는 이러한 QSPR 모형으로, 에 대해서는 다중선형회귀모형을, 에 대해서는 다중선형회귀-인공신경망 혼성모형을 채택하였다. 도 2는 다중선형회귀모형을 구축하는 과정을, 도 3은 다중선형회귀-인공신경망 혼성모형을 구축하는 과정을 흐름도로 간략히 표현한 것이다. 그 구체적인 세부 단계들은 다음과 같다.
먼저 세부 단계 1에서는 샘플 화합물들을 예측모형을 탐색하는데 사용할 훈련집합(training set)과 결정된 모형의 예측성능을 시험하는데 사용할 시험집합(test set), 이렇게 두 부분으로 나누는 작업을 진행한다. 유사한 분자들이 한쪽 부분에만 치우쳐 분포하지 않도록 주의하면서 샘플 탄화수소들과 비탄화수소들을 5:5 ~ 8:2, 바람직하게는 6 대 4의 비율로 각각 나누었다.In
이후 훈련집합을 토대로 최선의 다중선형회귀모형(multiple linear regression model)을찾는다. 여기서 ‘최선’이라 함은 상대적인 의미로서 비교적 짧은 시간 내에 구할 수 있으면서 절대적인 의미에서의 최적 해에 매우 근접한 성능을 갖는다는 의미로 쓰여진 것이다. 최적 해를 직접 구하지 않는 이유는 긴 계산시간 때문인데 예를 들어 1978개의 분자표현자들 중 적합한 분자표현자들의 개수가 1700개일 때, 이 중에서 5개를 뽑아 만들 수 있는 서로 다른 다중선형회귀모형들의 총 개수는 이며 이들을 다 조사하는 것은 현실적으로 불가능하다.We then find the best multiple linear regression model based on the training set. The term 'best' is used in the sense of relative meaning that it can be obtained in a relatively short time and has a performance very close to the optimal solution in the absolute sense. The reason for not finding the optimal solution directly is because of the long computation time. For example, when there are 1700 suitable molecular representations out of 1978 molecular representations, you can choose from five different linear regression models. The total number is It is practically impossible to investigate them all.
한정된 시간 내에 유용한 결과를 얻기 위해 본 발명에서는 유전적 알고리즘(genetic algorithm) [Judson, "Genetic Algorithms and Their Uses in Chemistry", Reviews in Computational Chemistry, Lipkowitz & Boyd, Eds., Vol.10, pp.1-73 (VCH Publishers, NY, 1997)]을 채택하였으며 그 상세한 방법은 다음과 같다. 먼저 분자표현자들의 풀(pool)에서 일정한 개수의 분자표현자들을 무작위로 뽑아 만든 다수의 다중선형회귀모형들로 구성된 개체군(population)을 생성한다. 예를 들어 1700개의 적합한 분자표현자들 중 5개를 무작위로 뽑아 만든 1000개의 서로 다른 다중선형회귀모형들로 개체군을 만들었다고 하자.In order to obtain useful results within a limited time, the present invention uses a genetic algorithm [Judson, "Genetic Algorithms and Their Uses in Chemistry", Reviews in Computational Chemistry, Lipkowitz & Boyd, Eds., Vol. 10, pp. 1 -73 (VCH Publishers, NY, 1997)]. First, a population of multiple linear regression models is created by randomly drawing a certain number of molecular descriptors from a pool of molecular descriptors. For example, let's say we created a population of 1000 different polylinear regression models that were randomly drawn from 5 of the 1700 suitable molecular descriptors.
이때 염색체(chromosome)라 불리는 각 개체(individual)들은 뽑힌 분자표현자들의 번호들을 조합하여 부호화한다. 예를 들어 1700개의 분자표현자중 45, 167, 684, 1033, 1502번째의 분자표현자들로 형성한 다중선형회귀모형의 염색체는 (45, 167, 684, 1033, 1502)와 같이 표현할 수 있다. 이렇게 생성된 개체군으로부터 두개의 부모 염색체를 선택한 뒤 교배(crossover)하여 자식들을 만들어 내는데 본 발명에서는 부모 염색체를 선택하는 선택기법으로 Roulette Wheel 방법을 채택하였다.Individuals, called chromosomes, are coded by combining the numbers of extracted molecular descriptors. For example, the chromosome of the multiple linear regression model formed by the 45th, 167, 684, 1033, and 1502th molecular descriptors among 1700 molecular descriptors can be expressed as (45, 167, 684, 1033, 1502). Two parent chromosomes are selected from the populations thus generated and crossovered to generate children. In the present invention, the Roulette Wheel method is adopted as a selection method for selecting the parent chromosomes.
Roulette Wheel 방법은 일반적으로 가장 많이 사용하는 선택 알고리즘으로 각 염색체의 적합도(fitness)에 비례하는 만큼 룰렛의 영역을 그 염색체에 할당한 다음, 룰렛을 돌려 해당된 영역의 염색체를 선택하는 방법이다. 따라서 이 방법에서는 적합도가 높은 개체일수록 선택될 확률이 높다. 선택확률을 결정짓는 각 염색체의 적합도 계산에는 회귀모형의 결정계수(coefficient of determination: ) 또는 평균절대오차(average absolute error: AAE)를 활용하였다. 즉 결정계수값이 크거나 평균절대오차값이 작은 것이 선택확률이 높도록 하였다.The Roulette Wheel method is the most commonly used selection algorithm, which allocates a roulette region to the chromosome in proportion to the fitness of each chromosome, and then rotates the roulette to select the chromosome of the corresponding region. Therefore, in this method, the higher the fit, the more likely it is to be selected. The coefficient of determination of the regression model is used to calculate the goodness of fit for each chromosome that determines the probability of selection. ) Or average absolute error (AAE). In other words, the larger the coefficient of determination or the smaller the mean absolute error, the higher the probability of selection.
교배방법으로는 단순교배(single point crossover)법을 채택하였는데 이는 가장 일반적인 교배 방법으로서 부모 염색체에서 임의로 1개의 교배점을 선택하여 그 지점 전후의 염색체부분을 서로 교환함으로써 자식을 생성하는 것을 말한다. 예를 들어 부모 염색체가 각각 (24, 262, 343, 789, 1290), (38, 454, 554, 1322, 1449)와 같이 주어지고 3번째와 4번째 요소 사이에 교배점이 놓이게 되면 자식 염색체는 각각 (24, 262, 343, 1322, 1449), (38, 454, 554, 789, 1290)와 같이 된다. The single point crossover method is adopted as the breeding method. The most common breeding method is to generate a child by selecting one crossing point on the parent chromosome and exchanging chromosomal parts before and after the point. For example, if the parent chromosome is given as (24, 262, 343, 789, 1290), (38, 454, 554, 1322, 1449), and there is a crossing point between the third and fourth elements, then the child chromosomes are (24, 262, 343, 1322, 1449), (38, 454, 554, 789, 1290).
이렇게 자식들이 생성되면 이들의 염색체 일부를 일정 확률로 돌연변이(mutation) 시키는 과정을 거치는데 이는 임의로 몇 개의 요소를 전혀 새로운 값으로 바꾸는 것으로 현재 집단에 존재하지 않는 새로운 정보로 초기 유전자 조합 이외의 공간을 탐색할 수 있게 해주어 초기 집합의 조합 내에 적절한 해가 없을 경우를 보완해주는 과정이다.When the offspring are created, they have a chance of mutating a portion of their chromosomes, which randomly replaces several elements with completely new values. This new information does not exist in the current population. It is a process that makes it possible to search to compensate for the case where there is no proper solution in the initial set combination.
이 같은 방법으로 새로이 구해진 개체들로 기존 개체군의 일부 또는 전부를 교체하여 새 세대의 개체군을 생성한다. 이 과정을 반복하여 그 세대수가 미리 정한 값(보통 10~1000사이에서 선택)에 이르면 가장 적합도가 큰 개체, 즉 예측성능이 가장 좋은 회귀모형을 선택하고 끝낸다.In this way, a new generation of populations are created by replacing some or all of the existing populations with newly obtained entities. Repeat this process until the number of generations reaches a pre-determined value (usually between 10 and 1000), and then select and end up the regression model with the best predictive performance.
일단 이렇게 최선의 다중선형회귀모형이 선정되면 다음 단계로 이 모형의 타당성을 검토한다. 만일 모형에 포함된 분자표현자의 t검정값이 좋지 않다든지 하는 문제점이 발견되면 이전 단계로 돌아가 다른 모형을 찾는다. 예를 들어 샘플 화합물의 수가1005이고 선정된 모형이 5개의 분자표현자로 구성되어 있을 경우 그 중 한 분자표현자에 대한 t검정값이 3.3이상이면 이는 이 분자표현자가 해당 물성과 무관할 확률이 0.1%이하임을 뜻한다. 본 발명에서는 대략 3미만의 t검정값을 갖는 분자표현자가 존재할 경우 선정된 모형을 버리고 다른 모형을 찾았다. 또한 샘플 화합물들에 대한 한 분자표현자의 값들이 소수의 몇몇 화합물들을 제외하고는 모두 동일한 경우도 신뢰성 있는 모형이라고 볼 수 없어 마찬가지로 조처하였다. 일반적으로 모형에 포함되는 분자표현자의 개수를 늘리면 예측성능은 높아지지만 이와 같은 문제들이 발생하게 되므로 보통 최종 모형은 이 단계들을 분자표현자의 개수를 바꿔가며 여러 번의 시행착오를 거쳐 반복 수행함으로써 얻어진다. 선정된 모형에 더 이상 문제가 나타나지 않으면 다음 단계로 넘어간다.Once this best multiple linear regression model has been selected, the next step is to examine its validity. If a problem is found that the t-test value of the molecular descriptors included in the model is not good, go back and look for another model. For example, if the number of sample compounds is 1005 and the selected model consists of five molecular descriptors, then if the t-test for one of the molecular descriptors is 3.3 or higher, then the probability that the molecular descriptor is irrelevant to that property is 0.1 It means less than%. In the present invention, when there is a molecular presenter having a t-test value of less than about 3, the selected model is discarded and another model is found. In addition, even if the values of the molecular descriptors for the sample compounds are the same except for a few few compounds, they are not considered to be reliable models. In general, increasing the number of molecular expressions included in the model increases the predictive performance, but such problems occur. Therefore, the final model is usually obtained by repeating these steps through several trials and errors while changing the number of molecular expressions. If the problem no longer appears in the selected model, proceed to the next step.
마지막인 세부 단계 4에서는 모형을 형성하는데 참여하지 않았던 시험집합을 이용하여 찾아낸 모형의 예측성능을 평가한다. 만일 훈련집합에서 보다 예측성능이 많이 떨어지거나 예측이 크게 벗어나는 샘플들이 보이는 등의 문제점이 발견되면 세부 단계 1로 가서 훈련집합과 시험집합을 재조정한 뒤 이후 세부 단계를 진행한다. 여기서 훈련집합과 시험집합의 차이가 훈련집합에 대해서 얻은 절대평균오차(AAE)의 20%를 넘지 않으면 예측성능이 만족되는 것으로 판단한다.In the final detail, Step 4, the predictive performance of the model is assessed using test sets that did not participate in model formation. If a problem is found in the training set, such as a lot of poor predictive performance or a significant drop in prediction, go to
이렇게 하여 한 매개변수에 대한 다중선형회귀모형이 일단 구축되면 인공신경망모형을 구축하기 위해 먼저 분자표현자들의 데이터와 매개변수의 데이터를 표준화하는 작업, 즉 각 값에서 해당 데이터의 평균을 뺀 뒤 표준편차로 나누는 작업을 진행한다. 이렇게 준비된 전체 샘플을 대략6:2:2의 비율로 훈련집합(training set), 검증집합(validation set), 시험집합(test set)으로 나눈다.In this way, once the multiple linear regression model for a parameter has been constructed, first the standardization of the data of the molecular presenters and the parameters of the parameters, ie, subtracting the mean of the corresponding data from each value, is needed to build an artificial neural network model. Proceed to divide by deviation. The total sample thus prepared is divided into a training set, a validation set, and a test set in a ratio of approximately 6: 2: 2.
이후 이들을 사용하여 최선의 인공신경망모형을 탐색한다. 이때 탐색 범위는 도 4에서처럼 입력층과 출력층 사이에 한 개의 은닉층을 가지면서 이 3개 층이 전방향으로(feed forward), 즉 입력에서 출력으로 향하는 방향으로만 연결되어 있는 구조를 갖는 신경망으로 제한하였다. 입력층은 이미 확립되어 있는 다중선형회귀모형에 포함된 각 분자표현자들의 값을 입력 받는, 같은 개수만큼의 노드들로 구성하였으며 출력층은 액체 열전도율을 출력하는 한 개의 노드로 구성하였다. 또한 은닉층의 활성화 함수로는 Sigmoid 함수 즉 을, 출력층의 활성화 함수로는 선형함수 즉 를 채택하였다. 따라서 입력층의 각 노드들이 받는 입력값들을 라 할 때 은닉층의 j번째 노드의 출력값은 와 같이 주어지며 은닉층이 개의 노드로 이루어져 있을 때 출력층 출력노드의 최종 출력값은 와 같이 주어진다. 여기서 는 문턱 가중치(threshold weight)를 의미한다.We then use them to find the best artificial neural network model. At this time, the search range is limited to a neural network having a hidden layer between the input layer and the output layer as shown in FIG. 4 and having three structures connected only in a feed forward direction, that is, in a direction from the input to the output. It was. The input layer is composed of the same number of nodes that receive the values of the molecular descriptors included in the already established multiple linear regression model, and the output layer is composed of one node that outputs liquid thermal conductivity. In addition, as the activation function of the hidden layer, the Sigmoid function, , The activation function of the output layer is a linear function Was adopted. Therefore, the input values that each node in the input layer receives In this case, the output value of the j th node of the hidden layer is Is given by The final output value of the output layer output node when composed of four nodes As shown in Fig. here Denotes a threshold weight.
탐색은 은닉노드의 수가 1개인 것부터 차례로 개수를 늘려가며 진행하는데 보통 입력노드 개수의 2배가 될 때까지 진행하지만 만족스러운 모형이 나오지 않을 경우 더 진행하여 탐색한다. 자세한 절차는 다음과 같다. 먼저 은닉노드의 각 개수 별로, 난수 발생 함수를 써서 생성한 가중치 들의 다양한 초기값세트(보통1000세트이내)를 마련하고, 훈련집합을 사용하여 각 세트로 초기화된 신경망을 역전파 알고리즘을 통해 반복 훈련함으로써 가중치 들의 최적화된 값을 찾는다. 최적화에 대한 판단은 매 훈련 후 경신된 가중치들의 값으로 정해지는 모형을 검증집합에 적용하였을 때 그 평균제곱오차(mean square error)의 값이 최소가 되는 것으로 한다. 보통은 3000~5000번의 반복훈련 내에 이러한 시점이 나오게 된다. 이렇게 얻어진 각 초기값세트에 대응하는 최적화된 신경망모형을 훈련집합, 검증집합, 시험집합에 각각 적용하여 그 평균제곱오차들이 모두 다중선형회귀모형의 그것들보다 작은 것만을 모은다. 이러한 것이 여러 개 있을 경우, 결정계수나 평균절대오차 등을 기준으로 가장 우수한 모형을 선택한다.The search proceeds from increasing the number of hidden nodes to one in order. Usually, the search proceeds to twice the number of input nodes. However, if a satisfactory model is not found, the search proceeds further. The detailed procedure is as follows. First, the weight generated by using random number generation function for each number of hidden nodes Prepare different sets of initial values (usually within 1000 sets), and then use the training set to repeatedly train the neural networks initialized in each set using a backpropagation algorithm. Find the optimal value for these. The judgment of the optimization is that the mean square error is minimized when the model, which is determined by the updated weights after each training, is applied to the test set. Normally this will occur within 3000 to 5000 repetitions. The optimized neural network model corresponding to each set of initial values thus obtained is applied to the training set, the test set, and the test set, respectively, to collect only those whose mean square errors are smaller than those of the multiple linear regression model. If there are several of these, choose the best model based on the coefficient of determination or the absolute absolute error.
이렇게 인공신경망모형이 선정되면 마지막으로 과적합(overfitting) 방지기준을 설정한다. 이는 과도한 훈련의 결과로 인공신경망이 미지의 입력에 대해 엉뚱한 답을 내놓는 불안정성을 개선하기 위한 조처로, 한 기준값(일례로 탄화수소의 시작점 액체 열전도율의 경우 1 )을 정하여 인공신경망모형과 다중선형회귀모형의 예측값들 차이의 절대값이 기준값을 넘을 경우 다중선형회귀모형의 예측값을 채택하고 이보다 작을 경우 인공신경망모형의 값을 채택하게 하는 것을 말한다.When the artificial neural network model is selected, an overfitting prevention standard is finally set. This is a measure to improve the instability that the artificial neural network gives wrong answers to unknown inputs as a result of overtraining, a reference value (e.g. 1 for hydrocarbon starting point liquid thermal conductivity). ), Which means that if the absolute value of the difference between the predicted values of the artificial neural network model and the multiple linear regression model exceeds the reference value, the predicted value of the multiple linear regression model is adopted.
이 같은 과정을 거쳐 각 매개변수에 대한 QSPR 모형이 구축되면 다음으로 단계 6에서는 액체 열전도율에 대한 각 화합물의 실험데이터 전체를 SVRC 수식을 통해 계산된 값과 비교하는 테스트를 진행한다. 이때 SVRC 수식으로 예측값을 계산하려면 정상끓는점의 값이 필요한데 이 정보에 대해서는 이미 알려져 있는 값 또는 QSPR 모형에 근거한 계산 방법에 의해서 구한 값을 활용하였다. 만일 실험값과 예측값의 오차가 용인할 수 있는 수준보다 클 경우(예측오차가 실험평균오차보다 큰 경우가 대략 25%이상일 때), 단계 5로 돌아가 각 매개변수들에 대한 QSPR 모형을 다시 잡는다. 테스트를 통과한 경우 이를 완성된 SVRC 모형으로 채택한다.After this process, the QSPR model for each parameter is constructed. Next, in step 6, a test is conducted to compare the entire experimental data of each compound with respect to the liquid thermal conductivity with the values calculated through the SVRC equation. At this time, the normal boiling point value is required to calculate the predicted value by SVRC formula. For this information, the value obtained by the known method or the calculation method based on the QSPR model is used. If the difference between the experimental and predicted values is greater than the acceptable level (when the forecasted error is greater than approximately 25% of the estimated mean error), go back to
이러한 과정을 거쳐 확립된 SVRC 모형에 대한 결과는 표 1~6에 간략히 정리되어 있다. 탄화수소와 비탄화수소에 대한 , , 의 값을 예측하는 QSPR 모형은 표 1(탄화수소의 에 대한 QSPR 예측모델의 주요 내용), 표 2(비탄화수소의 에 대한 QSPR 예측모델의 주요 내용), 표 3(탄화수소의 에 대한 QSPR 예측모델의 주요 내용), 표 4(비탄화수소의 에 대한 QSPR 예측모델의 주요 내용) 및 표 5 (에대한 QSPR 예측모델의 주요 내용)에 간단히 기술되어있다. 이렇게 확립된 액체 열전도율을 예측하는 SVRC 모형과 그 성능에 대한 결과는 표 6(SVRC 예측모델의 주요 내용)에 나와있다.
The results for the SVRC model established through this process are summarized in Tables 1-6. For hydrocarbons and non-hydrocarbons , , The QSPR models for predicting the values of are given in Table 1 (the main content of the QSPR prediction model for hydrocarbons) and Table 2 (for non-hydrocarbons). Highlights from the QSPR predictive model for Main contents of QSPR prediction model for), Table 4 (Main contents of QSPR prediction model for non-hydrocarbon) and Table 5 ( The main content of the QSPR predictive model for The SVRC model for predicting the liquid thermal conductivity thus established and the results of the performance are shown in Table 6 (the main contents of the SVRC predictive model).
P2: 모서리 인접행렬 스펙트럼 모멘트9(Spectral moment 09 from edge adjacency matrix)
P3: 동경 분포 함수-11.0/원자량 가중(Radial Distribution Function - 11.0 / weighted by atomic masses)
P4: Burden 행렬의 최고 고유값5/원자 Sanderson 전기음성도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity)
P5: 관성 모멘트 C(Moment of inertia C)
P6: 전자회절기반 3차원 분자구조 표현-차수28/원자량 가중(3D-MoRSE - signal 28 / weighted by atomic masses)
P7: 동경 분포 함수-3.5/원자 반데르발스 부피 가중(Radial Distribution Function - 3.5 / weighted by atomic van der Waals volumes)
P8: 지렛대 가중 자기상관 차수4/원자 편극도 가중(leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability)
P9: 동경 분포 함수-12.5/원자량 가중(Radial Distribution Function - 12.5 / weighted by atomic masses)
P10: 쌍극자모멘트 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by dipole moments)
P 1 : Representation of 3D molecular structure based on electron diffraction-order 8 / atomic van der Waals volume weighting
P 2 : Spectral moment 09 from edge adjacency matrix
P 3 : Radial Distribution Function-11.0 / weighted by atomic masses
P 4 : highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity
P 5 : Moment of inertia C
P 6 : 3D molecular structure representation based on electron diffraction-order 28 / atomic weighting (3D-MoRSE-signal 28 / weighted by atomic masses)
P 7 : Radial Distribution Function-3.5 / weighted by atomic van der Waals volumes
P 8 : leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability
P 9 : Radial Distribution Function-12.5 / weighted by atomic masses
P10: Eigenvalue 14 from edge adjacency matrix weighted by dipole moments
P2: 동경 분포 함수-15.0/원자량 가중(Radial Distribution Function - 15.0 / weighted by atomic masses)
P3: 평균 연결지수 차수4(average connectivity index chi-4)
P4: Ar-C(=X)-R 기능기 수(Ar-C(=X)-R)
P5: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중(Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by atomic masses)
P6: Geary의 자기상관-차수2/원자 Sanderson 전기음성도 가중(Geary autocorrelation - lag 4 / Weighted by atomic Sanderson electronegativity)
P7: R 최대 자기상관 차수2/비가중(R maximal autocorrelation of lag 2 / Unweighted)
P8: Kier와Hall의 지수 (차수1)(Kier&Hall index (order 1))
P9: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals)
P10: 지렛대 가중 자기상관 차수2/비가중(leverage-weighted autocorrelation of lag 2 / Unweighted)
P11: 수소결합 제공원자의 수(number of donor atoms for H-bonds (N and O))
P12: 동경 분포 함수-8.5/원자 Sanderson 전기음성도 가중(Radial Distribution Function - 8.5 / weighted by atomic Sanderson electronegativity)
P13: (지방족) 케톤의 수(number of ketones (aliphatic))
P14: 평균 원자 Sanderson 전기음성도 (탄소원자로 조정)(mean atomic Sanderson electronegativity (scaled on Carbon atom))
P15: 평균 연결지수 차수1(average connectivity index chi-1)
P 1 : Kier benzene-likeliness index
P 2 : Radial Distribution Function-15.0 / weighted by atomic masses
P 3 : average connectivity index chi-4
P 4 : Number of Ar-C (= X) -R functional groups (Ar-C (= X) -R)
P 5 : Broto-Moreau autocorrelation of a topological structure-lag 2 / Weighted by atomic masses
P 6 : Geary's autocorrelation-lag 4 / Weighted by atomic Sanderson electronegativity
P 7 : R maximal autocorrelation of lag 2 / Unweighted
P 8 : Kier & Hall index (order 1)
P 9 : Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals
P 10 : leverage-weighted autocorrelation of lag 2 / Unweighted
P 11 : number of donor atoms for H-bonds (N and O)
P 12 : Radial Distribution Function-8.5 / weighted by atomic Sanderson electronegativity
P 13 : number of ketones (aliphatic)
P 14 : mean atomic Sanderson electronegativity (scaled on Carbon atom)
P 15 : average connectivity index chi-1
P2: 수소원자 자기상관 차수5/원자 편극도 가중(H autocorrelation of lag 5 / Weighted by atomic polarizability)
P3: Balaban V 지수(Balaban V index)
P4: 결합정보내용(주변대칭 차수1)(bond information content (neighborhood symmetry of 1-order))
P5: 정보 내용 (차수1)(Information content (order 1))
P6: 고리의 상대적인 수(Relative number of rings)
P7: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals)
P8: 모서리 인접행렬 스펙트럼 모멘트15(Spectral moment 15 from edge adjacency matrix)
P9: Moran의 자기상관 차수8/원자 Sanderson 전기음성도 가중(Moran autocorrelation - lag 8 / Weighted by atomic Sanderson electronegativity)
P10: 동경 분포 함수-12.0/원자량 가중(Radial Distribution Function - 12.0 / weighted by atomic masses)P 1 : number of total tertiary C (sp3)
P 2 : H autocorrelation of
P 3 : Balaban V index
P 4 : bond information content (neighborhood symmetry of 1-order)
P 5 : Information content (order 1)
P 6 : Relative number of rings
P 7 : Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals
P 8 :
P 9 : Moran's autocorrelation-lag 8 / Weighted by atomic Sanderson electronegativity
P 10 : Radial Distribution Function-12.0 / weighted by atomic masses
P2: 2차 성분크기지향적 가중 포괄불변분자 지수/비가중
P3: 동경 분포 함수-8.0/비가중
P4: Moran의 자기상관 차수2/원자 반데르발스 부피 가중
P5: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중
P6: 동경 분포 함수-11.5/원자량 가중
P7: 고리의 상대적인 수(Relative number of rings)
P8: 최대 시그마-시그마 결합차수(Max SIGMA-SIGMA bond order)
P9: 산소원자의 상대적인 수(Relative number of O atoms)
P10: 전자회절기반 3차원 분자구조 표현-차수8/원자 편극도 가중(3D-MoRSE - signal 08 / weighted by atomic polarizability)
P11: 전자회절기반 3차원 분자구조 표현-차수2/원자량 가중(3D-MoRSE - signal 02 / weighted by atomic masses)
P12: 수소결합 기부체 전하 표면적(HDCA H-donors charged surface area)
P13: Burden 행렬의 최저 고유값3/원자량 가중(lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses)
P14: R 최대 자기상관 차수1/원자 Sanderson 전기음성도 가중(R maximal autocorrelation of lag 1 / Weighted by atomic Sanderson electronegativity)
P15: 동경 분포 함수-14.0/원자 편극도 가중(Radial Distribution Function - 14.0 / weighted by atomic polarizability)
P 1 : Maximum valency of a O atom
P 2 : Secondary component size-oriented weighted inclusive molecular index / unweighted
P 3 : Tokyo distribution function-8.0 / weighted
P 4 : Moran's autocorrelation order 2 / atomic van der Waals volume weighting
P 5 : Broto-Moreau's phase structure autocorrelation-order2 / atomic weighting
P 6 : Tokyo Distribution Function-11.5 / Atomic Weight
P 7 : Relative number of rings
P 8 : Maximum SIGMA-SIGMA bond order
P 9 : Relative number of O atoms
P 10 : 3D molecular structure representation based on electron diffraction-order 8 / atomic polarization weight (3D-MoRSE-signal 08 / weighted by atomic polarizability)
P 11 : 3D molecular structure representation based on electron diffraction-order 2 / atomic weighting (3D-MoRSE-signal 02 / weighted by atomic masses)
P 12 : HDCA H-donors charged surface area
P 13 : lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses
P 14 : R maximal autocorrelation of
P 15 : Radial Distribution Function-14.0 / weighted by atomic polarizability
P2: N..O간 기하학적 거리의 합
P3: 분자의 총 쌍극자(Total dipole of the molecule)
P4: 1차 성분대칭지향적 가중 포괄불변분자 지수/원자 전자위상 상태 가중
P5: 최소 원자 궤도의 전자 집단
P6: 쌍극자모멘트 가중 모서리 인접행렬 스펙트럼 모멘트7
P7: 탄소원자의 최대 부분전하
P8: Burden 행렬의 최고 고유값5/원자 편극도 가중
P9: 질소원자의 평균 단전자 반응지수(Average 1-electron reaction index for a N atom)
P10: 위상거리5 C-N 결합의 존재여부(presence/absence of C - N at topological distance 05)
P11: 평균 연결지수 차수2(average connectivity index chi-2)
P12 : R--CR--R 기능기 수(R--CR-R)
P13: R 자기상관 차수2/비가중(R autocorrelation of lag 2 / Unweighted)
P14: 관성 모멘트 A(Moment of inertia A)
P15: (지방족) 1차 아민의 수(number of primary amines (aliphatic))
P16: 질소원자의 최소 결합차수 (>0.1)(Minimum (>0.1) bond order of a N atom)
P17: Moran의 자기상관 차수1/원자 반데르발스 부피 가중
P18: 피롤리딘의 수( number of Pyrrolidine)
P 1 : number of (aromatic) carboxylic acids
P 2 : Sum of geometric distances between N..O
P 3 : Total dipole of the molecule
P 4 : Primary component symmetry-oriented weighting invariant molecular index / atomic electron phase state weighting
P 5 : group of electrons in minimum atomic orbit
P 6 : dipole moment weighted edge adjacent matrix spectral moment 7
P 7 : Maximum partial charge of carbon atom
P 8 :
P 9 : Average 1-electron reaction index for a N atom
P 10 : Presence / absence of C-N at topological distance 05
P 11 : average connectivity index chi-2
P 12 : Number of R--CR--R functions (R--CR-R)
P 13 : R autocorrelation of lag 2 / Unweighted
P 14 : Moment of inertia A
P 15 : number of primary amines (aliphatic)
P 16 : Minimum (> 0.1) bond order of a N atom
P 17 : Moran's
P 18 : number of pyrrolidine
SVRC Model
본 발명이 기존 기술보다 우월함을 보이기 위해 1104개 화합물의 11040개의 실험데이터에 대해 본 발명의 SVRC 모형과 널리 사용되는 기존 모형의 하나로서 위에 언급되었던 Sato-Riedel 모형의 예측성능을 비교하였다. 그 결과 Sato-Riedel 모형은 0.527244의 결정계수값과 0.015841 의 평균절대오차값을 보인 반면, 본 발명의 SVRC 모형은 0.700121의 결정계수값과 0.009393 의 평균절대오차값을 보여 현저히 우수함을 알게 되었다. 도 5~8은 예로 몇몇 화합물에 대해 각 모형의 예측성능을 비교한 도면들이다. 이 도면들로부터 SVRC 모형이 기존 모형보다 우수한 성능을 가짐을 눈으로 확인할 수 있다. 한편 11040개의 실험데이터에 대해 실험값과 예측값 사이의 오차를 히스토그램으로 그린 것이 도 9, 10이다. 이 도면들은, Sato-Riedel 모형은 27.86%, SVRC 모형은 58.38%의 확률로 5% 오차 이내로 액체 열전도율을 예측하고 있음을 보여주어 SVRC 모형이 보다 정확함을 증명해준다.
In order to show that the present invention is superior to the existing technology, the predictive performance of the Sato-Riedel model mentioned above is compared with the SVRC model of the present invention and 11040 experimental data of the present invention for 11040 experimental data of 1104 compounds. As a result, the Sato-Riedel model has a coefficient of determination of 0.527244 and 0.015841. While the average absolute error of is shown, the SVRC model of the present invention has a crystal coefficient of 0.700121 and a 0.009393 The average absolute error of was found to be remarkably excellent. 5 to 8 are examples for comparing the predictive performance of each model for some compounds. From these drawings, it can be seen that the SVRC model has better performance than the existing model. Meanwhile, FIGS. 9 and 10 illustrate errors between an experimental value and a predicted value as histograms for 11040 experimental data. These figures demonstrate that the SVRC model is more accurate, showing that the Sato-Riedel model has a 27.86% probability and the 58.38% probability that the SVRC model predicts liquid thermal conductivity within 5% error.
본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described embodiments, and any person having ordinary skill in the art to which the present invention pertains may make various modifications without departing from the gist of the present invention as claimed in the claims. Such changes are intended to fall within the scope of the claims.
Claims (30)
샘플 화합물들의 탄화수소 계열 유기화합물의 액체 열전도율에 대한 분자표현자값을 준비하는 제2단계,
하기 식(1)에 기재되어 있는 SVRC 수식에 필요한 매개변수를 구하는 제3단계,
식(1)
[여기서 는 정상끓는점 에서의 액체 열전도율, 정상끓는점의 0.65배인 온도( 에서의 액체 열전도율, 는 스케일링 지수];
상기 제3단계에서 얻은 상기 매개변수 정상끓는점과 정상끓는점의 0.65배인 온도 에서의 액체 열전도율, α에 대한 QSPR 모형을 구축하는 제4단계,
상기 실험 데이터로 예측성능을 테스트하는 제5단계, 및
상기 제5단계의 테스트를 만족하면 탐색된 모형에 의한 액체 열전도율 예측값을 액체 열전도율 값으로 채택하고, 만족하지 못하면 제4단계, 제5단계를 반복하는 제6단계를 포함하는 SVRC 모형에 의해서 탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
A first step of inputting experimental data of a hydrocarbon group among collected sample organic compounds,
A second step of preparing molecular expression values for liquid thermal conductivity of hydrocarbon-based organic compounds of the sample compounds,
A third step of obtaining parameters required for the SVRC equation described in Equation (1) below;
Equation (1)
[here Normal boiling point Liquid thermal conductivity at Temperature 0.65 times normal boiling point ( Liquid thermal conductivity at Is a scaling index];
A fourth step of constructing a QSPR model for liquid thermal conductivity, α at a temperature of 0.65 times the normal boiling point and the parameter obtained in the third step,
A fifth step of testing predictive performance with the experimental data, and
If the test of the fifth step is satisfied, the hydrocarbon-based series is adopted by the SVRC model including the sixth step of repeating the fourth step and the fifth step by adopting the liquid thermal conductivity predicted value by the searched model as the liquid thermal conductivity value. A method of obtaining the liquid thermal conductivity of an organic compound.
상기 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α각각에 대한 최적의 분자표현자들을 추출하는 제4-0단계,
훈련집합과 시험집합으로 실험데이터를 분리하는 제4-1단계,
훈련집합에 대하여 최적의 다중선형회귀모형을 탐색하는 제4-2단계,
선택된 모형의 타당성을 검토하는 제4-3단계,
상기 제4-3단계에서 타당성이 없으면, 상기 제4-2단계, 제4-3단계를 반복하고, 타당성이 있으면 시험집합에 대하여 모형의 예측성능을 테스트하는 제4-4단계,
시험집합에 대한 상기 제4-4단계 테스트에서 성능이 기준을 만족하지 못하면 제4-2단계 내지 제4-4단계를 반복하고, 성능이 기준을 만족하면 샘플 표준화 후3개 집합으로 분리하는 제4-5단계,
전체 샘플을 3개 집합으로 나눈 후에 최적의 인공신경망모형을 탐색하는 제4-6단계,
상기 제4-5단계에서 성능 테스트를 만족하는 상기 최적의 다중선형회귀모형에 의해서 구한 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α예측값과 상기 제4-6단계에서 탐색된 상기 최적의 인공신경망모형에 의해서 구한 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α 예측값 차이의 절대값을 미리 설정된 과적합 방지 기준값과 비교하는 제4-7단계, 및
상기 차이가 상기 과적합 방지 기준값 보다 크면 상기 제4-5단계에서 얻은 다중선형회귀모형에 의한 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α 예측값을 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α 값으로 채택하고 상기 과적합 방지 기준값 보다 작으면 상기 제4-6단계에서 탐색된 인공신경망모형에 의한 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α 예측값을 정상끓는점에서의 액체 열전도율, 정상끓는점의 0.65배인 온도에서의 액체 열전도율, α 값으로 채택하는 제4-8단계를 포함하는 SVRC 모형에 의해서 탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
The method of claim 1, wherein in the fourth step, a method of obtaining a QSPR model for liquid thermal conductivity at a temperature of 0.65 times the normal boiling point and liquid thermal conductivity at a temperature of 0.65 times the normal boiling point,
Step 4-0 of extracting the liquid thermal conductivity at the normal boiling point, the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point, and optimum molecular descriptors for each α,
4-1, separating the experimental data into a training set and a test set,
Steps 4-2 of searching for an optimal multiple linear regression model for the training set;
Steps 4-3 to review the validity of the selected model,
In step 4-3, if the validity is not satisfied, steps 4-2 and 4-3 are repeated, and if valid, in step 4-4, the predictive performance of the model is tested for the test set.
If the performance does not meet the criteria in the 4-4 test for the test set, repeat steps 4-2 to 4-4, and if the performance satisfies the criteria, separate the three sets after standardization Steps 4-5,
Step 4-6 of dividing the entire sample into three sets and searching for the optimal artificial neural network model;
Liquid thermal conductivity at the normal boiling point, liquid thermal conductivity at a temperature of 0.65 times the normal boiling point, α predicted value and in the above 4-6 step obtained by the optimal multiple linear regression model that satisfies the performance test in steps 4-5 Step 4-7 comparing the liquid thermal conductivity at normal boiling point, the liquid thermal conductivity at a temperature of 0.65 times normal boiling point, and the absolute value of the difference between α predicted values obtained by the searched optimal artificial neural network model with a preset overfit prevention reference value , And
If the difference is larger than the reference value for preventing overfitting, the liquid thermal conductivity at normal boiling point by the multiple linear regression model obtained in steps 4-5, the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point, and the liquid at the normal boiling point The thermal conductivity, the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point, α value, and if it is smaller than the reference value for preventing overfitting, the liquid thermal conductivity at normal boiling point by the artificial neural network model found in the above steps 4-6, the normal boiling point of Hydrocarbon-based organic compounds by SVRC model including liquid thermal conductivity at temperature 0.65 times, liquid thermal conductivity at normal boiling point, liquid thermal conductivity at normal boiling point 0.65 times normal boiling point, and steps 4-8 To obtain the liquid thermal conductivity of
3. The liquid thermal conductivity of the hydrocarbon-based organic compound according to the SVRC model according to claim 2, wherein the optimal molecular presenter in step 4-0 is an independent molecular presenter whose values are not the same for all sample compounds. Way.
The method of claim 2, wherein the training set and the test set are divided by a ratio of 5: 5 to 8: 2 in step 4-1.
The hydrocarbon according to claim 2, wherein the multiple linear regression model in step 4-2 searches for the multiple linear regression model by applying a genetic algorithm to the training set. A method of obtaining the liquid thermal conductivity of a series organic compound.
The method of claim 5, wherein the genetic algorithm generates a population composed of a plurality of multiple linear regression models randomly drawn from a predetermined number of molecular expressions in a pool of molecular expressions. Each individual (individual) is a combination of the numbers of the molecular representations extracted by the step of selecting two parent chromosomes from the created population by the roulette wheel method and then by a single point crossover method Generating Progeny Hydrocarbon-based organics by SVRC model comprising the step of mutating a portion of the chromosome of the generated progeny in a certain probability and then replacing a part of the existing population with them to create a new population. A method of obtaining the liquid thermal conductivity of a compound.
The method of claim 2, wherein the step 4-2 is to determine the liquid thermal conductivity of the hydrocarbon-based organic compound by the SVRC model comprising determining the predictive performance by the crystal coefficient or the mean absolute error of the regression model.
The method of claim 2, wherein the validity in the step 4-3 is to obtain the liquid thermal conductivity of the hydrocarbon-based organic compound by the SVRC model to determine the validity by the t-test value.
The method of claim 2, wherein in step 4-5, if the predicted performance of the test set is similar to the predicted performance of the training set, the multiple linear regression model is determined, and the predicted performance of the test set is the predicted performance of the training set. And the liquid thermal conductivity of the hydrocarbon-based organic compound by the SVRC model that reclassifies the training set and the test set.
[4] The SVRC model of claim 2, wherein the search range by the artificial neural network in step 4-6 has one hidden layer between the input layer and the output layer and is connected only in a feed forward. To obtain the liquid thermal conductivity of a hydrocarbon-based organic compound.
The method of claim 10, wherein the activation function of the hidden layer is a sigmoid function, and the liquid thermal conductivity of the hydrocarbon-based organic compound is obtained by an SVRC model.
The reference value for preventing overfitting of the liquid thermal conductivity at the normal boiling point and the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point in steps 4-7 is 1 W / (m * K), The overfit prevention criteria for the method for obtaining the liquid thermal conductivity of the hydrocarbon-based organic compound by the SVRC model, characterized in that 1.
: 총 3차 sp3 탄소의 수(number of total tertiary C(sp3)),
: 수소원자 자기상관 차수5/원자 편극도 가중(H autocorrelation of lag 5 / Weighted by atomic polarizability),
: Balaban V 지수(Balaban V index),
: 결합정보내용(주변대칭 차수1)(bond information content (neighborhood symmetry of 1-order)),
: 정보 내용 (차수1)(Information content (order 1)),
: 고리의 상대적인 수(Relative number of rings),
: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals),
: 모서리 인접행렬 스펙트럼 모멘트15(Spectral moment 15 from edge adjacency matrix),
: Moran의 자기상관 차수8/원자 Sanderson 전기음성도 가중(Moran autocorrelation - lag 8 / Weighted by atomic Sanderson electronegativity), 및
: 동경 분포 함수-12.0/원자량 가중(Radial Distribution Function - 12.0 / weighted by atomic masses)을 포함하며,
상기 정상끓는점의 0.65배인 온도 에서의 액체 열전도율에 대하여 추출된 분자표현자는
: 전자회절기반 3차원 분자구조 표현-차수8/원자 반데르발스 부피 가중(3D-MoRSE - signal 08 / weighted by atomic van der Waals volumes),
: 모서리 인접행렬 스펙트럼 모멘트9(Spectral moment 09 from edge adjacency matrix),
: 동경 분포 함수-11.0/원자량 가중(Radial Distribution Function - 11.0 / weighted by atomic masses),
: Burden 행렬의 최고 고유값5/원자 Sanderson 전기음성도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity),
: 관성 모멘트 C(Moment of inertia C),
: 전자회절기반 3차원 분자구조 표현-차수28/원자량 가중(3D-MoRSE - signal 28 / weighted by atomic masses),
: 동경 분포 함수-3.5/원자 반데르발스 부피 가중(Radial Distribution Function - 3.5 / weighted by atomic van der Waals volumes),
: 지렛대 가중 자기상관 차수4/원자 편극도 가중(leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability),
: 동경 분포 함수-12.5/원자량 가중(Radial Distribution Function - 12.5 / weighted by atomic masses),
: 쌍극자모멘트 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by dipole moments)을 포함하고,
상기 α 에 대하여 추출된 분자표현자는
: (방향족) 카르복실산의 수(number of carboxylic acids (aromatic)),
: N..O간 기하학적 거리의 합(Summary of geometrical distances between N..O),
: 분자의 총 쌍극자(Total dipole of the molecule),
: 2차 성분접근지향적 가중 포괄불변분자 지수/원자 전자위상 상태 가중(2nd component symmetry directional WHIM index / weighted by atomic electrotopological states),
: 최소 원자 궤도의 전자 집단(Minimum atomic orbital electronic population),
: 쌍극자모멘트 가중 모서리 인접행렬 스펙트럼 모멘트7(Spectral moment 07 from edge adjacency matrix weighted by dipole moments),
: 탄소원자의 최대 부분전하(Maximum partial charge for a C atom),
: Burden 행렬의 최고 고유값5/원자 편극도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability),
: 질소원자의 평균 단전자 반응지수(Average1-electron reaction index for a N atom),
: 위상거리5 C-N 결합의 존재여부(presence/absence of C - N at topological distance 05),
: 평균 연결지수 차수2(average connectivity index chi-2),
: R--CR--R 기능기 수(R--CRR),
: R 자기상관 차수2/비가중(R autocorrelation of lag 2 / Unweighted),
: 관성 모멘트 A(Moment of inertia A),
: (지방족) 1차 아민의 수(number of primary amines (aliphatic)),
: 질소원자의 최소 결합차수 (>0.1)(Minimum (>0.1) bond order of a N atom),
: Moran의 자기상관 차수1/원자 반데르발스 부피 가중(Moran autocorrelation - lag 1 / Weighted by atomic van der Waals volumes), 및
: 피롤리딘의 수(number of Pyrrolidine)를 포함하는 것을 특징으로 하는 SVRC 모형에 의해서 탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
According to claim 2, wherein the molecular expression extracted for the liquid thermal conductivity at the normal boiling point in the step 4-0
Is the number of total tertiary C (sp3),
: H autocorrelation of lag 5 / Weighted by atomic polarizability,
: Balaban V index,
Bond information content (neighborhood symmetry of 1-order),
Information content (order 1),
Relative number of rings,
: Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals,
: Spectral moment 15 from edge adjacency matrix,
Moran's autocorrelation-lag 8 / Weighted by atomic Sanderson electronegativity, and
: Contains the Radial Distribution Function-12.0 / weighted by atomic masses,
The molecular descriptors extracted for the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point
: 3D molecular structure representation based on electron diffraction-order 8 / atomic van der Waals volumes (3D-MoRSE-signal 08 / weighted by atomic van der Waals volumes),
: Spectral moment 09 from edge adjacency matrix,
: Radial Distribution Function-11.0 / weighted by atomic masses,
: Highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity,
: Moment of inertia C,
3D-MoRSE-signal 28 / weighted by atomic masses
: Radial Distribution Function-3.5 / weighted by atomic van der Waals volumes,
: Leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability,
: Radial Distribution Function-12.5 / weighted by atomic masses,
: Eigenvalue 14 from edge adjacency matrix weighted by dipole moments,
The molecular expression extracted with respect to α
: Number of carboxylic acids (aromatic),
: Sum of geometrical distances between N..O,
: Total dipole of the molecule,
: 2nd component symmetry directional WHIM index / weighted by atomic electrotopological states,
: Minimum atomic orbital electronic population,
: Spectral moment 07 from edge adjacency matrix weighted by dipole moments,
: Maximum partial charge for a C atom,
: Highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability,
: Average single-electron reaction index for a N atom,
Presence / absence of C-N at topological distance 05
Average connectivity index chi-2,
: R--CR--R number of functions (R--CRR),
R autocorrelation of lag 2 / Unweighted,
: Moment of inertia A,
: (Aliphatic) number of primary amines (aliphatic),
: Minimum order (> 0.1) bond order of a N atom,
Moran's autocorrelation-lag 1 / Weighted by atomic van der Waals volumes, and
: A method for obtaining the liquid thermal conductivity of a hydrocarbon-based organic compound by an SVRC model comprising the number of pyrrolidine.
A computer-readable storage medium having recorded thereon a program for executing on a computer a method for obtaining the liquid thermal conductivity of a hydrocarbon-based organic compound according to any one of claims 1 to 13.
상기 입력된 샘플 화합물들의 액체 열전도율에 대한 분자표현자 값을 준비하는 제2단계;
하기 식(2)에 기재되어 있는 SVRC 수식에 필요한 매개변수를 구하는 제3단계;
식(2)
[여기서 는 정상끓는점 에서의 액체 열전도율, 정상끓는점의 0.65배인 온도( 에서의 액체 열전도율, 는 스케일링 지수];
상기 제3단계에서 얻은 상기 매개변수 정상끓는점과 정상끓는점의 0.65배인 온도 에서의 액체 열전도율, α에 대한 QSPR 모형을 구축하는 제4단계;
상기 실험 데이터로 예측성능을 테스트하는 제5단계; 및
상기 제5단계의 테스트를 만족하면 탐색된 모형에 의한 액체 열전도율 예측값을 액체 열전도율 값으로 채택하고, 만족하지 못하면 제4단계, 제5단계를 반복하는 제6단계를 포함하는 SVRC 모형에 의해서 비탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
A first step of inputting non-hydrocarbon-based experimental data among collected sample organic compounds;
A second step of preparing molecular descriptor values for liquid thermal conductivity of the input sample compounds;
Obtaining a parameter required for the SVRC equation described in Equation (2);
Equation (2)
[here Normal boiling point Liquid thermal conductivity at Temperature 0.65 times normal boiling point ( Liquid thermal conductivity at Is a scaling index];
A fourth step of constructing a QSPR model for the liquid thermal conductivity, α, at a temperature of 0.65 times the normal boiling point and the parameter normal boiling point obtained in the third step;
A fifth step of testing predictive performance with the experimental data; And
If the test of the fifth step is satisfied, the liquid thermal conductivity predicted value of the searched model is adopted as the liquid thermal conductivity value, and if it is not satisfied, the hydrogenated non-hydrocarbon is determined by the SVRC model including the sixth step of repeating the fourth and fifth steps. A method of obtaining the liquid thermal conductivity of a series organic compound.
상기 정상끓는점에서의 액체 열전도율, α각각에 대한 최적의 분자표현자들을 추출하는 제4-0단계,
훈련집합과 시험집합으로 실험데이터를 분리하는 제4-1단계,
훈련집합에 대하여 최적의 다중선형회귀모형을 탐색하는 제4-2단계,
선택된 모형의 타당성을 검토하는 제4-3단계,
상기 제4-3단계에서 타당성이 없으면, 상기 제4-2단계, 제4-3단계를 반복하고, 타당성이 있으면 시험집합에 대하여 모형의 예측성능을 테스트하는 제4-4단계,
시험집합에 대한 상기 제4-4단계 테스트에서 성능이 기준을 만족하지 못하면 제4-2단계 내지 제4-4단계를 반복하고, 성능이 기준을 만족하면 샘플 표준화 후3개 집합으로 분리하는 제4-5단계,
전체 샘플을 3개 집합으로 나눈 후에 최적의 인공신경망모형을 탐색하는 제4-6단계,
상기 제4-5단계에서 성능 테스트를 만족하는 상기 최적의 다중선형회귀모형에 의해서 구한 정상끓는점에서의 액체 열전도율, α예측값과 상기 제4-6단계에서 탐색된 상기 최적의 인공신경망모형에 의해서 구한 정상끓는점에서의 액체 열전도율, α 예측값 차이의 절대값을 미리 설정된 과적합 방지 기준값과 비교하는 제4-7단계, 및
상기 차이가 상기 과적합 방지 기준값 보다 크면 상기 제4-5단계에서 얻은 다중선형회귀모형에 의한 정상끓는점에서의 액체 열전도율, α 예측값을 정상끓는점에서의 액체 열전도율, α 값으로 채택하고 상기 과적합 방지 기준값 보다 작으면 상기 제4-6단계에서 탐색된 인공신경망모형에 의한 정상끓는점에서의 액체 열전도율, α 예측값을 정상끓는점에서의 액체 열전도율, α 값으로 채택하는 제4-8단계를 포함하는 SVRC 모형에 의해서 비탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
16. The method of claim 15, wherein the method of obtaining a QSPR model for the liquid thermal conductivity α at the normal boiling point
Step 4-0 of extracting the optimal molecular descriptors for the liquid thermal conductivity at each boiling point, α,
4-1, separating the experimental data into a training set and a test set,
Steps 4-2 of searching for an optimal multiple linear regression model for the training set;
Steps 4-3 to review the validity of the selected model,
In step 4-3, if the validity is not satisfied, steps 4-2 and 4-3 are repeated, and if valid, in step 4-4, the predictive performance of the model is tested for the test set.
If the performance does not meet the criteria in the 4-4 test for the test set, repeat steps 4-2 to 4-4, and if the performance satisfies the criteria, separate the three sets after standardization Steps 4-5,
Step 4-6 of dividing the entire sample into three sets and searching for the optimal artificial neural network model;
Liquid thermal conductivity at normal boiling point, α predicted by the optimal multilinear regression model satisfying the performance test in steps 4-5, and the optimal neural network model found in steps 4-6. Steps 4-7 of comparing the liquid thermal conductivity at the normal boiling point, the absolute value of the difference between the α predicted values, and a preset overfit prevention reference value, and
If the difference is larger than the reference value for preventing overfitting, the liquid thermal conductivity at normal boiling point, α predicted value by the multilinear regression model obtained in steps 4-5 are adopted as the liquid thermal conductivity at normal boiling point, and α value. If less than the reference value SVRC model including steps 4-8 adopting the liquid thermal conductivity at normal boiling point, α predicted value of liquid thermal conductivity at normal boiling point, α value by the artificial neural network model discovered in step 4-6 A method of obtaining the liquid thermal conductivity of a non-hydrocarbon organic compound by
17. The liquid thermal conductivity of the non-hydrocarbon-based organic compound according to the SVRC model according to claim 16, wherein the optimal molecular presenter in step 4-0 is an independent molecular presenter whose value is not the same for all the sample compounds. How to obtain.
17. The method of claim 16, wherein the training set and the test set are divided by a ratio of 5: 5 to 8: 2 in step 4-1.
17. The method according to claim 16, wherein the multilinear regression model in step 4-2 is searched for by the SVRC model by searching for the multiple linear regression model by applying a genetic algorithm to the training set. Method for obtaining liquid thermal conductivity of hydrocarbon-based organic compounds.
20. The method of claim 19, wherein the genetic algorithm generates a population consisting of a plurality of multiple linear regression models randomly drawn from a pool of molecular presenters. Each individual (individual) is a combination of the numbers of the molecular representations extracted by the step of selecting two parent chromosomes from the created population by the roulette wheel method and then by a single point crossover method Generation of progeny The non-hydrocarbon series by the SVRC model comprising the step of mutating a portion of the chromosome of the generated progeny in a certain probability and then replacing a part of the existing population with them to create a new population. A method of obtaining the liquid thermal conductivity of an organic compound.
17. The method of claim 16, wherein the step 4-2 is to determine the liquid thermal conductivity of the non-hydrocarbon-based organic compound by the SVRC model comprising determining the predictive performance by the regression model crystal coefficient or the average absolute error.
17. The method of claim 16, wherein the validity in the step 4-3 is to obtain the liquid thermal conductivity of the non-hydrocarbon-based organic compound by the SVRC model to determine the validity by the t-test value.
17. The method of claim 16, wherein in step 4-5, if the predictive performance of the test set is similar to the predicted performance of the training set, the multiple linear regression model is determined, and the predictive performance of the test set is the predicted performance of the training set. Is a method of obtaining the liquid thermal conductivity of a non-hydrocarbon organic compound by the SVRC model that reclassifies the training set and the test set.
17. The SVRC model according to claim 16, wherein in step 4-6, the search range by the artificial neural network has one hidden layer between the input layer and the output layer and is connected only in a feed forward. Liquid thermal conductivity of non-hydrocarbon organic compounds.
25. The method of claim 24, wherein a sigmoid function is used as an activation function of the hidden layer.
18. The method of claim 16, wherein the overfit prevention reference value for liquid thermal conductivity at normal boiling point in steps 4-7 is 1 W / (m * K), and the overfit prevention standard for α is 1. The liquid thermal conductivity of a non-hydrocarbon type organic compound is calculated by the SVRC model.
: 산소원자의 최대 원자가(Maximum valency of a O atom),
: 2차 성분크기지향적 가중 포괄불변분자 지수/비가중(2nd component size directional WHIM index / unweighted),
: 동경 분포 함수-8.0/비가중(Radial Distribution Function - 8.0 / unweighted),
: Moran의 자기상관 차수2/원자 반데르발스 부피 가중(Moran autocorrelation - lag 2 / Weighted by atomic van der Waals volumes),
: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중(Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by atomic masses),
: 동경 분포 함수-11.5/원자량 가중(Radial Distribution Function - 11.5 / weighted by atomic masses),
: 고리의 상대적인 수(Relative number of rings),
: 최대 시그마-시그마 결합차수(Max SIGMA-SIGMA bond order),
: 산소원자의 상대적인 수(Relative number of O atoms),
: 전자회절기반 3차원 분자구조 표현-차수8/원자 편극도 가중(3D-MoRSE - signal 08 / weighted by atomic polarizability),
: 전자회절기반 3차원 분자구조 표현-차수2/원자량 가중(3D-MoRSE - signal 02 / weighted by atomic masses),
: 수소결합 기부체 전하 표면적(HDCA H-donors charged surface area),
: Burden 행렬의 최저 고유값3/원자량 가중(lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses),
: R 최대 자기상관 차수1/원자 Sanderson 전기음성도 가중(R maximal autocorrelation of lag 1 / Weighted by atomic Sanderson electronegativity), 및
: 동경 분포 함수-14.0/원자 편극도 가중(Radial Distribution Function - 14.0 / weighted by atomic polarizability)을 포함하며,
상기 정상끓는점의 0.65배인 온도 에서의 액체 열전도율에 대하여 추출된 분자표현자는
: Kier의 벤젠-가능성 지수(Kier benzene-likeliness index),
: 동경 분포 함수-15.0/원자량 가중(Radial Distribution Function - 15.0 / weighted by atomic masses),
: 평균 연결지수 차수4(average connectivity index chi-4),
: Ar-C(=X)-R 기능기 수(Ar-C(=X)-R),
: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중(Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by atomic masses),
: Geary의 자기상관-차수2/원자 Sanderson 전기음성도 가중(Geary autocorrelation - lag 4 / Weighted by atomic Sanderson electronegativity),
: R 최대 자기상관 차수2/비가중(R maximal autocorrelation of lag 2 / Unweighted),
: Kier와Hall의 지수 (차수1)(Kier&Hall index (order 1)),
: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals),
: 지렛대 가중 자기상관 차수2/비가중(leverage-weighted autocorrelation of lag 2 / Unweighted),
: 수소결합 제공원자의 수(number of donor atoms for H-bonds (N and O)),
: 동경 분포 함수-8.5/원자 Sanderson 전기음성도 가중(Radial Distribution Function - 8.5 / weighted by atomic Sanderson electronegativity),
: (지방족) 케톤의 수(number of ketones (aliphatic)),
: 평균 원자 Sanderson 전기음성도 (탄소원자로 조정)(mean atomic Sanderson electronegativity (scaled on Carbon atom)), 및
: 평균 연결지수 차수1(average connectivity index chi-1)을 포함하고,
상기 α 에 대하여 추출된 분자표현자는
: (방향족) 카르복실산의 수(number of carboxylic acids (aromatic)),
: N..O간 기하학적 거리의 합(Summary of geometrical distances between N..O),
: 분자의 총 쌍극자(Total dipole of the molecule),
: 1차 성분대칭지향적 가중 포괄불변분자 지수/원자 전자위상 상태 가중(2nd component symmetry directional WHIM index / weighted by atomic electrotopological states),
: 최소 원자 궤도의 전자 집단(Minimum atomic orbital electronic population),
: 쌍극자모멘트 가중 모서리 인접행렬 스펙트럼 모멘트7(Spectral moment 07 from edge adjacency matrix weighted by dipole moments),
: 탄소원자의 최대 부분전하(Maximum partial charge for a C atom),
: Burden 행렬의 최고 고유값5/원자 편극도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability),
: 질소원자의 평균 단전자 반응지수(Average1-electron reaction index for a N atom),
: 위상거리5 C-N 결합의 존재여부(presence/absence of C - N at topological distance 05),
: 평균 연결지수 차수2(average connectivity index chi-2),
: R--CR--R 기능기 수(R--CRR),
: R 자기상관 차수2/비가중(R autocorrelation of lag 2 / Unweighted),
: 관성 모멘트 A(Moment of inertia A),
: (지방족) 1차 아민의 수(number of primary amines (aliphatic)),
: 질소원자의 최소 결합차수 (>0.1)(Minimum (>0.1) bond order of a N atom),
: Moran의 자기상관 차수1/원자 반데르발스 부피 가중(Moran autocorrelation - lag 1 / Weighted by atomic van der Waals volumes), 및
: 피롤리딘의 수( number of Pyrrolidine)를 포함하는 것을 특징으로 하는 SVRC 모형에 의해서 비탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
17. The method according to claim 16, wherein the molecular expression extracted for the liquid thermal conductivity at the normal boiling point in the step 4-0
: Maximum valency of a O atom,
: 2nd component size directional WHIM index / unweighted,
: Radial Distribution Function-8.0 / unweighted,
Moran's autocorrelation-lag 2 / Weighted by atomic van der Waals volumes,
Broto-Moreau autocorrelation of a topological structure-lag 2 / Weighted by atomic masses,
: Radial Distribution Function-11.5 / weighted by atomic masses,
Relative number of rings,
: Maximum sigma-sigma bond order,
: Relative number of O atoms,
: Diffraction-based 3D molecular structure expression-order 8 / atomic polarization weighting (3D-MoRSE-signal 08 / weighted by atomic polarizability),
: Electron Diffraction Based Three-Dimensional Molecular Structures (3D-MoRSE-signal 02 / weighted by atomic masses),
: HDCA H-donors charged surface area,
: Lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses,
: R maximal autocorrelation of lag 1 / Weighted by atomic Sanderson electronegativity, and
: Includes the Radial Distribution Function-14.0 / weighted by atomic polarizability,
The molecular descriptors extracted for the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point
Kier's Kier benzene-likeliness index,
: Radial Distribution Function-15.0 / weighted by atomic masses,
Average connectivity index chi-4;
: Number of Ar-C (= X) -R functional groups (Ar-C (= X) -R),
Broto-Moreau autocorrelation of a topological structure-lag 2 / Weighted by atomic masses,
: Geary's autocorrelation-lag 4 / Weighted by atomic Sanderson electronegativity,
R maximal autocorrelation of lag 2 / Unweighted,
Kier and Hall index (order 1),
: Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals,
: Leverage-weighted autocorrelation of lag 2 / Unweighted,
: Number of donor atoms for H-bonds (N and O),
: Radial Distribution Function-8.5 / weighted by atomic Sanderson electronegativity,
: Number of ketones (aliphatic),
Mean atomic Sanderson electronegativity (scaled on Carbon atom), and
: Includes the average connectivity index chi-1,
The molecular expression extracted with respect to α
: Number of carboxylic acids (aromatic),
: Sum of geometrical distances between N..O,
: Total dipole of the molecule,
: 2nd component symmetry directional WHIM index / weighted by atomic electrotopological states,
: Minimum atomic orbital electronic population,
: Spectral moment 07 from edge adjacency matrix weighted by dipole moments,
: Maximum partial charge for a C atom,
: Highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability,
: Average single-electron reaction index for a N atom,
Presence / absence of C-N at topological distance 05
Average connectivity index chi-2,
: R--CR--R number of functions (R--CRR),
R autocorrelation of lag 2 / Unweighted,
: Moment of inertia A,
: (Aliphatic) number of primary amines (aliphatic),
: Minimum order (> 0.1) bond order of a N atom,
Moran's autocorrelation-lag 1 / Weighted by atomic van der Waals volumes, and
: A method for obtaining the liquid thermal conductivity of a non-hydrocarbon organic compound by an SVRC model comprising the number of Pyrrolidine.
29. A computer readable storage medium having recorded thereon a program for executing on a computer a method for obtaining the liquid thermal conductivity of a non-hydrocarbon based organic compound according to any one of claims 15 to 27.
식(3)
[여기서 는 정상끓는점 에서의 액체 열전도율, 정상끓는점의 0.65배인 온도( 에서의 액체 열전도율, 는 스케일링 지수],
상기 정상끓는점에서의 액체 열전도율에 대하여 추출된 분자표현자는
: 총 3차 sp3 탄소의 수(number of total tertiary C(sp3)),
: 수소원자 자기상관 차수5/원자 편극도 가중(H autocorrelation of lag 5 / Weighted by atomic polarizability),
: Balaban V 지수(Balaban V index),
: 결합정보내용(주변대칭 차수1)(bond information content (neighborhood symmetry of 1-order)),
: 정보 내용 (차수1)(Information content (order 1)),
: 고리의 상대적인 수(Relative number of rings),
: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals),
: 모서리 인접행렬 스펙트럼 모멘트15(Spectral moment 15 from edge adjacency matrix),
: Moran의 자기상관 차수8/원자 Sanderson 전기음성도 가중(Moran autocorrelation - lag 8 / Weighted by atomic Sanderson electronegativity), 및
: 동경 분포 함수-12.0/원자량 가중(Radial Distribution Function - 12.0 / weighted by atomic masses)을 포함하며,
상기 정상끓는점의 0.65배인 온도 에서의 액체 열전도율에 대하여 추출된 분자표현자는
: 전자회절기반 3차원 분자구조 표현-차수8/원자 반데르발스 부피 가중(3D-MoRSE - signal 08 / weighted by atomic van der Waals volumes),
: 모서리 인접행렬 스펙트럼 모멘트9(Spectral moment 09 from edge adjacency matrix),
: 동경 분포 함수-11.0/원자량 가중(Radial Distribution Function - 11.0 / weighted by atomic masses),
: Burden 행렬의 최고 고유값5/원자 Sanderson 전기음성도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity),
: 관성 모멘트 C(Moment of inertia C),
: 전자회절기반 3차원 분자구조 표현-차수28/원자량 가중(3D-MoRSE - signal 28 / weighted by atomic masses),
: 동경 분포 함수-3.5/원자 반데르발스 부피 가중(Radial Distribution Function - 3.5 / weighted by atomic van der Waals volumes),
: 지렛대 가중 자기상관 차수4/원자 편극도 가중(leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability),
: 동경 분포 함수-12.5/원자량 가중(Radial Distribution Function - 12.5 / weighted by atomic masses), 및
: 쌍극자모멘트 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by dipole moments)을 포함하고,
상기 α 에 대하여 추출된 분자표현자는
P1: (방향족) 카르복실산의 수(number of carboxylic acids (aromatic)),
P2: N..O간 기하학적 거리의 합(Sum of geometrical distances between N..O),
P3: 분자의 총 쌍극자(Total dipole of the molecule),
P4: 1차 성분대칭지향적 가중 포괄불변분자 지수/원자 전자위상 상태 가중(2nd component symmetry directional WHIM index / weighted by atomic electrotopological states),
P5: 최소 원자 궤도의 전자 집단(Minimum atomic orbital electronic population),
P6: 쌍극자모멘트 가중 모서리 인접행렬 스펙트럼 모멘트7(Spectral moment 07 from edge adjacency matrix weighted by dipole moments),
P7: 탄소원자의 최대 부분전하(Maximum partial charge for a C atom),
P8: Burden 행렬의 최고 고유값5/원자 편극도 가중(highest eigenvalue no.5 of Burden matrix / weighted by atomic polarizability),
P9: 질소원자의 평균 단전자 반응지수(Average 1-electron reaction index for a N atom),
P10: 위상거리5 C-N 결합의 존재여부(presence/absence of C - N at topological distance 05),
P11: 평균 연결지수 차수2(average connectivity index chi-2),
P12: R--CR--R 기능기 수(R--CR-R),
P13: R 자기상관 차수2/비가중(R autocorrelation of lag 2 / Unweighted),
P14: 관성 모멘트 A(Moment of inertia A),
P15: (지방족) 1차 아민의 수(number of primary amines (aliphatic)),
P16: 질소원자의 최소 결합차수 (>0.1)(Minimum (>0.1) bond order of a N atom),
P17: Moran의 자기상관 차수1/원자 반데르발스 부피 가중(Moran autocorrelation - lag 1 / Weighted by atomic van der Waals volumes), 및
P18: 피롤리딘의 수( number of Pyrrolidine)를 포함하는 것을 특징으로 하는 SVRC 모형에 의해서 탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
About SVRC model described in following formula (3)
Equation (3)
[here Normal boiling point Liquid thermal conductivity at Temperature 0.65 times normal boiling point ( Liquid thermal conductivity at Is a scaling index],
The molecular expression extracted for the liquid thermal conductivity at the normal boiling point is
Is the number of total tertiary C (sp3),
: H autocorrelation of lag 5 / Weighted by atomic polarizability,
: Balaban V index,
Bond information content (neighborhood symmetry of 1-order),
Information content (order 1),
Relative number of rings,
: Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals,
: Spectral moment 15 from edge adjacency matrix,
Moran's autocorrelation-lag 8 / Weighted by atomic Sanderson electronegativity, and
: Contains the Radial Distribution Function-12.0 / weighted by atomic masses,
The molecular descriptors extracted for the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point
: 3D molecular structure representation based on electron diffraction-order 8 / atomic van der Waals volumes (3D-MoRSE-signal 08 / weighted by atomic van der Waals volumes),
: Spectral moment 09 from edge adjacency matrix,
: Radial Distribution Function-11.0 / weighted by atomic masses,
: Highest eigenvalue no. 5 of Burden matrix / weighted by atomic Sanderson electronegativity,
: Moment of inertia C,
3D-MoRSE-signal 28 / weighted by atomic masses
: Radial Distribution Function-3.5 / weighted by atomic van der Waals volumes,
: Leverage-weighted autocorrelation of lag 4 / Weighted by atomic polarizability,
: Radial distribution function-12.5 / weighted by atomic masses, and
: Eigenvalue 14 from edge adjacency matrix weighted by dipole moments,
The molecular expression extracted with respect to α
P 1 : number of carboxylic acids (aromatic),
P 2 : Sum of geometrical distances between N..O,
P 3 : Total dipole of the molecule,
P 4 : 2nd component symmetry directional WHIM index / weighted by atomic electrotopological states,
P 5 : Minimum atomic orbital electronic population,
P 6 : Spectral moment 07 from edge adjacency matrix weighted by dipole moments,
P 7 : Maximum partial charge for a C atom,
P 8 : highest eigenvalue no.5 of Burden matrix / weighted by atomic polarizability,
P 9 : Average 1-electron reaction index for a N atom,
P 10 : phase distance 5 presence of CN bonds (presence / absence of C-N at topological distance 05),
P 11 : average connectivity index chi-2,
P 12 : R--CR--R number of functions (R--CR-R),
P 13 : R autocorrelation of lag 2 / Unweighted,
P 14 : Moment of inertia A,
P 15 : number of primary amines (aliphatic),
P 16 : Minimum (> 0.1) bond order of a N atom,
P 17 : Moran autocorrelation-lag 1 / Weighted by atomic van der Waals volumes, and
P 18 : A method for obtaining the liquid thermal conductivity of a hydrocarbon-based organic compound by the SVRC model, which comprises the number of Pyrrolidine.
식(4)
[여기서 는 정상끓는점 에서의 액체 열전도율, 정상끓는점의 0.65배인 온도( 에서의 액체 열전도율, 는 스케일링 지수],
상기 정상끓는점에서의 액체 열전도율에 대하여 추출된 분자표현자는
: 산소원자의 최대 원자가(Maximum valency of a O atom),
: 2차 성분크기지향적 가중 포괄불변분자 지수/비가중(2nd component size directional WHIM index / unweighted),
: 동경 분포 함수-8.0/비가중(Radial Distribution Function - 8.0 / unweighted),
: Moran의 자기상관 차수2/원자 반데르발스 부피 가중(Moran autocorrelation - lag 2 / Weighted by atomic van der Waals volumes),
: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중(Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by atomic masses),
: 동경 분포 함수-11.5/원자량 가중(Radial Distribution Function - 11.5 / weighted by atomic masses),
: 고리의 상대적인 수(Relative number of rings),
: 최대 시그마-시그마 결합차수(Max SIGMA-SIGMA bond order),
: 산소원자의 상대적인 수(Relative number of O atoms),
: 전자회절기반 3차원 분자구조 표현-차수8/원자 편극도 가중(3D-MoRSE - signal 08 / weighted by atomic polarizability),
: 전자회절기반 3차원 분자구조 표현-차수2/원자량 가중(3D-MoRSE - signal 02 / weighted by atomic masses),
: 수소결합 기부체 전하 표면적(HDCA H-donors charged surface area)
: Burden 행렬의 최저 고유값3/원자량 가중(lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses),
: R 최대 자기상관 차수1/원자 Sanderson 전기음성도 가중(R maximal autocorrelation of lag 1 / Weighted by atomic Sanderson electronegativity), 및
: 동경 분포 함수-14.0/원자 편극도 가중(Radial Distribution Function - 14.0 / weighted by atomic polarizability)을 포함하며,
상기 정상끓는점의 0.65배인 온도 에서의 액체 열전도율에 대하여 추출된 분자표현자는
: Kier의 벤젠-가능성 지수(Kier benzene-likeliness index),
: 동경 분포 함수-15.0/원자량 가중(Radial Distribution Function - 15.0 / weighted by atomic masses),
: 평균 연결지수 차수4(average connectivity index chi-4),
: Ar-C(=X)-R 기능기 수(Ar-C(=X)-R),
: Broto-Moreau의 위상구조 자기상관-차수2/원자량 가중(Broto-Moreau autocorrelation of a topological structure - lag 2 / Weighted by atomic masses),
: Geary의 자기상관-차수2/원자 Sanderson 전기음성도 가중(Geary autocorrelation - lag 4 / Weighted by atomic Sanderson electronegativity),
: R 최대 자기상관 차수2/비가중(R maximal autocorrelation of lag 2 / Unweighted),
: Kier와Hall의 지수 (차수1)(Kier&Hall index (order 1)),
: 공명적분 가중 모서리 인접행렬 고유값14(Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals),
: 지렛대 가중 자기상관 차수2/비가중(leverage-weighted autocorrelation of lag 2 / Unweighted),
: 수소결합 제공원자의 수(number of donor atoms for H-bonds (N and O)),
: 동경 분포 함수-8.5/원자 Sanderson 전기음성도 가중(Radial Distribution Function - 8.5 / weighted by atomic Sanderson electronegativity),
: (지방족) 케톤의 수(number of ketones (aliphatic)),
: 평균 원자 Sanderson 전기음성도 (탄소원자로 조정)(mean atomic Sanderson electronegativity (scaled on Carbon atom)), 및
: 평균 연결지수 차수1(average connectivity index chi-1)을 포함하고,
상기 α 에 대하여 추출된 분자표현자는
: (방향족) 카르복실산의 수(number of carboxylic acids (aromatic)),
: N..O간 기하학적 거리의 합(Sum of geometrical distances between N..O),
: 분자의 총 쌍극자(Totaldipole of the molecule),
: 1차 성분대칭지향적 가중 포괄불변분자 지수/원자 전자위상 상태 가중(2ndcomponent symmetry directional WHIM index / weighted by atomic electrotopological states),
: 최소 원자 궤도의 전자 집단(Minimumatomic orbital electronic population),
: 쌍극자모멘트 가중 모서리 인접행렬 스펙트럼 모멘트7(Spectral moment 07 from edge adjacency matrix weighted by dipole moments),
: 탄소원자의 최대 부분전하(Maximum partial charge for a C atom),
: Burden 행렬의 최고 고유값5/원자 편극도 가중(highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability),
: 질소원자의 평균 단전자 반응지수(Average 1-electron reactionindex for a N atom),
: 위상거리5 C-N 결합의 존재여부(presence/absence of C - N at topological distance 05),
: 평균 연결지수 차수2(average connectivity index chi-2),
: R--CR--R 기능기 수(R--CRR),
: R 자기상관 차수2/비가중(R autocorrelation of lag 2 / Unweighted),
: 관성 모멘트 A(Moment of inertia A),
: (지방족) 1차 아민의 수(number of primary amines (aliphatic)),
: 질소원자의 최소 결합차수 (>0.1)(Minimum(>0.1) bond order of a N atom),
: Moran의 자기상관 차수1/원자 반데르발스 부피 가중(Moran autocorrelation - lag 1 / Weighted by atomic van der Waals volumes), 및
: 피롤리딘의 수( number of Pyrrolidine)
를 포함하는 것을 특징으로 하는 SVRC 모형에 의해서 비탄화수소 계열 유기화합물의 액체 열전도율을 구하는 방법.
About SVRC model described in following formula (4)
Equation (4)
[here Normal boiling point Liquid thermal conductivity at Temperature 0.65 times normal boiling point ( Liquid thermal conductivity at Is a scaling index],
The molecular expression extracted for the liquid thermal conductivity at the normal boiling point is
: Maximum valency of a O atom,
: 2nd component size directional WHIM index / unweighted,
: Radial Distribution Function-8.0 / unweighted,
Moran's autocorrelation-lag 2 / Weighted by atomic van der Waals volumes,
Broto-Moreau autocorrelation of a topological structure-lag 2 / Weighted by atomic masses,
: Radial Distribution Function-11.5 / weighted by atomic masses,
Relative number of rings,
: Maximum sigma-sigma bond order,
: Relative number of O atoms,
: Diffraction-based 3D molecular structure expression-order 8 / atomic polarization weighting (3D-MoRSE-signal 08 / weighted by atomic polarizability),
: Electron Diffraction Based Three-Dimensional Molecular Structures (3D-MoRSE-signal 02 / weighted by atomic masses),
: HDCA H-donors charged surface area
: Lowest eigenvalue no. 3 of Burden matrix / weighted by atomic masses,
: R maximal autocorrelation of lag 1 / Weighted by atomic Sanderson electronegativity, and
: Includes the Radial Distribution Function-14.0 / weighted by atomic polarizability,
The molecular descriptors extracted for the liquid thermal conductivity at a temperature of 0.65 times the normal boiling point
Kier's Kier benzene-likeliness index,
: Radial Distribution Function-15.0 / weighted by atomic masses,
Average connectivity index chi-4;
: Number of Ar-C (= X) -R functional groups (Ar-C (= X) -R),
Broto-Moreau autocorrelation of a topological structure-lag 2 / Weighted by atomic masses,
: Geary's autocorrelation-lag 4 / Weighted by atomic Sanderson electronegativity,
R maximal autocorrelation of lag 2 / Unweighted,
Kier and Hall index (order 1),
: Eigenvalue 14 from edge adjacency matrix weighted by resonance integrals,
: Leverage-weighted autocorrelation of lag 2 / Unweighted,
: Number of donor atoms for H-bonds (N and O),
: Radial Distribution Function-8.5 / weighted by atomic Sanderson electronegativity,
: Number of ketones (aliphatic),
Mean atomic Sanderson electronegativity (scaled on Carbon atom), and
: Includes the average connectivity index chi-1,
The molecular expression extracted with respect to α
: Number of carboxylic acids (aromatic),
: Sum of geometrical distances between N..O,
: Total dipole of the molecule,
: 2ndcomponent symmetry directional WHIM index / weighted by atomic electrotopological states,
: Minimumatomic orbital electronic population,
: Spectral moment 07 from edge adjacency matrix weighted by dipole moments,
: Maximum partial charge for a C atom,
: Highest eigenvalue no. 5 of Burden matrix / weighted by atomic polarizability,
: Average 1-electron reaction index for a N atom,
Presence / absence of C-N at topological distance 05
Average connectivity index chi-2,
: R--CR--R number of functions (R--CRR),
R autocorrelation of lag 2 / Unweighted,
: Moment of inertia A,
: (Aliphatic) number of primary amines (aliphatic),
: Minimum order (> 0.1) bond order of a N atom,
Moran's autocorrelation-lag 1 / Weighted by atomic van der Waals volumes, and
: Number of pyrrolidine
Method for obtaining the liquid thermal conductivity of the non-hydrocarbon-based organic compound by the SVRC model comprising a.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110101468A KR101302460B1 (en) | 2011-10-05 | 2011-10-05 | SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound |
PCT/KR2012/007999 WO2012177108A2 (en) | 2011-10-04 | 2012-10-04 | Model, method and system for predicting, processing and servicing online physicochemical and thermodynamic properties of pure compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110101468A KR101302460B1 (en) | 2011-10-05 | 2011-10-05 | SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120085150A KR20120085150A (en) | 2012-07-31 |
KR101302460B1 true KR101302460B1 (en) | 2013-09-10 |
Family
ID=46715826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110101468A KR101302460B1 (en) | 2011-10-04 | 2011-10-05 | SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101302460B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115254666B (en) * | 2022-07-21 | 2024-07-16 | 安徽瑞联节能科技股份有限公司 | Rock wool board production is with online detecting system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090083763A (en) * | 2008-01-30 | 2009-08-04 | 주식회사 엘지화학 | System and method for searching chemical material candidate used in electro-chemical application product |
KR20090092017A (en) * | 2008-02-26 | 2009-08-31 | 건국대학교 산학협력단 | Molecular modeling simulation system and method thereof |
-
2011
- 2011-10-05 KR KR1020110101468A patent/KR101302460B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090083763A (en) * | 2008-01-30 | 2009-08-04 | 주식회사 엘지화학 | System and method for searching chemical material candidate used in electro-chemical application product |
KR20090092017A (en) * | 2008-02-26 | 2009-08-31 | 건국대학교 산학협력단 | Molecular modeling simulation system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20120085150A (en) | 2012-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101267372B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Water Solubility of Pure Organic Compound | |
KR101325097B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Enthalpy of Formation of Ideal Gas for Pure Organic Compound | |
KR101313036B1 (en) | SVRC Model Predicting Gas Viscosity of Pure Organic | |
KR101267408B1 (en) | Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Liquid Density of Pure Organic Compound for Normal Boiling Point | |
KR101267373B1 (en) | Multiple Linear Regression―Artificial Neural Network Model Predicting Standard State Enthalpy of Formation of Pure Organic Compound | |
KR101302460B1 (en) | SVRC Model Predicting Thermal Conductivity of Liquid of Pure Organic Compound | |
KR101313031B1 (en) | Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Heat of Vaporization of Pure Organic Compound at Normal Boiling Point | |
KR101297211B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Parachor of Pure Organic Compound | |
KR101295865B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound | |
KR101267385B1 (en) | SVRC Model Predicting Heat of Vaporization of Pure Organic Compound | |
KR101325112B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Enthalpy of Fusion at Melting Point of Pure Organic Compound | |
KR101313030B1 (en) | Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Heat of Vaporization of Pure Organic Compound for 298K | |
KR101325117B1 (en) | SVRC Model Predicting Heat Capacity of Liquid of Pure Organic Compound | |
KR101295859B1 (en) | SVRC Model Predicting Thermal Conductivity of Gas of Pure Organic Compound | |
KR101313035B1 (en) | SVRC Model Predicting Liquid Viscosity of Pure Organic | |
KR101313026B1 (en) | Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Normal Boiling Point of Pure Organic Compound | |
KR101325107B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Temperature of Pure Organic Compound | |
KR101325125B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Volume of Pure Organic Compound | |
KR101258863B1 (en) | SVRC Model Predicting Vapor Pressure of Liquid of Pure Organic Compound | |
KR101325124B1 (en) | QSPR Model Predicting Surface Tension of Liquid of Pure Organic Compound | |
KR101267356B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Standard State Absolute Entropy of Pure Organic Compound | |
KR101325101B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Acentric Factor of Pure Organic Compound | |
KR101325120B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Saturated Liquid Density of Pure rganic Compound at 298.15K | |
KR101325103B1 (en) | Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Pressure of Pure Organic Compound | |
KR101313021B1 (en) | Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Refractive Index of Pure Organic Compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G15R | Request for early opening | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160805 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170804 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180806 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190806 Year of fee payment: 7 |