KR101295865B1 - Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound - Google Patents

Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound Download PDF

Info

Publication number
KR101295865B1
KR101295865B1 KR1020110101062A KR20110101062A KR101295865B1 KR 101295865 B1 KR101295865 B1 KR 101295865B1 KR 1020110101062 A KR1020110101062 A KR 1020110101062A KR 20110101062 A KR20110101062 A KR 20110101062A KR 101295865 B1 KR101295865 B1 KR 101295865B1
Authority
KR
South Korea
Prior art keywords
octanol
partition coefficient
water partition
neural network
linear regression
Prior art date
Application number
KR1020110101062A
Other languages
Korean (ko)
Other versions
KR20120085143A (en
Inventor
성애리
권오형
권윤경
김양수
전정재
정원천
조준혁
박태윤
Original Assignee
주식회사 켐에쎈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 켐에쎈 filed Critical 주식회사 켐에쎈
Priority to KR1020110101062A priority Critical patent/KR101295865B1/en
Publication of KR20120085143A publication Critical patent/KR20120085143A/en
Priority to PCT/KR2012/007999 priority patent/WO2012177108A2/en
Application granted granted Critical
Publication of KR101295865B1 publication Critical patent/KR101295865B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 순수한 유기화합물의 옥탄올-물 분배계수(Octanol-Water Partition Coefficient)를 높은 정확도로 예측하는 수학적 모형을 제공한다. 상기의 모형은, 옥탄올-물 분배계수의 실험값이 알려져 있는 상기 조건을 만족하는 다수의 유기화합물들에 대해, 다양한 분자표현자(molecular descriptor)들 중 일부를 독립변수로, 옥탄올-물 분배계수를 종속변수로 하는 많은 다중선형회귀모형들 중 최선의 것을 유전적 알고리즘(genetic algorithm)을 사용하여 구한 뒤, 이 모형에 포함된 분자표현자들의 값을 입력 받아 옥탄올-물 분배계수를 출력하는 인공신경망(artificial neural network)을 구성함으로써 예측성능을 더욱 향상시킨 다중선형회귀-인공신경망 혼성모형(hybrid model)으로서, QSPR 모형의 일례이며, 모형에 포함된 분자표현자들의 구체적인 값만 알 수 있다면 그 어떤 분자든, 이 분자로 순수하게 이루어진 화합물의 옥탄올-물 분배계수를 예측하여 준다. 이처럼, 본 발명은 실험값이 알려지지 않은 수많은 상기 조건의 유기화합물에 대해서도 신뢰할만한 옥탄올-물 분배계수의 값을 예측할 수 있는 방법을 제공하여 줌으로써 실험에 드는 비용과 시간을 절약하게 해주어, 관련 산업의 연구개발활동을 용이하게 하는 등의 효과를 낳는다.The present invention consists of up to five elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S), and is composed of pure molecules consisting of up to 25 atoms except hydrogen. A mathematical model for predicting the Octanol-Water Partition Coefficient of organic compounds with high accuracy is provided. The model shows that, for a large number of organic compounds that satisfy the above conditions for which the experimental values of the octanol-water partition coefficient are known, some of the various molecular descriptors are independent variables and octanol-water partitions. Of the many polylinear regression models whose coefficients are dependent variables, the best is obtained by using a genetic algorithm, and the octanol-water partition coefficient is output by inputting the values of molecular descriptors included in this model. As a multiple linear regression-artificial neural network hybrid model that further improves predictive performance by constructing an artificial neural network, which is an example of a QSPR model and only the specific values of molecular presenters included in the model are known, Any molecule predicts the octanol-water partition coefficient of a purely composed compound. As such, the present invention provides a method for predicting the value of the octanol-water partition coefficient that is reliable even for a large number of organic compounds in the above-mentioned conditions, in which the experimental value is unknown. It produces effects such as facilitating research and development activities.

Description

순수한 유기화합물의 옥탄올-물 분배계수를 예측하는 다중선형회귀-인공신경망 혼성모형 {Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound}Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound}

본 발명은, 물성예측이라는 물리화학의 한 분야에 속하는 것으로 유기화합물의 여러 물성 중 하나인 옥탄올-물 분배계수를 높은 정확도로 예측하기 위한 방법에 관한 것이다. The present invention belongs to a field of physical chemistry called physical property prediction and relates to a method for predicting with high accuracy the octanol-water partition coefficient, which is one of several physical properties of an organic compound.

유기화합물의 여러 물성의 정확한 값을 구체적으로 아는 것은 그 물질의 용도의 타당성을 검토하거나 합성 및 정제 과정을 설계하고 보관, 운반, 사용, 폐기의 방법과 조건을 설정하는 등, 생산과 소비의 전 과정에 걸친 제반 의사결정 사항들에 결정적이기 때문에 산업적으로나 학문적으로 매우 중요한 문제이다. 관심 있는 유기화합물의 관심 있는 물성의 값을 가장 정확하게 알 수 있는 방법은 역시 실험이겠으나 정제된 시료의 준비, 정확한 측정을 위한 환경의 구축 등 여러 가지 측면에서 상당한 비용과 시간이 드는 것이 사실이며 경우에 따라서는 불가능할 수도 있다. 따라서, 그 대안으로 오래 전부터 많은 연구자들이 유기화합물의 여러 물성의 정확한 값을 예측하고자 노력을 기울여 왔다. 이처럼 물성 예측은 오랜 역사를 가지며 끊임 없이 새로운 예측 방법들이 등장하여 현재는 물성 별로 정확도와 적용범위 등이 서로 다른 여러 예측모형들이 공존하고 있는 상황이다.Knowing the exact values of the various properties of an organic compound in detail can be used to determine the feasibility of the use of the substance, to design the synthesis and purification processes, and to establish methods and conditions for storage, transport, use, and disposal. It is an important issue both industrially and academically because it is critical to all decision-making processes throughout the process. The most accurate way of knowing the value of the property of interest of an organic compound of interest is also an experiment, but it is true that it is quite costly and time consuming in many aspects, including the preparation of purified samples and the construction of an environment for accurate measurement. Therefore, it may not be possible. Therefore, as an alternative, many researchers have long tried to predict the exact value of various physical properties of organic compounds. As such, the prediction of physical properties has a long history, and new prediction methods are constantly appearing. At present, several prediction models with different accuracy and application range coexist.

본 발명의 관심 물성인 옥탄올-물 분배계수에 대해서도 현재까지 여러 예측모형들이 제안되었다. 옥탄올-물 분배계수(Octanol-Water Partition Coefficient)라 함은 두 혼합되지 않는 물질, 옥탄올과 물에서의 용질의 분포를 나타내는 계수를 말한다. 옥탄올-물 분배계수 예측에 대한 그간의 연구결과들은 문헌[R. Mannhold, H. Kubinyi, G. Folkers, Molecular Drug Properties : Measurement and Prediction. Wiley-VCH. (2008).]에 소개되어 있다. 현재 옥탄올-물 분배계수를 예측하는 모형으로 잘 알려지고 널리 쓰이는 것들은 주로 그룹기여(group contribution) 방법을 이용한 것들이다. 표 1은 그 동안 제안되었던 옥탄올-물 분재계수에 대한 주요한 그룹기여 모형들을 계산해 주는 프로그램과 제공회사를 보여 주고 있다. Several prediction models have been proposed to date for the octanol-water partition coefficient, which is the property of interest of the present invention. Octanol-Water Partition Coefficient refers to a coefficient representing the distribution of solutes in two unmixed materials, octanol and water. The results of previous studies on the prediction of octanol-water partition coefficients are described in R. Mannhold, H. Kubinyi, G. Folkers, Molecular Drug Properties: Measurement and Prediction . Wiley-VCH. (2008).]. Currently known and widely used models for predicting octanol-water partition coefficients are mainly those using group contribution methods. Table 1 shows the programs and providers that calculate the major group contribution models for the octanol-water bonsai coefficients that have been proposed.

프로그램program 제공자Provider KLOGPKLOGP MULTICASEMULTICASE KOWWINENWWIN Syracuse Research CorporationSyracuse Research Corporation US EPAUS EPA CLOGPCLOGP DaylightDaylight BiobyteBiobyte ACD/LogPACD / LogP Advanced Chemistry DevelopmentAdvanced Chemistry Development AB/LogPAB / LogP Advanced Pharma AlgorithmsAdvanced Pharma Algorithms MOLCADMOLCAD TriposTripos TSARTSAR AccelrysAccelrys PROLOGPPROLOGP CompudrugCompudrug ALOGP97 in CeriusALOGP97 in Cerius AccelrysAccelrys XLOGP2.0XLOGP2.0 Luhua LaiLuhua lai

그룹기여 모형의 전형적인 형태는 아래와 같은 식으로 주어 진다. A typical form of group contribution model is given by

Figure 112011077584636-pat00001
Figure 112011077584636-pat00001

물성값

Figure 112011077584636-pat00002
를 구하기 위해서는 먼저 값을 알고자 하는 화합물의 분자를 미리 정해진 다수의 조각형식들에 맞추어 쪼갠 다음 각 조각형식들의 개수
Figure 112011077584636-pat00003
를 구한다. 이를 다시 그 형식에 할당된 계수
Figure 112011077584636-pat00004
와 곱한 것을 합산한 것이 예측값
Figure 112011077584636-pat00005
가 된다. 계수
Figure 112011077584636-pat00006
들은 실험값이 존재하는 화합물들로부터 모형이 최선의 성능을 갖도록 통계적인 방법을 통해 결정된다.Property value
Figure 112011077584636-pat00002
In order to find the value, first divide the molecule of the compound whose value you want to know according to a number of pieces.
Figure 112011077584636-pat00003
. This is again the coefficient assigned to that type
Figure 112011077584636-pat00004
Multiplying and multiplied by
Figure 112011077584636-pat00005
. Coefficient
Figure 112011077584636-pat00006
These are determined by statistical methods to ensure that the model has the best performance from the compounds with experimental values.

이러한 그룹기여 방법은 그 동안 어느 정도 성공을 거둔 것이 사실이나 이론적 근거가 부족하고 때때로 조각형식에 맞추어 쪼개는 방식이 유일하지 않거나 심지어 존재하지 않는 경우가 발생하여 값의 계산이 불가능해 지기도 한다. 또한 예측성능을 높이기 위해 모형을 개선해 나갈수록 점점 더 복잡해지고 취급이 어려워지는 양상을 보인다.These group contribution methods have been somewhat successful in the past, but lack the theoretical basis, and sometimes the only way to split them into pieces is not, or even nonexistent, which makes the calculation of values impossible. Also, as the model is improved to improve the predictive performance, it becomes more complicated and difficult to handle.

예측모형을 구축하는데 있어서 그룹기여 방법의 대안이 될 수 있는 다른 방법들의 하나는 QSPR(quantitative structure-property relationship) 방법이다. 이 방법은 기본적으로 화합물의 물성은 그 분자의 구조적 특성들의 함수라는 가정에서부터 출발하고 있으며 서로 다른 여러 구조적 특성들을 반영하는 다양한 분자표현자(molecular descriptor)들을 이용한다. 현재까지 제안된 분자표현자들의 종류는 수천에 이르며 한 분자내의 탄소나 수소의 개수와 같은 단순한 것들로부터 분자의 모양이나 연결상태, 전기화학적 특성과 같은 복잡한 것들에 이르기까지 수많은 종류의 분자표현자들에 대한 계산법들이 개발되어 있다[Todeschini R., V. Consonni V., Molecular Descriptors for Chemoinformatics: Second, Revised and Enlarged Edition: Volume I/II, Wiley-VCH, 2009]. QSPR 예측모형은 이러한 분자표현자들 그리고 때로는 이에 더하여 화합물의 다른 물리화학적 물성들(이들 역시 구조적 특성들의 함수이다) 중 일부를 독립변수로 포함하는 함수의 형태로 제시된다. One of the alternatives to the group contribution method in constructing the prediction model is the QSPR (quantitative structure-property relationship) method. This method basically starts with the assumption that the properties of a compound are a function of the structural properties of the molecule and uses various molecular descriptors that reflect different structural properties. The number of molecular descriptors proposed to date has been thousands, and many kinds of molecular descriptors range from simple ones such as the number of carbons or hydrogens in a molecule to complex ones such as the shape, connection state, and electrochemical properties of molecules. Calculation methods have been developed [Todeschini R., V. Consonni V., Molecular Descriptors for Chemoinformatics: Second, Revised and Enlarged Edition: Volume I / II , Wiley-VCH, 2009]. The QSPR prediction model is presented in the form of a function that includes some of these molecular descriptors and sometimes, in addition, some of the other physicochemical properties of the compound, which are also functions of structural properties.

이때 이러한 함수의 꼴로 가장 빈번이 채택되는 것은 아래와 같은 표현자

Figure 112011077584636-pat00007
들의 선형 결합 함수이며 각 계수
Figure 112011077584636-pat00008
들은 주로 다중선형회귀분석을 통해 실험데이터로부터 결정된다.The most frequently adopted form of such a function is
Figure 112011077584636-pat00007
Linear coupling function of each coefficient
Figure 112011077584636-pat00008
These are mainly determined from experimental data through multiple linear regression analysis.

Figure 112011077584636-pat00009
Figure 112011077584636-pat00009

QSPR 모형을 만드는 또 다른 방법은 인공신경망을 이용하는 것이다. 인공신경망 기법은 지능을 가진 인간의 신경세포를 모델링하여 인공적으로 지능을 가진 기계를 만들어 보고자 하는 인류의 오랜 연구결과의 하나로서, 20세기 중반에 처음 등장하여 현재 다방면으로 응용되고 있는 정보처리기술이다. 도 2는 인공신경망의 전형적인 한 예를 보여주고 있다. 여기서 볼 수 있듯이, 인공신경망에는 입력 데이터를 수용하는 입력층(input layer)과 출력데이터를 만드는 출력층(output layer), 이들 사이에 위치한 은닉층(hidden layer)이 존재하며 각 층은 하나 이상의 노드(node)들로 구성되어 있다. 은닉층의 각 노드들은 입력층과 출력층의 노드들과 연결되어 있으며 각 연결들에는 가중치(weight)라 불리는 양

Figure 112011077584636-pat00010
이 부여되어 있다. 은닉층과 출력층의 각 노드들은 전단계의 노드들로부터 이러한 연결들을 통해 입력을 받은 뒤 이를 가공하여 출력값을 만드는데 이때 활성화 함수(activation function)라 불리는 함수
Figure 112011077584636-pat00011
를 적용한다. 이러한 인공신경망을 실제로 활용하려면 먼저, 다양한 입력값과 그 입력값에 대응하는 출력값을 함께 묶어 놓은 샘플집합을 이용하여 인공신경망을 훈련시키는 과정이 필요한데 이는 주어진 입력에 대한 인공신경망의 출력과 원하는 출력의 차이가 최소가 되도록 역전파(back propagation) 알고리즘을 사용하여 각 연결의 가중치를 최적화 하는 것을 말한다. 이러한 훈련을 거친 인공신경망은 문제해결에 필요한 규칙이나 지식을 따로 제공하지 않아도 학습을 통해서 스스로 일반적인 규칙을 수립하여 미지의 입력에 대해서도 타당성 있는 출력을 내주므로 화합물의 물성예측과 같이 기반 이론이 결여되어 있는 분야에 매우 유용한 수단으로 널리 이용되고 있다.Another way to create a QSPR model is to use an artificial neural network. Artificial neural network technology is one of the long-standing research results of human beings who want to make intelligent machines by modeling human nerve cells with intelligence, and is an information processing technology that has been applied in various fields since the mid 20th century. . 2 shows a typical example of an artificial neural network. As can be seen, the artificial neural network has an input layer for receiving input data, an output layer for producing output data, and a hidden layer located between them, each layer having one or more nodes. ) Each node in the hidden layer is connected to nodes in the input and output layers, and each connection has a quantity called a weight.
Figure 112011077584636-pat00010
Is granted. Each node in the hidden and output layers receives inputs from these nodes and processes them to produce output values. This is called an activation function.
Figure 112011077584636-pat00011
Is applied. In order to actually use such an artificial neural network, first, the neural network is trained using a sample set in which various input values and output values corresponding to the input values are bundled together. This means optimizing the weight of each connection using a back propagation algorithm to minimize the difference. The neural network that has undergone such training does not provide the necessary rules or knowledge to solve the problem, but it establishes general rules through learning and gives valid output for unknown inputs. It is widely used as a very useful means in the field.

인공신경망을 이용하여 옥탄올-물 분배계수를 예측하는 QSPR 예측모형은 그다지 많이 제안되어 있지 않으며 제안된 것들도 샘플 화합물의 수가 많지 않거나 적용 대상이 특정 계열의 화합물에 제한되어 있는 단점이 있다. 문헌[Bernd Beck, Andreas Breindl, and Timothy Clark. QM/NN QSPR Models with Error Estimation: Vapor Pressure and LogP. J. Chem. Inf. Comput. Sci. 2000, 40, 1046-1051]에는 1085개의 화합물에 대한 데이터를 이용하여 16개의 분자표현자를 사용한 모형이 보고되어 있다. 이후에 인공신경망을 이용하는 연구를 진행하여 0.74의 결정계수(coefficient of determination)값을 갖는 Network Layer [16-10-1]가 보고되어 있다.The QSPR prediction model for predicting octanol-water partition coefficient using an artificial neural network is not very proposed, and the proposed ones also have disadvantages in that the number of sample compounds is not large or the application target is limited to a specific series of compounds. Bernd Beck, Andreas Breindl, and Timothy Clark. QM / NN QSPR Models with Error Estimation: Vapor Pressure and Log P. J. Chem. Inf. Comput. Sci. 2000, 40, 1046-1051 report a model using 16 molecular descriptors using data for 1085 compounds. Afterwards, a research using an artificial neural network has been conducted to report a network layer [16-10-1] having a coefficient of determination of 0.74.

본 발명이 이루고자 하는 기술적 과제는 위에서 언급된 기존 모형들의 단점들을 극복하고 보다 폭넓고 보다 정확한 예측성능을 보이는, 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고, 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 순수한 유기화합물의 옥탄올-물 분배계수에 대한 QSPR 모형을 구축하는 것이다.
The technical problem to be solved by the present invention is to overcome the shortcomings of the existing models mentioned above and to show more broad and more accurate prediction performance, hydrogen (H), carbon (C), nitrogen (N), oxygen (O), sulfur ( A QSPR model is constructed for the octanol-water partition coefficient of pure organic compounds consisting of up to 5 elements, including S) and molecules with 25 or less atoms except hydrogen.

우리는 보다 많은 실험데이터를 바탕으로 보다 다양한 분자표현자들을 고려한 다중선형회귀-인공신경망 혼성모형을 구축함으로써 이 목표를 달성하였다. 특히 인공신경망은 다중선형회귀모형이 반영할 수 없는 독립변수와 종속변수의 비선형적인 함수관계를 반영할 수 있다는 장점이 있어 보다 높은 예측성능을 가진 모형을 구현할 수 있게 해준다. 그러나 인공신경망은 내부적으로 규칙수립의 자유도가 높아 안정성이 다중선형회귀모형보다 떨어지는 단점이 있다. 본 발명에서는 인공신경망모형의 예측값과 다중선형회귀모형의 예측값이 큰 차이를 보일 때 다중선형회귀모형의 예측값을 채택하는 방법으로 이러한 단점을 보완하여 예측성능과 안정성의 측면에서 다중선형회귀모형과 인공신경망모형의 장점만을 살린 우수한 예측모형을 확립하였다.We have achieved this goal by constructing a multiple linear regression-artificial neural network hybrid model that takes into account a wider variety of molecular presenters based on more experimental data. In particular, the neural network has the advantage of reflecting the nonlinear functional relationship between independent and dependent variables, which cannot be reflected by the multiple linear regression model, so that a model with higher predictive performance can be realized. However, the artificial neural network has a disadvantage in that its stability is lower than that of the multiple linear regression model due to its high degree of freedom in rule setting. In the present invention, when the prediction value of the artificial neural network model and the prediction value of the multiple linear regression model show a large difference, the method of adopting the prediction value of the multiple linear regression model compensates for these shortcomings. We established an excellent prediction model that takes advantage of the neural network model.

예측모형을 적용할 수 있는 유기화합물의 범위에 위에 언급한 바와 같은 제한을 두는 이유는 주로, 사용된 분자표현자들 중 그 값을 구하기 위해서는 양자역학적 계산이 필요한 것들이 존재하는 경우, 현재의 기술수준으로는 언급된 범위를 넘어서는 화합물에 대해서는 정확도와 계산시간의 측면에서 곤란한 문제가 발행한다는 사실에 기인하고 있다. 그러나 상기의 제한범위 내라 할지라도 대단히 많은 화합물들이 존재하며 산업적으로 중요한 화합물들이 상당부분 포함되므로 본 발명이 인류사회에 큰 유익을 끼칠 수 있을 것으로 판단된다.
The above-mentioned limitations on the range of organic compounds to which the predictive model can be applied are mainly due to the current state of the art when some of the molecular descriptors used require quantum mechanical calculations. This is due to the fact that for the compounds beyond the stated range, problems arise in terms of accuracy and calculation time. However, even within the above limitations, since there are a great many compounds and industrially important compounds are included in a large amount, it is determined that the present invention can greatly benefit human society.

오늘날 인류는 플라스틱, 섬유, 고무, 도료, 비료, 의약품, 연료 등, 방대한 종류의 유기화합물에 의존하여 살아가고 있으며 이러한 경향은 더욱 심화될 것으로 예상된다. 미국 화학회(ACS)에 따르면 2010년 7월 기준으로 등록된 전체 화합물의 수는 54,000,000개를 넘는다고 한다. 이에 비해 물성값이 한가지라도 실험적으로 알려져 있는 화합물의 수는 고작해야 수만에 지나지 않는다. 화합물의 물성값은 신 물질과 신약의 개발, 화학플랜트의 최적 설계, 기존 설비의 생산성 향상, 자원의 개발과 절약, 안전성 확보, 환경보호 등 인류의 보다 나은 물질생활에 필수적인 요소이다. 특히 옥탄올-물 분배계수는 신약개발에 매우 중요한 물성이며 REACH와 같은 화합물의 생산과 소비에 관한 국제적인 규정들이 그 값을 요구하기도 한다. 그러나 현재 그 실험값이 알려진 화합물의 개수는 기껏해야 수만에 불과하며 화합물에 따라서는 독성, 불안정성, 정제의 어려움 등으로 실험을 통하여 데이터를 얻는 작업이 지난한 경우도 있다. 이런 관점에서 실험을 거치지 않고도 분자에 대한 정보만으로 수많은 화합물의 옥탄올-물 분배계수값을 높은 정확도로 얻게 해주는 본 발명은 실험에 드는 비용과 시간을 절감해줄 뿐만이 아니라 실험이 불가능한 경우에도 그 값을 짐작하게 해주어 관련 산업의 연구개발활동을 용이하게 함은 물론 더 나아가 학계와 관(官)계 등 그 값을 필요로 하는 모든 곳에 합당한 정보를 제공하여 그 활동을 보다 원활히 수행할 수 있게 해주는 효과를 낳는다 하겠다.
Humans today depend on a wide variety of organic compounds, including plastics, fibers, rubber, paints, fertilizers, medicines and fuels, and this trend is expected to intensify. According to the American Chemical Society (ACS), as of July 2010, the total number of compounds registered was over 54,000,000. In comparison, even if the physical property value is only one, the number of experimentally known compounds is only tens of thousands. The physical property value of compounds is essential for the better life of mankind, including the development of new materials and new drugs, the optimal design of chemical plants, the improvement of the productivity of existing facilities, the development and saving of resources, the securing of safety, and the protection of the environment. In particular, the octanol-water partition coefficient is a very important property in the development of new drugs, and international regulations on the production and consumption of compounds such as REACH may require them. However, at present, the number of compounds whose experimental values are known is at most tens of thousands, and depending on the compounds, the work of obtaining data through experiments may be past due to toxicity, instability and difficulty of purification. From this point of view, the present invention, which can obtain the octanol-water partition coefficient value of a large number of compounds with high accuracy without any experiment, not only saves the cost and time required for the experiment, It makes it possible to make researches and development activities of related industries easier, and furthermore, to provide appropriate information to all places that need such values, such as academia and the academic world, to make the activities more smoothly. I will give birth.

도 1은 본 발명이 제공하는 옥탄올-물 분배계수에 대한 다중선형회귀-인공신경망 혼성모형을 구축하는 과정을 흐름도로 나타낸 도면이다.
도 2는 본 발명에 사용된 인공신경망의 구조를 나타낸 도면이다.
도 3은 옥탄올-물 분배계수에 대한 그룹기여 모형인 UNIFAC을 이용한 모형의 807개의 실험데이터에 대한 패리티 도면이다.
도 4는 옥탄올-물 분배계수에 대한 다중선형회귀-인공신경망 혼성모형의 1240개의 실험데이터에 대한 패리티 도면이다.
도 5는 UNIFAC을 이용한 모형의 807개의 실험데이터에 대한 히스토그램 도면이다.
도 6은 다중선형회귀-인공신경망 혼성모형의 1240개의 실험데이터에 대한 히스토그램 도면이다.
1 is a flowchart illustrating a process of constructing a multiple linear regression-artificial neural network hybrid model for the octanol-water partition coefficient provided by the present invention.
Figure 2 is a view showing the structure of the artificial neural network used in the present invention.
3 is a parity diagram of 807 experimental data of a model using UNIFAC, which is a group contribution model for octanol-water partition coefficient.
4 is a parity plot of 1240 experimental data of a multiple linear regression-artificial neural network hybrid model for octanol-water partition coefficient.
FIG. 5 is a histogram diagram of 807 experimental data of a model using UNIFAC.
FIG. 6 is a histogram plot of 1240 experimental data of a multiple linear regression-artificial neural network hybrid model.

도 1은 옥탄올-물 분배계수에 대한 다중선형회귀-인공신경망 혼성모형을 구축하는 과정을 흐름도로 간략히 표현한 것이다.Figure 1 is a simplified diagram illustrating the process of building a multiple linear regression-artificial neural network hybrid model for the octanol-water partition coefficient.

모형을 구축하는데 가장 먼저 해야 할 일은 단계 1에 지정된 바와 같이 실험데이터를 수집하고 검토 분류하는 일이다. 본 발명을 위해 각종 논문과 단행본, 인터넷 사이트 등을 망라하여 참고할 수 있는 모든 문헌과 자료에 대한 광범위한 조사를 벌인 결과, 총 1724개의 본 발명의 조건에 맞는 화합물들에 대한 옥탄올-물 분배계수의 데이터가 수집되었다. 이렇게 수집된 데이터가 모형을 구축하는데 쓰일 수 있는 진정 타당한 값인지 다방면으로 검토하였는데 실험값이 아니거나 데이터 표기에 오류가 있었거나 동일 화합물에 대한 값들임에도 불구하고 차이가 많이 나거나 가까운 다른 화합물들의 값에 비해 신뢰하기 어려울 정도로 동떨어진 값이거나 분자표현자들에 대한 값들이 당장 준비되기 어려운 화합물에 대한 데이터인 경우 등에 대해 면밀한 분석을 거쳐 데이터를 수정 또는 삭제하여 최종적으로 총 1320개의 화합물들에 대한 데이터를 선정하였다. 그리고 탄소와 수소만으로 이루어진 탄화수소(hydrocarbon)들과 그렇지 않은 비탄화수소(nonhydrocarbon)들로 분류하여 따로따로 모형을 세우는 것이 예측성능의 측면에서 더 나았던 그간의 경험에 비추어 이들을 225개의 탄화수소들과 1095개의 비탄화수소들로 분류하여 모형을 확립하였다. 또한, 본 발명에서 ‘유기화합물’ 또는 ‘화합물’은 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고, 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 물질을 지칭한다.The first thing to do when building the model is to collect and review the experimental data as specified in step 1. As a result of extensive research on all literatures and data that can be referred to through various papers, books, Internet sites, etc. for the present invention, the octanol-water partition coefficient for a total of 1724 compounds satisfying the conditions of the present invention Data was collected. The collected data were examined in a variety of ways to determine whether they were truly valid values that could be used to build the model.They were not experimental values, errors in data notation, or values for the same compound. After carefully analyzing data such as unreliably distant values or values for molecular descriptors that are difficult to prepare immediately, the data were modified or deleted to finally select data for a total of 1320 compounds. . And in terms of predictive performance, it was better to classify them separately into carbon- and hydrogen-only hydrocarbons and non-hydrocarbons. The model was established by classification into hydrocarbons. In the present invention, the 'organic compound' or 'compound' is composed of five elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S). Refers to a substance consisting of molecules with 25 or fewer atoms excluded.

그 다음 단계는 이들 화합물들에 대한 분자표현자들의 값들을 준비하는 단계이다. 총 1978개에 달하는 다양한 분자표현자들에 대한 값들을 각 화합물들의 분자에 대한 정보를 담은 파일들로부터 컴퓨터를 이용하여 일괄적으로 계산한다. 분자의 전자구조 계산을 하기 위해서는 보통 순이론인 방법으로 슈뢰딩거(Schrodinger) 방정식을 풀어 전자에너지에 대한 해를 구하게 되지만 전자가 많은 계의 경우 전자상관관계(electron correlation)를 무시한 근사법을 적용한 하트리-포크(Hartree-Fock, HF) 방법[C.C. J. Roothan, Rev. Mod. Phys. 23, 69 (1951)]을 사용하여 해를 풀게 된다. 이런 근사법으로 인해 계산된 결과에서 근본적인 오차가 유발되어 다차원의 이론적인 섭동항을 추가한 포스트 하트리-포크(Post Hartree-Fock) 방법[C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934)]들을 사용하여 더 정확한 해를 구하긴 하지만 상대적으로 엄청나게 많은 계산량이 요구된다. 이런 방식으로는 큰 분자를 계산하기에는 비용이나 시간의 측면에서 무리가 있는 상황이다.The next step is to prepare the values of the molecular descriptors for these compounds. The values for various molecular descriptors totaling up to 1978 are computed in batches using a computer from files containing information on the molecules of each compound. In order to calculate the electronic structure of molecules, the Schrodinger equation is usually solved by a pure theory to solve the electron energy. However, in the case of systems with many electrons, Hartley uses an approximation method that ignores electron correlation. Hartree-Fock (HF) method [CC J. Roothan, Rev. Mod. Phys. 23, 69 (1951)]. This approximation introduces a fundamental error in the calculated results and adds a multidimensional theoretical perturbation term to the Post Hartree-Fock method [C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934)], to obtain a more accurate solution, but require a relatively large amount of computation. In this way, it is too costly or time-consuming to calculate large molecules.

또한 하트리-포크와 포스트 하트리-포크를 조합한 가우시안 방법[L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998)]은 에너지 예측에 있어 아주 적은 오차를 보이지만 여러 포스트 하트리-포크 방법에 대한 에너지 계산을 수행하기 때문에 더 많은 계산량이 요구된다.In addition, the Gaussian method that combines Hartley-Fork and Post Hartley-Fork [L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998) show very little error in energy prediction, but more computation is required because it performs energy calculations for several post-Hartley-Fork methods.

많은 전자로 이루어진 분자에 대한 전자들간의 상관관계를 고려하기 위해 다차원의 섭동항이 추가된 파동함수 대신 전자 밀도함수를 써서 총에너지의 범함수를 이용해서 바닥상태를 구하는 밀도 범함수 이론(density functional theory)[ R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977)]을 적용하여 계산했다. 밀도 범함수 이론의 장점은 전자밀도만 고려하면 되므로 하트리-포크(Hartree-Fock) 방법과 비슷한 수준의 계산량으로 더 정확한 결과를 얻어낼 수 있다. 전자들의 교환-상관에너지를 계산을 위해 교환 범함수들과 상관 범함수들의 조합을 사용하여 계산량을 늘이지 않고도 더 향상된 결과를 얻고 있다.Density functional theory is used to find the ground state using the function of the total energy using the electron density function instead of the wave function with the multidimensional perturbation term to consider the correlation between the electrons of the molecules of many electrons. R. Seeger and JA Pople, J. Chem. Phys. 66, 3045 (1977). The advantage of the density functional theory is that the electron density only needs to be taken into account so that more accurate results can be obtained with comparable calculations to the Hartree-Fock method. The combination of exchange functions and correlation functions for calculating the exchange-correlation energy of the electrons is used to obtain more improved results without increasing the calculation amount.

최적의 양자역학 계산방법을 선발하기 위해 선행하여 시도하였던 계산이론은 상기에 언급된 하트리-포크 방법, 다양한 포스트 하트리-포크 방법, 가우시안(G2, G3) 방법, 다양한 범함수 조합의 밀도 범함수 이론 등이다. 이 중에서 계산시간 대비 가장 성능이 우수한 밀도 범함수 이론의 한가지 방법을 선발하였다.The computational theories previously attempted to select an optimal quantum mechanical calculation method are the density ranges of the aforementioned Hartley-Fork method, various Post-Hartley-Fork methods, Gaussian (G2, G3) methods, and various combinations of functional functions. Function theory. Among them, one method of density functional theory, which is the best performance calculation time, was selected.

따라서 본 발명에서는 상용 양자역학 계산 프로그램을 이용하여 지정된 밀도 범함수 이론의 계산방법을 적용하여 분자구조에 대한 최적화 및 진동수 계산을 수행하게 된다.Therefore, in the present invention, the optimization of the molecular structure and the frequency calculation are performed by applying the calculation method of the specified density functional theory using a commercial quantum mechanical calculation program.

최적화된 구조에서는 상기의 물성정보 뿐 만 아니라 분자의 특성을 반영하는 여러 의미있는 수치로 나타내는 분자표현자(molecular descriptor)들을 얻을 수 있다. 2차원 구조의 특징을 표현할 수 있는 분자표현자들도 있고 3차원 구조의 특징을 표현하는 분자표현자들도 있다. 크게 나누어 총 24개의 범주로 나누고 각 범주에 상세한 표현자들을 포함한다. 분자 표현자 값을 계산한 후에 이들 중 적합하지 않은 것, 즉 모든 샘플 화합물에 대해 값이 동일하게 나와 모형의 독립변수가 될 수 없는 것들을 추려 내었다. 이는 관련 없는 분자표현자가 예측모형에 포함되는 것을 막아 모형의 신뢰도를 높이는 동시에 이렇게 분자표현자의 개수를 줄임으로써 최적 모형을 찾는 데 드는 계산 시간을 줄일 수 있기 때문이다.In the optimized structure, not only the above physical information but also molecular descriptors represented by various meaningful values reflecting the characteristics of the molecules can be obtained. Some molecular descriptors can express the characteristics of two-dimensional structures, while others represent the characteristics of three-dimensional structures. Divided into 24 categories, including detailed presenters in each category. After calculating the molecular descriptor values, we picked out those that were not suitable, that is, the values were the same for all sample compounds and could not be independent variables in the model. This is because it prevents irrelevant molecular expressions from being included in the prediction model, thereby increasing the reliability of the model and reducing the computation time required to find the optimal model by reducing the number of molecular expressions.

단계 4에서는 샘플 화합물들을 예측모형을 탐색하는데 사용할 훈련집합(training set)과 결정된 모형의 예측성능을 시험하는데 사용할 시험집합(test set), 이렇게 두 부분으로 나누는 작업을 진행한다. 유사한 분자들이 한쪽 부분에만 치우쳐 분포하지 않도록 주의하면서 샘플 탄화수소들과 비탄화수소들을 5:5 ~ 8:2, 바람직하게는 6 대 4의 비율로 각각 나누었다.In step 4, the sample compounds are divided into two parts: the training set used to explore the predictive model, and the test set used to test the predicted performance of the determined model. Sample hydrocarbons and non-hydrocarbons were divided between 5: 5 and 8: 2, preferably 6 to 4, taking care not to distribute similar molecules on one side only.

이후 훈련집합을 토대로 최선의 다중선형회귀모형(multiple linear regression model)을 찾는다. 여기서 ‘최선’이라 함은 상대적인 의미로서 비교적 짧은 시간 내에 구할 수 있으면서 절대적인 의미에서의 최적 해에 매우 근접한 성능을 갖는다는 의미로 쓰여진 것이다. 최적 해를 직접 구하지 않는 이유는 긴 계산시간 때문인데 예를 들어 1978개의 분자표현자들 중 적합한 분자표현자들의 개수가 1700개일 때, 이 중에서 5개를 뽑아 만들 수 있는 서로 다른 다중선형회귀모형들의 총 개수는

Figure 112011077584636-pat00012
이며 이들을 다 조사하는 것은 현실적으로 불가능하다.We then find the best multiple linear regression model based on the training set. The term 'best' is used in the sense of relative meaning that it can be obtained in a relatively short time and has a performance very close to the optimal solution in the absolute sense. The reason for not finding the optimal solution directly is because of the long computation time. For example, when there are 1700 suitable molecular representations out of 1978 molecular representations, you can choose from five different linear regression models. The total number is
Figure 112011077584636-pat00012
It is practically impossible to investigate them all.

한정된 시간 내에 유용한 결과를 얻기 위해 본 발명에서는 유전적 알고리즘(genetic algorithm)[Judson, "Genetic Algorithms and Their Uses in Chemistry", Reviews in Computational Chemistry, Lipkowitz & Boyd, Eds., Vol.10, pp.1-73 (VCH Publishers, NY, 1997)]을 채택하였으며 그 상세한 방법은 다음과 같다. 먼저 분자표현자들의 풀(pool)에서 일정한 개수의 분자표현자들을 무작위로 뽑아 만든 다수의 다중선형회귀모형들로 구성된 개체군(population)을 생성한다. 예를 들어 1700개의 적합한 분자표현자들 중 5개를 무작위로 뽑아 만든 1000개의 서로 다른 다중선형회귀모형들로 개체군을 만들었다고 하자.In order to obtain useful results within a limited time, the present invention provides a genetic algorithm [Judson, "Genetic Algorithms and Their Uses in Chemistry", Reviews in Computational Chemistry, Lipkowitz & Boyd, Eds., Vol. 10, pp. 1 -73 (VCH Publishers, NY, 1997)]. First, a population of multiple linear regression models is created by randomly drawing a certain number of molecular descriptors from a pool of molecular descriptors. For example, let's say we created a population of 1000 different polylinear regression models that were randomly drawn from 5 of the 1700 suitable molecular descriptors.

이때 염색체(chromosome)라 불리는 각 개체(individual)들은 뽑힌 분자표현자들의 번호들을 조합하여 부호화한다. 예를 들어 1700개의 분자표현자중 45, 167, 684, 1033, 1502번째의 분자표현자들로 형성한 다중선형회귀모형의 염색체는 (45, 167, 684, 1033, 1502)와 같이 표현할 수 있다. 이렇게 생성된 개체군으로부터 두 개의 부모 염색체를 선택한 뒤 교배(crossover)하여 자식들을 만들어 내는데 본 발명에서는 부모 염색체를 선택하는 선택기법으로 Roulette Wheel 방법을 채택하였다.Individuals, called chromosomes, are coded by combining the numbers of extracted molecular descriptors. For example, the chromosome of the multiple linear regression model formed by the 45th, 167, 684, 1033, and 1502th molecular descriptors among 1700 molecular descriptors can be expressed as (45, 167, 684, 1033, 1502). Two parent chromosomes are selected from the populations thus generated and crossed over to generate children. In the present invention, the Roulette Wheel method is adopted as a selection method for selecting the parent chromosomes.

Roulette Wheel 방법은 일반적으로 가장 많이 사용하는 선택 알고리즘으로 각 염색체의 적합도(fitness)에 비례하는 만큼 룰렛의 영역을 그 염색체에 할당한 다음, 룰렛을 돌려 해당된 영역의 염색체를 선택하는 방법이다. 따라서 이 방법에서는 적합도가 높은 개체일수록 선택될 확률이 높다. 선택확률을 결정짓는 각 염색체의 적합도 계산에는 회귀모형의 결정계수(coefficient of determination:

Figure 112011077584636-pat00013
) 또는 평균절대오차(average absolute error: AAE)를 활용하였다. 즉 결정계수값이 크거나 평균절대오차값이 작은 것이 선택확률이 높도록 하였다.The Roulette Wheel method is the most commonly used selection algorithm, which allocates a roulette region to the chromosome in proportion to the fitness of each chromosome, and then rotates the roulette to select the chromosome of the corresponding region. Therefore, in this method, the higher the fit, the more likely it is to be selected. The coefficient of determination of the regression model is used to calculate the goodness of fit for each chromosome that determines the probability of selection.
Figure 112011077584636-pat00013
) Or average absolute error (AAE). In other words, the larger the coefficient of determination or the smaller the mean absolute error, the higher the probability of selection.

교배방법으로는 단순교배(single point crossover)법을 채택하였는데 이는 가장 일반적인 교배 방법으로서 부모 염색체에서 임의로 1개의 교배점을 선택하여 그 지점 전후의 염색체부분을 서로 교환함으로써 자식을 생성하는 것을 말한다. 예를 들어 부모 염색체가 각각(24, 262, 343, 789, 1290), (38, 454, 554, 1322, 1449)와 같이 주어지고 3번째와 4번째 요소 사이에 교배점이 놓이게 되면 자식 염색체는 각각 (24, 262, 343, 1322, 1449), (38, 454, 554, 789, 1290)와 같이 된다. The single point crossover method is adopted as the breeding method. The most common breeding method is to generate a child by selecting one crossing point on the parent chromosome and exchanging chromosomal parts before and after the point. For example, if a parent chromosome is given as (24, 262, 343, 789, 1290), (38, 454, 554, 1322, 1449) and a cross point is placed between the third and fourth elements, then the child chromosomes are (24, 262, 343, 1322, 1449), (38, 454, 554, 789, 1290).

이렇게 자식들이 생성되면 이들의 염색체 일부를 일정 확률로 돌연변이(mutation) 시키는 과정을 거치는데 이는 임의로 몇 개의 요소를 전혀 새로운 값으로 바꾸는 것으로 현재 집단에 존재하지 않는 새로운 정보로 초기 유전자 조합 이외의 공간을 탐색할 수 있게 해주어 초기 집합의 조합 내에 적절한 해가 없을 경우를 보완해주는 과정이다.When the offspring are created, they have a chance of mutating a portion of their chromosomes, which randomly replaces several elements with completely new values. This new information does not exist in the current population. It is a process that makes it possible to search to compensate for the case where there is no proper solution in the initial set combination.

이 같은 방법으로 새로이 구해진 개체들로 기존 개체군의 일부 또는 전부를 교체하여 새 세대의 개체군을 생성한다. 이 과정을 반복하여 그 세대수가 미리 정한 값(보통 10~1000사이에서 선택)에 이르면 가장 적합도가 큰 개체, 즉 예측성능이 가장 좋은 회귀모형을 선택하고 끝낸다.In this way, a new generation of populations are created by replacing some or all of the existing populations with newly obtained entities. Repeat this process until the number of generations reaches a pre-determined value (usually between 10 and 1000), and then select and end up the regression model with the best predictive performance.

일단 이렇게 최선의 다중선형회귀모형이 선정되면 다음 단계로 이 모형의 타당성을 검토한다. 만일 모형에 포함된 분자표현자의 t검정값이 좋지 않다든지 하는 문제점이 발견되면 이전 단계로 돌아가 다른 모형을 찾는다. 예를 들어 샘플 화합물의 수가 1005이고 선정된 모형이 5개의 분자표현자로 구성되어 있을 경우 그 중 한 분자표현자에 대한 t검정값이 3.3 이상이면 이는 이 분자표현자가 해당 물성과 무관할 확률이 0.1% 이하임을 뜻한다. 본 발명에서는 대략 3미만의 t검정값을 갖는 분자표현자가 존재할 경우 선정된 모형을 버리고 다른 모형을 찾았다. 또한 샘플 화합물들에 대한 한 분자표현자의 값들이 소수의 몇몇 화합물들을 제외하고는 모두 동일한 경우도 신뢰성 있는 모형이라고 볼 수 없어 마찬가지로 조처하였다. 일반적으로 모형에 포함되는 분자표현자의 개수를 늘리면 예측성능은 높아지지만 이와 같은 문제들이 발생하게 되므로 보통 최종 모형은 이 단계들을 분자표현자의 개수를 바꿔가며 여러 번의 시행착오를 거쳐 반복 수행함으로써 얻어진다. 선정된 모형에 더 이상 문제가 나타나지 않으면 다음 단계로 넘어간다.Once this best multiple linear regression model has been selected, the next step is to examine its validity. If a problem is found that the t-test value of the molecular descriptors included in the model is not good, go back and look for another model. For example, if the number of sample compounds is 1005 and the selected model consists of five molecular descriptors, if the t-test for one of the molecular descriptors is 3.3 or higher, then the probability that the molecular descriptor is irrelevant to that property is 0.1 It means less than%. In the present invention, when there is a molecular presenter having a t-test value of less than about 3, the selected model is discarded and another model is found. In addition, even if the values of the molecular descriptors for the sample compounds are the same except for a few few compounds, they are not considered to be reliable models. In general, increasing the number of molecular expressions included in the model increases the predictive performance, but such problems occur. Therefore, the final model is usually obtained by repeating these steps through several trials and errors while changing the number of molecular expressions. If the problem no longer appears in the selected model, proceed to the next step.

그 다음인 단계 7에서는 모형을 형성하는데 참여하지 않았던 시험집합을 이용하여 찾아낸 모형의 예측성능을 평가한다. 만일 훈련집합에서 보다 예측성능이 많이 떨어지거나 예측이 크게 벗어나는 샘플들이 보이는 등의 문제점이 발견되면 단계 4로 가서 훈련집합과 시험집합을 재조정한 뒤 이후 단계를 진행한다. 여기서 훈련집합과 시험집합의 차이가 훈련집합에 대해서 얻은 절대평균오차(AAE)의 20%를 넘지 않으면 예측성능이 만족되는 것으로 판단한다.Next, in Step 7, assess the predictive performance of the found model using test sets that did not participate in model formation. If a problem is found in the training set that results in much lower predictive performance or samples that are significantly off predicted, go to step 4 and readjust the training and test sets before proceeding. If the difference between the training set and the test set does not exceed 20% of the absolute mean error (AAE) obtained for the training set, it is judged that the predictive performance is satisfied.

이렇게 하여 옥탄올-물 분자분배계수에 대한 다중선형회귀모형이 일단 확립되면 인공신경망모형을 확립하기 위해 먼저 분자표현자들의 데이터와 옥탄올-물 분자분배계수의 실험값 데이터를 표준화하는 작업, 즉 각 값에서 해당 데이터의 평균을 뺀 뒤 표준편차로 나누는 작업을 진행한다. 이렇게 준비된 전체 샘플을 대략 6:2:2의 비율로 훈련집합(training set), 검증집합(validation set), 시험집합(test set)으로 나눈다.In this way, once the multiple linear regression model for the octanol-water molecular distribution coefficient is established, the first step is to standardize the data of the molecular presenters and the experimental data of the octanol-water molecular distribution coefficient to establish the artificial neural network model. Subtract the mean of the data from the values and divide by the standard deviation. The entire sample thus prepared is divided into a training set, a validation set, and a test set in an approximately 6: 2: 2 ratio.

이후 이들을 사용하여 최선의 인공신경망모형을 탐색한다. 이때 탐색 범위는 도 2에서처럼 입력층과 출력층 사이에 한 개의 은닉층을 가지면서 이 3개 층이 전방향으로(feed forward), 즉 입력에서 출력으로 향하는 방향으로만 연결되어 있는 구조를 갖는 신경망으로 제한하였다. 입력층은 이미 확립되어 있는 다중선형회귀모형에 포함된 각 분자표현자들의 값을 입력 받는, 같은 개수만큼의 노드들로 구성하였으며 출력층은 옥탄올-물 분배계수를 출력하는 한 개의 노드로 구성하였다. 또한 은닉층의 활성화 함수로는 Sigmoid 함수 즉

Figure 112013031662916-pat00014
을, 출력층의 활성화 함수로는 선형함수 즉
Figure 112013031662916-pat00015
를 채택하였다. 따라서 입력층의 각 노드들이 받는 입력값들을
Figure 112013031662916-pat00016
라 할 때 은닉층의 j번째 노드의 출력값은
Figure 112013031662916-pat00017
와 같이 주어지며 은닉층이
Figure 112013031662916-pat00018
개의 노드로 이루어져 있을 때 출력층 출력노드의 최종 출력값은
Figure 112013031662916-pat00019
와 같이 주어진다. 여기서
Figure 112013031662916-pat00020
는 문턱 가중치(threshold weight)를 의미한다.We then use them to find the best artificial neural network model. In this case, the search range is limited to a neural network having a hidden layer between the input layer and the output layer as shown in FIG. 2 and having three structures connected only in a feed forward direction, that is, in a direction from the input to the output. It was. The input layer is composed of the same number of nodes that receive the values of each of the molecular markers included in the already established polylinear regression model, and the output layer is composed of one node that outputs the octanol-water partition coefficient. . In addition, as the activation function of the hidden layer, the Sigmoid function,
Figure 112013031662916-pat00014
, The activation function of the output layer is a linear function
Figure 112013031662916-pat00015
Was adopted. Therefore, the input values that each node in the input layer receives
Figure 112013031662916-pat00016
In this case, the output value of the j th node of the hidden layer is
Figure 112013031662916-pat00017
Is given by
Figure 112013031662916-pat00018
The final output value of the output layer output node when composed of four nodes
Figure 112013031662916-pat00019
As shown in Fig. here
Figure 112013031662916-pat00020
Denotes a threshold weight.

탐색은 은닉노드의 수가 1개인 것부터 차례로 개수를 늘려가며 진행하는데 보통 입력노드 개수의 2배가 될 때까지 진행하지만 만족스러운 모형이 나오지 않을 경우 더 진행하여 탐색한다. 자세한 절차는 다음과 같다. 먼저 은닉노드의 각 개수 별로, 난수 발생 함수를 써서 생성한 가중치

Figure 112011077584636-pat00021
들의 다양한 초기값세트(보통 1000세트이내)를 마련하고, 훈련집합을 사용하여 각 세트로 초기화된 신경망을 역전파 알고리즘을 통해 반복 훈련함으로써 가중치
Figure 112011077584636-pat00022
들의 최적화된 값을 찾는다. 최적화에 대한 판단은 매 훈련 후 경신된 가중치들의 값으로 정해지는 모형을 검증집합에 적용하였을 때 그 평균제곱오차(mean square error)의 값이 최소가 되는 것으로 한다. 보통은 3000~5000번의 반복훈련 내에 이러한 시점이 나오게 된다. 이렇게 얻어진 각 초기값세트에 대응하는 최적화된 신경망모형을 훈련집합, 검증집합, 시험집합에 각각 적용하여 그 평균제곱오차들이 모두 다중선형회귀모형의 그것들보다 작은 것만을 모은다. 이러한 것이 여러 개 있을 경우, 결정계수나 평균절대오차 등을 기준으로 가장 우수한 모형을 선택한다.The search proceeds from increasing the number of hidden nodes to one in order. Usually, the search proceeds to twice the number of input nodes. However, if a satisfactory model is not found, the search proceeds further. The detailed procedure is as follows. First, the weight generated by using random number generation function for each number of hidden nodes
Figure 112011077584636-pat00021
Prepare different sets of initial values (usually within 1000 sets) and weight them by repeatedly training the neural networks initialized with each set using the back-up algorithm.
Figure 112011077584636-pat00022
Find the optimal value for these. The judgment of the optimization is that the mean square error is minimized when the model, which is determined by the updated weights after each training, is applied to the test set. Normally this will occur within 3000 to 5000 repetitions. The optimized neural network model corresponding to each set of initial values thus obtained is applied to the training set, the test set, and the test set, respectively, to collect only those whose mean square errors are smaller than those of the multiple linear regression model. If there are several of these, choose the best model based on the coefficient of determination or the absolute absolute error.

이렇게 인공신경망모형이 선정되면 마지막으로 과적합(overfitting) 방지기준을 설정한다. 이는 과도한 훈련의 결과로 인공신경망이 미지의 입력에 대해 엉뚱한 답을 내놓는 불안정성을 개선하기 위한 조처로, 한 타당한 기준값(탄화수소의 경우 0.3

Figure 112013031662916-pat00023
, 비탄화수소의 경우 1
Figure 112013031662916-pat00024
)을 정하여 인공신경망모형과 다중선형회귀모형의 예측값들 차이의 절대값이 기준값을 넘을 경우 다중선형회귀모형의 예측값을 채택하고 이보다 작을 경우 인공신경망모형의 값을 채택하게 하는 것을 말한다.
Figure 112013031662916-pat00046
은 옥탄올과 물에 녹아있는 화합물의 몰비에 log를 취한값을 의미한다.When the artificial neural network model is selected, an overfitting prevention standard is finally set. This is a measure to improve the instability that artificial neural networks give wrong answers to unknown inputs as a result of overtraining, a reasonable threshold (0.3 for hydrocarbons).
Figure 112013031662916-pat00023
, For hydrogenated 1
Figure 112013031662916-pat00024
), Which means that if the absolute value of the difference between the predicted values of the artificial neural network model and the multiple linear regression model exceeds the reference value, the predicted value of the multiple linear regression model is adopted.
Figure 112013031662916-pat00046
Means the logarithm of the molar ratio of the compound dissolved in octanol and water.

이 같은 과정을 거쳐 옥탄올-물 분배계수에 대한 다중선형회귀-인공신경망 혼성모형을 확립한 결과는 표 2, 3에 간략히 나와 있다. 표 2(탄화수소의 옥탄올-물 분배계수에 대한 QSPR 예측모델의 주요 내용) 및 표 3(비탄화수소의 옥탄올-물 분배계수에 대한 QSPR 예측모델의 주요 내용)에서 ClogP는 Calculated logP의 축약된 용어로 P는 Partition coefficient의 첫문자를 의미하는 것으로 ClogP 계산 프로그램은 표 1에 있는 ClogP 제공자중에서 Biobyte에서 제공하는 프로그램을 사용하여 계산하였다.
The results of establishing a multiple linear regression-artificial neural network hybrid model for the octanol-water partition coefficient are summarized in Tables 2 and 3. In Table 2 (main content of the QSPR predictive model for the hydrocarbon octanol-water partition coefficient) and Table 3 (main content of the QSPR predictive model for the non-hydrocarbon octanol-water partition coefficient), ClogP is abbreviated as Calculated logP. The term P refers to the first letter of the partition coefficient. The ClogP calculation program was calculated using a program provided by Biobyte among the ClogP providers shown in Table 1.

샘플 화합물들의 개수Number of sample compounds 225225 분자표현자들의 개수Number of molecular descriptors 55 분자표현자들의 이름Names of Molecular Presenters P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP)
P2: 자기회귀 걸음 합계 차수9 (self-returning walk count of order 09)
P3: 최대 전자위상적 음의 편차 (maximal electrotopological negative variation)
P4: CHR3 기능기 수(CHR3)
P5: 동경 분포 함수-5.5/원자 반데르발스 부피 가중
(Radial Distribution Function - 5.5 / weighted by atomic van der Waals volumes)
P 1 : Octanol-water partition coefficient obtained by a commercial program (ClogP)
P 2 : self-returning walk count of order 09
P 3 : maximum electrotopological negative variation
P 4 : Number of CHR3 functional groups (CHR3)
P 5 : Tokyo distribution function-5.5 / atomic van der Waals volume weighting
(Radial Distribution Function-5.5 / weighted by atomic van der Waals volumes)
회귀모형 결정계수Regression Model Decision Coefficients 0.9874080.987408 회귀모형 평균절대오차Regression Model Mean Absolute Error 0.078578

Figure 112011077584636-pat00025
0.078578
Figure 112011077584636-pat00025
회귀모형Regression model 옥탄올-물 분배계수 [
Figure 112011077584636-pat00026
]=
Figure 112011077584636-pat00027
Octanol-water partition coefficient [
Figure 112011077584636-pat00026
] =
Figure 112011077584636-pat00027
인공신경망 결정계수Artificial Neural Network Determination Coefficient 0.990340.99034 인공신경망 평균절대오차Artificial neural network mean absolute error 0.126672
Figure 112011077584636-pat00028
0.126672
Figure 112011077584636-pat00028
인공신경망모형Artificial Neural Network Model 옥탄올-물 분배계수=
Figure 112011077584636-pat00029

Octanol-water partition coefficient
Figure 112011077584636-pat00029

과적합 방지기준Overconformity Prevention Criteria 0.3
Figure 112011077584636-pat00030
0.3
Figure 112011077584636-pat00030

샘플 화합물들의 개수Number of sample compounds 10951095 분자표현자들의 개수Number of molecular descriptors 77 분자표현자들의 이름Names of Molecular Presenters P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP)
P2: 수소원자 자기상관 차수7/원자량 가중(H autocorrelation of lag 6 / Weighted by atomic masses)
P3: 탄소원자의 최소 원자가(Minimum valency of a C atom)
P4: Al-NO2 기능기 수(Al-NO2)
P5: V 총 크기 지수/원자 편극도 가중
(V total size index / weighted by atomic polarizability)
P6: (지방족) 니트로기의 수
P7: 구아니딘 유도체의 수
P 1 : Octanol-water partition coefficient obtained by a commercial program (ClogP)
P 2 : H autocorrelation of lag 6 / Weighted by atomic masses
P 3 : Minimum valency of a C atom
P 4 : Number of Al-NO2 functional groups (Al-NO2)
P 5 : V Total Size Index / Atomic Polarization Weighting
(V total size index / weighted by atomic polarizability)
P 6 : number of (aliphatic) nitro groups
P 7 : number of guanidine derivatives
회귀모형 결정계수Regression Model Decision Coefficients 0.9762990.976299 회귀모형 평균절대오차Regression Model Mean Absolute Error 0.098008

Figure 112011077584636-pat00031
0.098008
Figure 112011077584636-pat00031
회귀모형Regression model 옥탄올-물 분배계수 [
Figure 112011077584636-pat00032
]=
Figure 112011077584636-pat00033
Octanol-water partition coefficient [
Figure 112011077584636-pat00032
] =
Figure 112011077584636-pat00033
인공신경망 결정계수Artificial Neural Network Determination Coefficient 0.9783090.978309 인공신경망 평균절대오차Artificial neural network mean absolute error 0.162711
Figure 112011077584636-pat00034
0.162711
Figure 112011077584636-pat00034
인공신경망모형Artificial Neural Network Model 옥탄올-물 분배계수=
Figure 112011077584636-pat00035
Octanol-water partition coefficient
Figure 112011077584636-pat00035
과적합 방지기준Overconformity Prevention Criteria 1
Figure 112011077584636-pat00036
One
Figure 112011077584636-pat00036

본 발명이 기존 기술보다 우월함을 보이기 위해 이렇게 확립된 다중선형회귀-인공신경망 혼성모형과 널리 사용되는 기존의 그룹기여 모형 즉 UNIFAC을 사용한 모형[Wienke G., Gmehling J., Prediction of octanol-water partition coefficients, Henry coefficients and water solubilities using UNIFAC, Toxicol. Environ. Chem. 1998.65.57]의 예측성능을 실험값이 알려진 1240개의 화합물들의 데이터를 사용하여 비교하였다. 그 결과 UNIFAC을 사용한 모형은 807개에 대해서만 예측값을 계산해주며 0.916387의 결정계수값과 0.4816

Figure 112013031662916-pat00037
의 평균절대오차값을 가짐을 알게 되었다. 반면 다중선형회귀-인공신경망 혼성모형은 1240개 전부에 대해 예측값을 계산해주며 0.992394의 결정계수값과 0.1265
Figure 112013031662916-pat00038
의 평균절대오차값을 가져 기존 모형보다 우수함을 알게 되었다. 도 3, 4는 각 모형의 예측성능을 보여주는 패리티(parity) 도면들이며 이 도면들로부터 다중선형회귀-인공신경망 혼성모형이 기존 모형보다 우수한 성능을 가짐을 눈으로 확인할 수 있다. 한편 옥탄올-물 분배계수값의 실험평균오차는 약 0.2
Figure 112013031662916-pat00039
이며 이 값을 중심으로 실험값과 예측값 사이의 오차를 히스토그램으로 그린 것이 도 5 및 6이다. 이 도면들은 UNIFAC을 사용한 모형은 43.51%, 다중선형회귀-인공신경망 혼성모형은 80.28%의 확률로 평균 실험오차의 범위 이내로 옥탄올-물 분배계수값을 예측하고 있음을 보여주어 다중선형회귀-인공신경망 혼성모형이 기존 모형보다 정확함을 증명해준다.
In order to show that the present invention is superior to the existing technology, the multiple linear regression-artificial neural network hybrid model thus established and the conventional group contribution model widely used, that is, the model using UNIFAC [Wienke G., Gmehling J., Prediction of octanol-water partition coefficients, Henry coefficients and water solubilities using UNIFAC , Toxicol. Environ. Chem. 1998.65.57] was compared using the data of 1240 compounds with experimental values. As a result, the model using UNIFAC calculates the prediction value only for 807, with the coefficient of determination of 0.916387 and 0.4816
Figure 112013031662916-pat00037
It is found that the mean absolute error of. On the other hand, the multiple linear regression-artificial neural network hybrid model calculates the predicted values for all 1,240 and has a coefficient of determination of 0.992394 and 0.1265.
Figure 112013031662916-pat00038
The average absolute error of was found to be superior to the existing model. 3 and 4 are parity diagrams showing the predictive performance of each model, and it can be seen from these figures that the multilinear regression-artificial neural network hybrid model has better performance than the conventional model. On the other hand, the experimental mean error of the octanol-water partition coefficient is about 0.2
Figure 112013031662916-pat00039
5 and 6 show the histogram of the error between the experimental value and the predicted value. These figures show that the model using UNIFAC predicts octanol-water partition coefficients within the range of mean experimental error with a probability of 43.51% for hybrid models and 80.28% for multiple linear regression-artificial neural network hybrid models. The neural network hybrid model proves to be more accurate than the existing model.

본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described embodiments, and any person having ordinary skill in the art to which the present invention pertains may make various modifications without departing from the gist of the present invention as claimed in the claims. Such changes are intended to fall within the scope of the claims.

Claims (28)

수집된 샘플 유기화합물들 중의 탄화수소 계열 실험데이터를 입력하는 제1단계;
상기 제1단계에서 입력된 상기 탄화수소 계열 유기화합물의 옥탄올-물 분배계수에 대한 분자표현자값을 준비하는 제2단계;
최적의 분자표현자들을 추출하는 제3단계;
훈련집합과 시험집합으로 실험데이터를 분리하는 제4단계;
훈련집합에 대하여 최적의 다중선형회귀모형을 탐색하는 제5단계;
선택된 모형의 타당성을 검토하는 제6단계;
상기 제6단계에서 타당성이 없으면, 상기 제5단계, 제6단계를 반복하고, 타당성이 있으면 시험집합에 대하여 모형의 예측성능을 테스트하는 제7단계;
시험집합에 대한 상기 제7단계 테스트에서 성능이 기준을 만족하지 못하면 제4단계 내지 제7단계를 반복하고, 성능을 만족하면 샘플 표준화 후 3개 집합으로 분리하는 제8단계;
전체 샘플을 3개 집합으로 나눈 후에 최적의 인공신경망모형을 탐색하는 제9단계;
상기 제8단계에서 성능 테스트를 만족하는 상기 최적의 다중선형회귀모형으로 구한 옥탄올-물 분배계수 예측값과 상기 제9단계에서 탐색된 상기 최적의 인공신경망모형으로 구한 옥탄올-물 분배계수 예측값 차이의 절대값을 미리 설정된 과적합 방지 기준값과 비교하는 제10단계; 및
상기 차이가 상기 과적합 방지 기준값 보다 크면 상기 제8단계에서 얻은 다중선형회귀모형에 의한 옥탄올-물 분배계수 예측값을 옥탄올-물 분배계수 값으로 채택하고 상기 과적합 방지 기준값 보다 작으면 상기 제9단계에서 탐색된 인공신경망모형에 의한 옥탄올-물 분배계수 예측값을 옥탄올-물 분배계수 값으로 채택하는 제11단계를 포함하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
A first step of inputting hydrocarbon-based experimental data among collected sample organic compounds;
A second step of preparing a molecular presenter value for the octanol-water partition coefficient of the hydrocarbon-based organic compound input in the first step;
Extracting optimal molecular descriptors;
A fourth step of separating the experimental data into a training set and a test set;
A fifth step of searching for an optimal multiple linear regression model for the training set;
A sixth step of examining the validity of the selected model;
A seventh step of repeating the fifth and sixth steps if there is no validity in the sixth step, and testing the predictive performance of the model with respect to the test set if it is valid;
An eighth step of repeating steps 4 to 7 if the performance does not satisfy the criteria in the seventh step test on the test set, and separating the three sets after standardizing the sample if the performance is satisfied;
A ninth step of searching for an optimal artificial neural network model after dividing the entire sample into three sets;
Difference between the octanol-water partition coefficient predicted value obtained by the optimal multilinear regression model satisfying the performance test in the eighth step and the octanol-water partition coefficient predicted value obtained by the optimal neural network model found in the ninth step A tenth step of comparing the absolute value of the reference value with a preset overfit prevention reference value; And
If the difference is greater than the overfit reference value, the octanol-water partition coefficient predicted by the multiple linear regression model obtained in the eighth step is adopted as the octanol-water partition coefficient value. Octanol of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model including the eleventh step of adopting the octanol-water partition coefficient predicted by the artificial neural network model found in step 9 as the octanol-water partition coefficient value How to get the water partition coefficient.
제1항에 있어서, 상기 제3단계에서 최적의 분자표현자는 모든 샘플 화합물에 대해 값이 동일하지 않은 독립적인 분자표현자인 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The octane of the hydrocarbon-based organic compound through the multiple linear regression-artificial neural network model according to claim 1, wherein the optimal molecular presenter in the third step is an independent molecular presenter whose values are not the same for all sample compounds. How to find the all-water partition coefficient.
제1항에 있어서, 상기 제4단계에서 훈련집합과 시험집합은 5:5 ~ 8:2의 비율로 나누는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The octanol-water distribution of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model according to claim 1, wherein the training set and the test set are divided in a ratio of 5: 5 to 8: 2 in the fourth step. How to find the coefficients.
제1항에 있어서, 상기 제5단계에서 상기 다중선형회귀 모형은 상기 훈련집합에 대하여 유전적 알고리즘(genetic algorithm)을 적용하여 다중선형회귀모형을 탐색하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
2. The multiple linear regression-artificial neural network model according to claim 1, wherein in the fifth step, the multiple linear regression model searches for a multiple linear regression model by applying a genetic algorithm to the training set. Method for obtaining octanol-water partition coefficient of a hydrocarbon-based organic compound through.
제4항에 있어서, 상기 유전적 알고리즘(genetic algorithm)은 분자표현자들의 풀(pool)에서 일정한 개수의 분자표현자들을 무작위로 뽑아 만든 다수의 다중선형회귀모형들로 구성된 개체군(population)을 생성하는 단계; 각 개체(individual)들은 뽑힌 분자표현자들의 번호들을 조합하여 부호화하는 단계; 생성된 개체군으로부터 룰렛휠(Roulette Wheel) 방법에 의해서 두 개의 부모 염색체를 선택한 뒤 단순교배(single point crossover)법에 의하여 자손들을 생성하는 단계; 생성된 자손들의 염색체 일부를 일정 확률로 돌연변이(mutation) 시킨 뒤 기존 개체군의 일부를 이들로 교체하여 새 개체군을 생성하는 단계를 포함하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 4, wherein the genetic algorithm generates a population composed of a plurality of multiple linear regression models randomly drawn from a predetermined number of molecular representations in a pool of molecular representations. Making; Encoding each individual by combining the numbers of the extracted molecular presenters; Selecting two parent chromosomes from the created population by the Roulette Wheel method and generating offspring by a single point crossover method; Hydrocarbon-based organics through a multiple linear regression-artificial neural network model comprising the step of mutating a portion of the chromosome of the generated offspring with a certain probability and then replacing a part of the existing population with them to create a new population. A method for determining the octanol-water partition coefficient of a compound.
제1항에 있어서, 상기 제5단계는 회귀모형의 결정계수 또는 평균절대오차에 의해서 예측성능을 판단하는 것을 포함하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The octanol-water partition coefficient of a hydrocarbon-based organic compound according to claim 1, wherein the fifth step includes determining a predictive performance by a determination coefficient or an average absolute error of the regression model. How to obtain.
제1항에 있어서, 상기 제6단계에서 타당성은 t검정값에 의해서 타당성을 결정하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 1, wherein the validity in the sixth step is to determine the octanol-water partition coefficient of the hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model.
제1항에 있어서, 상기 제8단계에서 시험집합에 대한 예측성능이 훈련집합에 대한 예측성능과 유사하면 다중선형회귀모형이 결정되고, 시험집합에 대한 예측성능이 훈련집합에 대한 예측성능과 차이 나면 훈련집합과 시험집합을 다시 분류하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 표준상태의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 1, wherein in the eighth step, if the predictive performance of the test set is similar to the predicted performance of the training set, a multiple linear regression model is determined, and the predictive performance of the test set is different from the predicted performance of the training set. A method of obtaining the standard octanol-water partition coefficients of hydrocarbon-based organic compounds using a multiple linear regression-artificial neural network model that reclassifies the training set and the test set.
제1항에 있어서, 상기 제9단계에서 상기 인공신경망에 의한 탐색범위는 입력층과 출력층 사이에 하나의 은닉층을 가지며 전방향(feed forward)으로 만 연결되어 있는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 1, wherein in the ninth step, the search range by the neural network has one hidden layer between the input layer and the output layer and is connected only in a feed forward. Method for obtaining octanol-water partition coefficient of hydrocarbon-based organic compounds by neural network model.
제9항에 있어서, 상기 은닉층의 활성화 함수로는 시그모이드(Sigmoid) 함수를 사용하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
10. The method of claim 9, wherein a sigmoid function is used as an activation function of the hidden layer to obtain an octanol-water partition coefficient of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model. .
제1항에 있어서, 상기 제10단계에서 상기 과적합 방지 기준값은 0.3 인 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 1, wherein the reference value for preventing overfitting is 0.3 in the tenth step, wherein the octanol-water partition coefficient of the hydrocarbon-based organic compound is obtained through a multiple linear regression-artificial neural network model.
수집된 샘플 유기화합물들 중의 비탄화수소 계열 실험데이터를 입력하는 제1단계;
샘플 유기화합물들의 상기 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수에 대한 분자표현자값 준비하는 제2단계;
최적의 분자표현자들을 추출하는 제3단계;
훈련집합과 시험집합으로 실험데이터를 분리하는 제4단계;
훈련집합에 대하여 최적의 다중선형회귀모형을 탐색하는 제5단계;
선택된 모형의 타당성을 검토하는 제6단계;
상기 제6단계에서 타당성이 없으면, 상기 제5단계, 제6단계를 반복하고, 타당성이 있으면 시험집합에 대하여 모형의 예측성능을 테스트하는 제7단계;
시험집합에 대한 상기 제7단계 테스트에서 성능을 만족하지 못하면 제4단계 내지 제7단계를 반복하고, 성능을 만족하면 샘플 표준화 후 3개 집합으로 분리하는 제8단계;
전체 샘플을 3개 집합으로 나눈 후에 최적의 인공신경망모형 탐색하는 제9단계;
상기 제8단계에서 성능 테스트를 만족하는 상기 최적의 다중선형회귀모형으로 구한 옥탄올-물 분배계수 예측값과 상기 제9단계에서 탐색된 상기 최적의 인공신경망모형으로 구한 옥탄올-물 분배계수 예측값 차이의 절대값을 미리 설정된 과적합 방지 기준값과 비교하는 제10단계; 및
상기 차이가 상기 과적합 방지 기준값 보다 크면 상기 제8단계에서 얻은 다중선형회귀모형에 의한 옥탄올-물 분배계수 예측값을 옥탄올-물 분배계수 값으로 채택하고 상기 과적합 방지 기준값 보다 작으면 상기 제9단계에서 탐색된 인공신경망모형에 의한 옥탄올-물 분배계수 예측값을 옥탄올-물 분배계수 값으로 채택하는 제11단계를 포함하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
A first step of inputting non-hydrocarbon-based experimental data among collected sample organic compounds;
Preparing a molecular presenter value for an octanol-water partition coefficient of the non-hydrocarbon-based organic compound of sample organic compounds;
Extracting optimal molecular descriptors;
A fourth step of separating the experimental data into a training set and a test set;
A fifth step of searching for an optimal multiple linear regression model for the training set;
A sixth step of examining the validity of the selected model;
A seventh step of repeating the fifth and sixth steps if there is no validity in the sixth step, and testing the predictive performance of the model with respect to the test set if it is valid;
An eighth step of repeating the fourth to seventh steps if the performance is not satisfied in the seventh step test on the test set, and separating the three sets after normalizing the sample if the performance is satisfied;
A ninth step of searching for an optimal neural network model after dividing the entire sample into three sets;
Difference between the octanol-water partition coefficient predicted value obtained by the optimal multilinear regression model satisfying the performance test in the eighth step and the octanol-water partition coefficient predicted value obtained by the optimal neural network model found in the ninth step A tenth step of comparing the absolute value of the reference value with a preset overfit prevention reference value; And
If the difference is greater than the overfit reference value, the octanol-water partition coefficient predicted by the multiple linear regression model obtained in the eighth step is adopted as the octanol-water partition coefficient value. Octane of the non-hydrocarbon-based organic compound through the multiple linear regression-artificial neural network model including the eleventh step of adopting the octanol-water partition coefficient predicted by the artificial neural network model found in step 9 as the octanol-water partition coefficient value How to find the all-water partition coefficient.
제12항에 있어서, 상기 제3단계에서 최적의 분자표현자는 모든 샘플 화합물에 대해 값이 동일하지 않은 독립적인 분자표현자인 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
13. The method of claim 12, wherein the optimal molecular descriptors in the third step are independent molecular descriptors whose values are not the same for all the sample compounds. How to find the octanol-water partition coefficient.
제12항에 있어서, 상기 제4단계에서 훈련집합과 시험집합은 5:5 ~ 6:4의 비율로 나누는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
13. The octanol-water of the non-hydrocarbon-based organic compound according to claim 12, wherein the training set and the test set are divided by a ratio of 5: 5 to 6: 4 in the fourth step. How to find the distribution factor.
제12항에 있어서, 상기 제5단계에서 상기 다중선형회귀 모형은 상기 훈련집합에 대하여 유전적 알고리즘(genetic algorithm) 적용하여 다중선형회귀모형을 탐색하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
13. The method of claim 12, wherein in the fifth step, the multiple linear regression model searches for the multiple linear regression model by applying a genetic algorithm to the training set. To obtain the octanol-water partition coefficient of non-hydrocarbon organic compounds.
제15항에 있어서, 상기 유전적 알고리즘(genetic algorithm)은 분자표현자들의 풀(pool)에서 일정한 개수의 분자표현자들을 무작위로 뽑아 만든 다수의 다중선형회귀모형들로 구성된 개체군(population)을 생성하는 단계; 각 개체(individual)들은 뽑힌 분자표현자들의 번호들을 조합하여 부호화하는 단계; 생성된 개체군으로부터 룰렛휠(Roulette Wheel) 방법에 의해서 두 개의 부모 염색체를 선택한 뒤 단순교배(single point crossover)법에 의하여 자손들을 생성하는 단계; 생성된 자손들의 염색체 일부를 일정 확률로 돌연변이(mutation) 시킨 뒤 기존 개체군의 일부를 이들로 교체하여 새 개체군을 생성하는 단계를 포함하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 15, wherein the genetic algorithm generates a population composed of a plurality of multiple linear regression models randomly drawn from the pool of molecular presenters. Making; Encoding each individual by combining the numbers of the extracted molecular presenters; Selecting two parent chromosomes from the created population by the Roulette Wheel method and generating offspring by a single point crossover method; A non-hydrocarbon series through a multiple linear regression-artificial neural network model comprising the step of mutating a portion of the chromosomes of the generated offspring with a certain probability and then replacing a portion of the existing population with them to create a new population. A method for determining the octanol-water partition coefficient of organic compounds.
제12항에 있어서, 상기 제5단계는 회귀모형의 결정계수 또는 평균절대오차에 의해서 예측성능을 판단하는 것을 포함하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
13. The octanol-water distribution of the non-hydrocarbon-based organic compound according to claim 12, wherein the fifth step comprises determining the predictive performance by the coefficient of determination or the mean absolute error of the regression model. How to find the coefficients.
제12항에 있어서, 상기 제6단계에서 타당성은 t검정값에 의해서 타당성을 결정하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
13. The method of claim 12, wherein the validity in the sixth step is to obtain the octanol-water partition coefficient of the non-hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model.
제12항에 있어서, 상기 제8단계에서 시험집합에 대한 예측성능이 훈련집합에 대한 예측성능과 유사하면 다중선형회귀모형이 결정되고, 시험집합에 대한 예측성능이 훈련집합에 대한 예측성능과 차이 나면 훈련집합과 시험집합을 다시 분류하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 12, wherein in the eighth step, if the predictive performance of the test set is similar to the predicted performance of the training set, a multiple linear regression model is determined, and the predictive performance of the test set is different from the predicted performance of the training set. After that, the octanol-water partition coefficient of the non-hydrocarbon-based organic compound is obtained through a multiple linear regression-artificial neural network model that reclassifies the training set and the test set.
제12항에 있어서, 상기 제9단계에서 상기 인공신경망에 의한 탐색범위는 입력층과 출력층 사이에 하나의 은닉층을 가지며 전방향(feed forward)으로 만 연결되어 있는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 12, wherein in the ninth step, the search range by the artificial neural network has one hidden layer between the input layer and the output layer and is connected only in a feed forward. Method for obtaining octanol-water partition coefficient of non-hydrocarbon organic compounds by neural network model.
제20항에 있어서, 상기 은닉층의 활성화 함수로는 시그모이드(Sigmoid) 함수를 사용하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
21. The method of claim 20, wherein the octanol-water partition coefficient of the non-hydrocarbon-based organic compound is calculated by using a sigmoid function as a function of activation of the hidden layer. Way.
제12항에 있어서, 상기 제10단계에서 상기 과적합 방지 기준값은 1 인 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 12, wherein in the tenth step, the overfit prevention reference value is 1, wherein the octanol-water partition coefficient of the non-hydrocarbon-based organic compound is obtained through a multiple linear regression-artificial neural network model.
제1항에 있어서, 상기 제3단계에서 추출된 상기 최적의 분자표현자들은
P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP),
P2: 자기회귀 걸음 합계 차수9(self-returning walk count of order 09),
P3: 최대 전자위상적 음의 편차(maximal electrotopological negative variation),
P4: CHR3 기능기 수(CHR3) 및
P5: 동경 분포 함수-5.5/원자 반데르발스 부피 가중(Radial Distribution Function - 5.5 / weighted by atomic van der Waals volumes)
을 포함하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 1, wherein the optimal molecular descriptors extracted in the third step
P 1 : Octanol-water partition coefficient obtained by a commercial program (ClogP),
P 2 : self-returning walk count of order 09,
P 3 : maximum electrotopological negative variation,
P 4 : number of CHR3 functional groups (CHR3) and
P 5 : Radial Distribution Function-5.5 / weighted by atomic van der Waals volumes
Method for obtaining the octanol-water partition coefficient of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model comprising a.
제12항에 있어서, 상기 제3단계에서 추출된 상기 최적의 분자표현자들은
P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP),
P2: 수소원자 자기상관 차수7/원자량 가중(H autocorrelation of lag 6 / Weighted by atomic masses),
P3: 탄소원자의 최소 원자가(Minimum valency of a C atom),
P4: Al-NO2 기능기 수(Al-NO2),
P5: V 총 크기 지수/원자 편극도 가중(V total size index / weighted by atomic polarizability),
P6: (지방족) 니트로기의 수(number of nitro groups (aliphatic)) 및
P7: 구아니딘 유도체의 수(number of guanidine derivatives)
을 포함하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
The method of claim 12, wherein the optimal molecular descriptors extracted in the third step is
P 1 : Octanol-water partition coefficient obtained by a commercial program (ClogP),
P 2 : H autocorrelation of lag 6 / Weighted by atomic masses,
P 3 : Minimum valency of a C atom,
P 4 : number of Al-NO2 functional groups (Al-NO2),
P 5 : V total size index / weighted by atomic polarizability,
P 6 : number of nitro groups (aliphatic) and
P 7 : number of guanidine derivatives
Method for obtaining octanol-water partition coefficient of non-hydrocarbon-based organic compounds through multiple linear regression-artificial neural network model.
다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법에 있어서, 분자표현자는
P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP),
P2: 자기회귀 걸음 합계 차수9(self-returning walk count of order 09) : 최대 전자위상적 음의 편차(maximal electrotopological negative variation),
P3: CHR3 기능기 수(CHR3) 및
P4: 동경 분포 함수-5.5/원자 반데르발스 부피 가중(Radial Distribution Function - 5.5 / weighted by atomic van der Waals volumes)
을 포함하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
In the method of calculating the octanol-water partition coefficient of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model,
P 1 : Octanol-water partition coefficient obtained by a commercial program (ClogP),
P 2 : self-returning walk count of order 09: maximum electrotopological negative variation,
P 3 : number of CHR3 functional groups (CHR3) and
P 4 : Radial Distribution Function-5.5 / weighted by atomic van der Waals volumes
Method for obtaining the octanol-water partition coefficient of a hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model comprising a.
다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법에 있어서, 분자표현자는
P1: 상용 프로그램에 의해 얻은 옥탄올-물 분배계수(ClogP),
P2: 수소원자 자기상관 차수7/원자량 가중(H autocorrelation of lag 6 / Weighted by atomic masses),
P3: 탄소원자의 최소 원자가(Minimum valency of a C atom),
P4: Al-NO2 기능기 수(Al-NO2),
P5: V 총 크기 지수/원자 편극도 가중(V total size index / weighted by atomic polarizability),
P6: (지방족) 니트로기의 수(number of nitro groups (aliphatic)) 및
P7: 구아니딘 유도체의 수(number of guanidine derivatives)
을 포함하는 것을 특징으로 하는 다중선형회귀-인공신경망 모형을 통하여 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법.
In the method of obtaining the octanol-water partition coefficient of a non-hydrocarbon organic compound through a multiple linear regression-artificial neural network model,
P1: Octanol-water partition coefficient obtained by commercial program (ClogP),
P 2 : H autocorrelation of lag 6 / Weighted by atomic masses,
P 3 : Minimum valency of a C atom,
P 4 : number of Al-NO 2 functional groups (Al-NO 2 ),
P 5 : V total size index / weighted by atomic polarizability,
P 6 : number of nitro groups (aliphatic) and
P 7 : number of guanidine derivatives
Method for obtaining the octanol-water partition coefficient of the non-hydrocarbon-based organic compound through a multiple linear regression-artificial neural network model comprising a.
제1항 내지 제11항, 제23항, 제25항 중 어느 한 항에 의한 탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법을 컴퓨터에서 실행시키기 위한 프로그램으로 기록하고 컴퓨터로 읽을 수 있는 저장 매체.
A computer readable and computer readable program for executing the method for obtaining the octanol-water partition coefficient of a hydrocarbon-based organic compound according to any one of claims 1 to 11, 23 and 25. Storage media.
제12항 내지 제22항, 제24항, 제26항 중 어느 한 항에 의한 비탄화수소 계열 유기화합물의 옥탄올-물 분배계수를 구하는 방법을 컴퓨터에서 실행시키기 위한 프로그램으로 기록하고 컴퓨터로 읽을 수 있는 저장 매체.
The method for obtaining the octanol-water partition coefficient of the non-hydrocarbon-based organic compound according to any one of claims 12 to 22, 24 and 26 can be recorded by a computer program and executed by a computer. Storage media.
KR1020110101062A 2011-10-04 2011-10-05 Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound KR101295865B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110101062A KR101295865B1 (en) 2011-10-05 2011-10-05 Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound
PCT/KR2012/007999 WO2012177108A2 (en) 2011-10-04 2012-10-04 Model, method and system for predicting, processing and servicing online physicochemical and thermodynamic properties of pure compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110101062A KR101295865B1 (en) 2011-10-05 2011-10-05 Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound

Publications (2)

Publication Number Publication Date
KR20120085143A KR20120085143A (en) 2012-07-31
KR101295865B1 true KR101295865B1 (en) 2013-08-12

Family

ID=46715819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110101062A KR101295865B1 (en) 2011-10-04 2011-10-05 Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound

Country Status (1)

Country Link
KR (1) KR101295865B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200056B (en) * 2014-09-26 2017-06-06 浙江师范大学 The method and method for establishing model of the bovine serum albumin(BSA) water partition coefficient based on Molecular structure prediction organic compound
CN113011100B (en) * 2021-03-29 2024-05-17 山东理工大学 Grinding roughness prediction method based on multi-element nonlinear fitting and BP neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005461A (en) * 2001-07-09 2003-01-23 인포켐스(주) Chemicals database structure and method thereof
KR20090092017A (en) * 2008-02-26 2009-08-31 건국대학교 산학협력단 Molecular modeling simulation system and method thereof
KR20100042453A (en) * 2008-10-16 2010-04-26 주식회사 엘지화학 System and method for searching chemical material candidate used in display component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005461A (en) * 2001-07-09 2003-01-23 인포켐스(주) Chemicals database structure and method thereof
KR20090092017A (en) * 2008-02-26 2009-08-31 건국대학교 산학협력단 Molecular modeling simulation system and method thereof
KR20100042453A (en) * 2008-10-16 2010-04-26 주식회사 엘지화학 System and method for searching chemical material candidate used in display component

Also Published As

Publication number Publication date
KR20120085143A (en) 2012-07-31

Similar Documents

Publication Publication Date Title
KR101267372B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Water Solubility of Pure Organic Compound
KR101325097B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Enthalpy of Formation of Ideal Gas for Pure Organic Compound
KR101267381B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Ionization Potential of Pure Organic Compound
KR101267408B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Liquid Density of Pure Organic Compound for Normal Boiling Point
KR101295865B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Octanol-Water Partition Coefficient of Pure Organic Compound
KR101267373B1 (en) Multiple Linear Regression―Artificial Neural Network Model Predicting Standard State Enthalpy of Formation of Pure Organic Compound
KR101267376B1 (en) Multiple Linear Regression―Artificial Neural Network Model Predicting Absolute Entropy of Ideal Gas for Pure Organic Compound
KR101297211B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Parachor of Pure Organic Compound
KR101325112B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Enthalpy of Fusion at Melting Point of Pure Organic Compound
KR101313030B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Heat of Vaporization of Pure Organic Compound for 298K
KR101295861B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Lower Flammability Limit Volume Percent of Organic Compound
KR101313026B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Normal Boiling Point of Pure Organic Compound
KR101313037B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Upper Flammability Limit Temperature of Organic Compound
KR101267391B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Solubility Index of Organic Compound
KR20120085160A (en) Multiple linear regression-artificial neural network hybrid model predicting heat of vaporization of pure organic compound at normal boiling point
KR101289322B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Magnetic Susceptibility of Pure Organic Compound
KR101325125B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Volume of Pure Organic Compound
KR101267356B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Standard State Absolute Entropy of Pure Organic Compound
KR101325120B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Saturated Liquid Density of Pure rganic Compound at 298.15K
KR101325107B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Temperature of Pure Organic Compound
KR101325101B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Acentric Factor of Pure Organic Compound
KR101325103B1 (en) Multiple Linear Regression-Artificial Neural Network Hybrid Model Predicting Critical Pressure of Pure Organic Compound
KR101300633B1 (en) Multiple Linear Regression―Artificial Neural Network Model Predicting Polarizability of Pure Organic Compound
KR101313021B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Refractive Index of Pure Organic Compound
KR101300629B1 (en) Multiple Linear Regression―Artificial Neural Network Hybrid Model Predicting Upper Flammability Limit Volume Percent of Pure Organic Compound

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160805

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180806

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190806

Year of fee payment: 7