KR101300626B1 - Non-flammable foam insulation that creates a barrier method for manufacturing resin particles - Google Patents

Non-flammable foam insulation that creates a barrier method for manufacturing resin particles Download PDF

Info

Publication number
KR101300626B1
KR101300626B1 KR1020120061364A KR20120061364A KR101300626B1 KR 101300626 B1 KR101300626 B1 KR 101300626B1 KR 1020120061364 A KR1020120061364 A KR 1020120061364A KR 20120061364 A KR20120061364 A KR 20120061364A KR 101300626 B1 KR101300626 B1 KR 101300626B1
Authority
KR
South Korea
Prior art keywords
resin
weight
powder
resin particles
parts
Prior art date
Application number
KR1020120061364A
Other languages
Korean (ko)
Inventor
김재천
Original Assignee
김재천
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재천 filed Critical 김재천
Priority to KR1020120061364A priority Critical patent/KR101300626B1/en
Priority to PCT/KR2013/004951 priority patent/WO2013183934A1/en
Application granted granted Critical
Publication of KR101300626B1 publication Critical patent/KR101300626B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment

Abstract

PURPOSE: A manufacturing method of a foam resin particle is provided to form a flame retardant and heat-insulating film by heating and spraying a metal, a non-metal, a metal oxide, a metal hydroxide, or a non-metal mineral powder. CONSTITUTION: A manufacturing method of a foam resin particle comprises a step of heating 0.05-50 parts by weight of a frame retardant and heat-insulating powder with a particle diameter of 1-70 micron while stirring 100.0 parts by weight of a thermoplastic foam resin particle with a particle diameter of 0.2-3 mm at 30-3,000 rpm; and a step of forming a flame retardant and heat insulating film by coating the surface of the resin particle with the melted material by a jetting process. 0.05-50 parts by weight of an adhesive resin are mixed and coated onto the surface of the resin particle.

Description

불연성과 단열성 막을 형성시킨 발포성 수지 입자의 제조방법{Non-flammable foam insulation that creates a barrier method for manufacturing resin particles}Non-flammable foam insulation that creates a barrier method for manufacturing resin particles

본 발명은 불연성과 단열성 막을 형성시킨 열가소성 발포성 수지 입자에 관한 것으로서, 입경 1~70μm의 불연성과 단열성 분말 0.05~50 중량부를 열가소성 수지 입자의 표면층에 침투시키며 융착 코팅시켜서 수지 입자에 불연성과 단열성의 막을 형성시킨 것이다. 보다 상세하게는 불연성 분말과 단열성 분말을 가열 용융시켜서, 이를 열가소성 발포성 수지의 입자의 표면층에 융착 코팅하여 불연성과 단열성의 막을 형성시키는 열가소성 발포성 수지 입자의 제조방법과 이 입자로 성형하는 성형물에 관한 것이다.The present invention relates to a thermoplastic foamable resin particle in which a non-flammable and heat insulating film is formed. The non-flammable and heat insulating film is formed by infiltrating the surface layer of a thermoplastic resin particle by fusion coating with 0.05 to 50 parts by weight of a non-flammable and heat insulating powder having a particle diameter of 1 to 70 μm. It is formed. More specifically, the present invention relates to a method for producing thermoplastic foamed resin particles in which the non-combustible powder and the thermally insulated powder are heated and melted and melt-coated to the surface layer of the particles of the thermoplastic foamable resin to form a non-flammable and thermally insulating film, and a molded article molded from the particles. .

열가소성 수지인 올레핀계, 폴리에스테르계, 방향족 비닐계, 아크릴계,염화 비닐계 수지의 단독중합체 또는 2종 이상이 혼합된 혼성중합체는 기계적 물성이 다양하며 건축자재, 내장재, 포장재를 비롯한 산업 전반에 널리 사용되고 있다. 하지만 열에 연화되기 쉽고 열에 약한 단점으로 인하여 사용이 제한되고 있으며 저탄소 친환경 에너지 정책으로 난연성과 단열성이 향상된 물성이 요구되고 있는 실정이다.Homopolymers of olefin, polyester, aromatic vinyl, acrylic, and vinyl chloride resins, which are thermoplastic resins, or a mixture of two or more thereof, have various mechanical properties, and are widely used in industries including construction materials, interior materials, and packaging materials. It is used. However, due to the weakness of heat and easy to soften the use is limited and the situation is required to improve the flame retardancy and insulation properties due to low carbon environmentally friendly energy policy.

그 해결책의 대안으로 예를 들어서 열가소성 수지인 폴리프로필렌 수지에 유기점토, 탈크, 탄산칼슘, 수산화마그내슘, 수산화알루미늄, 카본블랙 등의 무기물질을 수지에 혼합하거나 유기 난연제인 테트라브로모 비스페놀 A-비스, 데카브로모디페닐 에테르, 에틸렌-비스, 비스펜타브로모 페녹시에탄, 헥사브로모 시클로도데칸, 안티몬산화물, 인계 화합물, 염소계 화합물을 수지에 혼합하는 방법 등이 제안되고 있으나 무기난연제와 유기난연제를 수지 내부에 혼합하는 종래의 제조방법들은 난연제의 혼합양이 많으면 성형물의 기계적 물성과 성형성이 저하하고 혼합양이 적으면 난연 성능을 증가시키는 효과가 미약한 단점이 있었다. 무기 난연제를 비롯한 유기 난연제를 수지에 혼합하는 제조 방법들은 가열시 열원으로부터 산소 공급을 차단할 수 없으므로 근본적인 해결 방안을 제시하지 못하고 있다. 대한민국공개특허 10-2010-0075247호에서는 폴리프로필렌 수지에 브롬화 디페닐 에탄 혼합물을 첨가하여 수지를 난연화 하는 방법을 개시하고 있으나 폴리프로필렌 수지에 난연제를 혼합하는 방법으로는 문제점을 해결 할 수 없으며 효과가 자소성 수준으로 미약하다. 대한민국공개특허 10-2005-0070568호에서는 폴리프로필렌 수지에 할로겐계 난연제와 안티몬 화합물, 황산바륨을 첨가하여 난연성을 증가시키는 방법을 개시하고 있으나 이 또한 수지에 난연제를 첨가하는 방법이므로 자소성 수준으로 난연성 증가 효과가 미약한 단점이 있다.As an alternative to the solution, for example, a polypropylene resin, which is a thermoplastic resin, is mixed with an inorganic material such as organic clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, carbon black, or the like, or tetrabromo bisphenol A-, an organic flame retardant, is used. Although a method of mixing bis, decabromodiphenyl ether, ethylene-bis, bispentabromo phenoxytane, hexabromo cyclododecane, antimony oxide, phosphorus compound, and chlorine compound in a resin is proposed, inorganic flame retardant and organic Conventional manufacturing methods for mixing the flame retardant in the resin has a disadvantage in that the mixing amount of the flame retardant is high, the mechanical properties and moldability of the molded product is lowered, and the mixing amount is small, the effect of increasing the flame retardant performance. Manufacturing methods of mixing an organic flame retardant, such as an inorganic flame retardant, with a resin cannot provide a fundamental solution because it cannot block the oxygen supply from a heat source during heating. Korean Patent Laid-Open Publication No. 10-2010-0075247 discloses a method of flame retarding a resin by adding a brominated diphenyl ethane mixture to a polypropylene resin, but a method of mixing a flame retardant with a polypropylene resin cannot solve the problem. Is weak to the level of plasticity. Korean Patent Publication No. 10-2005-0070568 discloses a method of increasing flame retardancy by adding a halogen-based flame retardant, an antimony compound, and barium sulfate to a polypropylene resin, but since this method also adds a flame retardant to the resin, There is a disadvantage that the increase effect is weak.

대한민국 공개특허10-2010-0116841에서는 폴리프로필렌의 단열성을 향상시키는 방법으로 실리카에어로겔을 프로필렌 수지에 혼합하는 제조방법을 개시하고 있으나 실리카 에어로겔의 혼합량이 많으면 프로필렌의 물성이 저하되고 소량이면 실리카 에어로겔이 고가인 것에 비교해서 단열성능 증가 효과는 미약한 단점이 있다. Korean Patent Laid-Open Publication No. 10-2010-0116841 discloses a method of mixing silica airgel with propylene resin as a method of improving the thermal insulation of polypropylene. However, when the amount of silica airgel is mixed, the physical properties of propylene are lowered. Compared with the heat insulation performance increase effect is a weak disadvantage.

본 발명은 상기의 문제점을 해결하기 위한 것이다. 발포하지 않은 발포성 열가소성 수지 입자 또는 발포한 열가소성 수지 입자 표면층에 입경 1~70μm의 불연성 및 단열성 분말을 가열 처리한 후 분사해서 수지 입자 표면층에 침투시켜 융착 코팅하여 불연성과 단열성 막을 형성시킨 것으로서 불연성과 단열성 막을 형성시킨 성형물을 제공하는 것이다.The present invention is intended to solve the above problems. Non-foamable thermoplastic resin particles or foamed thermoplastic resin particle surface layer of non-flammable and heat-insulating powder having a particle diameter of 1 to 70 μm was heated and sprayed to penetrate the resin particle surface layer to be fused and coated to form a non-flammable and heat insulating film. It is to provide a molding in which a film is formed.

본 발명은 불연성과 단열성막을 형성시킨 열가소성 수지 입자 및 발포 입자에 관한 것으로서 불연성과 단열성 분말을 가열해서 수지입자 표면층에 침투시켜 융착 코팅하는 것이다. 사용되는 수지 입자는 열에 연화되는 열가소성 수지로 입자를 형성하여 발포될 수 있는 수지는 사용이 가능하며, 수지의 종류와 발포제와 발포방법에 있어서 제한을 받지 않는다. 본 발명에서 사용할 수 있는 열가소성 수지는 예를 들어서 올레핀계 수지, 폴리에스테르계 수지, 방향족 비닐계 수지, 아크릴계수지, 염화비닐계수지가 있으며 단독중합체 또는 2종 이상이 혼합된 혼성중합체를 사용할 수 있다. α-올레핀 중합체는1-부텐(1-butene), 1-펜텐(1-pentene), 1-헥센(1-hexene) 및 1-옥텐(1-octene) 등이 있으며, 에틸렌-프로필렌 혼성중합체, 에틸렌-프로필렌-디시클로-펜타디엔 혼성중합체, 에틸렌-프로필렌-1,4-헥사디엔 등이 있다. 아크릴산과 -방향족비닐계의 혼성중합체로는 스티렌-(메타)아크릴산 혼성중합체, 스티렌-메틸(메타)아크릴레이트 혼성중합체, 스티렌-무수말레인산 혼성중합체 스티렌-부타디엔 혼성중합체가 있으며 메타크릴산메틸, 메타크릴산에틸, 메타크릴산프로필, 메타크릴산부틸, 메타크릴산-2-에틸헥실, 메타크릴산벤질과 방향족 비닐계 모노마인 p-메틸스티렌, 2,4-디메틸스티렌, p-메톡시스티렌, pn-부틸스티렌, p-t-부틸스티렌, p-클로로스티렌, 2,4,6-트리브로모스티렌, o-클로로스티렌, m-클로로스티렌, 스티렌술폰산,스티렌술폰산나트륨, 스티렌, α-메틸스티렌, o-메틸스티렌, m-메틸스티렌과의 혼성중합체와, 염화 비닐계 중합체는 예를 들어서 초산비닐, 카프론산 비닐 등의 탄소수 2∼18의 비닐계에 , 아크릴산 메틸, 메타아크리르산 메틸 아크릴산등,에틸렌, 1-펜텐 등의 올레핀류, 아릴글리시딜에테르, 글리시딜메타아크릴레이트,이소부틸 비닐, 옥틸 비닐, 등의 단독중합체와 혼성 중합체가 있으며 본 발명은 상기와 같은 열가소성 수지의 중합체에 한정되는 것은 아니다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thermoplastic resin particles and foamed particles having a non-flammable and heat insulating film formed thereon, wherein the non-flammable and heat insulating powder is heated to penetrate into the resin particle surface layer to be fusion-coated. The resin particles used can be used as a resin that can be foamed by forming the particles into a thermoplastic resin softened by heat, and is not limited in the type of resin, foaming agent and foaming method. Thermoplastic resins that can be used in the present invention include, for example, olefin resins, polyester resins, aromatic vinyl resins, acrylic resins, vinyl chloride resins, and homopolymers or hybrid polymers of two or more kinds thereof may be used. α-olefin polymers include 1-butene, 1-pentene, 1-hexene and 1-octene, and ethylene-propylene interpolymers, Ethylene-propylene-dicyclo-pentadiene interpolymers, ethylene-propylene-1,4-hexadiene and the like. Acrylic acid and -aromatic vinyl-based interpolymers include styrene- (meth) acrylic acid interpolymers, styrene-methyl (meth) acrylate interpolymers, styrene-maleic anhydride interpolymers, styrene-butadiene interpolymers, methyl methacrylate, meta Ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, benzyl methacrylate and aromatic vinyl monoamine p-methylstyrene, 2,4-dimethylstyrene, p-methoxystyrene , pn-butylstyrene, pt-butylstyrene, p-chlorostyrene, 2,4,6-tribromostyrene, o-chlorostyrene, m-chlorostyrene, styrenesulfonic acid, sodium styrene sulfonate, styrene, α-methylstyrene The interpolymers of o-methylstyrene and m-methylstyrene, and vinyl chloride polymers are, for example, vinyl acrylates, vinyl caprolates, and vinyl series having 2 to 18 carbon atoms, such as methyl acrylate and methyl methacrylate. Ethylene, 1 Homopolymers and hybrid polymers such as olefins such as pentene, arylglycidyl ether, glycidyl methacrylate, isobutyl vinyl, octyl vinyl, and the like, and the present invention is not limited to the polymer of the thermoplastic resin as described above. .

발포성 열가소성 수지 입자의 표면층이 열에 연화되며 용융되여서 가열된 입경 1~70μm의 불연성 및 단열성 분말이 수지 입자 표면층에 침투되면서 융착 코팅될 수 있고 증기 또는 열 성형, 압출성형을 할 수 있는 수지는 제한 없이 사용할 수 있다. 본 발명에서 말하는 올레핀계 수지는 올레핀 수지가 중합체에 50중량%이상 함유된 것이며, 폴리에스테르계 수지는 폴리에스테르 수지가 중합체에 50중량%이상 함유된 것이며, 방향족 비닐계 수지는 중합체에 스티렌이 50중량%이상 함유된 것이며 아크릴계 수지는 아크릴이 중합체에서 50중량%이상 함유된 것이며, 염화비닐수지계는 중합체에 염화비닐이 50중량% 이상 함유된 것을 말한다. 이하 본 발명의 불연성과 단열성의 막을 형성시키는 제조방법에 대해서 상세히 설명한다.The surface layer of the expandable thermoplastic resin particles is softened by heat and melted so that the non-flammable and heat insulating powder having a heated particle size of 1 to 70 μm can be fused and coated as it penetrates into the surface layer of the resin particles, and the resin capable of steam or thermoforming and extrusion molding is not limited. Can be used. The olefin resin of the present invention is an olefin resin containing 50% by weight or more in the polymer, the polyester resin is a polyester resin containing 50% by weight or more in the polymer, the aromatic vinyl resin is a styrene 50 in the polymer It is contained by weight percent or more, and acrylic resin is 50% by weight or more of acryl is contained in the polymer, and vinyl chloride resin refers to 50% or more by weight of vinyl chloride in the polymer. Hereinafter, the manufacturing method of forming the non-combustible and heat insulating film of this invention is demonstrated in detail.

본 발명은 중합법 또는 압출법으로 제조된 발포하지 않은 입경 0.2mm~3mm의 발포성 열가소성 수지 입자 또는 발포한 3mm~10mm의 입자 표면층에 불연성과 단열성의 막을 형성시키는 것으로서 입경 1~ 70μm의 불연성과 단열성 분말을 50~300℃로 가열해서 침투시키며 융착 코팅하는 것이다. 분말은 선택된 1종 단독 또는 2종 이상을 혼합해서 사용할 수 있다. 열가소성 수지 입자 100중량부에 분말 0.05~50 중량부를 가열하여 분사하고 30~3000rpm으로 압착 교반하면서 분말을 열가소성 수지 입자 표면층에 침투시키며 융착 코팅하여 수지 입자 표면에 불연성과 단열성의 막을 형성시키는 것이다.The present invention is to form a non-flammable and heat insulating film in the foamed thermoplastic resin particles having a non-foamed particle diameter of 0.2 mm to 3 mm or a foamed particle surface layer of 3 mm to 10 mm, which are produced by polymerization or extrusion, and have a nonflammable and heat insulating property of 1 to 70 μm. The powder is fused and coated by heating to 50 ~ 300 ℃. A powder can be used individually by 1 type or in mixture of 2 or more types. The powder is injected by heating 0.05-50 parts by weight to 100 parts by weight of the thermoplastic resin particles, and the powder is penetrated into the thermoplastic resin particle surface layer while being squeezed and agitated at 30 to 3000 rpm to form a non-flammable and heat insulating film on the surface of the resin particles.

수지입자에 자소성(self-extinguishing , 自消性 )을 부여하기 위해서 공지의 난연제를 입자 표면층에 함유시킬 수 있다. 예를 들어서 할로겐계화합물, 안티몬계산화물, 인계화합물, 염소계화합물, 중에서 선택하여 1종 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 상기의 난연제는 불연성과 단열성의 분말을 코팅하기 전의 수지 입자에 분사하여 코팅하거나, 분말에 혼합해서 코팅하거나, 또는 분말의 침투 융착 코팅이 완료되는 단계에서 수지입자에 분사해서 코팅 할 수 있다. 경우에 따라서는 분말의 침투 융착 코팅이 완료 된 후 바인더에 혼합해서 코팅 할 수 있다. 난연제 조성비율은 수지입자 100중량부에 할로겐계 화합물인 헥사브로모 시클로도데칸(HBCD)0.1~2 중량부이며, 안티몬 산화물인 삼산화안티몬은 0.1~10중량부이며,인계 난연제는 적인으로서 0,1-10중량부이며, 염소계 난연제인 염화파라핀(염소70중량%)은 0,1~10중량부가 바람직하다.In order to impart self-extinguishing to the resin particles, a known flame retardant may be contained in the particle surface layer. For example, a halogen compound, an antimony oxide, a phosphorus compound, or a chlorine compound can be selected and used individually by 1 type or in mixture of 2 or more types. The flame retardant may be coated by spraying on the resin particles before coating the non-flammable and heat insulating powder, or by mixing and coating the powder, or by spraying on the resin particles in a step in which the powder penetration fusion coating is completed. In some cases, the powder may be mixed and coated on a binder after the penetration fusion coating of the powder is completed. The flame retardant composition ratio is 0.1 to 2 parts by weight of hexabromo cyclododecane (HBCD), a halogen-based compound, and 0.1 to 10 parts by weight of antimony oxide. The phosphorus-based flame retardant is 0, It is 1-10 weight part and 0,1-10 weight part is preferable for paraffin chloride (70 weight% chlorine) which is a chlorine-type flame retardant.

본 발명의 불연성과 단열성 분말과 난연제가 입자 표면층에 침투되고 융착 코팅된 수지입자를 증기성형, 열성형, 압출성형을 할 수 있다. 최종 목적대로 발포를 하지 않는 수지입자이면 원하는 배율로 다시 발포하여 성형을 할 수 있다. 예를 들어서 폴리프로필렌 수지 입자를 5~10배로 1차 발포한 후 다시 원하는 배율로 2차 발포 과정을 거쳐서 증기 또는 열 성형할 수 있으며, 수지입자를 원하는 배율로 발포하고 불연성과 단열성의 분말 0.05~50 중량부를 50~300℃로 가열하여 100중량부의 발포한 수지 입자에 분사하며 반복해서 침투 융착 코팅할 수도 있다. 또한, 불연 단열성 분말에 접착성 수지 바인더 0.05~~50 중량부를 혼합하여 발포한 수지 입자에 분사하면서 반복적으로 접착 코팅하여 성형할 수 있다. 접착성 수지 바인더는 올레핀계, 폴리에스테르계, 방향족 비닐계, 아크릴계, 염화비닐계, 우레탄계, 규소계, 규산나트륨, 규산칼륨계 바인더 중에서 선택한 1종 단독 내지 2종 이상을 사용할 수 있다. 이렇게 제조된 불연성과 단열성 분말이 입자 표면층에 침투되고 융착 코팅된 발포성 수지입자의 성형물은 우수한 불연성과 단열성의 물성을 보유한다.The non-flammable, heat-insulating powder and flame retardant of the present invention may penetrate into the particle surface layer and perform steam molding, thermoforming, and extrusion molding of the resin particles coated with fusion. If it is a resin particle which does not foam as a final purpose, it can shape | mold by foaming again in a desired magnification. For example, the polypropylene resin particles may be first foamed 5 to 10 times and then steamed or thermoformed through a second foaming process at a desired magnification. 50 parts by weight may be heated to 50 to 300 ° C., sprayed onto 100 parts by weight of expanded resin particles, and repeatedly coated with permeation fusion. In addition, it can be molded by repeatedly adhesive coating while spraying 0.05 to 50 parts by weight of the adhesive resin binder to the non-flammable heat insulating powder and sprayed onto the foamed resin particles. The adhesive resin binder may be used alone or in combination of two or more selected from olefin, polyester, aromatic vinyl, acrylic, vinyl chloride, urethane, silicon, sodium silicate and potassium silicate binders. The nonflammable and heat insulating powder thus prepared penetrates into the particle surface layer and the molded article of the fused coated foamed resin particles has excellent nonflammable and heat insulating properties.

또한 분말의 침투 융착 코팅이 완료된 수지 입자에 성형성과 융착성을 향상시키기 위한 필요에 따라 접착성 수지 바인더로 코팅할 수 있다. 바인더의 사용량은 피코팅체 수지입자 중량의 0.1~ 20 중량부이며(고형분기준) 바람직한 사용량은 0.1~ 10 중량부(고형분 기준)이다. 0.1 중량부 미만이면 효과가 미약하고 10중량부 이상이면 난연성이 저하되고 제조 원가가 높이지는 단점이 있다.In addition, it is possible to coat with an adhesive resin binder as necessary to improve the moldability and adhesion to the resin particles of the powder penetration fusion coating is completed. The amount of the binder to be used is 0.1 to 20 parts by weight (based on solids) of the weight of the coated resin particles, and the amount of the binder is preferably used to 0.1 to 10 parts by weight (based on the solids). If it is less than 0.1 part by weight, the effect is weak, and if it is 10 parts by weight or more, there is a disadvantage in that flame retardancy is lowered and manufacturing cost is increased.

본 발명에서 불연성과 단열성의 막을 형성시키는 분말의 가열온도는 중요하다. 분말의 가열 온도가 피 코팅체인 수지 입자의 용융 온도보다 높으면 수지 입자의 표면층이 과도하게 녹아서 훼손되거나, 입자들이 서로 엉켜 붙는 현상이 발생하고 분말의 가열온도가 수지 입자의 용융 온도보다 낮으면 분말의 침투 융착 코팅이 균일하지 못한 문제점이 발생하므로 분말의 가열 온도는 선택된 수지 입자의 물성에 따라서 적절하게 조절해야 한다. 본 발명에서 불연성과 단열성능 분말이라 함은 불연성과 단열성을 갖으며, 2종 이상 혼합하거나 50~300℃로 가열해도 화학적 반응이 없는 금속, 비금속, 금속산화물, 금속수산화물, 비금속광물 내지 이들 화합물의 분말을 말한다. 예를 들어서 이산화규소(SiO2), 규산염광물, 규산나트륨, 규산칼륨, 규산알루미늄, 붕산염, 탄산염, 붕산아연, 아연, 흑연, 팽창흑연, 카본블랙, 활성탄소, 제올라이트, 팽창질석, 규조토, 실리카에어로겔, 퍼라이트,이산화티타늄, 동, 알루미늄, 티타늄, 마그네슘, 니켈, 철, 산화철, 3산화2철, 4산화3철, 산화칼슘, 탄산칼슘, 산화마그네슘, 수산화마그네슘, 산화알루미늄, 수산화알루미늄, 탈크, 질석, 벤토라이트, 점토, 황토 등이 있다. 이산화규소(SiO2), 규산염광물, 규산나트륨, 규산칼륨, 규산알루미늄, 붕산염, 탄산염, 붕산아연 .아연은 600℃ 이상의 온도로 가열되면 유리질화 되며 세라믹 막을 형성하면서 산소공급을 차단해서 가연성 수지의 연소를 방해하는 작용을 한다. 알루미늄, 티타늄, 마그네슘, 니켈, 철, 산화철, 3산화2철, 4산화3철, 산화칼슘, 탄산칼슘, 산화마그네슘, 수산화마그네슘, 산화알루미늄, 수산화알루미늄, 탈크, 질석 ,벤토라이트, 점토, 황토 분말은 내열성 물질로서 이산화규소(SiO2), 규산염광물, 규산나트륨, 규산칼륨, 규산알루미늄, 붕산염, 탄산염, 붕산아연, 아연 분말과 결합하여 수분을 발생하며 유리질의 세라믹 막에 내열성을 증가시켜주는 작용을 한다.In this invention, the heating temperature of the powder which forms a non-combustible and heat insulating film is important. If the heating temperature of the powder is higher than the melting temperature of the resin particles to be coated, the surface layer of the resin particles may be excessively melted and damaged, or the particles may be entangled with each other. If the heating temperature of the powder is lower than the melting temperature of the resin particles, Since a problem arises that the penetration fusion coating is not uniform, the heating temperature of the powder should be appropriately adjusted according to the physical properties of the selected resin particles. In the present invention, non-combustible and heat-insulating powder is non-flammable and heat-insulating, metal, non-metal, metal oxide, metal hydroxide, non-metallic minerals of these compounds that do not have a chemical reaction even when mixed two or more or heated to 50 ~ 300 ℃ Say powder. For example, silicon dioxide (SiO2), silicate mineral, sodium silicate, potassium silicate, aluminum silicate, borate, carbonate, zinc borate, zinc, graphite, expanded graphite, carbon black, activated carbon, zeolite, expanded vermiculite, diatomaceous earth, silica aerogel , Perlite, titanium dioxide, copper, aluminum, titanium, magnesium, nickel, iron, iron oxide, ferric trioxide, ferric tetraoxide, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, aluminum oxide, aluminum hydroxide, talc, Vermiculite, bentorite, clay, loess and the like. Silicon dioxide (SiO2), silicate minerals, sodium silicate, potassium silicate, aluminum silicate, borate, carbonate, zinc borate.Zinc is vitrified when heated to a temperature above 600 ℃, and combustion of flammable resin by blocking oxygen supply while forming ceramic film Interfere with the action. Aluminum, titanium, magnesium, nickel, iron, iron oxide, ferric trioxide, ferric tetraoxide, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, aluminum oxide, aluminum hydroxide, talc, vermiculite, bentorite, clay, loess Powder is a heat-resistant material that combines with silicon dioxide (SiO2), silicate mineral, sodium silicate, potassium silicate, aluminum silicate, borate, carbonate, zinc borate, zinc powder to generate moisture and increase heat resistance in glassy ceramic membrane Do it.

흑연, 팽창흑연, 카본블랙, 활성탄소, 제올라이트 팽창질석, 규조토, 실리카어로겔, 퍼라이트, 이산화티타늄, 동, 알루미늄 분말은 단열성을 향상시키는 작용을 한다. 흑연은 인상흑연을 사용하는 것이 바람직하고 팽창흑연은 천연흑연 인조흑연을 산으로 함침하여 산화시킨 것으로 180℃ 이상으로 가열되면 팽창을 시작한다. 흑연, 팽창흑연, 이산화티타늄, 동, 알루미늄 분말은 열을 축열해서 단열성능을 향상시키며 카본블랙, 활성탄소, 제올라이트, 규조토, 실리카에어로겔, 퍼라이트 분말은 다공성 층으로 열을 차단해서 단열성능을 향상 시킨다. 단열성을 향상시키는 물성의 분말을 열가소성 수지 입자에 분사하여 융착 코팅하고 수지 입자를 성형하는 방법으로서, 예를 들어서 단열성 향상을 목적으로 중합이 완료된 100중량부의 발포성 폴리스티렌(.E,P.S) (SE2000 sh에너지화학)수지 입자 표면층에 흑연 0.05~50 중량부 바람직하게는 0.5~ 5중량부를 50~ 300℃로 가열해서 분사하고 압착 교반하여 수지 입자 표면층에 침투시키며 융착 코팅하고 헥사브로모 시클로도데칸 (HBCD) 0.1~1 중량부 또는 염소화파라핀(염소70중량%) 1~ 10 중량부를 함유시키고 초산비닐 수지 (수지 고형분은 35중량%) 0.1~ 5 중량부를 분사하여 코팅한 입자를 공지의 비드법으로 80배 발포하였고, 24시간 숙성한 후 증기 성형한 스티로폼은 내열성과 자소성이 증가하고 단열성이 30중량%이상 향상된다. 단열성을 향상시키는 방법에 있어서 더 바람직하게는 흑연 1종에 팽창흑연, 카본블랙, 활성탄소, 제올라이트, 팽창질석, 규조토, 에어로겔, 퍼라이트,이산화티타늄, 동, 알루미늄 분말 중에서 선택하여 1종 내지 2종 이상을 혼합해서 100:1~50 중량부 첨가해서 사용한다. 본 공정중에서 80배로 발포한 입자에 다시 반복해서 선택한 불연성과 단열성의 분말 0.05~50 중량부 바람직하게는 0.5~20중량부 를 50~300℃로 가열하여 입자에 분사하며 침투 융착 코팅하면 불연성과 단열성이 더 향상되며, 또는 가열하지 않은 불연 단열성 분말 0.05~50 중량부에 대해서 접착성 수지 바인더0.05~~50 중량부를 혼합하고 발포 한 입자 에 분사하며 반복해서 접착 코팅하면 불연성과 단열성이 향상된다. 특히 활성 탄소는 식물계와,석탄계,석유계로 분류되는 미정형 탄소로서 흑연과 구조가 유사하고 전자파를 차단하며 표면적이 500-2000 ㎡ /g 크므로 유해한 기체와 액체의 흡착성이 우수하므로 본 발명에서 유해 물질을 흡착시키는 용도의 불연 단열재로 활용할 수 있다.Graphite, expanded graphite, carbon black, activated carbon, zeolite expanded vermiculite, diatomaceous earth, silica fish gel, perlite, titanium dioxide, copper, aluminum powder has the effect of improving the thermal insulation. It is preferable to use impression graphite, and expanded graphite is obtained by impregnating natural graphite artificial graphite with acid and oxidizing it. Graphite, expanded graphite, titanium dioxide, copper, and aluminum powders accumulate heat to improve thermal insulation performance, while carbon black, activated carbon, zeolite, diatomaceous earth, silica aerogels, and perlite powders block heat with a porous layer to improve thermal insulation performance. . A method of fusion coating and molding resin particles by spraying a powder of a physical property to improve the thermal insulation to the thermoplastic resin particles, for example, 100 parts by weight of expanded polystyrene (.E, PS) (SE2000 sh) in which polymerization is completed for the purpose of improving the thermal insulation. 0.05-50 parts by weight of graphite to the resin particle surface layer, preferably 0.5-5 parts by weight heated to 50-300 ° C., sprayed and stirred to penetrate into the resin particle surface layer, followed by fusion coating and hexabromo cyclododecane (HBCD). ) Particles coated with 0.1 to 1 part by weight or 1 to 10 parts by weight of chlorinated paraffin (70% by weight of chlorine) and 0.1 to 5 parts by weight of vinyl acetate resin (35% by weight of resin solids) are coated by a known bead method. Styrofoam was foamed, aged for 24 hours, and steam-formed styrofoam increased heat resistance and self-extinguishing, and improved insulation by more than 30% by weight. In the method of improving the thermal insulation, more preferably, one or two kinds of graphite are selected from graphite, expanded graphite, carbon black, activated carbon, zeolite, expanded vermiculite, diatomaceous earth, aerogel, perlite, titanium dioxide, copper, and aluminum powder. The above mixture is mixed and used to add 100: 1-50 weight part. 0.05-50 parts by weight of the non-flammable and heat-insulating powder is repeatedly selected for the particles foamed at 80 times during this process. This is further improved, or 0.05-50 parts by weight of the non-heated non-combustible heat-insulating powder is mixed with 0.05-50 parts by weight of the adhesive resin binder, sprayed onto the foamed particles, and repeatedly adhesive coated to improve non-combustibility and heat insulation. In particular, activated carbon is a microcrystalline carbon classified into plant, coal, and petroleum, and has similar structure to graphite, blocks electromagnetic waves, and has a high surface area of 500-2000 m 2 / g. It can be used as a nonflammable insulation for adsorbing materials.

불연성과 단열성 분말의 코팅양은 발포성 수지입자 100중량부에 대해서 0.05~ 50 중량부이며 바람직하게는 0.5~20 중량부이다. 이 범위 이상이면 최종 성형재품의 기계적 물성이 저하하고 불연성과 단열성 증가 효과는 미약하며 0.05중량부 이하를 사용했을 경우에는 불연성능과 단열성능의 막을 형성하는 효과가 부족하다. 선택한 분말은 피코팅체인 수지 입자의 용융 온도로 가열하여 수지 입자에 분사하고 침투시키며 융착 코팅한다. 수지 입자의 용융온도는 중합 방법과 분자량과 작업조건에 따라 불규칙하므로 분말을 분사해서 수지 입자 표면층에 침투시키며 융착 코팅될 수 있는 적합한 온도로 가열해야 한다. 본 발명에서 분말의 선택은 바람직하게는 불연성의 분말과 단열성을 향상시키는 분말 중 선택하여 불연성을 목적으로 하면 2 :1 내지 4:1로 단열성을 목적으로 하면 1:2 내지 1:4의 비율로 혼합해서 사용하는 것이 바람직하다. 본 발명에서 사용하는 분말은 가열된 상태에서 수지 입자 표면층에 침투해서 불연성과 단열성의 막을 형성하는 작용을 하는 것이므로 선택한 1종 단독 또는 2종 이상의 분말을 혼합해서 사용할 수 있다. 1종 단독 또는 2종 이상의 분말을 혼합하고 50- 300℃로 가열해도 본 발명의 목적을 방해하는 화학적 반응이 없으므로 이론적으로는 금속, 비금속, 금속산화물, 금속수산화물, 비금속광물, 중에서 불연성과 단열성의 물성을 갖고 있는 모든 분말을 선택하여 1종 단독 또는 2종 이상 혼합해서 사용할 수 있다. 선택한 분말을 가열하는 열원으로는 분말을 가열할 수 있으면 방법에 제한받지 않고 본 발명을 실시할 수 있다. 예를 들어서 전기 히터를 이용한 가열, 가스 석유를 이용한 가열 ,프라즈마를 이용한 가열,고주파를 이용한 유도 가열 유전가열 방법을 사용할 수 있다. 가열한 불연 단열성 분말을 분사한 후에 가열 용융한 수지 바인더를 분사할 수 있다. 용융되어 분사된 수지 바인더는 경화되며 접착되며 피복되는 작용을 하므로 피 코팅체 수지 입자에 불연성과 단열성의 분말들이 침투되고 융착 코팅되는 작용을 향상시킨다. 접착성 수지 바인더를 열로 용융해서 사용하는 방법 외에도 입경 1~70μm의수지 분말을 피 코팅체인 수지입자에 분사하고 혼합 교반하면서 가열한 불연 단열성 분말을 분사할 수 있으며, 사용할 수 있는 수지 바인더는 불연성과 단열성 분말과 열에 의해서 용융하고 경화하며 불연성과 단열성 분말과 함께 피코팅체인 수지입자에 접착 피복될 수 있으면 종류에 제한 받지 않는다 예를 들어서 올레핀계 수지, 폴리에스테르계 수지, 방향족 비닐계 수지, 아크릴계수지, 염화비닐계수지, 우레탄계수지 규소계 수지가 있으며 단독중합체 또는 2종 이상이 혼합된 혼성중합체를 사용할 수 있으며 1종 또는 2종 이상을 선택하여 1종 단독 또는 2종 이상을 혼합해서 사용할 수 있다.The coating amount of the non-flammable and heat insulating powder is 0.05 to 50 parts by weight and preferably 0.5 to 20 parts by weight based on 100 parts by weight of the expandable resin particles. If it is more than this range, the mechanical properties of the final molded product is lowered, the effect of increasing the nonflammability and the heat insulation is weak, and when the 0.05 parts by weight or less is used, the effect of forming a film of non-combustible performance and heat insulation performance is insufficient. The selected powder is heated to the melting temperature of the resin particles to be coated, sprayed onto the resin particles, infiltrated and fused coating. Since the melting temperature of the resin particles is irregular depending on the polymerization method, molecular weight and operating conditions, the powder should be sprayed to a suitable temperature to penetrate the resin particle surface layer and be fused coated. In the present invention, the powder is preferably selected from non-combustible powders and powders that improve thermal insulation properties, and the ratio of 2: 1 to 4: 1 for non-combustible purposes is 1: 2 to 1: 4 for thermal insulation purposes. It is preferable to mix and use. The powder used in the present invention penetrates into the resin particle surface layer in a heated state and functions to form a non-flammable and heat insulating film, so that one or more selected powders can be mixed and used. Mixing one or two or more kinds of powders and heating them at 50-300 ° C. does not interfere with the object of the present invention, so theoretically incombustible and insulated among metals, nonmetals, metal oxides, metal hydroxides and nonmetal minerals All powders having physical properties can be selected and used individually by 1 type or in mixture of 2 or more types. As a heat source for heating the selected powder, the present invention can be carried out without being limited by the method as long as the powder can be heated. For example, heating using an electric heater, heating using gas oil, heating using plasma, induction heating using high frequency dielectric heating may be used. After injecting the heated non-combustible heat insulating powder, the resin binder may be sprayed by heating and melting. Since the melted and injected resin binder has a function of curing, adhering and coating, the non-combustible and heat-insulating powder penetrates into the coated resin particles and improves the action of fusion coating. In addition to the method of melting and using an adhesive resin binder with heat, a resin powder having a particle size of 1 to 70 μm may be sprayed onto a resin particle to be coated and mixed and stirred to inject heated non-combustible thermally insulating powder. It can be melted and cured by heat-insulating powder and heat, and can be adhesively coated on resin particles which are to be coated together with non-flammable and heat-insulating powder. It is not limited to kinds. For example, olefin resin, polyester resin, aromatic vinyl resin, acrylic resin , Vinyl chloride resin, urethane resin, silicone-based resin, homopolymer, or a mixture of two or more kinds thereof may be used, and one or two or more kinds thereof may be selected to be used alone or in combination of two or more kinds thereof. .

본 발명에서 항균성과 전도성 분말을 사용하면 수지 입자 표면에 항균성과 전도성이 형성된다. 예를 들어서 아연과 구리.은, 흑연 분말은 항균성을 형성하며 흑연, 동, 알루미늄, 티타늄, 마그네슘, 니켈, 철 등의 분말을 사용하면 전도성을 형성시킨다, 본 발명에서 불연성과 단열성 분말의 가열 에너지는 예를 들어서 발포성 폴리프로필입자 50㎏에 불연성과 단열성 물성의 분말을 침투시키며 융착 코팅 할 경우에 분말의 적합한 가열온도가 140℃ 이고 분말이 흑연 1㎏이면 필요한 가열 에너지는 아래 표1과 같다.When the antimicrobial and conductive powder is used in the present invention, the antimicrobial and conductive properties are formed on the surface of the resin particles. For example, zinc, copper, silver and graphite powders form antimicrobial properties, and the use of powders such as graphite, copper, aluminum, titanium, magnesium, nickel, iron, etc., creates conductivity. In the present invention, the heating energy of non-combustible and insulating powders For example, 50 kg of expandable polypropyl particles infiltrate the powder of non-flammable and heat insulating properties, and when the fusion coating, if the suitable heating temperature of the powder is 140 ℃ and the powder is 1 kg of graphite, the required heating energy is shown in Table 1 below.

천연 인상 흑연(Natural Crystalline Graphite)Natural Crystalline Graphite 인조 흑연(Artificial graphite ( SyntheticSynthetic GraphiteGraphite )) 토상 흑연(Amorphous Graphite)Amorphous Graphite 분자량Molecular Weight 12.01112.011 외 관Exterior 흑색 분말Black powder 결정형Crystal form 육 방 정 계Hexagonal system 비 중importance 2.23 ~ 2.252.23-2.25 융 점Melting point > 3500 ℃> 3500 ℃ 경 도Hardness 1 ~ 2 (Mosh)1 to 2 (Mosh) 비 열Non-heat 0.46 (cal/ g℃)0.46 (cal / g ℃) 열전도율Thermal conductivity 0.4 ~ 1.0(cal/cm sec ℃)0.4 to 1.0 (cal / cm sec ℃) 열팽창계수Coefficient of thermal expansion 1.7 X 10-6 l/℃1.7 X 10 -6 l / ℃ 탄성율Modulus of elasticity 3 ~4 X 105 kg/㎠ 3 to 4 X 10 5 kg / ㎠ 3 ~4 X 105 kg/㎠3 to 4 X 10 5 kg / ㎠ 3 ~4 X 105 kg/㎠ 3 to 4 X 10 5 kg / ㎠ 전기저항Electrical resistance 0.013 ~ 0.025 (Ωcm) 0.013-0.025 (Ωcm) 0.04 ~ 0.08 (Ωcm)0.04 ~ 0.08 (Ωcm) 0.03 ~ 0.06 (Ωcm)0.03 ~ 0.06 (Ωcm) 마찰계수Coefficient of friction 0.090 ~ 0.094 0.090-0.094 0.1 ~ 0.2 0.1 to 0.2 0.2 ~ 0.3 0.2 to 0.3

흑연 1㎏ = 0.46 ㎉/㎏℃ x 140℃= 64.4 ㎉/㎏ 의 에너지가 요구된다.An energy of 1 kg of graphite = 0.46 kW / kg ° C x 140 ° C. = 64.4 kW / kg is required.

본 발명에 의하여 제조된 불연성과 단열성의 막이 형성된 발포성 열가소성 수지 입자로 증기성형 열성형 압출성형을 한 건축자재, 내장재, 포장재를 비롯한 산업용품은 우수한 불연성과 단열성을 향상시킬 수 있게 되었다. 본 발명은 금속,비금속, 금속산화물, 금속수산화물, 비금속광물의 분말을 가열하고 분사해서 수지입자 표면층에 간편하게 침투 융착 코팅시켜서 불연성과 단열성 막을 형성시킴으로 경제적이며 친환경적이다.Industrial materials, including building materials, interior materials, and packaging materials, which have been subjected to the thermoforming extrusion molding with the non-combustible and heat-insulating membranes formed with the non-combustible and thermally insulating films prepared by the present invention, can improve excellent incombustibility and thermal insulation. The present invention is economical and environmentally friendly by heating and spraying powders of metals, nonmetals, metal oxides, metal hydroxides and nonmetal minerals to easily penetrate and fusion coating the resin particle surface layer to form a nonflammable and heat insulating film.

이하, 실시예 및 비교예를 통해 본 발명의 작용효과를 상세히 설명 하나, 본 발명의 범위는 실시예의 범위에 한정되지 아니하며 실시예로부터 뒷받침되는 모든 범위를 포함한다고 할 수 있다.
Hereinafter, the operation and effect of the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the scope of the Examples and may include all the ranges supported by the Examples.

(( 실시예Example 1) One)

① 중합이 완료된 발포성 폴리스티렌 입자(SH에너지화학 SE2000) 300kg을 교반기에 투입하고 30-3000rpm으로 압착 교반하였다.(1) 300 kg of foamed polystyrene particles (SH Energy Chemical SE2000), in which polymerization was completed, were introduced into a stirrer and stirred under pressure at 30-3000 rpm.

② 50kw의 전기열선 장치가 설치된 직경 100mm의 스크류식 혼련기에 입경 50μm 인상흑연을 투입하여 50~300℃로 가열하였다. 가열된 흑연 6kg을 교반기에 분사하며 30~3000rpm으로 60~ 180초 압착 교반하여 가열된 흑연을 발포성 폴리스티렌 입자 표면층에 침투시키며 융착 코팅해서 흑연이 침투, 코팅된 발포성 폴리스티렌 입자를 제조하였고 질소와 공기를 주입해서 냉각 건조하였다.(2) A 50 μm diameter graphite was added to a screw kneader having a diameter of 50 mm and a 50 kW electric heating device was heated to 50 to 300 ° C. 6 kg of heated graphite is sprayed into the stirrer and pressurized and stirred at 30 to 3000 rpm for 60 to 180 seconds to infiltrate the heated graphite into the surface layer of the expandable polystyrene particles, and melt-coated to prepare the expandable polystyrene particles coated with graphite. It injected | poured and cooled and dried.

③ 흑연이 침투되고 융착 코팅된 입자를 80배 발포하고 공지의 비드법으로 성형하여 스티로폼을 제조하였다. 성형체를 KSM 3808-비드법 2종의 실험방법으로 물성을 측정하였으며 KSM 3808-비드법 2종의 물성을 충족하였다.(표2)
③ Styrofoam was prepared by foaming graphite and fusion-coated particles 80 times and molding by a known bead method. The physical properties of the molded body were measured by two experimental methods of KSM 3808-bead method, and the physical properties of two KSM 3808-bead method were satisfied (Table 2).

(( 실시예Example 2) 2)

실시예 1과 동일하게 시행하되 인상흑연 4.8kg에 팽창흑연, 카본블랙, 활성탄소, 제올라이트, 팽창질석, 규조토, 에어로겔, 퍼라이트, 이산화티타늄, 동, 알루미늄 분말을 순서대로 1.2kg 사용하였다 물성은 실시예 1보다 다소 향상되었다
In the same manner as in Example 1, 1.2 kg of expanded graphite, carbon black, activated carbon, zeolite, expanded vermiculite, diatomaceous earth, aerogel, perlite, titanium dioxide, copper, and aluminum powder were used in order to 4.8 kg of impression graphite. Slightly improved than Example 1

(( 실시예Example 3) 3)

실시예 1,2와 동일하게 시행하되 염소화파라핀 4.5Kg을 분사하여 포함시켰다. 실시예 1,2 보다 자소성이 향상 되었다. In the same manner as in Example 1, 2, 4.5Kg of chlorinated paraffin was sprayed and included. The self-firing property was improved more than Example 1 and 2.

시험항목 KSM3808 2종Test Item KSM3808 2 Type 단위unit 적합기준Conformance standard 실시예1Example 1 실시예2Example 2 실시예3Example 3 밀도density ㎏/㎥㎏ / ㎥ 15.0015.00 15.2 15.2 15.3 15.3 15.3 15.3 열전도율(평균온도23±℃)Thermal conductivity (average temperature 23 ° C) w/(m.k)w / (m.k) 0.0340.034 0.034 0.034 0.034 0.034 0.034 0.034 굴곡강도Flexural strength ㎏f/㎠Kgf / cm2 3.0이상3.0 or higher 3.8  3.8 4.1 4.1 3.9 3.9 압축강도Compressive strength ㎏f/㎠Kgf / cm2 1.2이상1.2 or more 2.0  2.0 2.2 2.2 2.2 2.2 흡수율Absorption rate g/㎠g / ㎠ 1이하1 or less 0.4  0.4 0.5 0.5 0.1 0.1 연소성combustibility s (초)s (seconds) 3초내소화3-minute digestion 2  2 1.5 1.5 0.1 0.1

ΚSM3808-비드법 2종 기준
ΚSM3808-bead method 2 standard

(( 실시예Example 4) 4)

실시예1과 동일하게 시행하되 헥사브로모 시클로도데칸은(HBCD) 1kg을 포함시켰다 자소성은 실시예 3과 유사 하였다
The same procedure as in Example 1 was performed except that 1 kg of hexabromo cyclododecane (HBCD) was included.

(( 실시예Example 5) 5)

① 1차 예비 발포로 5-7배 팽창된 발포성 폴리프로필렌(Expanded Polypropylene)300kg을 교반기에 투입하고 30-3000rpm으로 압착 교반하였다. ① 300 kg of expanded polypropylene expanded 5-7 times by primary preliminary expansion was put into a stirrer and stirred under pressure at 30-3000 rpm.

② 50kw의 전기열선 장치가 설치된 직경 100mm의 스크류식 혼련기에 입경 50μm 인상흑연을 투입하여 50~ 300℃로 가열하였다. 가열된 흑연 3kg을 교반기에 분사하며 60~180초 압착 교반하여 흑연을 발포성 폴리프로필렌 입자 표면층에 침투시키며 융착 코팅해서 흑연이 침투, 코팅된 발포성 폴리프로필렌 입자를 제조하였고 질소와 공기를 주입해서 냉각 건조하였다.(2) A 50 μm diameter graphite was added to a screw kneader with a diameter of 50 mm in which a 50 kW electric heating device was installed, and heated to 50 to 300 ° C. 3kg of the heated graphite was sprayed into the stirrer and pressurized and stirred for 60 to 180 seconds to infiltrate the graphite into the surface layer of the expandable polypropylene particles, and melt-coated to prepare the expandable polypropylene particles coated with graphite. It was.

③ 흑연이 침투되고 융착 코팅된 입자를 공지의 방법으로 40~45배로 2차 발포하였고(밀도 0.02 g/㎤) 가압하며 증기 성형하여 폴리프로필렌 폼을 제조하였다. 성형체는 흑연을 코팅하지 않은 폴리프로필렌 폼의 열전도율( JIS A1413) 0.033 (Kcal/mhr℃)보다 20중량%이상 단열성이 향상되었다. ③ Graphite is infiltrated and the fusion coated particles are secondly foamed 40-45 times by the known method (density 0.02 g / cm 3) and pressurized to vapor Molding produced polypropylene foam. The molded article was improved in thermal insulation by 20% by weight or more than the thermal conductivity (JIS A1413) 0.033 (Kcal / mhr ° C) of the polypropylene foam not coated with graphite.

(( 실시예Example 6) 6)

실시예 5와 동일하게 시행하되, 인상흑연 3kg에 팽창흑연, 카본블랙, 활성탄소,제올라이트, 팽창질석, 규조토, 에어로겔, 퍼라이트, 이산화 티타늄, 동, 알루미늄 분말 중에서 순서대로 1종을 1.2kg 혼합해서 사용하였으며 물성은 실시예 5보다 다소 향상 되었다.
In the same manner as in Example 5, 1kg of expanded graphite, carbon black, activated carbon, zeolite, expanded vermiculite, diatomaceous earth, aerogel, perlite, titanium dioxide, copper, and aluminum powder were mixed in order of 3 kg of impression graphite. Physical properties were slightly improved compared to Example 5.

(( 실시예Example 7) 7)

실시예 5와 6과 동일하게 시행하되 염소화파라핀 4.5kg을 분사하여 포함시켰다. 실시예 5와 6 보다 자소성이 향상 되었다
Example 5 and 6 were carried out in the same manner but included by spraying 4.5kg chlorinated paraffin. Self-extension was improved than Examples 5 and 6

(( 실시예Example 8) 8)

실시예1,-7과 동일하게 시행하되 공정이 완료된 수지 입자를 초산비닐수지 바인더(고형분 35중량%) 6kg을 분사하여 코팅하였다. 실시예 1~7 보다 성형 융착성이 향상 되었다.
The same procedure as in Example 1, -7 was carried out, but the resin particles having the process were coated by spraying 6 kg of vinyl acetate resin binder (35% by weight of solid content). Molding adhesion was improved more than Examples 1-7.

(( 실시예Example 9) 9)

발포성 폴리프로필렌을 발포성 폴리에틸렌으로 교체하는 것과 이외에 실시예 5와 동일하게 실행하였다. 물성은 실시예 5와 유사하였다.
The same procedure as in Example 5 was carried out except that the expandable polypropylene was replaced with the expandable polyethylene. Physical properties were similar to those of Example 5.

(( 실시예Example 10) 10)

① 중합이 완료된 발포성 아크릴수지 입자 300kg을 교반기에 투입하고30~3000rpm으로 압착 교반하였다. (1) 300 kg of the expanded acrylic resin particles in which polymerization was completed were put into a stirrer and stirred under pressure at 30 to 3000 rpm.

② 실시예 5와 동일하게 실행하였다.② It carried out similarly to Example 5.

③ 흑연이 침투되고 융착 코팅된 입자를 스팀으로 40~45배 발포하고 공지의 방법으로 성형하여 발포 성형물을 제조하였다. 성형체는 단열성이 20중량%이상 향상 되었다.
③ The graphite penetrated and fusion-coated particles 40 to 45 times foamed with steam and molded by a known method to prepare a foamed molding. The molded body has improved insulation by more than 20% by weight.

(( 실시예Example 11) 11)

폴리프로필렌 수지 입자를 발포성 염화비닐 수지 입자로 교체하는 것 이외에 실시예 5 동일하게 시행하였다. 발명의 효과는 유사 하였다.
The same procedure as in Example 5 was carried out except that the polypropylene resin particles were replaced with the expandable vinyl chloride resin particles. The effect of the invention was similar.

(( 실시예Example 12) 12)

수지 바인더 6kg을 불연 단열성 분말들에 포함시켜서 가열 용융하는 것 이외에는 실시예1~11과 동일하게 실행하였으며 수지는 피코팅체 수지 입자와 동일한 것으로사용였다. 실시예 1과 11보다 불연 단열성 분말의 침투 융착 코팅이 향상되었다.
The same procedure as in Examples 1 to 11 was carried out except that 6 kg of the resin binder was included in the non-combustible heat insulating powders and heated and melted, and the resin was used as the same as the resin particles to be coated. The penetration fusion coating of non-combustible heat insulating powders was improved over Examples 1 and 11.

(( 실시예Example 13) 13)

분말을 이산화규소(SiO2), 규산나트륨, 규산칼륨, 규산알루미늄, 붕산염, 탄산염, 붕산아연, 아연.활성탄소,제올라이트 중에서 선택한 1종 또는 2종 이상을 60kg 더 포함하여 사용하는 것 이외에는 실시예 1~11과 동일하게 실행 하였다. 최종 성형물에 불연성과 단열성의 막이 형성되었고 600℃ 이상으로 가열하면 유리질 막이 형성 되었다.
Except for using the powder containing silicon dioxide (SiO 2 ), sodium silicate, potassium silicate, aluminum silicate, borate, carbonate, zinc borate, zinc, activated carbon, zeolite 60kg or more of two or more kinds 1 to 11 were carried out in the same manner. Non-combustible and thermally insulating films were formed in the final moldings, and glassy films were formed upon heating above 600 ° C.

(( 실시예Example 14) 14)

분말을 알루미늄, 티타늄, 마그네슘, 니켈, 철, 산화철, 3산화2철, 4산화3철, 산화칼슘, 탄산칼슘, 산화마그네슘, 수산화마그네슘, 산화알루미늄, 수산화알루미늄, 탈크, 질석 ,벤토라이트, 점토, 황토 중에서 선택한 1종 또는 2종 이상을 30kg을 더 포함하여 사용하는 것 이외에는 실시예 13과 동일하게 실행하였다. 최종 성형물에 불연성과 단열성의 막이 형성되었고 750℃ 이상으로 가열하면 세라믹 막이 형성되었다. 실시예 13보다 불연성은 다소 증가하였다. (표 3) Powders include aluminum, titanium, magnesium, nickel, iron, iron oxide, ferric trioxide, ferric tetraoxide, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, aluminum oxide, aluminum hydroxide, talc, vermiculite, bentorite, clay Except for using one or two or more selected from the loess more than 30kg was carried out in the same manner as in Example 13. Non-combustible and thermally insulating films were formed in the final molding and ceramic films were formed upon heating above 750 ° C. Incombustibility was somewhat increased than in Example 13. Table 3

실 시 예
시 험 항 목
Example
Test Items
1313 1414 1515 1616 1717 1818 기 준standard



Heat
room
Out
Rate
총 방출열량(MJ/㎡)Total heat released (MJ / ㎡) 1.81.8 8.28.2 4.94.9 3,63.6 6.46.4 1.51.5 8 MJ/㎡8 MJ / ㎡
200 ㎾/㎡
초과하는 시간(s)
200 ㎾ / ㎡
Exceeding time (s)

0

0

0

0

0

0

0

0

0

0

0

0
10s 이상 연속으로 200 ㎾/㎡초과하지않을것Do not exceed 200 ㎾ / ㎡ continuously for more than 10s
시험체를 관통하는
방화상 유해한 균열
Penetrating the test body
Arson Hazardous Cracks
있음has exist 있음has exist 있음has exist 없음none 없음none 없음none 없을 것Not to be
가스
유해성
gas
Hazard
쥐의 평균 행동정지
시간 (min : s)
Average Behavioral Stop in Rats
Time (min: s)
13:4313:43 11:2811:28 12:5712:57 13:2913:29 11:3411:34 13:2313:23 9 min 이상9 min or more
물성평가기준Property evaluation criteria 시험체를 합산한 평균치Average of the sum of test bodies

(( 실시예Example 15) 15)

실시예 1~11과 동일하게 실행하되 가열하지 않은 불연 단열성 분말 0.05~50 중량부에 대해서 접착성 수지 바인더 25 중량부를 혼합하고 발포한 입자 100중량부에 분사하며 반복해서 분말을 접착 코팅하였다. 실시예 1~11보다 성형물의 불연성과 단열성이 향상되었다.
In the same manner as in Examples 1 to 11, 25 parts by weight of the adhesive resin binder was mixed with respect to 0.05 to 50 parts by weight of the non-heated non-combustible thermally insulating powder, and then sprayed onto 100 parts by weight of the foamed particles to repeatedly coat the powder. The nonflammability and heat insulation of the molded object improved from Examples 1-11.

(( 실시예Example 16) 16)

실시예 1~ 2와 동일하게 실시하되 발포성 폴리스티렌 입자에 입경 1~70μm의 염화비닐계 수지 분말 1.2kg과 액상 바인더(고형분40 중량부) 3kg 교체하며 혼합하였다. 최종 성형물은 물성이 유사하였고 실시예 1~2 보다 불연 단열성 분말의 침투 융착 코팅이 향상되었다.
Examples 1 and 2 were carried out in the same manner, but mixed with expandable polystyrene particles, 1.2 kg of vinyl chloride-based resin powder having a particle size of 1 to 70 μm and 3 kg of a liquid binder (40 parts by weight of solid content). The final moldings had similar physical properties and improved penetration fusion coating of non-combustible insulating powders than Examples 1-2.

(( 실시예Example 17) 17)

실시예 1~ 2와 동일하게 실시하되 발포성 폴리스티렌 입자에 입경 1~70μm 방향족 비닐계 수지 분말 1.2kg 혼합하였다. 최종 성형물은 실시예 1~2 보다 불연 단열성 분말의 침투 융착 코팅이 향상되었다.Examples 1 to 2 were carried out in the same manner, but 1.2 kg of an aromatic vinyl resin powder having a particle size of 1 to 70 μm was mixed with the expandable polystyrene particles. The final molding had improved penetration fusion coating of non-combustible heat insulating powder than Examples 1-2.

Claims (16)

입경 0.2mm~3mm의 열가소성 발포성 수지 입자 100중량부를 30~3000rpm 으로 교반하면서,
이산화규소(SiO2), 규산염광물, 규산나트륨, 규산칼륨, 규산알루미늄, 붕산염, 탄산염, 붕산아연, 아연, 흑연, 팽창흑연, 카본블랙, 활성탄소, 제올라이트, 팽창질석, 규조토, 실리카에어로겔, 퍼라이트,이산화티타늄, 동, 알루미늄, 티타늄, 마그네슘, 니켈, 철, 산화철, 3산화2철, 4산화3철, 산화칼슘, 탄산칼슘, 산화마그네슘, 수산화마그네슘, 산화알루미늄, 수산화알루미늄, 탈크, 질석, 벤토라이트, 점토, 황토 중에서 1종 단독 또는 2종 이상 선택한 입경이 1∼70um인 불연성 및 단열성을 갖는 분말 0.05∼50 중량부를 50~300℃로 가열하여 분사한 후 상기 수지 입자 표면층에 융착시켜 코팅하는 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
While stirring 100 parts by weight of the thermoplastic foamable resin particles having a particle diameter of 0.2 mm to 3 mm at 30 to 3000 rpm,
Silicon dioxide (SiO2), silicate mineral, sodium silicate, potassium silicate, aluminum silicate, borate, carbonate, zinc borate, zinc, graphite, expanded graphite, carbon black, activated carbon, zeolite, expanded vermiculite, diatomaceous earth, silica aerogel, perlite, Titanium dioxide, copper, aluminum, titanium, magnesium, nickel, iron, iron oxide, ferric trioxide, triiron tetraoxide, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, aluminum oxide, aluminum hydroxide, talc, vermiculite, bento One or two or more selected from light, clay, and yellow clay are sprayed by spraying 0.05-50 parts by weight of a powder having a non-flammable and heat insulating property having a particle size of 1 to 70 µm, heated to 50 to 300 ° C., and then fused and coated on the resin particle surface layer. Method for producing a thermoplastic foamable resin particles, characterized in that.
삭제delete 제1항에 있어서,
상기 수지 입자 표면층에 접착성 수지 0.05~50중량부를 혼합 코팅하는 것을 특징으로 하는 발포성 열가소성 수지 입자의 제조방법.
The method of claim 1,
0.05-50 weight part of adhesive resins are mixed-coated to the said resin particle surface layer, The manufacturing method of foamable thermoplastic resin particle characterized by the above-mentioned.
제3항에 있어서,
상기 접착성 수지는 올레핀계, 폴리에스테르계, 방향족 비닐계, 아크릴계, 염화비닐계, 우레탄계, 규소계, 규산나트륨, 규산칼륨계 바인더 중에서 선택한 1종 또는 2종 이상인 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
The method of claim 3,
The adhesive resin is a thermoplastic foamable resin particle, characterized in that one or more selected from olefin, polyester, aromatic vinyl, acrylic, vinyl chloride, urethane, silicon, sodium silicate, potassium silicate-based binder. Manufacturing method.
제1항에 있어서,
열가소성 발포성 수지 입자는 폴리스티렌 수지, 방향족 비닐계 수지, 인 폴리에스테르계 수지 또는 아크릴계 수지 중 어느 하나인 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
The method of claim 1,
The thermoplastic foamable resin particles are any one of polystyrene resin, aromatic vinyl resin, phosphorus polyester resin or acrylic resin.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항 있어서,
열가소성 발포성 수지 입자의 표면층에 할로겐계 화합물, 안티몬 산화물 인계화합물, 염소계 화합물의 난연제 중에서 선택된 1종 단독 또는 2종 이상을 0.1~ 10 중량부를 추가로 코팅하는 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
The method of claim 1,
A method for producing a thermoplastic foamable resin particle, characterized in that the surface layer of the thermoplastic foamable resin particle is further coated with 0.1 to 10 parts by weight of one or more selected from flame retardants of a halogen-based compound, an antimony oxide phosphorus-based compound, and a chlorine-based compound. .
열가소성 발포성 수지 입자 100중량부를 3~10mm로 발포하여 30~3000rpm 으로 교반하면서 입경 1∼70um인 불연성 및 단열성을 갖는 분말 중에서 선택한 1종 단독 또는 2종 이상인 분말 0.05∼50 중량부를 50~300℃로 가열 분사하여 상기 수지 입자 표면층에 융착 코팅시키는 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
100 parts by weight of the thermoplastic foamable resin particles are foamed at 3 to 10 mm and stirred at 30 to 3000 rpm, and at least 50 to 300 ° C. is used for one or two or more kinds of powders selected from powders having non-combustible and heat insulating properties having a particle diameter of 1 to 70 µm. A method of producing a thermoplastic foamable resin particle characterized in that it is fused coating on the surface layer of the resin particles by heat spraying.
제12항에 있어서,
불연성과 단열성을 갖는 분말을 0.1~10중량부 사용하는 것을 특징으로 하는 열가소성 발포성 수지 입자의 제조방법.
The method of claim 12,
0.1-10 weight part of powder which has a non-flammability and heat insulation is used, The manufacturing method of the thermoplastic foamable resin particle characterized by the above-mentioned.
삭제delete 삭제delete 삭제delete
KR1020120061364A 2012-06-08 2012-06-08 Non-flammable foam insulation that creates a barrier method for manufacturing resin particles KR101300626B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120061364A KR101300626B1 (en) 2012-06-08 2012-06-08 Non-flammable foam insulation that creates a barrier method for manufacturing resin particles
PCT/KR2013/004951 WO2013183934A1 (en) 2012-06-08 2013-06-05 Method for preparing expandable resin particles on which nonflammable and insulating film is formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120061364A KR101300626B1 (en) 2012-06-08 2012-06-08 Non-flammable foam insulation that creates a barrier method for manufacturing resin particles

Publications (1)

Publication Number Publication Date
KR101300626B1 true KR101300626B1 (en) 2013-08-28

Family

ID=49221309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120061364A KR101300626B1 (en) 2012-06-08 2012-06-08 Non-flammable foam insulation that creates a barrier method for manufacturing resin particles

Country Status (2)

Country Link
KR (1) KR101300626B1 (en)
WO (1) WO2013183934A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186361A1 (en) * 2015-05-15 2016-11-24 민성기 Nonflammable film coating agent comprising expanded graphite, preparation method therefor, and use thereof
KR101821591B1 (en) * 2016-11-03 2018-03-08 동명대학교 산학협력단 expanded polystylene which have flammmable capability
KR102042249B1 (en) * 2019-07-15 2019-11-07 주식회사 에스에이치에너지화학 Expandable resin particles having semi-fireproof performance and method for manufacturing the same
KR102082887B1 (en) * 2019-09-05 2020-03-02 서진호 Method for fabricating of noncombustible polystyrene foam
CN111604029A (en) * 2020-05-15 2020-09-01 吴丹妮 Modified activated carbon composite material and preparation method thereof
KR20200107367A (en) * 2019-03-07 2020-09-16 한국기술화학(주) Non-combustible material having flexible polymer material as core
KR20210000385A (en) 2019-06-25 2021-01-05 구본주 Method of manufacturing for cement foam board
KR102237962B1 (en) * 2020-10-30 2021-04-08 주식회사 진일산업 Flame retardant board for construction and manufacturing method thereof
KR20210141417A (en) * 2020-05-15 2021-11-23 권진철 Manufacturing method of antibiotic styrofoam
KR102344342B1 (en) * 2021-05-28 2021-12-28 주식회사 지케이이피에스 A flame-retardant composition and fabricating method of flame-retardant polystyrene foam using the same
KR20220040392A (en) * 2020-09-23 2022-03-30 김혁중 Flame-retardant insulation foam panel containing banana stem extract and manufacturing method therefor
KR102403254B1 (en) * 2022-03-11 2022-05-26 정종헌 Eco-Friendly Flame Retardant Composition For Building Materials And Manufacturing Methods Thereof
KR20220102681A (en) * 2021-01-13 2022-07-21 세진하이텍(주) Multifunctional panel with flame retardant, heat insulation and anti-condensation function and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127171A (en) * 2018-05-03 2019-11-13 주식회사 에슬린 Aerogel based flexible heat insulator and method for preparing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030155A (en) * 2004-10-05 2006-04-10 금호석유화학 주식회사 Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
KR100878775B1 (en) * 2006-02-06 2009-01-14 김재천 Polystrene foam bead improved its incombustibility and polystyrene foam using thereof and method for producing the same
KR101028523B1 (en) * 2009-05-19 2011-04-11 남가연 High insulation foamable polystyrene particles and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030155A (en) * 2004-10-05 2006-04-10 금호석유화학 주식회사 Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
KR100878775B1 (en) * 2006-02-06 2009-01-14 김재천 Polystrene foam bead improved its incombustibility and polystyrene foam using thereof and method for producing the same
KR101028523B1 (en) * 2009-05-19 2011-04-11 남가연 High insulation foamable polystyrene particles and method for producing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186361A1 (en) * 2015-05-15 2016-11-24 민성기 Nonflammable film coating agent comprising expanded graphite, preparation method therefor, and use thereof
KR101745623B1 (en) 2015-05-15 2017-06-20 민성기 Incombustible film coating material containing expanded graphite and the manufacturing and using method of the same
KR101821591B1 (en) * 2016-11-03 2018-03-08 동명대학교 산학협력단 expanded polystylene which have flammmable capability
KR20200107367A (en) * 2019-03-07 2020-09-16 한국기술화학(주) Non-combustible material having flexible polymer material as core
KR102248679B1 (en) 2019-03-07 2021-05-06 한국기술화학㈜ Non-combustible material having flexible polymer material as core
KR20210000385A (en) 2019-06-25 2021-01-05 구본주 Method of manufacturing for cement foam board
KR102042249B1 (en) * 2019-07-15 2019-11-07 주식회사 에스에이치에너지화학 Expandable resin particles having semi-fireproof performance and method for manufacturing the same
KR102082887B1 (en) * 2019-09-05 2020-03-02 서진호 Method for fabricating of noncombustible polystyrene foam
CN111604029A (en) * 2020-05-15 2020-09-01 吴丹妮 Modified activated carbon composite material and preparation method thereof
KR102405682B1 (en) * 2020-05-15 2022-06-07 권진철 Manufacturing method of antibiotic styrofoam
KR20210141417A (en) * 2020-05-15 2021-11-23 권진철 Manufacturing method of antibiotic styrofoam
KR20220040392A (en) * 2020-09-23 2022-03-30 김혁중 Flame-retardant insulation foam panel containing banana stem extract and manufacturing method therefor
KR102498080B1 (en) * 2020-09-23 2023-02-10 김혁중 Flame-retardant insulation foam panel containing banana stem extract and manufacturing method therefor
KR102237962B1 (en) * 2020-10-30 2021-04-08 주식회사 진일산업 Flame retardant board for construction and manufacturing method thereof
KR20220102681A (en) * 2021-01-13 2022-07-21 세진하이텍(주) Multifunctional panel with flame retardant, heat insulation and anti-condensation function and its manufacturing method
KR102499275B1 (en) * 2021-01-13 2023-02-15 세진하이텍(주) Multifunctional panel with flame retardant, heat insulation and anti-condensation function and its manufacturing method
KR102344342B1 (en) * 2021-05-28 2021-12-28 주식회사 지케이이피에스 A flame-retardant composition and fabricating method of flame-retardant polystyrene foam using the same
KR102403254B1 (en) * 2022-03-11 2022-05-26 정종헌 Eco-Friendly Flame Retardant Composition For Building Materials And Manufacturing Methods Thereof

Also Published As

Publication number Publication date
WO2013183934A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
KR101300626B1 (en) Non-flammable foam insulation that creates a barrier method for manufacturing resin particles
AU2006283919B2 (en) Method for producing foamed slabs
KR100846048B1 (en) Process for producing foam
KR100927667B1 (en) Expandable polystyrene particles with improved thermal insulation and flame retardancy and manufacturing method
KR101977804B1 (en) Insulating material for outer wall and process for preparing the same
EP2702119B1 (en) Fire retardant polystyrene
KR101028523B1 (en) High insulation foamable polystyrene particles and method for producing same
TWI477552B (en) Fire-resistant polyurethane material and fire-resistant structure
KR101796067B1 (en) Manufacturing method for packing box using expanded polystyrene beads and packing box manufactured by the same
KR101020139B1 (en) Adiabatic material comprising expanded perlite and polyurethane and Method of preparing the same and Construction meterials comprising the adiabatic material
CN106589791B (en) A kind of high temperature can ceramic phenolic foam composite material and preparation method thereof
KR20180117511A (en) Method for fabricating of noncombustible styrofoam panel
KR20110083523A (en) Method for fire protection and modification of properties of expanded polyesters
KR20180007647A (en) Composition and construction method of nonflammable surface finishing materials for preventing fire spread on exterior insulation layer
KR20100120088A (en) Expandable polystyrene bead with fireproofing property, the manufacturing method thereof and nonflammable styropor producing the same bead
KR101093995B1 (en) Flame-retardant expanded polystyrene bead manufacturing method
KR20120075821A (en) Anti-flammable composite
KR20200075205A (en) Fireproof board and manufacturing method thereof
JP2006525406A (en) Foamed plastic molding with excellent fire resistance
KR20160076282A (en) Incombustible insulation materials using expanded polystyrene beads and manufacturing method thereof
KR101335438B1 (en) Expanding molded plastic product using different kinds of inorganic fire retardant
KR101339390B1 (en) Expandable polystyrene bead comprising silicone and expanded vermiculite, and method for preparing the same
KR101555612B1 (en) Preparation method of drivit associate nonflammable expanded polystyrene for facing material of building
KR101345148B1 (en) Expandable polystyrene beads having chlorinated paraffin and the manufacturing method thereof
KR101137301B1 (en) Composition for flame retardant expanded polystyrene

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 7