KR101297284B1 - Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale - Google Patents

Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale Download PDF

Info

Publication number
KR101297284B1
KR101297284B1 KR1020100108040A KR20100108040A KR101297284B1 KR 101297284 B1 KR101297284 B1 KR 101297284B1 KR 1020100108040 A KR1020100108040 A KR 1020100108040A KR 20100108040 A KR20100108040 A KR 20100108040A KR 101297284 B1 KR101297284 B1 KR 101297284B1
Authority
KR
South Korea
Prior art keywords
nitrogen
titanium
containing oxide
mixtures
formula
Prior art date
Application number
KR1020100108040A
Other languages
Korean (ko)
Other versions
KR20120046411A (en
Inventor
이재원
박선민
노광철
민성환
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020100108040A priority Critical patent/KR101297284B1/en
Publication of KR20120046411A publication Critical patent/KR20120046411A/en
Application granted granted Critical
Publication of KR101297284B1 publication Critical patent/KR101297284B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 질소 치환된 티타늄 함유 산화물의 제조 방법 및 상기 질소 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 전기 화학 소자에 관한 것으로, 상세하게는 충,방전 시 구조적인 안정성을 향상시켜 수명특성을 높일 수 있는 특성을 나타내므로, 이차 전지 전극 물질, 재료 분야, 첨가제 등 다양한 분야에 응용될 수 있다.The present invention relates to a method for producing a nitrogen-substituted titanium-containing oxide and to an electrochemical device using the nitrogen-substituted titanium-containing oxide as a negative electrode active material, and in particular, to improve structural stability during charging and discharging to increase lifetime characteristics. Since the present invention can exhibit various properties, it can be applied to various fields such as secondary battery electrode materials, material fields, and additives.

Description

질소 치환된 티타늄 함유 산화물의 제조 방법 및 상기 질소 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 전기 화학 소자{MANUFACTURING METHOD OF N-DOPED TITANIUM AND THE ELECTROCHEMICAL DEVICE USING THE SAME AS THE NEGATIVE ACTIVE MATERIALE}Manufacturing method of nitrogen-substituted titanium-containing oxide and an electrochemical device using the nitrogen-substituted titanium-containing oxide as a negative electrode active material TECHNICAL FIELD

본 발명은 질소 치환된 티타늄 함유 산화물의 제조 방법 및 상기 질소 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 전기 화학 소자에 관한 것이다.
The present invention relates to a method for producing a nitrogen-substituted titanium-containing oxide and an electrochemical device using the nitrogen-substituted titanium-containing oxide as a negative electrode active material.

일반적으로 비디오 카메라, PDA, 이동 전화, 노트북 컴퓨터 등과 같은 정보 통신을 위한 휴대용 전자 기기나 전기 자전거, 전기 자동차 등의 구동 전원으로서 재충전이 가능한 리튬 이차 전지의 수요가 급격하게 증가하고 있다. 특히, 이들의 제품 성능이 핵심 부품인 이차 전지에 의해 좌우되므로 음극 활물질의 고용량화에 대한 연구는 나날이 증가하고 있는 추세이다. BACKGROUND ART In general, the demand for rechargeable rechargeable lithium batteries as a driving power source for portable electronic devices such as video cameras, PDAs, mobile phones, notebook computers, electric bicycles, and electric vehicles is rapidly increasing. In particular, since the performance of these products is dependent on the secondary battery, which is a key component, research on increasing the capacity of the negative electrode active material is increasing day by day.

음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite) 형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있어 리튬 금속 대신 탄소계 물질로 대체되어 가고 있다. 리튬 이차 전지의 음극 활물질로 사용되는 상기 탄소계 활물질에는, 천연 흑연 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 있다. 상기 비정질계 탄소는 용량이 크지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다. 결정질계 탄소로는 천연 흑연이 대표적으로 사용되며, 이론 한계 용량이 372 ㎃h/g으로서, 용량이 높아 음극 활물질로 이용되고 있으나, 수명 열화가 심하다는 문제점이 있다. 한편 이러한 천연 흑연이나 탄소계 활물질은 이론 용량이 380 mAh/g 정도 밖에 되지 않아, 향후 고용량 2차 전지의 개발시는 현재의 이 음극을 사용할 수 없는 문제점이 있다.
Lithium metal is used as the negative electrode active material, but when lithium metal is used, a battery short circuit occurs due to the formation of dendrite, which is a risk of explosion and is being replaced with a carbon-based material instead of lithium metal. The carbon-based active material used as a negative electrode active material of a lithium secondary battery includes crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon. The amorphous carbon has a large capacity, but has a problem in that irreversibility is large during charging and discharging. Natural graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which is used as a negative electrode active material due to its high capacity, but has a serious life deterioration. On the other hand, such a natural graphite or carbon-based active material has a theoretical capacity of only about 380 mAh / g, there is a problem that the current negative electrode cannot be used in the development of a high capacity secondary battery in the future.

최근 안전성이 높고 출력특성이 우수한 리튬 이차 전지의 음극소재로 Li4Ti5O12가 주목을 받고 있으나, 용량이 낮으므로 사용 범위가 제한적인 단점이 있다. 이에 비해 TiO2 (anatase, rutile, B-TiO2)는 이론 용량이 335 mAh/g 수준으로 매우 높으나 충,방전시 결정구조가 붕괴되어 수명특성이 떨어지는 단점이 있다.
Recently, Li 4 Ti 5 O 12 attracts attention as a negative electrode material of a lithium secondary battery having high safety and excellent output characteristics, but its use range is limited because of its low capacity. On the other hand, TiO 2 (anatase, rutile, B-TiO 2 ) has a very high theoretical capacity of 335 mAh / g, but has a disadvantage in that its lifespan is poor due to the collapse of the crystal structure during charging and discharging.

이에 따라, 상기에서 언급한 기존의 단점을 극복하기 위해, 구조가 안정적이고, 수명 특성이 향상되며, 고용량을 갖는 TiO2 를 리튬 이차 전지의 음극 활물질로써 사용하기 위한 연구가 필요한 실정이다.
Accordingly, in order to overcome the above-mentioned disadvantages, research is required to use a stable structure, improved lifespan characteristics, and a high capacity TiO 2 as a negative electrode active material of a lithium secondary battery.

상기한 문제점을 해결하기 위하여 충,방전시 구조적인 안정성을 향상시켜 수명특성을 높일 수 있는 산소의 일부가 질소로 치환된 티타늄 함유 산화물 및 이의 제조 방법, 이로부터 제조된 리튬 이차 전지용 음극 활물질을 제공하는 것을 목적으로 한다.
In order to solve the above problems, a titanium-containing oxide in which a part of oxygen is substituted with nitrogen to improve structural stability during charging and discharging to improve lifespan characteristics, a method for preparing the same, and a negative active material for a lithium secondary battery manufactured therefrom It aims to do it.

본 발명은 상기한 목적을 위하여, The present invention for the above purpose,

하기 화학식 1로 표시되는 산소의 일부가 질소로 치환된 티타늄 함유 산화물을 제공한다:It provides a titanium containing oxide in which a part of the oxygen represented by the formula (1) is substituted with nitrogen:

[화학식 1][Formula 1]

Ti1-xMxO2-y-zAyNz Ti 1-x M x O 2-yz A y N z

(상기 식에서, 0 ≤ x < 0.2, 0 ≤ y ≤ 0.5, 0 < z ≤ 0.5이고,Where 0 ≦ x <0.2, 0 ≦ y ≦ 0.5, 0 <z ≦ 0.5,

M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고, M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo and mixtures thereof,

A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
A is selected from the group consisting of halogen elements, S and mixtures thereof.)

본 발명은 또한 상기 화학식 1로 표시되는 산소의 일부가 질소로 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 전기화학소자를 제공한다. The present invention also provides an electrochemical device using a titanium-containing oxide in which a part of the oxygen represented by the formula (1) is substituted with nitrogen as an anode active material.

본 발명에 있어서, 상기 전기 화학 소자는 리튬 이차 전지 또는 하이브리드 커패시터인 것을 특징으로 한다.
In the present invention, the electrochemical device is characterized in that the lithium secondary battery or a hybrid capacitor.

본 발명은 또한 (a) 하기 화학식 2로 표시되는 티타늄 함유 산화물과 질소 전구체를 혼합하는 단계; 및 The present invention also comprises the steps of (a) mixing a titanium-containing oxide and nitrogen precursor represented by the formula (2); And

(b) 상기 티타늄 함유 산화물과 질소 전구체 혼합물을 열처리 하는 단계를 포함하는 산소의 일부가 질소로 치환된 화학식 1로 표시되는 티타늄 함유 산화물의 제조 방법을 제공한다: (b) providing a method for preparing a titanium-containing oxide represented by Formula 1 in which a part of oxygen is substituted with nitrogen, including heat treating the titanium-containing oxide and nitrogen precursor mixture:

[화학식 2][Formula 2]

Ti1-xMxO2-yAy Ti 1-x M x O 2-y A y

(상기 식에서, 0 ≤ x < 0.2, 0 ≤ y ≤ 0.5이고, Wherein 0 ≦ x <0.2, 0 ≦ y ≦ 0.5,

M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고, A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo, and mixtures thereof, A is a group consisting of a halogen element, S and mixtures thereof Will be selected.)

본 발명의 질소 치환된 티타늄 함유 산화물의 제조 방법 및 상기 질소 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 전기 화학 소자는 충,방전 시 구조적인 안정성을 향상시켜 수명특성을 높일 수 있는 특성을 나타내므로, 이차 전지 전극 물질, 재료 분야, 첨가제 등 다양한 분야에 응용될 수 있다.
Since the method for producing a nitrogen-substituted titanium-containing oxide of the present invention and an electrochemical device using the nitrogen-substituted titanium-containing oxide as a negative electrode active material exhibit a property of improving the structural stability during charging and discharging to increase their life characteristics. It can be applied to various fields such as secondary battery electrode material, material field, and additives.

도 1은 TiO2의 XPS 분석 결과를 나타낸 도이고,
도 2는 본 발명의 질소가 도핑된 TiO2-xNx의 XPS 분석 결과는 나타낸 도이며,
도 3은 TiO2와 질소가 도핑된 TiO2-xNx의 XRD 분석 결과를 나타낸 도이고,
도 4는 TiO2의 SEM 이미지를 나타낸 도이며,
도 5는 본 발명의 질소가 도핑된 TiO2-xNx의 SEM 이미지를 나타낸 도이고,
도 6은 TiO2의 충,방전 시험 결과를 나타낸 도이며,
도 7은 본 발명의 질소가 도핑된 TiO2-xNx의 충, 방전 시험 결과를 나타낸 도이다.
1 is a diagram showing an XPS analysis result of TiO 2 ,
Figure 2 is a diagram showing the XPS analysis results of nitrogen doped TiO 2-x N x of the present invention,
3 is a diagram showing the results of XRD analysis of TiO 2 and nitrogen doped TiO 2-x N x ,
4 is a view showing an SEM image of TiO 2 ,
5 is a view showing an SEM image of the nitrogen-doped TiO 2-x N x of the present invention,
6 is a view showing a charge and discharge test results of TiO 2 ,
7 is a view showing the charge and discharge test results of nitrogen doped TiO 2-x N x of the present invention.

이하 본 발명에 대해 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 산소의 일부가 질소로 치환된 티타늄 함유 산화물을 제공하는 것을 특징으로 한다:The present invention provides a titanium-containing oxide in which a part of oxygen represented by the following Chemical Formula 1 is substituted with nitrogen:

[화학식 1][Formula 1]

Ti1-xMxO2-y-zAyNz Ti 1-x M x O 2-yz A y N z

(상기 식에서, 0 ≤ x < 0.2, 0 ≤ y ≤ 0.5, 0 < z ≤ 0.5이고,Where 0 ≦ x <0.2, 0 ≦ y ≦ 0.5, 0 <z ≦ 0.5,

M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고, M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo and mixtures thereof,

A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
A is selected from the group consisting of halogen elements, S and mixtures thereof.)

본 발명에 있어서, 상기 화학식 1의 티타늄 함유 산화물은 아나타제(anatase) 결정상, 루틸(rutile) 결정상, 아나타제 결정상 및 루틸 결정상의 혼합 및 브루카이트(brokite) 결정상으로 이루어진 군에서 선택된 1종 이상, 바람직하게는 아나타제(anatase) 결정상인 것을 특징으로 하며, 이는 전기화학적 반응성이 높은 특징을 나타낼 수 있다. In the present invention, the titanium-containing oxide of Formula 1 is at least one selected from the group consisting of an anatase crystal phase, a rutile crystal phase, an anatase crystal phase and a rutile crystal phase, and a brokite crystal phase. Is characterized by being an anatase crystal phase, which may exhibit high electrochemical reactivity.

상기 티타늄 함유 산화물의 입자 크기가 100 nm 초과이면 리튬이온의 원활한 삽입 탈리가 어려워 용량 및 출력특성이 떨어질 수 있으므로, 100 nm 이하, 구체적으로는 10 nm 내지 50 nm 인 것이 바람직하다.
When the particle size of the titanium-containing oxide is more than 100 nm, since the smooth insertion and desorption of lithium ions may be difficult, the capacity and output characteristics may be degraded. Therefore, the thickness is preferably 100 nm or less, specifically 10 nm to 50 nm.

본 발명은 또한, 상기 화학식 1로 표시되는 산소의 일부가 질소로 치환된 티타늄 함유 산화물을 음극 활물질로 사용하는 리튬 이차 전지, 하이브리드 커패시터등의 전기 화학 소자를 제공한다.
The present invention also provides an electrochemical device such as a lithium secondary battery, a hybrid capacitor, using a titanium-containing oxide in which a part of the oxygen represented by the formula (1) is substituted with nitrogen as a negative electrode active material.

또한, 본 발명은 산소의 일부가 질소로 치환된 티타늄 함유 산화물의 제조 방법에 관한 것으로, 상기 제조 방법은 하기의 단계를 포함하는 것을 특징으로 한다.
In addition, the present invention relates to a method for producing a titanium-containing oxide in which a part of oxygen is substituted with nitrogen, characterized in that the manufacturing method comprises the following steps.

본 발명의 제조 방법은 (a) 하기 화학식 2로 표시되는 티타늄 함유 산화물과 질소 전구체를 혼합하는 단계; 및 The manufacturing method of the present invention comprises the steps of: (a) mixing a titanium-containing oxide and a nitrogen precursor represented by the formula (2); And

(b) 상기 티타늄 함유 산화물과 질소 전구체 혼합물을 열처리 하는 단계를 포함하는 산소의 일부가 질소로 치환된 상기 화학식 1로 표시되는 티타늄 함유 산화물의 제조 방법을 제공한다:(b) providing a method for preparing a titanium-containing oxide represented by the formula (1) in which a part of oxygen is substituted with nitrogen, including heat treating the titanium-containing oxide and nitrogen precursor mixture:

[화학식 2][Formula 2]

Ti1-xMxO2-yAy Ti 1-x M x O 2-y A y

(상기 식에서, 0 ≤ x < 0.2, 0 ≤ y ≤ 0.5이고,Wherein 0 ≦ x <0.2, 0 ≦ y ≦ 0.5,

M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고, A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo, and mixtures thereof, A is a group consisting of a halogen element, S and mixtures thereof Will be selected.)

본 발명의 상기 (a) 단계에서 사용 가능한 질소 전구체는 암모니아 가스, 하이드라진 하이드레이트, 우레아, 암모니아수 및 탄소 수 1~6의 범위의 알킬 아민 중에서 선택된 1종 이상, 바람직하게는 암모니아 가스를 사용하여 합성할 수 있다. The nitrogen precursor usable in step (a) of the present invention may be synthesized using at least one selected from ammonia gas, hydrazine hydrate, urea, ammonia water and alkyl amines having 1 to 6 carbon atoms, preferably ammonia gas. Can be.

또한, 상기 질소 전구체는 통상적으로 사용되는 것을 적용할 수 있으며, 티타늄 함유 산화물에 질소를 치환하는 방법에 따라 적의 선택하여 사용할 수 있다.
In addition, the nitrogen precursor can be used that is commonly used, can be appropriately selected according to the method of substituting nitrogen to the titanium-containing oxide.

본 발명의 상기 (b) 단계에서의 열처리는 400 내지 600 ℃, 바람직하게는 500℃, 1시간 내지 10 시간, 바람직하게는 3시간의 반응 조건에서 수행할 수 있다. Heat treatment in the step (b) of the present invention may be carried out under the reaction conditions of 400 to 600 ℃, preferably 500 ℃, 1 hour to 10 hours, preferably 3 hours.

상기 열처리 과정에 있어서, 상기 반응 온도 및 시간의 범위를 벗어나게 되면 순수한 아나타제 상을 얻기 어렵거나 질소 치환이 일어나지 않을 수 있다.
In the heat treatment process, if it is out of the range of the reaction temperature and time, it is difficult to obtain a pure anatase phase or nitrogen substitution may not occur.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the present invention is not limited to the following Examples and Experimental Examples.

실시예 . TiOEXAMPLE TiO 2-x2-x NN xx 의 제조Manufacturing

티타늄 함유 산화물 10 g을 수평 전기로에 넣고 질소 전구체로서 암모니아 가스를 300cc/min의 유량으로 흘리면서, 3시간 동안 500 ℃의 반응 온도로 열처리하여 질소가 도핑된 티타늄 함유 산화물을 제조하였다. A nitrogen-doped titanium-containing oxide was prepared by heat-treating at a reaction temperature of 500 ° C. for 3 hours while flowing 10 g of titanium-containing oxide into a horizontal electric furnace and flowing ammonia gas at a flow rate of 300 cc / min as a nitrogen precursor.

상기 공정에 따라 제조된 티타늄 함유 산화물은 아나타제(anatase) 결정상을 나타내었고, 제조된 물질의 특성은 하기 실험예를 통해 측정하였다 (하기 실험예 참조).
The titanium-containing oxide prepared according to the above process showed an anatase crystal phase, and the properties of the prepared material were measured through the following experimental examples (see Experimental Examples below).

비교예 . TiOComparative Example. TiO 22 의 제조Manufacturing

순수한 티타늄 함유 화합물을 공기 중에서 500 ℃의 온도에서 열처리하여 질소가 치환되지 않은 티타늄 함유 산화물을 제조하였다.
Pure titanium containing compounds were heat-treated in air at a temperature of 500 ° C. to prepare titanium-containing oxides in which nitrogen was not substituted.

실험예 1. XPS 분석Experimental Example 1. XPS Analysis

상기 실시예 및 비교예에서 제조된 티타늄 산화물의 질소 도핑 여부를 측정하기 위해, XPS 분석을 수행하였고, 그 결과 비교예의 경우를 도 1, 실시예의 경우를 도 2에 나타내었다.In order to measure the nitrogen doping of the titanium oxide prepared in the above Examples and Comparative Examples, XPS analysis was carried out, as a result of the Comparative Example is shown in Figure 1, Example 2 in FIG.

측정 결과, 도 1에서는 비교예 1의 TiO2에서 Ti-N 결합에너지에 해당되는 영역(392 eV)에서 피크가 관찰되지 않았으나, 도 2에서는 피크가 관찰되며 질소(N)가 1.4 atomic%를 차지하는 것으로 나타남을 알 수 있었다.
As a result, in FIG. 1, no peak was observed in the region (392 eV) corresponding to Ti-N binding energy in TiO 2 of Comparative Example 1, but in FIG. 2, a peak was observed and nitrogen (N) occupied 1.4 atomic%. It can be seen that.

실험예 2. X선 회절(XRD) 분석Experimental Example 2 X-ray Diffraction (XRD) Analysis

질소 치환에 따른 결정 구조 변화를 측정하기 위해 XRD 분석을 수행하였고, 그 결과를 도 3에 나타내었다. 여기서 2θ는 회절각으로 각 회절각에 해당하는 XRD 피크(peak)를 분석함으로서 분말의 결정상의 종류를 알 수 있다XRD analysis was performed to measure the crystal structure change due to nitrogen substitution, and the results are shown in FIG. 3. Here, 2θ is a diffraction angle and the XRD peak corresponding to each diffraction angle can be analyzed to determine the type of crystalline phase of the powder.

도 3에 나타난 바와 같이, 전반적으로 입자 크기가 매우 작아 결정성이 우수하지 못하며 두 샘플에 대한 피크 위치가 거의 유사하여 질소 치환에 따른 격자의 크기 변화는 거의 없는 것으로 판단되어 진다.
As shown in FIG. 3, the overall particle size is very small, the crystallinity is not excellent, and the peak positions of the two samples are almost similar, and thus, the lattice size is little changed due to nitrogen substitution.

실험예 3. SEM 분석Experimental Example 3. SEM Analysis

실시예 및 비교예에 있어 티타늄 산화물의 입자를 측정하기 위해, SEM 분석을 수행하였고, 그 결과를 도 4 및 5에 나타내었다. In order to measure the particles of titanium oxide in Examples and Comparative Examples, SEM analysis was performed, and the results are shown in FIGS. 4 and 5.

측정 결과, 도 4 및 5에 나타나는 바와 같이, 실시예 1 및 비교예 1의 입자 크기는 수십 나노미터 수준으로 보이며, 질소 도핑에 따른 입자 사이즈의 차이는 거의 관찰되지 않는 것으로 확인되었다.
As a result of the measurement, as shown in Figures 4 and 5, the particle size of Example 1 and Comparative Example 1 appears to be several tens of nanometer level, it was confirmed that the difference in particle size according to nitrogen doping is hardly observed.

제조예. 리튬 반전지(half-cell)의 제조 Production example. Fabrication of Lithium Half Cells

상기 실시예에서 제조한 음극 활물질 100g을 500㎖의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더 PVDF를 투입한 후 혼합기를 이용하여 슬러리를 제조하였다.100 g of the negative electrode active material prepared in Example was placed in a 500 ml reactor, and a small amount of N-methylpytolidone (NMP) and a binder PVDF were added thereto to prepare a slurry using a mixer.

상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하고, 제조한 전극을 압착한 뒤에 양극으로서 Li 금속을 이용하여 코인 셀(Coin Cell)을 제조하였다.The slurry was uniformly coated on a copper foil having a thickness of 12 μm, vacuum dried at 120 ° C. to prepare an electrode, and the electrode was pressed to prepare a coin cell using Li metal as an anode.

상기 실시예와 비교예에 따라 제조된 음극활물질을 사용한 코인 셀(Coin Cell)의 수명 특성을 평가하기 위하여, 2.5V와 0 V 사이에서 30 사이클 충방전하여 사이클 수명을 평가하였으며, 초기 충방전 용량 및 30 사이클 후의 용량을 측정하여 그 결과를 각각 도 6, 도 7에 나타내었다. In order to evaluate the life characteristics of the coin cell (Coin Cell) using the negative electrode active material prepared according to the above Examples and Comparative Examples, the cycle life was evaluated by charging and discharging 30 cycles between 2.5V and 0V, the initial charge and discharge capacity And the capacity after 30 cycles was measured and the results are shown in FIGS. 6 and 7, respectively.

도 6 및 도 7 에서 보는 바와 같이 본 발명의 실시예에 따른 질소가 치환된 티탄 산화물을 음극활물질로 사용하는 경우 비교예의 경우에 비하여 수명 특성이 20% 가까이 개선되었다. As shown in FIG. 6 and FIG. 7, when the nitrogen-substituted titanium oxide according to the embodiment of the present invention is used as a negative electrode active material, the lifespan characteristics are improved by 20% compared with the case of the comparative example.

Claims (6)

하기 화학식 1로 표시되는 산소의 일부가 질소로 치환된 아나타제 결정상을 가지는 티타늄 함유 산화물을 음극 활물질로 사용하는 전기 화학 소자 :
[화학식 1]
Ti1-xMxO2-y-zAyNz
(상기 식에서, 0≤x≤0.2, 0≤y≤0.5, 0<z≤0.5이고,
M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고,
A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
An electrochemical device using a titanium-containing oxide having anatase crystal phase in which a part of oxygen represented by Formula 1 is substituted with nitrogen as a negative electrode active material:
[Formula 1]
Ti 1-x M x O 2-yz A y N z
Where 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.5, and 0 <z ≦ 0.5,
M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo and mixtures thereof,
A is selected from the group consisting of halogen elements, S and mixtures thereof.)
제1항에 있어서,
상기 전기 화학 소자는 리튬 이차 전지 또는 하이브리드 커패시터인 전기 화학 소자.
The method of claim 1,
The electrochemical device is a lithium secondary battery or a hybrid capacitor.
(a) 하기 화학식 2로 표시되는 티타늄 함유 산화물과 질소 전구체를 혼합하는 단계; 및
[화학식 2]
Ti1-xMxO2-yAy
(상기 식에서, 0 ≤ x < 0.2, 0 ≤ y ≤ 0.5이고,
M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고, A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
(b) 상기 티타늄 함유 산화물과 질소 전구체 혼합물을 400 내지 600℃에서, 1시간 내지 10시간 동안 열처리 하는 단계를 포함하는 산소의 일부가 질소로 치환된 화학식 1로 표시되는 아나타제 결정상을 가지는 티타늄 함유 산화물의 제조 방법.
[화학식 1]
Ti1-xMxO2-y-zAyNz
(상기 식에서, 0≤x≤0.2, 0≤y≤0.5, 0<z≤0.5이고,
M은 Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo 및 이들의 혼합으로 이루어진 군에서 선택되는 것이고,
A는 할로겐 원소, S 및 이들의 혼합으로 이루어진 군에서 선택되는 것임.)
(a) mixing a titanium-containing oxide and a nitrogen precursor represented by Formula 2 below; And
(2)
Ti 1-x M x O 2-y A y
Wherein 0 ≦ x <0.2, 0 ≦ y ≦ 0.5,
M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo, and mixtures thereof, A is a group consisting of a halogen element, S and mixtures thereof Will be selected.)
(b) a titanium-containing oxide having anatase crystal phase represented by the formula (1) in which a part of oxygen is substituted with nitrogen, including heat-treating the titanium-containing oxide and nitrogen precursor mixture at 400 to 600 ° C. for 1 to 10 hours. Method of preparation.
[Formula 1]
Ti 1-x M x O 2-yz A y N z
Where 0 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.5, and 0 <z ≦ 0.5,
M is selected from the group consisting of Cu, Mn, Mg, Ni, Sn, Sr, Zn, Al, Si, Zr, Sb, Mo and mixtures thereof,
A is selected from the group consisting of halogen elements, S and mixtures thereof.)
제3항에 있어서,
상기 (a) 단계의 질소 전구체는 암모니아 가스, 하이드라진 하이드레이트, 우레아, 암모니아수 및 탄소수 1 ∼ 6 범위의 알킬아민 중에서 선택된 것을 특징으로 하는 산소의 일부가 질소로 치환된 티타늄 함유 산화물의 제조 방법.
The method of claim 3,
The nitrogen precursor of step (a) is selected from ammonia gas, hydrazine hydrate, urea, ammonia water and alkylamine having 1 to 6 carbon atoms, a method of producing a titanium-containing oxide in which part of oxygen is substituted with nitrogen.
삭제delete 삭제delete
KR1020100108040A 2010-11-02 2010-11-02 Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale KR101297284B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100108040A KR101297284B1 (en) 2010-11-02 2010-11-02 Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100108040A KR101297284B1 (en) 2010-11-02 2010-11-02 Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale

Publications (2)

Publication Number Publication Date
KR20120046411A KR20120046411A (en) 2012-05-10
KR101297284B1 true KR101297284B1 (en) 2013-08-16

Family

ID=46265502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100108040A KR101297284B1 (en) 2010-11-02 2010-11-02 Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale

Country Status (1)

Country Link
KR (1) KR101297284B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506074B1 (en) * 2013-03-27 2015-03-26 울산대학교 산학협력단 Macrochannel-structured titanum oxide lithium ion electrodes and method of thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060049222A (en) * 2004-06-16 2006-05-18 마쯔시다덴기산교 가부시키가이샤 Active material, production method thereof and non-aqueous electrolyte secondary battery comprising the same
KR20090054636A (en) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
KR20090088625A (en) * 2008-02-15 2009-08-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060049222A (en) * 2004-06-16 2006-05-18 마쯔시다덴기산교 가부시키가이샤 Active material, production method thereof and non-aqueous electrolyte secondary battery comprising the same
US7740982B2 (en) 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
KR20090054636A (en) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
KR20090088625A (en) * 2008-02-15 2009-08-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material

Also Published As

Publication number Publication date
KR20120046411A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Lu et al. Enhanced electrochemical performance of Li-rich Li1. 2Mn0. 52Co0. 08Ni0. 2O2 cathode materials for Li-ion batteries by vanadium doping
Li et al. Air‐stable copper‐based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium‐ion batteries
CN109071266B (en) Lithium nickelate positive electrode active material particle, method for producing same, and nonaqueous electrolyte secondary battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
CA2748800C (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
Xue et al. Investigation on preparation and performance of spinel LiNi0. 5Mn1. 5O4 with different microstructures for lithium-ion batteries
JP5253465B2 (en) Method for producing negative electrode active material for lithium secondary battery and lithium secondary battery
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
JP5404906B2 (en) High voltage negative active material for rechargeable lithium batteries
KR20020062012A (en) Positive active material for lithium secondary battery and method of preparing same
JP2008255000A (en) New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material
KR20160023496A (en) Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same
Wang et al. Superior electrochemical and kinetics performance of LiNi0. 8Co0. 15Al0. 05O2 cathode by neodymium synergistic modifying for lithium ion batteries
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
Yin et al. A synergistic effect in a composite cathode consisting of spinel and layered structures to increase the electrochemical performance for Li-Ion batteries
JP5642696B2 (en) Battery cathode materials with improved cycling performance at high current densities
Chao et al. La-doped SnO2 synthesis and its electrochemical property
Liu et al. Synthesis and structural properties of xLi2MnO3⋅(1-x) LiNi0. 5Mn0. 5O2 single crystals towards enhancing reversibility for lithium-ion battery/pouch cells
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
Xie et al. Excellent electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 with good crystallinity and submicron primary dispersed particles
KR101297284B1 (en) Manufacturing method of n-doped titanium and the electrochemical device using the same as the negative active materiale
Xue et al. Study on Li x Ni 0.5 Mn 1.5 O 4 (x= 0.8, 0.9, 1, 1.1, and 1.2) high-voltage cathode for lithium-ion batteries
KR20090103133A (en) Cathode active material for lithium secondary and method for preparing thereof and lithium secondary battery containing the same for cathode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee