KR101296789B1 - Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same - Google Patents

Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same Download PDF

Info

Publication number
KR101296789B1
KR101296789B1 KR1020110060778A KR20110060778A KR101296789B1 KR 101296789 B1 KR101296789 B1 KR 101296789B1 KR 1020110060778 A KR1020110060778 A KR 1020110060778A KR 20110060778 A KR20110060778 A KR 20110060778A KR 101296789 B1 KR101296789 B1 KR 101296789B1
Authority
KR
South Korea
Prior art keywords
heat treatment
active material
composite
acetate
lithium secondary
Prior art date
Application number
KR1020110060778A
Other languages
Korean (ko)
Other versions
KR20130000209A (en
Inventor
도칠훈
황민지
하윤철
김주석
배상호
허민영
진봉수
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110060778A priority Critical patent/KR101296789B1/en
Publication of KR20130000209A publication Critical patent/KR20130000209A/en
Application granted granted Critical
Publication of KR101296789B1 publication Critical patent/KR101296789B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 본 발명의 ZnO를 포함하는 아연계 음극활물질 제조방법은
(1) 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 졸겔의 화학방법으로 균일하게 혼합하여 Zn-In-Ni 복합물을 제조하되, 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 혼합한 후, 아크릴 아마이드와 메틸렌 비스 아크릴 아마이드를 70~80℃에서 교반 혼합하여 100~120℃에서 12시간 건조하는 Zn-In-Ni 복합물 제조 단계,
(2) 상기 Zn-In-Ni 복합물을 열처리하되, 상기 열처리는 300℃에서 5시간 동안 1차 열처리하고, 5℃/min으로 승온한후 550~750℃에서 3시간 동안 2차 열처리하여 Zn-In-Ni 산화물 복합체를 제조하는 것을 특징으로 한다.
The present invention is a method for producing a zinc-based negative electrode active material comprising ZnO of the present invention
(1) Zn-In-Ni composite is prepared by uniformly mixing zinc acetate, indium acetate and nickel acetate by the sol-gel chemical method, but after mixing zinc acetate, indium acetate and nickel acetate, acrylamide and methylene bisacryl Zn-In-Ni composite manufacturing step of stirring and mixing the amide at 70 ~ 80 ℃ 12 hours at 100 ~ 120 ℃,
(2) The heat treatment of the Zn-In-Ni composite, wherein the heat treatment is the first heat treatment at 300 ℃ for 5 hours, the temperature is raised to 5 ℃ / min and the second heat treatment for 3 hours at 550 ~ 750 ℃ Zn- In-Ni oxide composite is prepared.

Description

아연계 음극 활물질의 제조방법{Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same}Zinc based negative active material, manufacturing method, and lithium secondary battery computing method

본 발명은 고용량 리튬이차전지용 아연계 음극 활물질의 제조방법에 관한 것으로서, 상세하게는 졸겔(Sol-Gel)법을 이용하여 ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 포함하는 아연계 음극활물질 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a zinc-based negative active material for a high capacity lithium secondary battery, and in particular, to manufacture a zinc-based negative electrode active material including a Zn-In-Ni oxide composite including ZnO by using a sol-gel method. It is about a method.

전기자동차의 보급 추진과 이의 에너지원인 고성능 이차전지를 개발하기 위한 많은 연구가 진행되고 있다. 현재 상용화된 리튬이차전지의 음극화 양극 활물질은 리튬이온의 삽입과 탈리가 가능한 흑연과 리튬 전이금속 산화물을 각각 사용하며, 그 외에 각 전극 간의 직접적인 접촉을 막는 격리막과 리튬이온이 해리된 유기용매 전해액 또는 폴리머 전해질로 구성되어 있다. Many researches are being conducted to promote the dissemination of electric vehicles and to develop high-performance secondary batteries as their energy sources. The negative electrode active material of the currently commercialized lithium secondary battery uses graphite and lithium transition metal oxide, which can insert and desorb lithium ions, and in addition, an insulating film that prevents direct contact between the electrodes and an organic solvent electrolyte in which lithium ions are dissociated. Or a polymer electrolyte.

향후의 전기자동차 등 대형 이차전지 시장은 리튬이차전지의 고용량화와 고출력화 기술을 요구하고 있다. 이에 따라, 음극의 고용량화를 위하여 이론 용량이 탄소계 재료보다 훨씬 높은 실리콘이나 주석 등을 기반으로 하는 비탄소계 음극활물질 개발이 활발히 진행되고 있다.In the future, the large secondary battery market, such as electric vehicles, requires high capacity and high output technology of lithium secondary batteries. Accordingly, in order to increase the capacity of the negative electrode, development of a non-carbon negative electrode active material based on silicon or tin, which has a much higher theoretical capacity than the carbonaceous material, is being actively conducted.

1991년 리튬이차전지가 상용화된 이래 음극활물질로서는 흑연 등의 탄소재가 주로 이용되고 있다. 상용화 초기부터 지금까지 전지 용량이 약 2배 이상으로 증가하였으며 이러한 전지 성능의 향상은 양극에서의 전지 충전 전압의 상승과 함께 음극활물질의 비용량이 170 mAh/g 수준의 비정질 하드카본에서 360 mAh/g 이상이 가능한 고비용량의 흑연으로 발전한 것에 기인한다. Since lithium secondary batteries were commercialized in 1991, carbon materials such as graphite have been mainly used as negative electrode active materials. From the beginning of commercialization to the present, battery capacity has more than doubled, and this improvement in battery performance is accompanied by an increase in battery charging voltage at the positive electrode, and a specific amount of negative active material of 360 mAh / g in amorphous hard carbon with 170 mAh / g. This is due to the development of high specific capacity graphite.

최근 리튬이차전지가 적용되고 있는 휴대 기기의 경량화, 소형화에 따라 긴 작동시간을 만족시키기 위해서는 기기의 소비전력은 저감하고, 전원으로서 전지의 에너지밀도를 향상시켜야 한다. 그러나 현재까지 상용화 된 흑연의 경우 리튬의 이론 저장용량(LiC6 기준)이 372 mAh/g으로 제한되기 때문에 이러한 문제점을 극복하기 위해서는 보다 큰 리튬 저장 용량을 갖는 음극활물질이 필요하다. 흑연 외에 고용량이 가능한 음극활물질로는 리튬과 반응하여 합금을 형성할 수 있는 실리콘과 주석을 대표적인 예로 들 수 있으며 최근 이러한 금속과 관련된 다양한 합금 및 복합체가 활발히 연구 개발되고 있다. 순수 실리콘과 주석은 리튬과 반응하여 리튬-실리콘 합금과 리튬-주석 합금을 생성하며, 이때의 에너지 밀도는 각각 흑연보다 약 10배와 3배 정도 크다. 하지만 충방전 시 반복적인 합금의 수축과 팽창 과정은 전지의 전기화학적인 가역반응을 저하시키는 원인으로 작용하여 아직 상업화에 이르지 못하고 있다.In order to satisfy the long operation time due to the weight reduction and miniaturization of portable devices to which a lithium secondary battery is applied, power consumption of the device must be reduced and the energy density of the battery as the power source must be improved. However, since graphite has been commercialized to date, the theoretical storage capacity of lithium (LiC6 basis) is limited to 372 mAh / g, and thus, an anode active material having a larger lithium storage capacity is required to overcome this problem. In addition to graphite, a high-capacity cathode active material may include silicon and tin, which may react with lithium to form an alloy, and various alloys and composites related to such metals have been actively researched and developed. Pure silicon and tin react with lithium to produce lithium-silicon alloys and lithium-tin alloys, with energy densities of about 10 and 3 times greater than graphite, respectively. However, repetitive shrinkage and expansion of the alloy during charge and discharge acts as a cause of lowering the electrochemical reversible reaction of the battery, which has not yet reached commercialization.

도칠훈 등(대한민국특허, 출원번호 10-2009-0135084, 출원일 2009. 12. 31)은 순수 아연 분말 전극의 리튬이차전지 음극활물질 적용에 대한 특허를 출원하였으며, 60℃의 고온 작동 조건에서 300 mAh/g이하의 비용량을 발현하고, 상온에서는 방전비용량이 20mAh/g 이하를 나타낸다고 보고하였다. Do Chil-Hoon et al. (Korea Patent Application No. 10-2009-0135084, filed Dec. 31, 2009) filed a patent for the application of lithium secondary battery negative electrode active material of pure zinc powder electrode, 300 mAh / Specific amount of g or less was expressed, and it was reported that discharge specific amount shows 20 mAh / g or less at normal temperature.

칼라이셀비 등(N. Jayaprakash, K. Sathiyanarayanan, N. Kalaiselvi. Electrochimica Acta 52 (2007) 2453-2460)의 논문 보고에 따르면, 졸겔 방법과 500℃ 열처리를 통하여 아연계 합금을 개발하고, 리튬이차전지 음극활물질로 적용 한 바 제 1차 방전비용량이 450~650 mAh/g 수준이었으며, 25회 충방전의 방전비용량은 490 mAh/g을 나타낸 것을 보고 한 바 있다.According to a paper report by Kaila Selby et al. (N. Jayaprakash, K. Sathiyanarayanan, N. Kalaiselvi. Electrochimica Acta 52 (2007) 2453-2460), a zinc-based alloy was developed through a sol-gel method and a 500 ° C. heat treatment, and a lithium secondary battery As a negative electrode active material, the primary discharge cost was 450 to 650 mAh / g, and the discharge capacity of 25 charge / discharge cycles was 490 mAh / g.

손헌준 등(Sukeun Yoon, Cheol-Min Park, Hansu Kim, Hun-Joon Sohn, Journal of Power Sources 167 (2007) 520-523)의 논문에서는 아연 탄소 복합 재료 전극의 특성에 대하여 보고하였으며, 초기 비용량은 약 200 mAh/g을 나타내고, Li2ZnSi가 금속간 화합물로 형성됨을 보고하였다.In the papers of Suunun Yoon, Cheol-Min Park, Hansu Kim, Hun-Joon Sohn, Journal of Power Sources 167 (2007) 520-523, the characteristics of zinc carbon composite electrodes were reported. It is about 200 mAh / g and it is reported that Li2ZnSi is formed of an intermetallic compound.

Hou 등(Xianghui HOU, Qiang Cheng, Ying Bai, W.F. Zhang., Solid State Ionics 181 (2010) 631-634)은 Zn2SnO4 재료의 리튬이차전지 특성을 연구하였으며, 25회 충방전에서 850 mAh/g 나타낸다고 보고하였다.
Hou et al. (Xianghui HOU, Qiang Cheng, Ying Bai, WF Zhang., Solid State Ionics 181 (2010) 631-634) studied the characteristics of lithium secondary batteries of Zn2SnO4 materials and reported 850 mAh / g at 25 charge / discharge cycles. It was.

본 발명은 이상과 같은 사항을 감안하여 창출된 것으로서, 졸겔법을 이용하여 아연계 음극활물질을 합성하고, 기존의 흑연 재료의 비용량 및 용량밀도를 능가하도록 된 신규재료로서 리튬이차전지용 ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 제공하는 것을 목적으로 한다.The present invention was created in view of the above matters, and synthesized a zinc-based anode active material using a sol-gel method, and includes a ZnO for a lithium secondary battery as a novel material to surpass the specific capacity and capacity density of existing graphite materials. An object of the present invention is to provide a Zn-In-Ni oxide composite.

아연은 경금속으로서 중금속 환경 오염의 문제가 없으며, 부존량이 많아 저가이며, 알카리 망간전지와 공기아연전지 등의 활물질로 널리 사용되어온 재료이다. Zinc is a light metal, has no problem of environmental pollution of heavy metals, and has a large amount of low cost, which is inexpensive and has been widely used as an active material such as alkaline manganese batteries and air zinc batteries.

본 발명에서 ZnO를 포함하는 아연계 산화물 복합체를 개발하고, 리튬이차전지 음극활물질로 적용하여 고효율, 고에너지의 리튬이차전지를 제공하고자 한다.In the present invention, a zinc-based oxide composite including ZnO is developed and applied as a lithium secondary battery anode active material to provide a high efficiency, high energy lithium secondary battery.

삭제delete

상기의 목적을 달성하기 위한 본 발명의 ZnO를 포함하는 아연계 음극활물질 제조방법은
(1) 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 졸겔의 화학방법으로 균일하게 혼합하여 Zn-In-Ni 복합물을 제조하되, 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 혼합한 후, 아크릴 아마이드와 메틸렌 비스 아크릴 아마이드를 70~80℃에서 교반 혼합하여 100~120℃에서 12시간 건조하는 Zn-In-Ni 복합물 제조 단계,
(2) 상기 Zn-In-Ni 복합물을 열처리하되, 상기 열처리는 300℃에서 5시간 동안 1차 열처리하고, 5℃/min으로 승온한후 550~750℃에서 3시간 동안 2차 열처리하여 Zn-In-Ni 산화물 복합체를 제조하는 것을 특징으로 한다.
Zinc-based negative electrode active material manufacturing method comprising ZnO of the present invention for achieving the above object
(1) Zn-In-Ni composite is prepared by uniformly mixing zinc acetate, indium acetate, and nickel acetate by the sol-gel chemical method, but after mixing zinc acetate, indium acetate and nickel acetate, acrylamide and methylene bisacryl Zn-In-Ni composite manufacturing step of stirring and mixing the amide at 70 ~ 80 ℃ 12 hours at 100 ~ 120 ℃,
(2) The heat treatment of the Zn-In-Ni composite, the heat treatment is the first heat treatment at 300 ℃ for 5 hours, the temperature is raised to 5 ℃ / min and the second heat treatment for 3 hours at 550 ~ 750 ℃ Zn- In-Ni oxide composite is prepared.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명에 따른 졸-겔법의 금속이온복합체로부터 제조한 ZnO를 포함하는 아연계 산화물 복합체 음극활물질 및 이를 이용한 리튬이차전지를 제조하고 물리적 및 전기화학적 특성을 분석한 결과, 음극활물질에 비교하여 충방전 특성이 향상되었으며 우수한 싸이클 특성과 비용량, 충전 및 방전율 특성을 나타내어 리튬이차전지의 음극활물질로 유용하게 사용될 수 있다.A zinc-based oxide composite anode active material comprising ZnO prepared from a metal ion complex of the sol-gel method according to the present invention and a lithium secondary battery using the same, and the physical and electrochemical characteristics thereof were analyzed. The characteristics have been improved and excellent cycle characteristics, specific capacity, charge and discharge rate characteristics can be used as a negative electrode active material of a lithium secondary battery.

삭제delete

도 1은 본 발명의 일실시예에 따른 Zn-In-Ni 산화물 복합체의 FE-SEM 사진.
도 2는 본 발명의 일실시예의 온도별 열처리에 따른 XRD 회절분석 결과도.
도 3은 본 발명의 일실시예에 따른 Zn-In-Ni 산화물 복합체를 사용한 리튬이차전지의 정전류/정전압 충전비용량 비교도.
도 4은 본 발명의 일실시예에 따른 Zn-In-Ni 산화물 복합체를 사용한 리튬이차전지의 정전류/정전압 방전비용량 비교도
1 is a FE-SEM photograph of a Zn-In-Ni oxide composite according to an embodiment of the present invention.
Figure 2 is an XRD diffraction analysis results according to the temperature-specific heat treatment of one embodiment of the present invention.
Figure 3 is a comparison of the constant current / constant voltage charging specific capacity of the lithium secondary battery using a Zn-In-Ni oxide composite according to an embodiment of the present invention.
Figure 4 is a comparison of the constant current / constant voltage discharge capacity of a lithium secondary battery using a Zn-In-Ni oxide composite according to an embodiment of the present invention

이하에서 본 발명을 보다 상세하게 설명한다. 이하의 제조방법에 대한 설명은 상기의 음극활물질에 대한 설명도 포함된다.Hereinafter, the present invention will be described in more detail. Description of the following manufacturing method also includes a description of the negative electrode active material.

먼저, 본 발명에 음극활물질을 설명한다.  First, the negative electrode active material will be described in the present invention.

본 발명에 따른 음극활물질의 제조방법은 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트(Zn acetate, In acetate, Ni acetate)를 졸겔법으로 혼합하여 복합물을 제조하는 단계, 제조된 Zn-In-Ni 복합물을 열처리하여, ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 제조한다.  Method for preparing a negative electrode active material according to the present invention comprises the steps of preparing a composite by mixing zinc acetate, indium acetate, nickel acetate (Zn acetate, In acetate, Ni acetate) by the sol-gel method, heat treatment the prepared Zn-In-Ni composite Thus, a Zn-In-Ni oxide composite containing ZnO is prepared.

졸겔법으로 제조한 복합물을 비활성기체 분위기에서 열처리하는 것이 좋으며, 상기 비활성기체는 아르곤(Ar)을 사용하였다. 열처리한 결과물을 분쇄하여 입도를 조절하는 것이 좋다. 본 발명의 아연계 복합체인 ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 제조하는 방법은 졸겔(sol-gel)의 화학 방법으로 균일하게 혼합한다.  It is preferable to heat-treat the composite prepared by the sol-gel method in an inert gas atmosphere, and argon (Ar) was used as the inert gas. It is good to control the particle size by grinding the resultant heat treatment. The method for preparing a Zn-In-Ni oxide composite including ZnO, which is a zinc-based composite of the present invention, is uniformly mixed by a sol-gel chemical method.

상기 졸겔법은 아연 아세테이트(Zn acetate), 인듐 아세테이트(In acetate), 니켈 아세테이트(Ni acetate)는 몰 비율 조성 90:7.5:2.5으로 혼합한 후, 아크릴 아마이드(acryl amide), 메틸렌 비스 아크릴 아마이드(N,N-methylene-bis-acryl amide)를 70~80℃에서 교반 혼합하여 100~120℃에서 12시간 건조하는 것이 좋다.In the sol-gel method, zinc acetate (Zn acetate), indium acetate (In acetate), and nickel acetate (Ni acetate) are mixed in a molar ratio composition of 90: 7.5: 2.5, followed by acryl amide and methylene bis acrylamide ( N, N-methylene-bis-acryl amide) is preferably stirred at 70-80 ° C. and mixed for 12 hours at 100-120 ° C.

다음, 졸겔법으로 혼합된 아연 복합물을 안정화시키기 위하여 열처리를 하는 것이 바람직하다. 열처리는 서서히 승온하여 300℃에서 5시간 동안 1차 열처리하는 것이 좋다. 1차 열처리 후, 입자를 분쇄하고 분급하여 입도를 조절하는 것이 좋다.Next, heat treatment is preferable to stabilize the zinc composite mixed by the sol-gel method. The heat treatment is gradually heated to a first heat treatment for 5 hours at 300 ℃. After the primary heat treatment, the particles are pulverized and classified to control the particle size.

다음, 1차 열처리 후 수급된 Zn-In-Ni 복합물을 승온 속도 5℃/min으로 550~750℃에서 3시간 동안 2차 열처리하는 것이 좋다. 상기 단계(2차 열처리) 이후에도, 얻어진 재료를 미세하게 분쇄하고 분급하는 것이 좋다. Next, after the first heat treatment, the supplied Zn-In-Ni composite may be subjected to a second heat treatment for 3 hours at 550-750 ° C. at a heating rate of 5 ° C./min. Even after the above step (secondary heat treatment), it is good to finely grind and classify the obtained material.

삭제delete

본 발명에서, 인듐을 Sb, Te, Se, Sn, Ge, Si, 또는 P로 대체하거나 추가 또는 니켈을 Co, Fe, Mn, 또는 Cu로 대체하거나 추가할 수도 있다. In the present invention, indium may be replaced or added to Sb, Te, Se, Sn, Ge, Si, or P or nickel may be replaced or added to Co, Fe, Mn, or Cu.

상기의 과정을 통해 제조된 본 발명의 ZnO를 포함하는 Zn-In-Ni 산화물 복합체 음극활물질에 대한 물리적 특성을 측정하였다.Physical properties of the Zn-In-Ni oxide composite anode active material including ZnO of the present invention prepared through the above process were measured.

이하에서는, 본 발명에 따른 ZnO를 포함하는 Zn-In-Ni 산화물 복합체 음극활물질을 구비한 리튬이차전지를 상세히 설명한다. Hereinafter, a lithium secondary battery having a Zn-In-Ni oxide composite anode active material including ZnO according to the present invention will be described in detail.

ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 제외한 나머지 구성은 본 기술 분야에서 알려진 구성을 제한되지 않고 선택하여 적용할 수 있다. 바람직하기로는, 상기 음극은 도전재인 카본 블랙(Super P Black)을 더 포함할 수 있으며, 상기 음극은 결합제인 폴리 비닐리덴 플로라이드(PVDF)와 집전체를 더 포함하여 이루어질 수 있다. 또한, 상기 이온전도체는 전해액 또는 고분자 전해질일 수 있다. Except for the Zn-In-Ni oxide composite including ZnO, the remaining components may be selected and applied without limitation to those known in the art. Preferably, the negative electrode may further include carbon black (Super P Black) as a conductive material, and the negative electrode may further include a polyvinylidene fluoride (PVDF) as a binder and a current collector. In addition, the ion conductor may be an electrolyte solution or a polymer electrolyte.

상기의 목적을 달성하기 위한 본 발명은 음극활물질, 도전재, 및 결합제가 70:15:15의 중량비로 포함되어 이루어진 음극; Zn90In7.5Ni2.5(몰비율) 복합물을 포함하여 이루어진 음극활물질을 구비한 음극을 포함하여 이루어지고, 초기 방전비용량이 909 mAh/g의 고용량 리튬 이차 전지용 음극활물질을 제공한다. The present invention for achieving the above object is a negative electrode active material, a conductive material, and a negative electrode comprising a binder in a weight ratio of 70:15:15; The present invention provides a negative electrode active material for a high capacity lithium secondary battery including a negative electrode having a negative electrode active material including a Zn90In7.5Ni2.5 (molar ratio) composite and having an initial discharge cost of 909 mAh / g.

또한, 상기 음극활물질은 상기 도전재는 카본 블랙(Super P Black)인 것을 특징으로 하는 고용량 리튬 이차 전지를 제공한다. In addition, the negative electrode active material provides a high capacity lithium secondary battery, wherein the conductive material is carbon black (Super P Black).

또한, 상기 결합제는 폴리 비닐리덴 플로라이드(PVDF)인 것을 특징으로 하는 고전압 리튬 이차 전지를 제공한다. In addition, the binder provides polyvinylidene fluoride (PVDF) to provide a high voltage lithium secondary battery.

또한, 상기 이온전도체는 LiPF6가 용해된 비수계 전해액인 것을 특징으로 하는 고용량 리튬이차 전지를 제공한다. In addition, the ion conductor provides a high capacity lithium secondary battery, characterized in that the non-aqueous electrolyte solution in which LiPF6 is dissolved.

또한, 상기 비수계 전해액은 EC, EMC, VC가 포함되어 이루어진 것을 특징으로 하는 고용량 리튬 이차 전지를 제공한다. In addition, the non-aqueous electrolyte provides a high capacity lithium secondary battery, characterized in that the EC, EMC, VC is included.

또한, 상기 Zn-In-Ni 산화물 복합체의 평균 입도는 15~17 ㎛이며, 2차 입자의 크기는 3 ㎛인 것을 특징으로 하는 고용량 리튬 이차 전지를 제공한다. In addition, the Zn-In-Ni oxide composite has an average particle size of 15 ~ 17 ㎛, provides a high capacity lithium secondary battery, characterized in that the size of the secondary particles is 3 ㎛.

또한, 상기 음극활물질 : 도전재 : 결합제의 중량비는 70:15:15인 것을 특징으로 하는 고용량 리튬 이차 전지용 음극을 제공한다.In addition, the weight ratio of the negative electrode active material: conductive material: binder is 70:15:15 provides a negative electrode for a high capacity lithium secondary battery.

바람직하게는 LiPF6의 용질에 에틸렌 카보네이트(EC)와 에틸-메틸 카보네이트(EMC)가 1:1의 부피비로 녹아있는 용매에 비닐렌 카보네이드(VC) 첨가제가 녹아있는 전해액을 사용한다. Preferably, an electrolyte solution in which vinylene carbonate (VC) additive is dissolved in a solvent in which ethylene carbonate (EC) and ethyl-methyl carbonate (EMC) are dissolved in a volume ratio of 1: 1 in a solute of LiPF6 is used.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
Hereinafter, preferred embodiments and comparative examples of the present invention will be described. However, the following examples are only a preferred embodiment of the present invention, and the present invention is not limited to the following examples.

실시예Example 1 One

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5-500 .5-500 음극활물질Anode active material 제조 Produce

아연 아세테이트(Zn acetate), 인듐 아세테이트(In acetate), 니켈 아세테이트(Ni acetate)분말 (98+% pure, Sigma Aldrich)을 90 : 7.5 : 2.5의 몰비율 조성으로 각각 3.95 g, 0.43 g, 0.12 g을 중탕한 증류수 20 g을 80℃에서 중탕 하에 재료를 충분히 혼합한 후, 촉매제인 아크릴 아마이드(acryl amide), 엔엔 엠비에이(N,N-methylene-bis-acryl amide)를 1.42 g, 0.061 g을 넣어 혼합하였다.Zinc acetate (Zn acetate), Indium acetate (Ni acetate) powder (98 +% pure, Sigma Aldrich) was 3.95 g, 0.43 g, 0.12 g with a molar ratio of 90: 7.5: 2.5, respectively. After 20 g of distilled water was sufficiently mixed in a water bath at 80 ° C., 1.42 g and 0.061 g of acryl amide and N, N-methylene-bis-acryl amide were used as catalysts. Was added and mixed.

졸겔법을 이용하여 제조한 복합물을 100℃에서 12시간 동안 건조하였고, 32 g의 Zn-In-Ni 복합물을 얻었다.The composite prepared using the sol-gel method was dried at 100 ° C. for 12 hours, and 32 g of Zn-In-Ni composite was obtained.

졸겔법으로 제조한 Zn-In-Ni 복합물을 알루미늄 도가니에 넣고 아르곤 분위기의 300℃ 전기로에서 5시간 소결하였다. 1차 열처리한 재료를 분쇄 후, Zn-In-Ni 복합물을 분쇄한 후, 복합물을 500℃에서 2차 소결하였다. 전기로의 승온 속도는 5℃/min이고, 3시간 유지하였다. 2차 열처리한 재료를 분쇄하고, 분급하여 재료의 입도를 조절하여 평균 입경 16 ㎛이하의, ZnO를 포함하는 Zn-In-Ni 산화물 복합체 음극활물질을 얻었다.
The Zn-In-Ni composite prepared by the sol-gel method was placed in an aluminum crucible and sintered for 5 hours in an argon atmosphere at 300 ° C. After the first heat-treated material was ground, the Zn-In-Ni composite was ground, and the composite was secondly sintered at 500 ° C. The temperature increase rate of an electric furnace was 5 degreeC / min, and it hold | maintained for 3 hours. The secondary heat-treated material was ground and classified to adjust the particle size of the material to obtain a Zn-In-Ni oxide composite anode active material containing ZnO having an average particle diameter of 16 µm or less.

나. Zn-In-Ni 산화물 복합체 음극활물질을 이용한 리튬이차전지 조립I. Lithium secondary battery assembly using Zn-In-Ni oxide composite anode active material

리튬이차전지를 조립하기 위하여 슬러리를 제조하였다. 상기 가에서 제조된 Zn-In-Ni 산화물 복합체, 도전재로 카본 블랙(Super P Black), 결합제로 폴리 비닐리덴 플루오라이드(Polyvinylidene fluoried, PVDF)를 70:15:15의 중량비율 조성으로 슬러리를 제조하였다. 먼저 0.3 g의 결합제와 분산용매인 N-메틸-2-피롤리돈(NMP) 12 ml를 싱키볼(thinky bowl)에 넣고 5분 동안 싱키혼합기(thinky mixer, Kurabo AR-250)로 교반 후, 1.4 g의 Zn-In-Ni 복합체와 0.3 g의 도전재를 막자사발을 이용하여 혼합하여 싱키볼(thinky bowl)에 넣고 25분 동안 혼합하였다. 제조한 슬러리를 구리 집전체에 약 70 ㎛로 도포하고, 100℃에서 5시간 건조 후 압착하여 전극을 제조하였다. 제조한 전극의 밀도는 500, 550, 750, 950℃재료의 각 밀도는 0.515, 0.391, 0.218, 0.219 g/ml 였다. A slurry was prepared to assemble the lithium secondary battery. Zn-In-Ni oxide composite prepared in the above, carbon black (Super P Black) as a conductive material, polyvinylidene fluoride (Polyvinylidene fluoried (PVDF)) as a binder in a weight ratio of 70:15:15 composition Prepared. First, 0.3 g of a binder and 12 ml of N-methyl-2-pyrrolidone (NMP), a dispersion solvent, were put in a thinky bowl and stirred with a thinky mixer (Kurabo AR-250) for 5 minutes. 1.4 g of Zn-In-Ni composite and 0.3 g of conductive material were mixed using a mortar and put in a thin bowl, followed by mixing for 25 minutes. The prepared slurry was applied to a copper current collector at about 70 μm, dried at 100 ° C. for 5 hours, and then compressed to prepare an electrode. The densities of the prepared electrodes were 0.515, 0.391, 0.218 and 0.219 g / ml, respectively, of the 500, 550, 750 and 950 ° C materials.

상대전극으로 리튬 금속을 사용하였고, 양극과 음극 사이에 분리막을 넣고, 1.2M LiPF6에 에틸렌 카보네이트(EC)와 에틸-메틸 카보네이트(EMC)가 1:1의 부피비로 녹아있는 용질에 비닐렌 카보네이드(VC)가 2% 첨가된 전해액을 사용하여 2025 원형 전지를 조립하였다. Lithium metal was used as the counter electrode, a separator was placed between the anode and the cathode, and vinylene carbonate was added to the solute in which ethylene carbonate (EC) and ethyl-methyl carbonate (EMC) were dissolved in a volume ratio of 1: 1 in 1.2M LiPF6. A 2025 round battery was assembled using the electrolyte solution to which 2% of (VC) was added.

실시예Example 2 2

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5-550 .5-550 음극활물질Anode active material 제조 Produce

실시예 1-가에서 2차 열처리 온도가 500℃에서 550℃로 바꾼 것 이외에는 동일하게 제조하였다.  Except for changing the second heat treatment temperature from 500 ° C to 550 ° C in Example 1-A.

나. Zn-In-Ni 산화물 복합체 음극활물질을 이용한 리튬이차전지 조립I. Lithium secondary battery assembly using Zn-In-Ni oxide composite anode active material

실시예 1-나에 나타낸 바와 같다. As shown in Example 1-b.

실시예Example 3 3

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5-750 .5-750 음극활물질Anode active material 제조 Produce

실시예 1-가에서 2차 열처리 온도가 500℃에서 750℃로 바꾼 것 이외에는 동일하게 제조하였다.  Except for changing the second heat treatment temperature from 500 ° C to 750 ° C in Example 1-A.

나. Zn-In-Ni 산화물 복합체 음극활물질을 이용한 리튬이차전지 조립I. Lithium secondary battery assembly using Zn-In-Ni oxide composite anode active material

실시예 1-나에 나타낸 바와 같다. As shown in Example 1-b.

실시예Example 4 4

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5-950 .5-950 음극활물질Anode active material 제조 Produce

실시예 1-가에서 2차 열처리 온도가 500℃에서 950℃로 바꾼 것 이외에는 동일하게 제조하였다.  Except for changing the secondary heat treatment temperature from 500 ° C to 950 ° C in Example 1-A.

나. Zn-In-Ni 산화물 복합체 음극활물질을 이용한 리튬이차전지 조립I. Lithium secondary battery assembly using Zn-In-Ni oxide composite anode active material

실시예 1-나에 나타낸 바와 같다.
As shown in Example 1-b.

실험예Experimental Example 1 One

가. end. ZnZn -- InIn -- NiNi 복합체 재료의 물성 분석 Physical property analysis of composite material

재료의 결정 구조 특성은 X-pert PRO MPD Philips의 X-선 회절분석기(X-ray1 diffractometer)를 사용하였으며, Cu Kradiation (λ = 1.5406 Å)을 사용하고 주사속도는 0.04/sec였으며 측정한 2θ 범위는 20~80였다. The crystal structure of the material was measured by X-rayt diffractometer from X-pert PRO MPD Philips, using Cu Kradiation (λ = 1.5406 Å), scanning rate was 0.04 / sec, and measured 2θ range. Was 20-80.

재료의 표면 형상은 SEM(Scanning Electron Microscope, Jeol S-300H)을 사용하였다. 입도분석은 Malvern Hydro 2000MU을 사용하였다.Surface shape of the material was used SEM (Scanning Electron Microscope, Jeol S-300H). Particle size analysis was performed using Malvern Hydro 2000MU.

실험예Experimental Example 2 2

나. 전지의 전기화학적 특성 분석I. Electrochemical Characterization of Cells

각 실시예에 따라 제조된 전지를 24시간 동안 안정화 시킨 후 Toyo사의 TOSCAT 3100을 사용하여 충방전 특성과 율 특성을 평가하였다. After stabilizing the battery prepared according to each Example for 24 hours to evaluate the charge and discharge characteristics and rate characteristics using Toyo's TOSCAT 3100.

구체적으로는 상온에서 0.2C의 전류밀도로 0.005V까지 정전류 모드 충전 후, 정전압 모드로 일정하게 전류밀도가 0.02C가 되도록 충전하였고, 0.2C의 전류밀도로 1.5V까지 정전류 모드 방전을 완료하였다. 같은 조건으로 정전류/정전압 충방전을 25회 반복하였고, 0.5C, 1C, 2C, 3C, 5C, 10C, 0.2C의 율로 각 5회씩 충방전하여 율 특성 시험을 완료하였다. Specifically, after charging the constant current mode to 0.005V at a current density of 0.2C at room temperature, the battery was charged in a constant voltage mode so that the current density was 0.02C, and the constant current mode discharge was completed to 1.5V at a current density of 0.2C. Constant current / constant voltage charging / discharging was repeated 25 times under the same conditions, and the rate characteristic test was completed by charging and discharging five times at a rate of 0.5C, 1C, 2C, 3C, 5C, 10C, and 0.2C.

실험결과는 다음과 같다.The experimental results are as follows.

도 1은 졸겔법을 통하여 제조한 Zn-In-Ni 산화물 복합체의 SEM 사진이다. 2차 입자의 크기는 3 ㎛ 크기가 많은 것을 알 수 있다.1 is a SEM photograph of a Zn-In-Ni oxide composite prepared by the sol-gel method. It can be seen that the size of the secondary particles is 3 μm in size.

도 2는 각각의 출발 물질과 합성한 아연계 복합체의 XRD 회절 패턴을 나타낸 것이다. 500, 550, 750℃에서 소성한 아연계 복합체는 ZnO로 확인하였다(도 2 확인). 또한 950℃의 열처리 온도에서는 ZnO는 사라지고 In3Ni2의 새로운 금속간 복합체가 형성됨을 확인 하였다. 열처리 온도의 증가에 따라 봉우리 강도도 증가하여 결정성이 증가하였다.Figure 2 shows the XRD diffraction pattern of the zinc-based composite synthesized with each starting material. Zinc-based composites fired at 500, 550, 750 ℃ was confirmed by ZnO (see Figure 2). In addition, it was confirmed that at the heat treatment temperature of 950 ℃ ZnO disappeared and a new intermetallic composite of In3Ni2 was formed. As the heat treatment temperature increases, the peak strength also increases to increase the crystallinity.

도 3은 열처리 온도별 아연계 산화물 복합체를 이용하여 제조한 리튬이차전지의 충방전에 따른 충전비용량 변화를 나타낸 것이다. 실시예 1(500℃-소성)은 1508 mAh/g, 실시예 2(550℃-소성)은 2036 mAh/g, 실시예 3(750℃-소성)은 1373 mAh/g, 실시예 4(950℃-소성)은 1508 mAh/g이었다. 또한, 550℃에서 열처리 하여 얻은 재료로 제조한 전극의 초기 충전비용량이 가장 높았고, 950℃에서 열처리를 하여 얻은 재료로 제조한 전극은 싸이클 특성이 우수하였다. Figure 3 shows the charge specific capacity change according to the charge and discharge of the lithium secondary battery prepared using the zinc-based oxide composite for each heat treatment temperature. Example 1 (500 ° C-firing) is 1508 mAh / g, Example 2 (550 ° C-firing) is 2036 mAh / g, Example 3 (750 ° C-firing) is 1373 mAh / g, Example 4 (950 ° C-firing) was 1508 mAh / g. In addition, the initial charging cost of the electrode made of the material obtained by heat treatment at 550 ° C. was the highest, and the electrode made of the material obtained by heat treatment at 950 ° C. had excellent cycle characteristics.

도 4는 열처리 온도별 아연계 산화물 복합체를 이용하여 제조한 리튬이차전지의 충방전에 따른 방전비용량 변화를 나타낸 것이다. 실시예 1(500℃-소성)은 682 mAh/g, 실시예 2(550℃-소성)은 909 mAh/g, 실시예 3(750℃-소성)은 568 mAh/g, 실시예 4(950℃-소성)은 503 mAh/g이었다. 또한, 550℃에서 열처리 하여 얻은 재료로 제조한 전극의 초기 방전비용량이 가장 높았고, 950℃에서 열처리를 하여 얻은 재료로 제조한 전극은 싸이클 특성이 우수하였다. 4 shows a change in discharge capacity according to charge and discharge of a lithium secondary battery manufactured using a zinc-based oxide composite according to heat treatment temperature. Example 1 (500 ° C-firing) is 682 mAh / g, Example 2 (550 ° C-firing) is 909 mAh / g, Example 3 (750 ° C-firing) is 568 mAh / g, Example 4 (950 ° C-firing) was 503 mAh / g. In addition, the initial discharge specific capacity of the electrode made of the material obtained by heat treatment at 550 ° C. was the highest, and the electrode made of the material obtained by heat treatment at 950 ° C. had excellent cycle characteristics.

실시예 1에서 실시예 4에 따라 제조한 아연계 산화물 복합체 음극활물질의 리튬 이차전지 음극 특성을 표 1에 요약하여 나타내었다.
Table 1 summarizes the lithium secondary battery negative electrode characteristics of the zinc-based oxide composite negative electrode active material prepared according to Example 1 to Example 4.

열처리온도Heat treatment temperature 제1회
충전비용량
(mAh/g)
1st
Charge capacity
(mAh / g)
제1회
방전비용량
(mAh/g)
1st
Discharge capacity
(mAh / g)
제1회
Ah효율
(%)
1st
Ah efficiency
(%)
제65회
충전비용량
(mAh/g)
65th
Charge capacity
(mAh / g)
제65회
방전비용량
(mAh/g)
65th
Discharge capacity
(mAh / g)
제 65회
Ah효율
(%)
65th
Ah efficiency
(%)
3C
방전용량
(mAh/g)
3C
Discharge capacity
(mAh / g)
3C
방전용량율
(%)*
3C
Discharge capacity
(%) *
500500 1527.121527.12 682.44682.44 44.6844.68 3737 273.82273.82 739.93739.93 86.886.8 76.676.6 550550 2036.172036.17 909.92909.92 44.6844.68 49.3449.34 635.09635.09 739.93739.93 115.73115.73 76.676.6 750750 1373.591373.59 568.62568.62 41.3941.39 135.91135.91 381.59381.59 280.77280.77 248.46248.46 88.1388.13 950950 1508.931508.93 503.14503.14 33.3433.34 237.96237.96 361.03361.03 151.71151.71 286.79286.79 91.4291.42

*0.2C 율로 충방전 한 62회 방전비용량 대비
* Compared with 62 times discharge capacity charged and discharged at 0.2C rate

실시예 3(750℃-소성 음극활물질)은 실시예 1(500℃-소성 음극활물질)과 실시예 2(550℃-소성 음극활물질)에서 제조한 음극활물질과 비교하에 비용량은 모두 기존 음극재료인 흑연의 이론 비용량 372 mAh/g은 상회하는 높은 수준이었으며, 싸이클 특성보다 우수한 특성을 나타내었다.Example 3 (750 ° C.-calcined anode active material) has a specific specific capacity compared to the cathode active materials prepared in Example 1 (500 ° C.-fired cathode active material) and Example 2 (550 ° C.-fired cathode active material). The theoretical specific capacity of phosphorous graphite was 372 mAh / g, which was higher than that of the graphite, showing superior characteristics to cycle characteristics.

도 3 및 4에 나타낸 충전과 방전의 비용량, 싸이클 특성 및 율 특성 시험에서 750℃에서 열처리한 재료가 제 1차 방전비용량으로 568 mAh/g을 나타내고, 3C율 방전비용량은 250 mAh/g으로서 62회 0.2C 율 방전의 비용량 400 mAh/g에 비교하여 62.5%의 방전비용량을 나타내었다.
도 2에서 확인되는 바와 같이, 550~750℃의 열처리에서 얻어진 아연계 복합체는 ZnO가 확인되어 Zn-In-Ni 산화물 복합체가 얻어짐을 확인할 수 있으며, 도 4에서 확인되는 바와 같이, 550℃에서 열처리 하여 얻은 산화물 복합체로 제조한 전극의 초기 방전비용량이 가장 높았음으로, 2차 열처리 온도는 550~750℃가 가장 바람직하다 할 것이다.
In the specific capacity, cycle and rate characteristic tests of the charge and discharge shown in FIGS. 3 and 4, the material heat-treated at 750 ° C. showed 568 mAh / g as the primary discharge capacity, and the 3C rate discharge capacity was 250 mAh / As g, the discharge specific capacity of 62.5% was shown as compared with the specific capacity of 400 times 0.2mAh rate discharge of 62 mAh / g.
As confirmed in Figure 2, the zinc-based composite obtained in the heat treatment at 550 ~ 750 ℃ can confirm that ZnO is confirmed to obtain a Zn-In-Ni oxide composite, as shown in Figure 4, the heat treatment at 550 ℃ Since the initial discharge specific amount of the electrode prepared by the oxide composite obtained by the highest, the secondary heat treatment temperature is most preferably 550 ~ 750 ℃.

Claims (12)

(1) 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 졸겔의 화학방법으로 균일하게 혼합하여 Zn-In-Ni 복합물을 제조하되, 아연 아세테이트, 인듐 아세테이트, 니켈 아세테이트를 혼합한 후, 아크릴 아마이드와 메틸렌 비스 아크릴 아마이드를 70~80℃에서 교반 혼합하여 100~120℃에서 12시간 건조하는 Zn-In-Ni 복합물 제조 단계,
(2) 상기 Zn-In-Ni 복합물을 열처리하되, 상기 열처리는 300℃에서 5시간 동안 1차 열처리하고, 5℃/min으로 승온한후 550~750℃에서 3시간 동안 2차 열처리하여 ZnO를 포함하는 Zn-In-Ni 산화물 복합체를 제조하는 것을 특징으로 하는 아연계 음극활물질의 제조방법.

(1) Zn-In-Ni composite is prepared by uniformly mixing zinc acetate, indium acetate and nickel acetate by the sol-gel chemical method, but after mixing zinc acetate, indium acetate and nickel acetate, acrylamide and methylene bisacryl Zn-In-Ni composite manufacturing step of stirring and mixing the amide at 70 ~ 80 ℃ 12 hours at 100 ~ 120 ℃,
(2) The heat treatment of the Zn-In-Ni composite, wherein the heat treatment is the first heat treatment at 300 ℃ for 5 hours, the temperature is raised to 5 ℃ / min and the second heat treatment for 3 hours at 550 ~ 750 ℃ ZnO Method for producing a zinc-based negative electrode active material, characterized in that for preparing a Zn-In-Ni oxide composite comprising.

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020110060778A 2011-06-22 2011-06-22 Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same KR101296789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110060778A KR101296789B1 (en) 2011-06-22 2011-06-22 Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110060778A KR101296789B1 (en) 2011-06-22 2011-06-22 Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same

Publications (2)

Publication Number Publication Date
KR20130000209A KR20130000209A (en) 2013-01-02
KR101296789B1 true KR101296789B1 (en) 2013-08-14

Family

ID=47833845

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110060778A KR101296789B1 (en) 2011-06-22 2011-06-22 Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same

Country Status (1)

Country Link
KR (1) KR101296789B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099941A (en) * 1998-12-24 2001-11-09 칼 하인쯔 슐츠, 페터 캘레르트 Nickel mixed hydroxide, method for the producing the same, and the use thereof as cathode material in alkaline batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099941A (en) * 1998-12-24 2001-11-09 칼 하인쯔 슐츠, 페터 캘레르트 Nickel mixed hydroxide, method for the producing the same, and the use thereof as cathode material in alkaline batteries

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrochemica Acta, Vol. 52, pp.2453-2460 (2006) *
Electrochemica Acta, Vol. 52, pp.2453-2460 (2006)*
Electrochemistry Communications, Vol. 6, pp.1110-1113 (2004) *
Journal of Power Sources, Vol. 189, pp.828-831 (2009) *

Also Published As

Publication number Publication date
KR20130000209A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
KR101342601B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
JP5273931B2 (en) Negative electrode active material and method for producing the same
EP2498323B1 (en) Positive active material, and electrode and lithium battery containing the material
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
KR101451801B1 (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5749339B2 (en) Lithium ion secondary battery
KR20030081160A (en) Battery
KR101166281B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
WO2011129066A1 (en) Lithium-ion secondary battery
KR101145951B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2003090296A1 (en) Cell
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
KR100994269B1 (en) New calcium-cobalt oxide anode materials and method for manufacturing the same
JP3816799B2 (en) Lithium secondary battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101296789B1 (en) Zinc based negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180802

Year of fee payment: 6