KR101296156B1 - Electrostatic chuck coated with dielectric - Google Patents

Electrostatic chuck coated with dielectric Download PDF

Info

Publication number
KR101296156B1
KR101296156B1 KR1020050087681A KR20050087681A KR101296156B1 KR 101296156 B1 KR101296156 B1 KR 101296156B1 KR 1020050087681 A KR1020050087681 A KR 1020050087681A KR 20050087681 A KR20050087681 A KR 20050087681A KR 101296156 B1 KR101296156 B1 KR 101296156B1
Authority
KR
South Korea
Prior art keywords
electrostatic chuck
cooling gas
coating
groove
dielectric
Prior art date
Application number
KR1020050087681A
Other languages
Korean (ko)
Other versions
KR20070033221A (en
Inventor
권기청
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020050087681A priority Critical patent/KR101296156B1/en
Publication of KR20070033221A publication Critical patent/KR20070033221A/en
Application granted granted Critical
Publication of KR101296156B1 publication Critical patent/KR101296156B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

본 발명은 정전척 내부를 유동하는 냉각가스의 미세 방전 또는 아킹을 방지하기 위한 것으로서, 구체적으로는 도전성 금속재질의 몸체부; 상기 몸체부를 상하로 관통하는 냉각가스유로; 상기 냉각가스유로와 연통되며 상기 몸체부의 상면에 형성된 그루브; 상기 몸체부 및 그루브의 표면에 형성되는 유전체 재질의 코팅부를 포함하는 정전척을 제공한다.The present invention is to prevent fine discharge or arcing of the cooling gas flowing in the electrostatic chuck, specifically, the body portion of the conductive metal material; Cooling gas flow passage penetrating the body portion up and down; A groove communicating with the cooling gas flow path and formed on an upper surface of the body part; It provides an electrostatic chuck including a coating of the dielectric material formed on the surface of the body portion and the groove.

본 발명에 따르면, 정전척을 관통하는 냉각가스유로 및 상면의 그루브에서 냉각가스로 인한 플라즈마 방전 또는 아킹이 방지되어, 기판이나 유전체의 손상을 방지할 수 있다.According to the present invention, plasma discharge or arcing due to the cooling gas is prevented in the cooling gas flow path and the groove on the upper surface of the electrostatic chuck, thereby preventing damage to the substrate or the dielectric.

정전척, 코팅, 아킹 Electrostatic chuck, coating, arcing

Description

유전체로 코팅된 정전척{Electrostatic chuck coated with dielectric} Electrostatic chuck coated with dielectric

도 1은 일반적인 플라즈마 발생장치의 구성도 1 is a block diagram of a general plasma generator

도 2는 본 발명의 제1 실시예에 따른 정전척의 단면도2 is a cross-sectional view of an electrostatic chuck according to a first embodiment of the present invention.

도 3은 정전척 상면의 그루브패턴을 나타낸 도면3 is a diagram illustrating a groove pattern of an upper surface of an electrostatic chuck.

도 4는 본 발명의 제1 실시예에 따른 정전척을 포함하는 플라즈마 발생장치의 구성도4 is a configuration diagram of a plasma generating apparatus including an electrostatic chuck according to a first embodiment of the present invention.

도 5는 본 발명의 제2 실시예에 따른 정전척의 단면도5 is a cross-sectional view of an electrostatic chuck in accordance with a second embodiment of the present invention.

*도면의 주요부분에 대한 부호의 설명* Description of the Related Art [0002]

100 : 정전척 110 : 몸체부100: electrostatic chuck 110: body portion

120 : 코팅부 130 : 냉각가스유로120: coating 130: cooling gas flow path

140 : 그루브 150 : 절연관140: groove 150: insulated tube

160 : RF전원 162 : 매처160: RF power supply 162: matcher

170 : DC전원 172 : 필터170: DC power 172: filter

182 : 냉매유입관 184 : 냉매유출관182: refrigerant inlet pipe 184: refrigerant outlet pipe

190 : 유전체판 192 : 접착제190: dielectric plate 192: adhesive

194 : DC전극 196 : 관통부194 DC electrode 196 through part

본 발명은 반도체소자 또는 액정표시장치 등의 평면표시장치를 제조하기 위해 플라즈마를 이용하여 글래스 또는 웨이퍼(이하 '기판'이라 함)를 처리하는 플라즈마 발생장치의 정전척(electrostatic chuck)에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck of a plasma generating apparatus for processing a glass or a wafer (hereinafter referred to as a substrate) using plasma to manufacture a flat panel display such as a semiconductor device or a liquid crystal display.

도 1은 이러한 플라즈마 발생장치 중에서 정전척에 RF전력이 인가되는 반응성 이온 식각장치(Reactive Ion Etching, RIE)의 구성을 개략적으로 도시한 것이다.FIG. 1 schematically illustrates a configuration of a reactive ion etching apparatus (RIE) in which RF power is applied to an electrostatic chuck among such plasma generators.

이를 살펴보면, 상기 RIE장치(10)는 일정한 반응영역을 정의하는 챔버(11), 상기 챔버(11)의 내부에 위치하며 상면에 기판(s)을 안치하는 정전척(12), 상기 정전척(12)의 상부로 원료물질을 분사하는 가스분배판(13), 상기 가스분배판(13)의 내부로 원료물질을 공급하는 가스공급관(14), 챔버(11)의 하부에 형성되어 잔류가스를 배기하는 배기구(20)를 포함한다.In this regard, the RIE apparatus 10 includes a chamber 11 defining a constant reaction area, an electrostatic chuck 12 positioned inside the chamber 11 and having a substrate s disposed on an upper surface thereof, and the electrostatic chuck ( 12 is formed in the lower portion of the gas distribution plate 13 for injecting the raw material to the upper portion of the upper portion 12, the gas supply pipe 14 for supplying the raw material into the gas distribution plate 13 and the chamber 11 It includes the exhaust port 20 to exhaust.

정전척(12)은 알루미늄 재질의 몸체부(12a)와, 몸체부(12a)의 상면에 결합하는 세라믹 재질의 유전체판(16)과, 유전체판(16) 내부에 위치하는 DC전극(17)을 포함하여 이루어진다. The electrostatic chuck 12 includes an aluminum body 12a, a ceramic dielectric plate 16 coupled to an upper surface of the body 12a, and a DC electrode 17 located inside the dielectric plate 16. It is made, including.

몸체부(12a)와 유전체판(16)은 실리콘(Si) 또는 인듐(Indium) 성분의 접착제 (23)을 이용하여 결합되며, DC전극(17)은 DC전원(18)에 연결되어 정전기력을 발생시킴으로써 상부의 기판(s)을 안정적으로 유지한다.The body portion 12a and the dielectric plate 16 are bonded using an adhesive 23 made of silicon (Si) or indium, and the DC electrode 17 is connected to the DC power source 18 to generate an electrostatic force. This keeps the upper substrate s stable.

몸체부(12a)의 상면은 주연부에 단차가 형성되는데, 이는 정전척(12)의 주변부에 결합하는 포커스링(19)과 결합하기 위한 것이다. 포커스링(19)은 통상 세라믹 재질로 제조되며, 플라즈마의 영역을 기판(s)의 외측부위까지 확장함으로써 기판(s)의 표면전체가 균일한 플라즈마 영역에 포함될 수 있도록 한다.The upper surface of the body portion 12a is formed with a step at the periphery, which is to engage with the focus ring 19 which is coupled to the periphery of the electrostatic chuck 12. The focus ring 19 is usually made of a ceramic material and extends the plasma region to an outer portion of the substrate s so that the entire surface of the substrate s can be included in the uniform plasma region.

상기 정전척(12)의 몸체부(12a)에는 RF전원(15)이 연결되고, 챔버(11)는 통상 접지되므로, 절연부재(20)를 이용하여 몸체부(12a)와 챔버(11)를 상호 절연시킨다.Since the RF power source 15 is connected to the body portion 12a of the electrostatic chuck 12, and the chamber 11 is usually grounded, the body portion 12a and the chamber 11 are connected using the insulating member 20. Insulate each other.

RF전원(15)과 몸체부(12a) 사이에는 최대 전력을 공급하기 위해 소스임피던스와 부하임피던스를 정합시키는 매처(15a)가 설치된다.Between the RF power source 15 and the body portion 12a, a matcher 15a for matching the source impedance and the load impedance is installed to supply the maximum power.

한편 정전척(12)의 몸체부(12a)의 내부에는 기판(s)의 온도제어와 균일한 온도유지를 위하여 냉매유로(미도시)가 형성되며, 기판(s)의 배면을 냉각시키는 냉각가스를 공급하는 냉각가스유로(22)가 형성된다.Meanwhile, a coolant flow path (not shown) is formed inside the body portion 12a of the electrostatic chuck 12 to maintain the temperature of the substrate s and maintain a uniform temperature. Cooling gas flow path 22 for supplying a is formed.

냉각가스유로(22)는 유전체판(16)의 상면까지 관통하여 형성되며, 유전체판(16)의 상면에는 냉각가스유로(22)를 통해 유입된 냉각가스가 기판(s)의 배면에서 균일하게 확산할 수 있도록 그루브(groove, 미도시)가 형성된다. 냉각가스에는 헬륨이 주로 이용된다.The cooling gas flow passage 22 penetrates to the upper surface of the dielectric plate 16, and the cooling gas flowing through the cooling gas flow passage 22 is uniformly formed on the rear surface of the substrate s on the upper surface of the dielectric plate 16. Grooves (not shown) are formed to allow diffusion. Helium is mainly used for cooling gas.

또한 정전척(12)의 몸체부(12a)에는 냉매유로와 연통하는 냉매유입관(24) 및 냉매유출관(25)이 결합하며, 기판을 가열하는 히터(미도시)가 설치되기도 한다.In addition, the body portion 12a of the electrostatic chuck 12 is coupled to the refrigerant inlet tube 24 and the refrigerant outlet tube 25 communicating with the refrigerant passage, and a heater (not shown) for heating the substrate may be installed.

이러한 구성을 가지는 RIE장치(10)에서, 기판(s)이 유전체판(16)의 상면에 안치되면, 진공펌핑을 통해 공정분위기를 조성한 후에 가스분배판(13)을 통해 기판(s)의 상부로 원료물질을 분사함과 동시에 RF전원(15)을 통해 정전척(12)에 RF전력을 인가한다.In the RIE apparatus 10 having such a configuration, when the substrate s is placed on the upper surface of the dielectric plate 16, the process atmosphere is formed through vacuum pumping, and then the upper portion of the substrate s is formed through the gas distribution plate 13. At the same time as spraying the raw material, RF power is applied to the electrostatic chuck 12 through the RF power supply 15.

정전척(12)에 인가된 RF전력은 정전척(12)과 챔버(11) 사이에서 RF전기장을 발생시키고, RF 전기장에서 가속된 전자가 중성기체와 충돌함으로써 이온 및 활성종을 발생시키며, 이렇게 생성된 이온 및 활성종이 입사하여 기판(s)의 표면을 식각한다. The RF power applied to the electrostatic chuck 12 generates an RF electric field between the electrostatic chuck 12 and the chamber 11, and the electrons accelerated in the RF electric field collide with the neutral gas to generate ions and active species. The generated ions and active species are incident to etch the surface of the substrate s.

전술한 구성의 정전척(12)은 접착제(23)를 이용하여 알루미늄 재질의 몸체부(12a)와 세라믹 재질의 유전체판(16)을 결합한 구성을 가지는데, 플라즈마에서 기판(s)으로 가속되는 이온의 충격으로 인해 기판(s)의 온도가 접착제의 녹는점 보다 높아지면 유전체판(16)과 알루미늄 몸체부(12a) 사이의 접착력이 약화될 수 있고, 접착력이 약화되어 간극이 발생하면 그 사이에 아킹이 발생하여 유전체판(16)에 손상을 가하게 된다.The electrostatic chuck 12 having the above-described configuration has a configuration in which an aluminum body portion 12a and a ceramic dielectric plate 16 are combined using an adhesive 23, which is accelerated from the plasma to the substrate s. When the temperature of the substrate s becomes higher than the melting point of the adhesive due to the impact of the ions, the adhesive force between the dielectric plate 16 and the aluminum body portion 12a may be weakened. Arcing occurs and damages the dielectric plate 16.

또한, 유전체판(16)과 알루미늄 몸체부(12a)의 열팽창률이 다르므로, 접착력이 약해지거나, 열팽창률이 큰 알루미늄 몸체부(12a)에 의해서 유전체판(16)이 파괴될 수도 있다. In addition, since the thermal expansion coefficients of the dielectric plate 16 and the aluminum body portion 12a are different, the adhesive force may be weakened, or the dielectric plate 16 may be destroyed by the aluminum body portion 12a having a large thermal expansion rate.

또한 냉각가스유로(22) 및 기판(s)과 유전체판(16) 사이의 그루브(미도시)에는 냉각가스가 유동하므로, RF전력에 의해 냉각가스가 절연 파괴되면 미세 플라즈 마가 생성되거나 아킹이 발생하여 유전체판(16) 및 기판(s)에 큰 손상을 입힐 수 있다. In addition, since the cooling gas flows in the cooling gas flow path 22 and the groove (not shown) between the substrate s and the dielectric plate 16, when plasma breaks down and breaks down due to RF power, fine plasma is generated or arcing occurs. This can cause great damage to the dielectric plate 16 and the substrate s.

본 발명은 이러한 문제점을 해결하기 위한 것으로서, 플라즈마 발생장치에서 정전척 내부 또는 기판의 배면에서 발생하는 플라즈마 방전이나 아킹 현상을 방지하여 기판 및 유전체의 손상을 방지할 수 있는 방안을 제공하기 위한 것이다.The present invention is to solve this problem, to provide a method for preventing damage to the substrate and the dielectric by preventing the plasma discharge or arcing phenomenon generated in the electrostatic chuck or on the back of the substrate in the plasma generator.

본 발명은 상기 목적을 달성하기 위하여, 도전성 금속재질의 몸체부; 상기 몸체부를 상하로 관통하는 냉각가스유로; 상기 냉각가스유로와 연통되며 상기 몸체부의 상면에 형성된 그루브; 상기 몸체부 및 그루브의 표면에 형성되는 유전체 재질의 코팅부를 포함하는 정전척을 제공한다.The present invention, in order to achieve the above object, the body portion of the conductive metal material; Cooling gas flow passage penetrating the body portion up and down; A groove communicating with the cooling gas flow path and formed on an upper surface of the body part; It provides an electrostatic chuck including a coating of the dielectric material formed on the surface of the body portion and the groove.

상기 냉각가스유로의 내주면에도 유전체 재질의 코팅부가 형성되는 것이 바람직하며, 상기 냉각가스유로에는 유전체 재질의 절연관이 삽입될 수 있다.The coating part of the dielectric material may be formed on the inner circumferential surface of the cooling gas flow path, and an insulating tube of the dielectric material may be inserted into the cooling gas flow path.

상기 코팅부는 Al2O3, Al2O3+SiC3, AlN 중에서 선택되는 어느 하나의 재질로 형성된다.The coating part is formed of any one material selected from Al 2 O 3 , Al 2 O 3 + SiC 3 , AlN.

상기 코팅부의 상부에는 DC전극을 내장한 유전체판이 결합할 수 있다. 이때 상기 코팅부와 상기 유전체판은 실리콘(Si) 또는 인듐(Indium) 성분의 접착제를 이 용하여 결합하며, 상기 유전체판은 상기 그루브와 연통하는 관통부를 구비한다.A dielectric plate incorporating a DC electrode may be coupled to an upper portion of the coating part. At this time, the coating portion and the dielectric plate are bonded using an adhesive of silicon (Si) or indium (Indium) component, the dielectric plate has a through portion communicating with the groove.

이하에서는 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

제1 실시예First Embodiment

도 2는 본 발명의 제1 실시예에 따른 정전척(100)의 구성을 도시한 단면도이다. 2 is a cross-sectional view showing the configuration of the electrostatic chuck 100 according to the first embodiment of the present invention.

이를 살펴보면, 알루미늄 재질의 몸체부(110)에 상하를 관통하는 냉각가스유로(130)를 형성하고, 기판(s)이 안치되는 상면부에 상기 냉각가스유로(130)를 통해 유입된 냉각가스가 유동할 수 있는 그루브(140)를 형성한다. Looking at this, forming a cooling gas flow path 130 penetrating up and down in the body portion 110 of the aluminum material, the cooling gas introduced through the cooling gas flow path 130 in the upper surface portion is placed the substrate (s) It forms a groove 140 that can flow.

그리고 몸체부(110)의 표면에는 Al2O3, Al2O3+SiC3, AlN 등의 유전체를 이용하여 코팅부(120)를 형성하며, 이때 그루브(140)의 표면에도 동일한 재질로 코팅부(120)를 형성한다.In addition, the coating part 120 is formed on the surface of the body part 110 using a dielectric such as Al 2 O 3 , Al 2 O 3 + SiC 3 , AlN, and at this time, the surface of the groove 140 is coated with the same material. Form the portion 120.

본 발명은 유전체를 이용하여 몸체부(110)에 코팅부(120)를 형성하기 전에 미리 몸체부(110)에 그루브(140)를 형성하는 점에 특징이 있다.The present invention is characterized in that the groove 140 is formed in the body portion 110 before the coating portion 120 is formed in the body portion 110 using the dielectric.

몸체부(110)에 형성된 그루브(140)는 너비가 3mm 이하이고, 깊이는 0.5mm 내지 3mm 이하의 범위에서 선택된다.Groove 140 formed in the body portion 110 has a width of 3mm or less, the depth is selected from the range of 0.5mm to 3mm or less.

그루브(140) 내부의 표면에도 유전체를 이용한 코팅부(120)를 형성하기 때문에 코팅부(120) 두께만큼 그루브(140)의 너비와 깊이가 줄어들게 된다. 따라서 코 팅부(120)의 두께를 고려하여 그루브(140)의 가공치수가 결정되어야 함은 물론이다.Since the coating part 120 using the dielectric is formed on the surface of the groove 140, the width and the depth of the groove 140 are reduced by the thickness of the coating part 120. Therefore, the machining dimension of the groove 140 should be determined in consideration of the thickness of the coating portion 120 is a matter of course.

코팅부(120)의 두께는 10㎛ 내지 500㎛ 사이에서 정전척의 몸체부에 인가되는 전력의 크기와 기판을 흡착하는 흡착력의 크기를 고려하여 결정된다.The thickness of the coating unit 120 is determined in consideration of the magnitude of the power applied to the body portion of the electrostatic chuck and the size of the adsorption force for adsorbing the substrate between 10㎛ to 500㎛.

유전체 재질의 코팅부(120)는 냉각가스가 유동하는 그루브(140) 내에서 RF전기장을 최소화시키고 표면에 흐르는 RF전류를 감소시킴으로써 그루브(140) 내에서 미세 방전(micro discharge) 또는 아킹이 일어나지 않도록 하는 역할을 한다.The coating part 120 of the dielectric material minimizes the RF electric field in the groove 140 through which the cooling gas flows and reduces the RF current flowing on the surface so that micro discharge or arcing does not occur in the groove 140. It plays a role.

냉각가스유로(130)의 내부에서도 아킹이 발생할 수 있으므로 이를 방지하기 위해서는 냉각가스유로(130)의 내부에도 코팅부(120)를 형성하는 것이 바람직하지만, 도시된 바와 같이 절연관(150)을 삽입하는 것으로 대체할 수 있다.Since arcing may occur in the cooling gas flow path 130, it is preferable to form the coating part 120 in the cooling gas flow path 130 to prevent this. However, as shown, an insulating tube 150 is inserted. Can be replaced by

한편, 몸체부(110)의 표면에 유전체 재질의 코팅부(120)를 보다 두껍게 형성하고 난 후에 그루브(140)와 냉각가스유로(130)의 내부가 설정된 깊이와 너비를 가지도록 추가적으로 절삭가공이 이뤄질 수 있다.On the other hand, after forming a thicker coating portion 120 of the dielectric material on the surface of the body portion 110, additionally the cutting process so that the interior of the groove 140 and the cooling gas flow path 130 has a set depth and width. Can be done.

본 발명에서는 DC전극을 내장한 유전체판이 생략되기 때문에, 알루미늄 몸체부(110)에 RF전원(160)과 DC전원(170)을 함께 연결한다. 이때 RF전원(160)에 의해 DC전원(170)이 영향 받지 않도록 DC전원(170)의 출력단에는 필터(172)를 설치하는 것이 바람직하다.In the present invention, since the dielectric plate containing the DC electrode is omitted, the RF power supply 160 and the DC power supply 170 are connected to the aluminum body 110. At this time, it is preferable to install a filter 172 at the output terminal of the DC power supply 170 so that the DC power supply 170 is not affected by the RF power supply 160.

상기 필터(172)는 DC전원(170)에 대하여 직렬로 연결된 인턱터와 병렬로 연결된 커패시터를 포함하는 저역통과필터(Low Pass Filter, LPF)로서, 고주파의 RF 전력을 인덕터를 통해 감쇠시키는 한편 커패시터를 통해 바이패스시키는 역할을 한다.The filter 172 is a low pass filter (LPF) including a capacitor connected in parallel with an inductor connected in series with the DC power source 170. The filter 172 attenuates the high frequency RF power through an inductor while It bypasses through.

알루미늄 몸체부(110)에는 냉매유입관(182) 및 냉매유출관(184)이 연결되어 있으며, 상기 냉매유입관(182) 및 냉매유출관(184)은 기판(s)의 온도 조절을 위해 몸체부(110)의 내부에 형성된 냉매유로와 연통된다.The coolant inlet pipe 182 and the coolant outlet pipe 184 are connected to the aluminum body 110, and the coolant inlet pipe 182 and the coolant outlet pipe 184 have a body for controlling the temperature of the substrate s. In communication with the refrigerant passage formed in the inside of the unit (110).

도 3은 정전척(100)의 상면에 형성된 그루브(140)의 패턴을 예시한 것으로서, 중앙부를 관통하는 냉각가스유로(130)와 연통되는 다수의 방사형 유로와 환형유로를 형성하여 기판(s)의 배면을 균일하게 냉각시킬 수 있도록 한다.3 illustrates a pattern of the groove 140 formed on the upper surface of the electrostatic chuck 100, and forms a plurality of radial flow paths and annular flow paths communicating with the cooling gas flow path 130 passing through the central portion of the substrate s. Allow the back of the to cool evenly.

도 4는 본 발명의 실시예에 따른 정전척(100)을 포함하는 플라즈마 발생장치(50)의 단면을 도시한 것으로서, 챔버(51)의 내부에 본 발명에 따른 정전척(100)이 설치되고, 정전척(100)의 상부에는 원료물질을 공급하는 가스공급관(53)과 연결되는 가스분배판(52)이 위치하며, 챔버(51)의 하부에는 잔류기체를 배출하기 위한 배기구(55)가 형성된다.4 is a cross-sectional view of the plasma generating apparatus 50 including the electrostatic chuck 100 according to the embodiment of the present invention, the electrostatic chuck 100 according to the present invention is installed in the chamber 51 The upper portion of the electrostatic chuck 100 has a gas distribution plate 52 connected to the gas supply pipe 53 for supplying raw materials, and the exhaust port 55 for discharging residual gas is provided at the lower portion of the chamber 51. Is formed.

정전척(100)의 주변부에는 포커스링(54)이 결합되며, 포커스링(54)의 내주면은 정전척(100)의 주연부에 형성된 단차에 결합한다.The focus ring 54 is coupled to the periphery of the electrostatic chuck 100, and the inner circumferential surface of the focus ring 54 is coupled to a step formed at the periphery of the electrostatic chuck 100.

정전척(100)의 몸체부(110)에는 RF전원(160) 및 DC전원(170)이 연결되므로, 접지된 챔버(51)와 절연시키기 위해 절연부재(56)가 설치된다.Since the RF power source 160 and the DC power source 170 are connected to the body 110 of the electrostatic chuck 100, an insulating member 56 is installed to insulate the grounded chamber 51.

따라서 기판(s)이 챔버 내부로 반입되어 정전척(100)의 상면에 안치되면, 정전척(100)에 DC전원(170)을 인가하여 정전기력을 이용하여 기판(s)을 안정적으로 유지한다.Therefore, when the substrate s is loaded into the chamber and placed on the upper surface of the electrostatic chuck 100, the DC power source 170 is applied to the electrostatic chuck 100 to maintain the substrate s stably by using electrostatic force.

또한 상부의 가스분배판(52)을 통해 원료물질을 분사하면서 정전척(100)에 RF전원(160)을 인가하면, RF전기장에 의해 가속된 전자가 중성기체와 충돌하여 플라즈마를 발생시키며, 플라즈마 내의 이온과 활성종이 기판(s)으로 입사하여 식각 또는 증착공정을 수행하게 된다.In addition, when the RF power supply 160 is applied to the electrostatic chuck 100 while injecting the raw material through the upper gas distribution plate 52, electrons accelerated by the RF electric field collide with the neutral gas to generate plasma. Ions and active species in the incident to the substrate (s) to perform an etching or deposition process.

제2 실시예Second Embodiment

도 5는 본 발명의 제2 실시예에 따른 정전척(100)의 단면을 도시한 것으로서, 알루미늄 몸체부(110)의 상면에 그루브(140)를 형성하고 RF전기장에 대한 냉각가스의 절연내압을 높이기 위해 몸체부(110) 및 그루브(140)의 표면에 Al2O3, Al2O3+SiC3, AlN 등의 유전체 재질로 코팅부(120)를 형성하는 점에서는 제1 실시예와 공통된다.5 is a cross-sectional view of the electrostatic chuck 100 according to the second embodiment of the present invention, the groove 140 is formed on the upper surface of the aluminum body 110, and the insulation breakdown voltage of the cooling gas with respect to the RF electric field Common to the first embodiment in that the coating portion 120 is formed of a dielectric material such as Al 2 O 3 , Al 2 O 3 + SiC 3 , AlN on the surface of the body 110 and the groove 140 to increase the height. do.

또한 제1 실시예와 마찬가지로 몸체부(110)의 중앙부에는 냉각가스유로(130)가 관통하여 형성되며, 상기 냉각가스유로(130)의 내주면은 전술한 코팅부(120)와 동일한 재질로 코팅되거나 절연관(150)이 삽입될 수 있고, 몸체부(110)에는 내부의 냉매유로(미도시)와 연통되는 냉매유입관(182) 및 냉매유출관(184)이 연결된다.In addition, as in the first embodiment, the cooling gas passage 130 is formed through the center portion of the body portion 110, and the inner circumferential surface of the cooling gas passage 130 is coated with the same material as the above-described coating portion 120 or The insulation tube 150 may be inserted, and the body part 110 is connected to the refrigerant inlet tube 182 and the refrigerant outlet tube 184 communicating with the refrigerant passage (not shown) therein.

본 발명의 제2 실시예는 그루브(140)와 코팅부(120)가 형성된 몸체부(110)의 상면에 접착제(192)를 이용하여 세라믹 재질의 유전체판(190)을 결합하는 점에 특징이 있으며, 이때 유전체판(190)을 결합하기 위해 실리콘(Si) 또는 인듐(Indium) 성분의 접착제(192)를 이용한다.The second embodiment of the present invention is characterized in that the dielectric plate 190 made of a ceramic material is bonded to the upper surface of the body portion 110 in which the groove 140 and the coating portion 120 are formed by using the adhesive 192. In this case, an adhesive 192 of silicon (Si) or indium (Indium) is used to bond the dielectric plate 190.

코팅부(120)가 형성된 알루미늄 몸체부(110)에 유전체판(190)을 결합시키면 플라즈마에 의한 이온 충격으로 기판(s)의 온도가 급격이 상승할 경우 접착제(192)가 녹거나 접착력이 시간에 따라 약화되는데, 본 발명과 같이 세라믹 재질의 코팅부(120)에 세라믹 재질의 유전체판(190)을 결합시키면 접착제(192) 상하의 세라믹이 비슷하게 열팽창하므로 세라믹의 균열을 방지할 수 있을 뿐만 아니라 접착제(192)의 열팽창도 최소화할 수 있다.When the dielectric plate 190 is coupled to the aluminum body 110 having the coating portion 120 formed thereon, when the temperature of the substrate s increases sharply due to ion bombardment by the plasma, the adhesive 192 melts or the adhesion force is increased. As the present invention weakens, the bonding of the ceramic dielectric plate 190 to the coating 120 of the ceramic material according to the present invention thermally expands the ceramics above and below the adhesive 192 to prevent cracking of the ceramic as well as the adhesive. Thermal expansion of 192 can also be minimized.

따라서 접착제(192)가 열화되어 간극이 발생하거나 아킹 등에 의해 세라믹이 균열되는 현상을 방지할 수 있다.Therefore, it is possible to prevent the adhesive 192 from deteriorating to generate a gap or to crack the ceramic due to arcing.

상기 접착제(192)의 두께는 열팽창을 최소화할 수 있도록 1 내지 2mm 정도로 하는 것이 바람직하다. The thickness of the adhesive 192 is preferably about 1 to 2mm to minimize thermal expansion.

한편, 제2 실시예에서는 유전체판(190)에 DC전극(194)이 내장 되므로, 알루미늄 몸체부(110)에 연결되는 RF전원(160)과 DC전극(194)에 연결되는 DC전원(170)을 서로 격리시키기 위해 필터를 설치할 필요가 없다.Meanwhile, in the second embodiment, since the DC electrode 194 is embedded in the dielectric plate 190, the RF power supply 160 connected to the aluminum body 110 and the DC power supply 170 connected to the DC electrode 194. There is no need to install a filter to isolate them from each other.

또한 몸체부(110)의 상면에는 냉각가스유로(130)와 연통되는 그루브(140)가 형성되어 있고, 기판(s)은 유전체판(190)의 상면에 안치되므로, 그루브(140)를 유동하는 냉각가스가 기판(s)의 배면까지 닿기 위해서는 유전체판(190)에도 관통부(196)가 형성되어야 한다.In addition, the groove 140 is formed on the upper surface of the body portion 110 to communicate with the cooling gas flow path 130, the substrate (s) is placed on the upper surface of the dielectric plate 190, so that the groove 140 flows In order for the cooling gas to reach the rear surface of the substrate s, the through part 196 must also be formed in the dielectric plate 190.

상기 유전체판(190)의 관통부(196)는 몸체부(110)에 형성된 그루브(140)와 유사한 패턴의 슬릿이나 다수의 홀 형태로 형성되는 것이 바람직하다. 접착제(192)가 그루브(140)의 내부에 도포되면 냉각가스의 유동을 방해할 수 있으므로 접착제 (192)는 몸체부(110)의 상면에만 도포되어야 한다.The through part 196 of the dielectric plate 190 may be formed in the form of a slit or a plurality of holes similar to the groove 140 formed in the body part 110. When the adhesive 192 is applied to the inside of the groove 140, the adhesive 192 may be applied only to the upper surface of the body part 110 because the adhesive 192 may interfere with the flow of the cooling gas.

한편 이상에서는 RIE 장치를 예를 들어 설명하였으나, 본 발명은 RF전원을 인가하여 플라즈마를 발생시키는 모든 장치에 적용될 수 있는 것이므로 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치나 플라즈마를 이용하는 애싱(ashing) 장치, 스퍼터 등에도 적용될 수 있다Meanwhile, the RIE apparatus has been described as an example, but the present invention can be applied to any apparatus generating plasma by applying RF power, so that the plasma enhanced chemical vapor deposition (PECVD) apparatus or the ashing apparatus using plasma is provided. It can be applied to sputters and the like.

본 발명에 따르면, 정전척을 관통하는 냉각가스유로 및 상면의 그루브에서 냉각가스로 인한 플라즈마 방전 또는 아킹이 방지되어, 기판이나 유전체의 손상을 방지할 수 있다. According to the present invention, plasma discharge or arcing due to the cooling gas is prevented in the cooling gas flow path and the groove on the upper surface of the electrostatic chuck, thereby preventing damage to the substrate or the dielectric.

Claims (13)

도전성 금속재질의 몸체부;Body portion of the conductive metal material; 상기 몸체부를 상하로 관통하는 냉각가스유로;Cooling gas flow passage penetrating the body portion up and down; 상기 냉각가스유로와 연통되며 상기 몸체부의 상면에 형성된 그루브;A groove communicating with the cooling gas flow path and formed on an upper surface of the body part; 상기 몸체부 및 상기 그루브의 표면에 형성되는 유전체 세라믹 재질의 제 1 코팅부;A first coating part made of a dielectric ceramic material formed on a surface of the body part and the groove; 상기 제 1 코팅부 상부에 형성되는 인듐(Indium) 성분의 접착제;An indium component adhesive formed on the first coating part; 상기 접착제 상부에 형성되고 DC전극을 내장한 세라믹 재질의 유전체판A dielectric plate made of ceramic material formed on the adhesive and including a DC electrode 을 포함하는 정전척Electrostatic chuck including 제1항에 있어서, The method of claim 1, 상기 냉각가스유로의 내주면에 유전체 재질의 제 2 코팅부가 형성되는 정전척Electrostatic chuck is formed with a second coating of the dielectric material on the inner peripheral surface of the cooling gas flow path 제1항에 있어서, The method of claim 1, 상기 냉각가스유로에는 유전체 재질의 절연관이 삽입되는 정전척An electrostatic chuck in which an insulating tube made of a dielectric material is inserted into the cooling gas flow path 제1항에 있어서,The method of claim 1, 상기 제 1 코팅부는 Al2O3, Al2O3+SiC3, AlN 중에서 선택되는 어느 하나의 재질로 형성되는 정전척The first coating part is an electrostatic chuck formed of any one material selected from Al 2 O 3 , Al 2 O 3 + SiC 3 , and AlN. 삭제delete 삭제delete 제1항에 있어서, The method of claim 1, 상기 유전체판은 상기 그루브와 연통하는 관통부를 구비하는 정전척The dielectric plate has an electrostatic chuck having a through portion communicating with the groove. 제1항에 있어서, The method of claim 1, 상기 접착제는 1mm 내지 2mm의 두께를 갖는 정전척The adhesive has an electrostatic chuck having a thickness of 1 mm to 2 mm 제1항에 있어서, The method of claim 1, 상기 접착제는 상기 그루브를 제외한 상기 몸체부의 상기 제 1 코팅부 상면에만 형성되는 정전척The adhesive is formed only on the upper surface of the first coating portion of the body portion excluding the groove 도전성 금속재질의 몸체부에 상하로 관통하는 냉각가스유로를 형성하는 단계;Forming a cooling gas passage penetrating up and down in the body portion of the conductive metal material; 상기 몸체부의 상면에 상기 냉각가스유로와 연통되는 그루브를 형성하는 단계;Forming a groove communicating with the cooling gas passage on an upper surface of the body portion; 상기 몸체부 및 상기 그루브의 표면에 유전체 세라믹 재질의 제 1 코팅부를 형성하는 단계와;Forming a first coating of a dielectric ceramic material on the body and the surface of the groove; 인듐(Indium) 성분의 접착제를 이용하여 DC전극을 내장한 세라믹 재질의 유전체판을 상기 몸체부의 상면의 상기 제 1 코팅부에 결합하는 단계Bonding a dielectric plate made of a ceramic material having a DC electrode to the first coating part on an upper surface of the body part by using an indium adhesive; 를 포함하는 정전척의 제조방법Method of manufacturing an electrostatic chuck comprising a 제 10 항에 있어서,11. The method of claim 10, 상기 제 1 코팅부를 형성하는 단계는,Forming the first coating portion, 상기 몸체부 및 상기 그루브의 표면에 유전체 세라믹 재질의 코팅층을 형성하는 단계;Forming a coating layer of a dielectric ceramic material on the surface of the body portion and the groove; 상기 냉각가스유로와 상기 그루브의 내부가 설정된 깊이와 너비를 가지도록 상기 코팅층을 추가적으로 절삭가공 하는 단계Additionally cutting the coating layer such that the cooling gas flow path and the inside of the groove have a set depth and width. 를 포함하는 정전척의 제조방법Method of manufacturing an electrostatic chuck comprising a 제 10 항에 있어서,11. The method of claim 10, 상기 유전체판을 상기 제 1 코팅부에 결합하는 단계 이후에,After bonding the dielectric plate to the first coating, 상기 냉각가스유로의 내주면에 유전체 재질의 제 2 코팅부를 형성하는 단계 또는 상기 냉각가스유로에 유전체 재질의 절연관을 삽입하는 단계를 더 포함하는 정전척의 제조방법Forming a second coating of the dielectric material on the inner circumferential surface of the cooling gas flow path or inserting an insulating tube of a dielectric material into the cooling gas flow path further comprising the manufacturing method of the electrostatic chuck. 제 10 항에 있어서,11. The method of claim 10, 상기 유전체판을 상기 제 1 코팅부에 결합하는 단계 이후에,After bonding the dielectric plate to the first coating, 상기 유전체판에 상기 그루브에 대응되는 관통부를 형성하는 단계를 더 포함하는 정전척의 제조방법Forming a through portion corresponding to the groove in the dielectric plate further comprising the manufacturing method of the electrostatic chuck
KR1020050087681A 2005-09-21 2005-09-21 Electrostatic chuck coated with dielectric KR101296156B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050087681A KR101296156B1 (en) 2005-09-21 2005-09-21 Electrostatic chuck coated with dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050087681A KR101296156B1 (en) 2005-09-21 2005-09-21 Electrostatic chuck coated with dielectric

Publications (2)

Publication Number Publication Date
KR20070033221A KR20070033221A (en) 2007-03-26
KR101296156B1 true KR101296156B1 (en) 2013-08-19

Family

ID=41560775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050087681A KR101296156B1 (en) 2005-09-21 2005-09-21 Electrostatic chuck coated with dielectric

Country Status (1)

Country Link
KR (1) KR101296156B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448817B1 (en) * 2008-05-02 2014-10-13 주식회사 원익아이피에스 Vacuum Processing Apparatus
KR20230075632A (en) * 2021-11-23 2023-05-31 피에스케이 주식회사 Support unit and substrate processing apparatus including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000017045A (en) * 1998-08-03 2000-03-25 호소이 쇼지로 Static chuck device
KR100404631B1 (en) * 1994-01-31 2004-02-05 어플라이드 머티어리얼스, 인코포레이티드 Electrostatic chuck with insulator film of uniform thickness
KR100427459B1 (en) * 2001-09-05 2004-04-30 주성엔지니어링(주) Electro-static chuck for preventing arc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404631B1 (en) * 1994-01-31 2004-02-05 어플라이드 머티어리얼스, 인코포레이티드 Electrostatic chuck with insulator film of uniform thickness
KR20000017045A (en) * 1998-08-03 2000-03-25 호소이 쇼지로 Static chuck device
KR100427459B1 (en) * 2001-09-05 2004-04-30 주성엔지니어링(주) Electro-static chuck for preventing arc

Also Published As

Publication number Publication date
KR20070033221A (en) 2007-03-26

Similar Documents

Publication Publication Date Title
JP6660658B2 (en) Single electrostatic chuck
JP7259017B2 (en) Semiconductor substrate support with embedded RF shield
KR101919644B1 (en) Electrostatic chuck with wafer backside plasma assisted dechuck
US20230019718A1 (en) Substrate support pedestal
KR100802670B1 (en) Electrostatic absorption apparatus, plasma processing apparatus and plasma processing method
US7331307B2 (en) Thermally sprayed member, electrode and plasma processing apparatus using the electrode
KR100893956B1 (en) Focus ring for semiconductor treatment and plasma treatment device
EP1840937B1 (en) Plasma processing apparatus and plasma processing method
KR100803253B1 (en) Plasma chamber support with coupled electrode
US6727654B2 (en) Plasma processing apparatus
KR102454532B1 (en) Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
US8877005B2 (en) Plasma processing apparatus and electrode used therein
US20040061447A1 (en) Method and apparatus for an improved upper electrode plate in a plasma processing system
US20120145186A1 (en) Plasma processing apparatus
US20090206058A1 (en) Plasma processing apparatus and method, and storage medium
JP2012186497A (en) Electrode assembly
KR20190008126A (en) Method for spraying parts for plasma processing apparatus and parts for plasma processing apparatus
WO2004030015A2 (en) Method and apparatus for an improved baffle plate in a plasma processing system
KR20190005798A (en) Method of manufacturing electrostatic chuck and electrostsatic chuck
WO2002052628A1 (en) Plasma processing method and plasma processor
KR102189323B1 (en) Apparatus for treating substrate and method for treating apparatus
KR101296156B1 (en) Electrostatic chuck coated with dielectric
KR102175086B1 (en) Apparatus for treating substrate and method for treating apparatus
US11705357B2 (en) Substrate processing system including electrostatic chuck and method for manufacturing electrostatic chuck
KR20220170771A (en) Substrate support and substrate processing apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 6