KR101289389B1 - Method of Manufacturing Graphene using Electronic Decomposition - Google Patents
Method of Manufacturing Graphene using Electronic Decomposition Download PDFInfo
- Publication number
- KR101289389B1 KR101289389B1 KR1020110022008A KR20110022008A KR101289389B1 KR 101289389 B1 KR101289389 B1 KR 101289389B1 KR 1020110022008 A KR1020110022008 A KR 1020110022008A KR 20110022008 A KR20110022008 A KR 20110022008A KR 101289389 B1 KR101289389 B1 KR 101289389B1
- Authority
- KR
- South Korea
- Prior art keywords
- graphene
- anode
- present
- manufacturing
- graphite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/30—Purity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 그래파이트를 포함하는 음극 및 금속을 포함하는 양극을 전해액에 침지한 후, 음극과 양극 사이에 전류를 가하는 그래핀의 제조 방법에 관한 것이다.
본 발명에서 제시하는 전기화학을 이용한 그래핀 제조 방법은 기존 제조법의 문제점을 모두 해결할 수 있는 매우 간단한 발명으로, 고순도의 그래핀을 제조하는 것이 가능하다. 본 발명의 방법으로 인하여 저가의 그래핀 생산이 가능하므로 대면적 투명전극 등에서 기존 인듐 틴 옥사이드(ITO) 등과 비교하여 가격에서 우위를 차지할 수 있으므로 더욱 폭 넓은 응용분야를 확보할 수 있게 된다.The present invention relates to a method for producing graphene by applying an electric current between a cathode and an anode after immersing an anode including graphite and an anode including a metal.
Graphene manufacturing method using the electrochemistry proposed in the present invention is a very simple invention that can solve all the problems of the existing manufacturing method, it is possible to manufacture high purity graphene. The method of the present invention enables the production of low-cost graphene, so that it can take advantage of the price compared to the conventional indium tin oxide (ITO) in the large-area transparent electrode, etc., thereby obtaining a wider application field.
Description
본 발명은 전기화학을 이용한 그래핀의 제조 방법에 관한 것이다.
The present invention relates to a method for producing graphene using electrochemistry.
그래핀 (graphene) 은 그래파이트(graphite)를 구성하는 한 개의 평면층으로 높은 전하이동도와 질량대비 높은 표면적으로 인해 전자산업, 나노산업 등에서 다양하게 사용될 수 있는 잠재적인 가능성이 있는 물질이다.Graphene is a single planar layer of graphite, which is a potential material that can be used in a variety of applications in the electronics and nano industries due to its high charge mobility and high surface area to mass.
이러한 그래핀을 제조하는 방법으로 현재 테이프를 이용한 기계적 분리 제조법, 화학기상증착법(CVD)과 금속촉매를 이용한 제조법, 그래핀 옥사이드(graphene oxide) 를 만든 후 환원하는 방법 등이 개시되어 있다. 그러나 테이프를 이용한 기계적 분리법은 대량생산이 힘든 문제점을 갖고 있으며, CVD와 금속촉매를 이용한 방법은 높은 제조비와 금속 박막 제거 시 야기되는 그래핀 오염 및 산화물 생성의 문제점이 있다. 또한 그래핀 옥사이드(graphene oxide)를 만든 후 환원하는 방법은 완벽한 환원이 어려워 잔류산소에 의한 특성 열화의 문제점을 갖고 있다.
As a method of preparing such graphene, a mechanical separation method using a tape, a chemical vapor deposition method (CVD) and a method using a metal catalyst, and a method of making graphene oxide and then reducing them are disclosed. However, mechanical separation using tape has a problem that mass production is difficult, and methods using CVD and a metal catalyst have problems of high production cost and graphene contamination and oxide generation caused by metal thin film removal. In addition, the method of reducing after making graphene oxide (graphene oxide) has a problem of deterioration of characteristics due to residual oxygen is difficult to reduce completely.
상기와 같이 기존 그래핀 제조법은 다양한 문제점을 지니고 있으므로, 본 방법에서는 종래의 제조 방법에 비해 보다 간단한 제조 방법으로 고순도의 그래핀을 생산할 수 있는 방법을 제공하는 것을 목적으로 한다.
Since the existing graphene manufacturing method as described above has a variety of problems, it is an object of the present invention to provide a method for producing a high purity graphene by a simpler manufacturing method than the conventional manufacturing method.
상기 목적을 달성하기 위하여 본 발명에서는 그래파이트(정렬된 탄소구조)를 포함하는 음극 및 금속을 포함하는 양극을 전해액에 침지한 후, 음극과 양극 사이에 전류를 가하는 것을 포함하는 그래핀의 제조 방법을 제공한다.
In order to achieve the above object, the present invention provides a method for producing graphene, including immersing an anode comprising a graphite (aligned carbon structure) and a cathode comprising a metal in an electrolyte, and then applying a current between the cathode and the anode. to provide.
본 발명에서 제시하는 전기화학을 이용한 그래핀 제조 방법은 기존 제조법의 문제점을 모두 해결할 수 있는 매우 간단한 발명으로, 고순도의 그래핀을 제조하는 것이 가능하다. 본 발명의 방법으로 인하여 저가의 그래핀 생산이 가능하므로 대면적 투명전극 등에서 기존 인듐 틴 옥사이드(ITO) 등과 비교하여 생산성, 경제성 면에서 우위를 차지할 수 있으므로 더욱 폭 넓은 응용분야를 확보할 수 있게 된다.
Graphene manufacturing method using the electrochemistry proposed in the present invention is a very simple invention that can solve all the problems of the existing manufacturing method, it is possible to manufacture high purity graphene. Since the method of the present invention enables the production of low-cost graphene, it is possible to secure a wider range of applications because it can occupy an advantage in productivity and economics in comparison with conventional indium tin oxide (ITO) in large area transparent electrodes. .
도 1은 본 발명을 실시하기 위한 전기화학 장치의 일 예이다.
도 2는 실시예에서 제조한 그래핀의 SiO2 기질 위에 수득된 광학 현미경(OM) 이미지이다.
도 3은 실시예에서 제조한 그래핀과 고배향 열분해 그래파이트(HOPG)의 라만분광기(Raman Spectroscopy)를 사용한 분석 결과이다.1 is an example of an electrochemical device for practicing the present invention.
2 is an optical microscope (OM) image obtained on an SiO 2 substrate of graphene prepared in the Examples.
FIG. 3 shows the results of analysis using Raman Spectroscopy of graphene and highly-oriented pyrolytic graphite (HOPG) prepared in Examples.
이하 본 발명을 더욱 자세하게 설명하겠다.Hereinafter, the present invention will be described in more detail.
본 발명은 그래파이트를 포함하는 음극 및 금속을 포함하는 양극을 전해액에 침지한 후, 음극과 양극 사이에 전류를 가하는 그래핀의 제조 방법에 관한 것이다.The present invention relates to a method for producing graphene by applying an electric current between a cathode and an anode after immersing an anode including graphite and an anode including a metal.
상기 음극과 양극 사이에 전류를 가할 시, 전해액의 전기 분해가 일어나게 된다. 이 때 그래파이트의 미세 다공구조 내부로 침투된 원소가 기화되면서 높은 모멘텀(momentum)을 발생하게 되며, 이를 이용하여 그래파이트를 구성하고 있는 그래핀 층간의 반데르발스(Van der Waals)결합을 끊어서 고순도의 그래핀을 그래파이트로부터 박리시킬 수 있게 된다. 상기와 같은 방법을 구현하는 일 예를 도 1에 개략적으로 나타내었다.When a current is applied between the cathode and the anode, electrolysis of the electrolyte occurs. At this time, the element penetrated into the microporous structure of graphite is vaporized to generate high momentum, and by using this, the van der Waals bond between the graphene layers constituting the graphite is cut off to obtain high purity. Graphene can be peeled off from graphite. An example of implementing such a method is schematically illustrated in FIG. 1.
상기 그래파이트는 고배향 열분해 그래파이트(Highly Ordered Pyrotytic Graphite, HOPG)를 사용하는 것이 수율면에서 더욱 우수하여 바람직하다.The graphite is preferred because it is more excellent in terms of yield to use Highly Ordered Pyrotytic Graphite (HOPG).
상기 양극에 사용되는 금속은 알루미늄, 칼슘, 칼륨, 나트륨, 마그네슘, 철, 아연, 니켈, 주석, 납, 또는 이들의 합금을 사용할 수 있다.As the metal used for the anode, aluminum, calcium, potassium, sodium, magnesium, iron, zinc, nickel, tin, lead, or an alloy thereof may be used.
상기 전해액은 과염소산의 알코올 용액 또는 황산, 염산, 질산, 인산, 옥살산의 수용액을 사용할 수 있으며, 그 농도는 0.1 ~ 3.0 M인 것이 바람직하다. 농도가 3.0 M을 초과할 시, 과전류 및 빠른 반응 속도로 인한 그래파이트의 산화가 있을 수 있고, 0.01 M 미만이면, 느린 반응 속도로 인해 그래핀을 얻는데 문제가 있을 수 있다.The electrolyte solution may be an alcohol solution of perchloric acid or an aqueous solution of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, the concentration is preferably 0.1 ~ 3.0M. When the concentration exceeds 3.0 M, there may be oxidation of graphite due to overcurrent and fast reaction rate, and below 0.01 M, there may be a problem in obtaining graphene due to the slow reaction rate.
상기 전압 및 전류양은 양극 및 음극 소재의 표면적에 비례하여 조정할 수 있으며, 예컨대 0.1 ~ 10 cm2 의 표면적을 갖는 전극(양극 및 음극)을 사용한 경우 20 ~ 200V의 전압 하에서 0.01 ~ 0.6 A의 전류가 인가되는 것이 바람직하다.The voltage and current amount can be adjusted in proportion to the surface area of the anode and cathode materials. For example, when an electrode (anode and cathode) having a surface area of 0.1 to 10 cm 2 is used, a current of 0.01 to 0.6 A is applied under a voltage of 20 to 200 V. It is preferred to be applied.
상기 전해액의 온도는 0 ~ 30 ℃로 유지하는 것이 바람직하다.It is preferable to maintain the temperature of the said electrolyte solution at 0-30 degreeC.
상기 제조방법에 있어서, 전해액의 원활한 전기분해를 위하여 200 ~ 500 rpm의 속도로 교반하며, 전류를 가할 수 있다.In the above production method, for smooth electrolysis of the electrolyte solution may be stirred at a speed of 200 ~ 500 rpm, a current can be added.
상기 전기화학 방법으로 그래파이트로부터 그래핀이 박리되면, 전해액으로부터 소수성 기질에 흡착 또는 전해액을 증발시키고 그래핀을 세척, 건조하여 그래핀을 수득할 수 있다.When the graphene is separated from the graphite by the electrochemical method, it is adsorbed on the hydrophobic substrate or the electrolyte is evaporated from the electrolyte and the graphene may be washed and dried to obtain graphene.
상기와 같이 제조된 그래핀은 투명 디스플레이, 플렉서블 디스플레이 분야에서 활용될 수 있다. 즉, 본 발명은 상기 방법으로 제조된 그래핀을 포함하는 디스플레이 장치에 관한 것이다.
Graphene manufactured as described above may be utilized in the field of transparent displays and flexible displays. That is, the present invention relates to a display device including the graphene prepared by the above method.
이하 본 발명을 구체적인 실시예를 들어 상세히 설명하고자 하지만, 본 발명의 권리범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to specific examples, but the scope of the present invention is not limited to these examples.
실시예Example
고배향 열분해 그래파이트(Highly Ordered Pyrolytic Graphite(HOPG), SPI supplies사 제조) 0.554g을 음극에 연결하고, 알루미늄 3.15g을 양극에 연결하여, 2.0 M의 과염소산/에탄올 용액 0.8 l에 침지하였다. 이 때 과염소산/에탄올 용액의 온도를 항온 수냉기를 통하여 약 7 ℃로 조절하였으며 300 rpm으로 교반하였다.0.554 g of Highly Ordered Pyrolytic Graphite (HOPG, manufactured by SPI supplies) was connected to the negative electrode, 3.15 g of aluminum was connected to the positive electrode, and immersed in 0.8 L of 2.0 M perchloric acid / ethanol solution. At this time, the temperature of the perchloric acid / ethanol solution was adjusted to about 7 ℃ through a constant temperature water cooler and stirred at 300 rpm.
상기 음극과 양극 사이에 20 V의 전압을 인가한 상태에서 0.3A의 전류를 30분 동안 가하였다. 이후, 2.0M 의 과염소산/에탄올 용액을 증발시키고, 남아있는 분말을 3차례 증류수로 세척한 후 건조하여 시간당 0.01g의 그래핀을 수득하였다.A current of 0.3 A was applied for 30 minutes while a voltage of 20 V was applied between the cathode and the anode. Thereafter, 2.0 M of perchloric acid / ethanol solution was evaporated, and the remaining powder was washed three times with distilled water and dried to obtain 0.01 g of graphene per hour.
제조한 그래핀의 SiO2 기질 위에 수득된 OM 이미지를 도 2에서 나타내었다. 도 3에서는 제조한 그래핀과 고배향 열분해 그래파이트(HOPG)의 라만분광기 분석 결과를 나타내었다. 도 3의 결과에서도 나타나듯이, 고순도의 그래핀이 제조된 것을 확인할 수 있었다.
SiO 2 of manufactured graphene The OM image obtained on the substrate is shown in FIG. 2. Figure 3 shows the Raman spectroscopy analysis of the prepared graphene and high orientation pyrolytic graphite (HOPG). As shown in the results of Figure 3, it was confirmed that the graphene of high purity was produced.
Claims (8)
The anode including the high orientation pyrolytic graphite and the anode including the aluminum metal were immersed in an electrolyte solution consisting of an alcohol solution of perchloric acid at a concentration of 0.1 to 3.0 M, and then a current of 0.01 to 0.6 A was applied between 20 and 200 V between the cathode and the anode. Method for producing a graphene, characterized in that applied at a time with a voltage.
The method of claim 1, wherein the surface area of the negative electrode and the positive electrode is 0.1 to 10 cm 2 method for producing graphene.
The method of claim 1, wherein the temperature of the electrolyte is 0 ~ 30 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110022008A KR101289389B1 (en) | 2011-03-11 | 2011-03-11 | Method of Manufacturing Graphene using Electronic Decomposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110022008A KR101289389B1 (en) | 2011-03-11 | 2011-03-11 | Method of Manufacturing Graphene using Electronic Decomposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120103987A KR20120103987A (en) | 2012-09-20 |
KR101289389B1 true KR101289389B1 (en) | 2013-07-29 |
Family
ID=47111754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110022008A KR101289389B1 (en) | 2011-03-11 | 2011-03-11 | Method of Manufacturing Graphene using Electronic Decomposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101289389B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160021561A (en) | 2014-08-18 | 2016-02-26 | 조종수 | Method for manufacturing organic solution comprising graphene and organic solution by the same |
KR20180117191A (en) * | 2016-03-22 | 2018-10-26 | 중국과학원금속연구소 | Manufacturing method of graphene oxide nanoflurane serialization |
KR102059058B1 (en) * | 2018-07-19 | 2019-12-24 | 한국화학연구원 | Functional insole having abrasion resistance and anti-bacterial property |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014126298A1 (en) | 2013-02-13 | 2014-08-21 | Samsung Techwin Co., Ltd | Method of manufacturing graphene film and graphene film manufactured thereby |
CN105088261B (en) * | 2014-05-14 | 2017-10-20 | 国能纳米科技有限公司 | The preparation method of graphene |
CN104894594A (en) * | 2015-05-26 | 2015-09-09 | 广东烛光新能源科技有限公司 | Graphene preparation method |
CN106865534A (en) * | 2017-03-25 | 2017-06-20 | 哈尔滨摆渡新材料有限公司 | A kind of method and device for preparing Graphene |
CN106865533B (en) * | 2017-03-25 | 2019-06-04 | 哈尔滨摆渡新材料有限公司 | A kind of device and method preparing graphene using platinum filament |
CN106946242B (en) * | 2017-03-25 | 2019-10-18 | 哈尔滨摆渡新材料有限公司 | A kind of method and device preparing graphene |
CN106865536A (en) * | 2017-03-25 | 2017-06-20 | 哈尔滨摆渡新材料有限公司 | A kind of method and device for preparing Graphene |
CN106865532B (en) * | 2017-03-25 | 2019-06-04 | 哈尔滨摆渡新材料有限公司 | A kind of device preparing graphene using platinum filament and graphite cake |
KR101986631B1 (en) * | 2017-09-29 | 2019-06-07 | 한국화학연구원 | Method and apparatus for mass production of non-oxidative exfoliated graphite by electrochemical treatment |
KR20190131219A (en) | 2018-05-16 | 2019-11-26 | 전남대학교산학협력단 | Method for preparing graphene using dc switching |
KR102096865B1 (en) * | 2018-08-16 | 2020-04-03 | 울산과학기술원 | A method for producing graphene and hydrogen using biological shells and alcohols |
KR102224720B1 (en) * | 2019-05-16 | 2021-03-08 | 주식회사 케이비엘러먼트 | Manufacturing apparatus and method for graphene |
KR102289201B1 (en) * | 2021-04-20 | 2021-08-12 | 주식회사 케이비엘러먼트 | Graphene synthesis apparatus and graphene synthesis method by electrochemical treatment |
CN114032560B (en) * | 2021-11-05 | 2024-08-13 | 郧西米能生物集团有限公司 | Graphene and preparation method thereof |
-
2011
- 2011-03-11 KR KR1020110022008A patent/KR101289389B1/en active IP Right Grant
Non-Patent Citations (2)
Title |
---|
ACS Nano Vol.5, 2011, pages 2332-2339 (2011.02.10.) * |
ACS Nano Vol.5, 2011, pages 2332-2339 (2011.02.10.)* |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160021561A (en) | 2014-08-18 | 2016-02-26 | 조종수 | Method for manufacturing organic solution comprising graphene and organic solution by the same |
KR20180117191A (en) * | 2016-03-22 | 2018-10-26 | 중국과학원금속연구소 | Manufacturing method of graphene oxide nanoflurane serialization |
KR102251944B1 (en) | 2016-03-22 | 2021-05-14 | 중국과학원금속연구소 | Graphene oxide nanoplatelet serialization manufacturing method |
KR102059058B1 (en) * | 2018-07-19 | 2019-12-24 | 한국화학연구원 | Functional insole having abrasion resistance and anti-bacterial property |
Also Published As
Publication number | Publication date |
---|---|
KR20120103987A (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101289389B1 (en) | Method of Manufacturing Graphene using Electronic Decomposition | |
Yan et al. | Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode | |
Behranginia et al. | Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film | |
Wu et al. | Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition | |
EP2928700B1 (en) | Method and apparatus for transfer of films among substrates | |
Yen et al. | Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes | |
CN103451670B (en) | A kind of Electrochemical preparation method of Graphene | |
CN101634032A (en) | Green and fast electrochemical preparation method for graphene | |
Gürsu et al. | Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery | |
CN104876211A (en) | Method for preparing graphene through rotary shearing in electric field environment | |
US20220396486A1 (en) | Method and apparatus for the expansion of graphite | |
Kim et al. | Epitaxial electrodeposition of single crystal MoTe2 nanorods and Li+ storage feasibility | |
Yang et al. | Reduced graphene oxide/carbon nanotube composites as electrochemical energy storage electrode applications | |
CN106801227B (en) | A kind of preparation method of graphene/metal-based compound thin-film material | |
CN105948030A (en) | Device and method for quickly preparing graphene under synergistic actions of electric field and magnetic field | |
CN104818532B (en) | A method of silicon nanostructure material is prepared based on extra electric field | |
Trofimov et al. | Electrodeposition of silicon from molten KCl-K2SiF6 for lithium-ion batteries | |
CN103924261B (en) | Oxygen based on reduced graphene oxide serving separates out the preparation method of electrode | |
Parasotchenko et al. | Study of the Silicon Electrochemical Nucleation in LiCl-KCl-CsCl-K2SiF6 Melt | |
CN107601468A (en) | A kind of preparation method of graphene film | |
CN110621809B (en) | Method for producing semiconductor or conductor material and use thereof | |
CN104451591B (en) | Method for transferring CVD graphene on surface of metal copper to surface of target substrate | |
CN102732921A (en) | Ionic liquid electrodeposition method for preparing three-dimensional ordered macroporous silicon-germanium and germanium-aluminum heterogeneous thin-film material | |
CN103529099B (en) | A kind of growth in situ prepares the method for Graphene chemically modified electrode | |
CN205687563U (en) | A kind of electric field and magnetic field synergism quickly prepare the device of Graphene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160602 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190502 Year of fee payment: 7 |