KR101281696B1 - Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink - Google Patents

Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink Download PDF

Info

Publication number
KR101281696B1
KR101281696B1 KR1020130030461A KR20130030461A KR101281696B1 KR 101281696 B1 KR101281696 B1 KR 101281696B1 KR 1020130030461 A KR1020130030461 A KR 1020130030461A KR 20130030461 A KR20130030461 A KR 20130030461A KR 101281696 B1 KR101281696 B1 KR 101281696B1
Authority
KR
South Korea
Prior art keywords
composite plastic
activated carbon
heat sink
biodegradable composite
weight
Prior art date
Application number
KR1020130030461A
Other languages
Korean (ko)
Inventor
유삼주
Original Assignee
주식회사 오상엠엔이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오상엠엔이티 filed Critical 주식회사 오상엠엔이티
Priority to KR1020130030461A priority Critical patent/KR101281696B1/en
Application granted granted Critical
Publication of KR101281696B1 publication Critical patent/KR101281696B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

PURPOSE: A manufacturing method of biodegradable composite plastic is provided to manufacture the biodegradable composite plastic having excellent emission rate and insulating performance. CONSTITUTION: A manufacturing method of biodegradable composite plastic comprises: a step of impregnating nanosilver into pores of active charcoal, and drying the same (S100); a step of impregnating an epoxy resin into the active charcoal, and surface-coating the same (S200); a step generating a crystallization nucleating agent by heat-curing the active charcoal (S300); a step of mixing electrically insulative filler with the crystallization nucleating agent, to obtain an insulative crystallization nucleating agent (S400); a step of compounding the insulative crystallization nucleating agent and a vegetable polylactic acid material, to generate the composite plastic (S500). [Reference numerals] (S100) First step impregnating nanosilver into pores of active charcoal, and drying the same; (S200) Second step impregnating an epoxy resin into the active charcoal, and surface-coating the same; (S300) Third step heat-curing the coated active charcoal; (S400) Fourth step mixing electrically insulative filler with the heat-cured material; (S500) Fifth step compounding a material mixed in the fourth step and the vegetable PLA material; (S600) Sixth step extruding and pelletizing the material from the fifth step

Description

LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법{Method of manufacture of Biodegradable plastic composite that are used as the material of the LED heat sink.}Method of manufacture of Biodegradable plastic composite that are used as the material of the LED heat sink.}

본 발명은 LED 히트싱크의 소재로 적합한 방사율과 절연기능이 우수한 생분해성 복합 플라스틱의 제조방법에 관한 것이다.
The present invention relates to a method for producing a biodegradable composite plastic excellent in emissivity and insulation function suitable as a material of the LED heat sink.

일반적으로 히트싱크는 복사나 대류 등의 열전도현상을 이용해 제품 내부의 열을 외부로 배출시키는 금속판을 말한다. 형광등, 백열등과 같은 일반조명기구는 열과 빛이 함께 발생하지만 LED의 경우 빛은 앞으로 발생하지만 열은 뒤쪽으로 흘러 모듈 내부로 향하게 된다. 이 열이 외부로 배출되지 않으면 고스란히 모듈 내부에 머무르게 되고, 이는 LED칩, PCB 등의 부품의 파손 및 변형을 일으켜 LED 제품의 수명을 줄이게 된다. 결국 발열은 LED의 수명을 단축시키는 주요한 요인이며, 이런 내부의 열이 신속하게 외부로 배출될 수 있도록 하는 것이 히트싱크의 역할이다.In general, the heat sink refers to a metal plate that discharges heat inside the product to the outside by using heat conduction such as radiation or convection. In general lighting equipment such as fluorescent lamps and incandescent lamps, both heat and light are generated. In the case of LEDs, light is generated in front, but heat flows backwards to the inside of the module. If this heat is not released to the outside, it stays inside the module, which causes damage and deformation of the components such as the LED chip and PCB, which reduces the life of the LED product. After all, heat generation is a major factor in shortening the lifespan of LEDs, and it is the role of the heatsink to allow the internal heat to be quickly discharged to the outside.

히트싱크는 열전도성이 높을수록 효과적이기 때문에 동판을 사용하는 것이 가장 유리하지만 동판의 경우 가격대가 매우 높기 때문에 대체로 알루미늄 소재를 사용하는 경우가 많다. 또한, 외부공간과의 접촉 면적이 넓을수록 발열 효율이 높기 때문에 히트싱크의 표면에 요철을 둬 방열이 효과적으로 이루어지게 하는 경우도 많다.Heat sinks are more advantageous because copper plates are more effective because they are more thermally conductive. However, aluminum is usually used because copper plates are very expensive. In addition, since the heat generation efficiency is higher as the contact area with the external space is larger, the heat sink is often provided with irregularities on the surface of the heat sink in order to effectively radiate heat.

하지만, 한국등록특허(제756897호)와 같이 실외등 LED제품에 알루미늄 히트싱크는 산성비 및 자연환경에서 산화되거나 LED 등기구 고정작업시 표면 스크레치로 인해 발생될 수 있는 절연코팅 박리는 천둥번개와 같은 낙뢰에 취약하여 SMPS 및 LED 칩의 고장원인이 되고 있다.However, as in Korean Patent Registration (756897), aluminum heatsink for outdoor lighting LED products is oxidized in acid rain and natural environment, or insulation coating peeling which may be caused by surface scratches when fixing LED lighting fixtures is caused by thunder lightning. It is vulnerable to failure, causing failure of SMPS and LED chip.

또한, 알루미늄 히트싱크는 무게가 무겁고 표면가공을 하지 않으면 기구물 및 LED PCB기판에 결착이 어려워 생산비용이 증가 될 수 있다.In addition, aluminum heat sinks are heavy and difficult to bond to fixtures and LED PCB substrates without surface processing can increase the production cost.

이런 문제를 해결하기 위해, 최근 복사 열전도율이 좋은 그라파이트, CNT, Carbon fiber, 금속파우더가 사용되고 있지만 이들은 전기가 통하여 절연기능이 없고 금속파우더는 열전도율이 우수하나 절연기능을 부여하기 위해 표면 절연 코팅을 해야되는 번거로움이 있다.
In order to solve this problem, graphite, CNT, carbon fiber, and metal powder, which have good radiation thermal conductivity, have been used recently, but they do not have insulation through electricity and the metal powder has excellent thermal conductivity, but the surface insulation coating has to be applied to provide insulation. There is a hassle.

상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은 방사율과 절연기능을 높인 LED 히트싱크의 소재를 개발하기 위한 목적이 있다.The present invention devised to solve the problems of the prior art as described above has an object to develop a material of the LED heat sink with high emissivity and insulation function.

또한, 본 발명은 식물베이스 PLA소재를 사용함으로써 친환경 절연 열전도성 복합 플라스틱을 제조하기 위한 다른 목적이 있다.
In addition, the present invention has another object for producing an environmentally friendly insulation thermally conductive composite plastic by using a plant-based PLA material.

본 발명의 상기 목적은 활성탄의 기공에 나노은을 침투시키고 건조하는 제 1단계, 건조된 상기 활성탄에 에폭시수지를 침투시키고 표면코팅시키는 제 2단계, 코팅된 상기 활성탄을 열경화시켜 결정화 핵제를 생성하는 제 3단계, 상기 결정화 핵제에 절연전도성 필러(filer)인 질화알루미늄(AlN), 질화붕소(BN), 산화마그네슘(MGO), 질화규소(SIN), 탄화규소(SIC) 및 산화알루미늄(AL2O3) 중 어느 하나 이상을 혼합하여 절연성 결정화 핵제를 생성하는 제 4단계, 상기 절연성 결정화 핵제와 식물성 PLA(Poly Lactic Acid) 소재를 컴파운딩하여 생분해성 복합플라스틱을 생성하는 제 5단계 및 상기 생분해성 복합플라스틱을 트윈스크류를 이용하여 압출후 펠렛화 하는 제 6단계에 의해 달성된다.
The object of the present invention is to penetrate the nano-silver into the pores of the activated carbon and to dry, the second step to penetrate and surface-coated epoxy resin to the dried activated carbon, the thermosetting of the coated activated carbon to produce a crystallized nucleating agent In the third step, in the crystallization nucleating agent, among the insulating conductive fillers (aluminum nitride (AlN), boron nitride (BN), magnesium oxide (MGO), silicon nitride (SIN), silicon carbide (SIC) and aluminum oxide (AL2O3)) A fourth step of mixing any one or more to generate an insulating crystallization nucleating agent, a fifth step of compounding the insulating crystallization nucleating agent and a vegetable PLA (Poly Lactic Acid) material to generate a biodegradable composite plastic, and the biodegradable composite plastic This is accomplished by a sixth step of pelletizing after extrusion using twinscrews.

본 발명은 식물성 소재인 PLA 소재를 기반으로 방사율 특성을 상승시키고, 절연기능을 높일 수 있는 절연전도성 필러에 시너지 효과를 극대화시킬 수 있는 PLA 결정화 핵제를 개발하고 상용화하는 효과가 있다.The present invention has the effect of developing and commercializing a PLA crystallization nucleating agent that can maximize the synergy effect on the insulating conductive filler to increase the emissivity characteristics, and increase the insulation function based on the PLA material which is a vegetable material.

또한, 본 발명은 금속성분을 대체하며 인젝션 몰딩형태로 히트싱크의 디자인을 자유롭고 표면적을 증대시킬 수 있는 효과가 있다.In addition, the present invention replaces the metal and has the effect of freeing the design of the heat sink in the injection molding form and increasing the surface area.

또한, 본 발명은 친환경 PLA 소재를 기반으로 하고 있기 때문에 추가적인 CO2 발생을 억제하는 효과가 있다.
In addition, the present invention is based on the environment-friendly PLA material has the effect of suppressing the additional CO 2 generation.

도 1은 본 발명에 따른 제조공정도,
도 2는 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 평면도,
도 3은 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 측면도,
도 4는 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 저면도이다.
1 is a manufacturing process diagram according to the present invention,
2 is a plan view of an LED heat sink to which a composite plastic according to the present invention is applied;
3 is a side view of an LED heat sink to which a composite plastic according to the present invention is applied;
4 is a bottom view of the LED heat sink to which the composite plastic according to the present invention is applied.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 제조공정도이다. 도 1에 도시된 바와 같이, 방사율이 우수하고 절연기능을 구비한 생분해성 복합플라스틱의 제조방법은 활성탄의 기공에 나노은을 침투시키고 건조하는 제 1단계[S100]와 건조된 활성탄에 에폭시수지를 침투시키고 표면을 코팅시키는 제2단계[S200], 코팅된 활성탄을 열경화 시켜 결정화 핵제를 제조하는 제 3단계[S300], 그리고 결정화 핵제에 절연전도성 필러(filer)인 질화알루미늄(AlN), 질화붕소(BN), 산화마그네슘(MGO), 질화규소(SIN), 탄화규소(SIC) 및 산화알루미늄(AL2O3) 중 어느 하나 이상을 혼합하여 절연성 결정화 핵제를 생성하는 제 4단계[S400]와 절연성 결정화 핵제와 식물성 PLA(Poly Lactic Acid) 소재를 컴파운딩하여 생분해성 복합플라스틱을 생성하는 제 5단계[S500], 마지막으로 생분해성 복합플라스틱을 트윈스크류를 이용하여 압출 후 펠렛화 하는 제 6단계[S600]를 통해서 이루어진다.1 is a manufacturing process chart according to the present invention. As shown in FIG. 1, the method for preparing a biodegradable composite plastic having excellent emissivity and insulation function includes a first step [S100] of infiltrating and drying nanosilver into pores of activated carbon and an epoxy resin in dried activated carbon. 2nd step [S200] to prepare a crystallized nucleating agent by thermally curing the coated activated carbon, and to coat the surface, and aluminum nitride (AlN), boron nitride, which is an insulating conductive filler (crystal) to the crystallized nucleating agent (S400), an insulating crystallization nucleating agent, and a mixture of any one or more of (BN), magnesium oxide (MGO), silicon nitride (SIN), silicon carbide (SIC), and aluminum oxide (AL2O3) to form an insulating crystallization nucleating agent. The fifth step [S500] of compounding vegetable PLA (Poly Lactic Acid) material to produce a biodegradable composite plastic, and finally the sixth step of pelletizing the biodegradable composite plastic after extrusion using twin screws. It is made through [S600].

LED 히트싱크의 경우 복사 열전도율이 좋고 전자의 이동이 원활한 그라파이트(Graphite), 탄소나노튜브(CNT), 탄소 섬유(carbon fiber) 등이 사용될 수 있지만, 일정함량 이상을 충전제로 사용하면 절연기능보다는 통전이 되어 효율이 떨어지게 된다.In the case of LED heatsink, graphite, carbon nanotube (CNT), carbon fiber, etc., which have good radiant thermal conductivity and smooth electron transfer, can be used. This becomes inefficient.

본 발명에서는 친환경적인 생분해성 복합플라스틱 제조를 위해 식물베이스 PLA 소재를 사용하고 있으며, PLA 소재의 복사열전도를 높이기 위해 활성탄을 사용하게 된다. 활성탄의 경우 기공이 많아 열전도에 방해가 될 수 있지만 반대로 숯에 비해 비표면적이 많아 자연 대류에 면적을 증가시켜 열을 낮추는데 효과가 있다. 숯과 활성탄의 비표면적은 일반 숯이 50㎡/g이고 활성탄은 1,000㎡/g으로 자신의 무게보다 40%이상의 수분흡수력을 가지고 있으며 비중은 0.45이다.In the present invention, the plant-based PLA material is used to manufacture an eco-friendly biodegradable composite plastic, and activated carbon is used to increase the radiant heat conductivity of the PLA material. Activated carbon has many pores and can interfere with heat conduction. Conversely, it has a larger specific surface area than charcoal, which is effective in lowering heat by increasing the area of natural convection. The specific surface area of charcoal and activated carbon is 50m2 / g for general charcoal and 1,000m2 / g for activated carbon, and has a water absorption capacity of more than 40% than its own weight and specific gravity is 0.45.

그러나, 활성탄은 단단하지 못하고 내마모성이 약해서 LED 히트싱크 복합플라스틱 소재로 사용시 표면경도가 약화 될 수 있는 문제가 있지만, 본 발명에서는 강도를 높이기 위해 생분해성 소재인 PLA(Poly Lactic Acid)에 생분해성 소재인 PBAT(Polybutylene adipate-co-terephthalate) 소재를 혼합하여 사용하였다. PBAT 소재 이외에 PBS(Polybutylene succinate), PBSA(Polybutylene succinate adipate), PCL(polycaprolactone), PVA(Polyvinyl alcohol) 등 다른 생분해성 소재를 혼합하여 사용할 수 있다.However, there is a problem that the surface hardness can be weakened when used as an LED heat sink composite plastic material because activated carbon is not hard and has low abrasion resistance. However, in the present invention, biodegradable material such as PLA (poly lactic acid) Polybutylene adipate-co-terephthalate (PBAT). Other biodegradable materials such as polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polycaprolactone (PCL), polyvinyl alcohol (PVA)

본 발명에서는 PLA 소재와 PBAT 소재의 혼합비율을 결정하기 위해 충격 실험을 하였으며, 배율에 따른 충격강도는 아래 <실험 1>의 결과와 같다. 본 발명에서는 충격강도가 높은 PLA 90%와 PBAT 10%를 컴파운딩하여 사용하였다.In the present invention, the impact test was performed to determine the mixing ratio of the PLA material and the PBAT material, the impact strength according to the magnification is the same as the results of <Experiment 1>. In the present invention, a compound of 90% PLA and 10% PBAT having high impact strength was used.

<실험 1><Experiment 1> PLA 100%100% PLA PLA 95% + PBAT 5%95% PLA + 5% PBAT PLA 90% + PBAT 10%90% PLA + 10% PBAT 비고 Remarks 충격강도Impact strength 2.42.4 2.92.9 3.43.4

단위 : Kg,Cm/Cm=ASTMD 256IzodUnit: Kg, Cm / Cm = ASTMD 256Izod

그리고, 본 발명에서는 방사율을 증가시기고 PLA 소재에 결정격자 진동을 상승시키기 위해 활성탄의 입자 크기는 1~5㎛인 것을 사용하였다. 일반적으로 활성탄의 방사율은 0.93(93%)으로 0.3(30%)인 알루미늄보다 높은 것으로 알려져 있다. In the present invention, in order to increase the emissivity and raise the crystal lattice vibration in the PLA material, the particle size of the activated carbon is 1 to 5 μm. Generally, the emissivity of activated carbon is 0.93 (93%), which is higher than that of aluminum (0.3%).

또한, 활성탄의 기공에 침투시키는 나노은은 에탄올베이스로 활성탄 비중대비 나노은의 입자 침투율은 400~500ppm으로 하였다. 에탄올베이스의 나노은은 활성탄 기공에 수분을 증발시킬 수 있으며, 제 1단계[S100]의 건조과정은 열풍건조(90~110℃)로 40~60분간 건조하게 된다. 활성탄 기공에 나노은을 침투시키면 활성탄 기공에 전자 이동을 유도하여 열전도율을 상승시킬 수 있다. 이때 나노은의 입자 침투율이 400ppm 이하는 전자이동이 약할 수 있고, 500ppm 이상은 전자 이동은 활발 하지만, 가격이 비싸져 비경제적일 수 있다. 따라서 본 발명에서는 나노은의 입자 침투율을 400~500ppm으로 설정하였다. 또한, 열풍건조시간은 나노은이 침투된 활성탄 중량 1000g을 기준으로 하였고, 건조시간 40분 이하는 활성탄 기공에 수분을 충분히 증발시키지 못하여 에폭시 침투시 접착력을 약화시킬 수 있고, 60분 이상은 접착력은 우수하지만 경제적 측면에서 비효율적이다. In addition, the permeation rate of nano silver to the specific gravity of activated carbon was 400 ~ 500ppm. Ethanol-based nanosilver can evaporate moisture into the pores of activated carbon, the drying process of the first step [S100] is dried for 40 to 60 minutes by hot air drying (90 ~ 110 ℃). Penetration of nano-silver into the pores of activated carbon can induce electron transfer to the pores of activated carbon and increase the thermal conductivity. When the particle penetration rate of nano silver is less than 400 ppm, electron transfer may be weak. When the particle penetration rate of nano silver is less than 400 ppm, electron transfer may be active. Therefore, in the present invention, the nano silver particle penetration rate was set to 400 to 500 ppm. In addition, the hot air drying time is based on the weight of 1000g of activated carbon penetrated nano silver, the drying time of less than 40 minutes may not evaporate the moisture in the activated carbon pores sufficiently to weaken the adhesive strength when the epoxy infiltration, 60 minutes or more excellent adhesion But economically inefficient.

본 발명의 제 2단계는 건조된 활성탄에 에폭시수지를 침투시키게 되는데, 에폭시수지는 열경화성 수지로 접착력이 우수하고 단단하지 못한 활성탄에 경도를 높이고, 활성탄의 기공속에 침투하여 결정격자 진동을 상승시키는 역할을 하게 된다. 나노은이 침투된 활성탄 무게비 45~50중량%와 에폭시수지 50~55중량% 비율로 혼합한 후 가압리더기로 반응시키게 된다. 이때, 혼합된 나노은이 침투된 활성탄에 에폭시수지를 혼합한 소재의 비중은 0.7~0.8이 되게 한다. 활성탄의 비중은 0.45이며 에폭시수지의 비중은 1.189~1.230이다. 혼합과정에서 에폭시수지의 중량%가 50중량% 미만이면 활성탄의 기공에 에폭시수지가 충분하게 침투되지 않고 활성탄표면에 코팅반응이 약하여 인젝션 몰딩시 활성탄이 깨지는 문제가 발생하게 되며, 에폭시수지의 중량%가 55중량% 이상이면 활성탄 입자가 붙어 덩어리가 될 수 있다. The second step of the present invention is to infiltrate the epoxy resin into the dried activated carbon, the epoxy resin is a thermosetting resin with excellent adhesion and to increase the hardness to the hard carbon activated carbon, penetrates into the pores of the activated carbon to increase the crystal lattice vibration Will be Nano silver is mixed at a ratio of 45 to 50% by weight of the penetrated activated carbon and 50 to 55% by weight of an epoxy resin, and then reacted with a pressure reader. At this time, the specific gravity of the mixture of the epoxy resin mixed with the penetrated activated carbon is 0.7 ~ 0.8. The specific gravity of activated carbon is 0.45 and the specific gravity of epoxy resin is 1.189 ~ 1.230. If the weight percentage of the epoxy resin is less than 50% by weight in the mixing process, the epoxy resin does not sufficiently penetrate into the pores of the activated carbon and the coating reaction is weak on the surface of the activated carbon, causing the problem of cracking the activated carbon during injection molding. When the content is 55% by weight or more, the activated carbon particles may be stuck to agglomerates.

그리고, 에폭시수지를 침투시킨 활성탄은 가온믹서기에서 온도 100~110℃, 60~100RPM의 속도로 30~40분간 프리 믹서(free mixer)를 수행한 후 150~170℃, 200~250RPM의 속도로 트윈가압리더기에서 경화시키게 된다. 이때 프리 믹서 수행은 활성탄 기공 및 표면에 에폭시 수지를 침투시키고 표면코팅이 진행되는 단계이다.The activated carbon impregnated with the epoxy resin was subjected to a free mixer at a temperature of 100 to 110 ° C. and 60 to 100 RPM for 30 to 40 minutes in a warming blender and then subjected to a free mixer at a rate of 150 to 170 ° C. and 200 to 250 RPM And hardened by a pressure reader. At this time, pre-mixer performance is the stage where the activated carbon pores and epoxy resin penetrate the surface and the surface coating proceeds.

프리 믹서가 끝나고 코팅된 활성탄을 100중량%로 했을 때, 분산 및 이형제인 스테아린산(Stearic Acid)을 3~5중량% 추가 첨가한 후 가압리더기에서 20~30분 열경화 시켜[S300] 결정화 핵제를 생성하게 된다. 프리 믹서시 온도를 110℃이상, 40분간 진행하면 표면코팅 및 기공침투가 충분하게 활성화 되지만, 온도와 시간이 높거나 길면 열경화가 가속화 되어 분산 및 이형제인 스테아린산 첨가전에 뭉칠 수 있다. When the pre-mixer is 100% by weight of the coated activated carbon, 3-5% by weight of stearic acid as a dispersing and releasing agent is added, followed by thermal curing for 20-30 minutes in a pressure reader [S300] Will be created. If the temperature is higher than 110 ℃ for 40 minutes, the surface coating and pore penetration are sufficiently activated. However, if the temperature and time are high or long, the thermosetting accelerates and may be aggregated before the addition of the dispersing and releasing agent, stearic acid.

열경화 과정을 거쳐 생성된 결정화 핵제는 열전도와 복사효과가 있는 소재이다. LED 히트싱크의 소재로 사용되기 위해서는 절연기능이 있어야 하기 때문에 절연전도성 필러(filer)인 질화알루미늄(AlN), 질화붕소(BN), 산화마그네슘(MGO), 질화규소(SIN), 탄화규소(SIC), 산화알루미늄(Al2O3) 중 하나 이상의 소재를 혼합하게 된다[S400].Crystallized nucleating agent produced through the thermal curing process is a material having thermal conductivity and radiation effect. In order to be used as a material for LED heat sinks, it is necessary to have an insulation function, so the insulating conductive filler aluminum nitride (AlN), boron nitride (BN), magnesium oxide (MGO), silicon nitride (SIN), and silicon carbide (SIC) , One or more materials of aluminum oxide (Al 2 O 3 ) is mixed [S400].

본 발명에서는 제 3단계를 통해 생성된 결정화 핵제와 절연전도성 필러 소재를 혼합하여 전도율을 실험하였다. 실험 결과는 아래 <실험 2>의 결과표와 같다.In the present invention, the conductivity was tested by mixing the crystallization nucleating agent and the insulating filler material generated in the third step. The experimental results are shown in the result table of <Experiment 2> below.

<실험 2><Experiment 2> 결정화 핵제 + Al2O3 Crystallization Nucleating Agent + Al 2 O 3 결정화 핵제 + SICCrystallization Nucleating Agent + SIC 결정화 핵제 + AlNCrystallization Nucleating Agent + AlN 비고Remarks 전도율conductivity 3.2W/mK3.2 W / mK 3.8W/mK3.8 W / mK 6W/mK6W / mK

시험조건 : KSL 1604(W/mK)Test condition: KSL 1604 (W / mK)

결정화 핵제는 식물성 PLA 소재의 결정성을 가속화시키데 사용하게 되는데, 결정화 특성에 효과가 있는지 <실험 3>을 통해 진행하였다. Crystallization nucleating agent is to be used to accelerate the crystallinity of the vegetable PLA material, was carried out through <Experiment 3> whether there is an effect on the crystallization characteristics.

<실험 3><Experiment 3> PLA 100%100% PLA PLA 90% + 결정화 핵제 10%90% PLA + 10% Crystallization Nucleating Agent PLA 80% + 결정화 핵제 20%80% PLA + 20% Crystallization Nucleator 비고Remarks 결정화%crystallization% 5%5% 17%17% 38%38%

시험조건 : 스크류온도 170~190℃, 금형온도 40℃, 인젝션 몰딩시편Test condition: screw temperature 170 ~ 190 ℃, mold temperature 40 ℃, injection molding specimen

<실험 3>의 결과와 같이 제 3단계를 통해 생성된 결정화 핵제는 PLA 소재의 결정화를 가속화시키는 소재라는 것을 알 수 있다. As shown in <Experiment 3>, it can be seen that the crystallization nucleating agent generated through the third step is a material that accelerates the crystallization of the PLA material.

본 발명의 제 5단계에서는 제 4단계에서 혼합된 절연성 결정화 핵제와 식물성 PLA 소재를 컴파운딩 하게 되는데, 이때 <실험 4>, <실험 5>의 결과에서와 같이 절연성 결정화 핵제가 40중량% 이하이면 방사율이 떨어지고 50중량% 이상이면 충격강도가 약해져 제품 생산시 문제가 될 수 있다. 본 발명에서는 이런 문제점을 해결하기 위해 PLA 소재에 생분해성 소재인 PBAT를 혼합하여 물성을 극복하였다. 그리고 PLA 소재 60중량%와 제 4단계에 의해 만들어진 절연성 결정화 핵제 40중량%를 혼합하여 사용하고 있다. 아래 <실험 4>와 <실험 5>의 결과는 PLA 소재에 제 4단계에서 혼합된 절연성 결정화 핵제를 컴파운딩 했을 때, 방사율과 충격강도를 데스트한 실험 결과이다. In the fifth step of the present invention, the insulating crystallization nucleating agent and the vegetable PLA material mixed in the fourth step are compounded. When the insulating crystallization nucleating agent is 40% by weight or less as in the results of <Experiment 4> and <Experiment 5>, If the emissivity falls and more than 50% by weight, the impact strength is weakened, which may be a problem in the production of the product. In order to solve such problems, the present invention overcomes the physical properties by mixing PBAT, which is a biodegradable material, with PLA material. In addition, 60% by weight of the PLA material and 40% by weight of the insulating crystallization nucleating agent produced by the fourth step is used. The results of <Experiment 4> and <Experiment 5> are test results of emissivity and impact strength when compounding the insulating crystallization nucleating agent mixed in the fourth step in the PLA material.

<실험 4><Experiment 4> PLA 60중량% + 전도성 필러 40중량%
(일반적인 소재)
60 wt% PLA + 40 wt% conductive filler
(General material)
PLA 60중량% + 제 4단계 40중량%60 wt% PLA + 40 wt% 비고Remarks
방사율Emissivity 0.42(42%)0.42 (42%) 0.87(87%)0.87 (87%)

<실험 5>Experiment 5 PLA70중량% + 제4단계 30중량%70 wt% PLA + 30 wt% PLA55중량% + 제4단계 45중량%55 wt% PLA + 45 wt% PLA45중량% + 제4단계 55중량%45% by weight of PLA + 55% by 4th stage 비고Remarks 충격강도Impact strength 2.32.3 2.12.1 1.61.6

단위 : Kg,Cm/Cm=ASTMD 256Izod, 시편사출Unit: Kg, Cm / Cm = ASTMD 256Izod, Specimen Injection

본 발명은 상기와 같은 실험 결과를 기초로 열전도율 실험을 하였고, 실험결과 제 3단계에서 만들어진 결정화 핵제는 제 4단계 절연 전도성 필러(filer)에 따라 열전도율 특성을 조절할 수 있다는 것을 알 수 있었다. According to the present invention, the thermal conductivity test was performed based on the above experimental results, and it was found that the crystallization nucleating agent produced in the third step can adjust the thermal conductivity properties according to the fourth insulating conductive filler.

아래 <실험 6>의 데이터는 LED Chip8Watt를 히트싱크 무게 80g에 LED PCB메탈 기판두께 1.2mm에 실장후 LED 정션온도(Tj)와 히트싱크 표면온도를 측정한 실험 데이터이다.The data of <Experiment 6> is the experimental data of LED junction temperature (Tj) and heat sink surface temperature after mounting LED Chip8Watt with heat sink weight 80g and LED PCB metal substrate thickness 1.2mm.

<실험 6>Experiment 6 PLA 60중량% + 일반적인 Al2O3 필러40중량%60 wt% PLA + 40 wt% typical Al 2 O 3 filler PLA 60중량% + 제4단계중 Al2O3선택 필러 40중량%60 wt% PLA + 40 wt% Al 2 O 3 filler in the fourth stage PLA 60중량% + 제4단계중 AlN선택 필러 40중량%60 wt% PLA + 40 wt% AlN selection filler in the 4th stage 비고Remarks LED TjLED Tj 68.3℃68.3 ℃ 60.4℃60.4 ℃ 56.7℃56.7 ℃ 히트싱크
표면온도
Heatsink
Surface temperature
43.2℃43.2 ℃ 52.7℃52.7 ℃ 49.2℃49.2 ℃
방사율Emissivity 0.42(42%)0.42 (42%) 0.87(87%)0.87 (87%) 0.88(88%)0.88 (88%)

<실험 6>의 결과 데이터처럼 열에너지는 열전도율이 좋을수록 열을 외부로 방출하는 기능이 상승할 수 있지만 결정격자에 진동과 방사율이 탁월한 절연성 결정화 핵제를 첨가했을 때 LED Chip에 온도를 외부로 방출하는 복사기능이 추가되어 효율적인 열관리로 LED 칩에 열충격을 방지하고 LED 칩의 수명을 길게 할 수 있었다.As shown in the results of <Experiment 6>, thermal energy can improve the ability to release heat to the outside as the thermal conductivity is better, but when the insulating crystallization nucleating agent with excellent vibration and emissivity is added to the crystal lattice, With the addition of radiation, efficient thermal management prevents thermal shock to the LED chip and extends the life of the LED chip.

또한 전도성 필러(filer)의 종류에 따라 열전도율 특성이 다르게 나타나지만 전도성 필러(filer)의 가격 및 경제성에 따라 결정화 핵제를 선택적으로 사용하면, 절연 기능과 방사율이 우수하고 친환경적이며 열전도성 우수한 LED 히트싱크용 복합 소재를 만들 수 있다.In addition, although the thermal conductivity characteristics are different depending on the type of conductive filler, if the crystallization nucleating agent is selectively used according to the price and economics of the conductive filler, the LED heatsink having excellent insulation function, emissivity, eco-friendliness and excellent thermal conductivity is used. You can create composite materials.

도 2는 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 평면도, 도 3은 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 측면도, 도 4는 본 발명에 따른 복합 플라스틱을 적용한 LED 히트싱크의 저면도이다. 도 2 내지 도 4에 도시된 바와 같이, 종래에는 주로 알루미늄으로 제작되었던 히트싱크를 방사율과 절연성이 우수한 복합 플라스틱을 이용하여 생산하고 있다.2 is a plan view of an LED heat sink to which the composite plastic according to the present invention is applied, FIG. 3 is a side view of an LED heat sink to which the composite plastic according to the present invention is applied, and FIG. 4 is a bottom view of the LED heat sink to which the composite plastic according to the present invention is applied. It is also. As shown in Figures 2 to 4, conventionally produced heat sinks mainly made of aluminum using a composite plastic excellent in emissivity and insulation.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서Although the present invention has been shown and described with reference to the preferred embodiments as described above, it is not limited to the above embodiments and within the scope not departing from the spirit of the invention.

당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
Various changes and modifications may be made by those skilled in the art to which the present invention pertains.

100 : LED 200 : PCB기판
300 : 히트싱크 400 : 베이스
100: LED 200: PCB board
300: heat sink 400: base

Claims (13)

방사율이 우수하고 절연기능을 구비한 생분해성 복합플라스틱 제조방법에 있어서,
활성탄의 기공에 나노은을 침투시키고 건조하는 제 1단계;
건조된 상기 활성탄에 에폭시수지를 침투시키고 표면코팅시키는 제 2단계;
코팅된 상기 활성탄을 열경화시켜 결정화 핵제를 생성하는 제 3단계;
상기 결정화 핵제에 절연전도성 필러(filer)인 질화알루미늄(AlN), 질화붕소(BN), 산화마그네슘(MGO), 질화규소(SIN), 탄화규소(SIC) 및 산화알루미늄(AL2O3) 중 어느 하나 이상을 혼합하여 절연성 결정화 핵제를 생성하는 제 4단계;
상기 절연성 결정화 핵제와 식물성 PLA(Poly Lactic Acid) 소재를 컴파운딩하여 생분해성 복합플라스틱을 생성하는 제 5단계; 및
상기 생분해성 복합플라스틱을 트윈스크류를 이용하여 압출후 펠렛화 하는 제 6단계
로 이루어지는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
In the manufacturing method of biodegradable composite plastic having excellent emissivity and insulation function,
A first step of infiltrating and drying nanosilver into pores of activated carbon;
A second step of penetrating and surface coating the epoxy resin on the dried activated carbon;
A third step of thermally curing the coated activated carbon to produce a crystallization nucleating agent;
Any one of aluminum nitride (AlN), boron nitride (BN), magnesium oxide (MGO), silicon nitride (SIN), silicon carbide (SIC), and aluminum oxide (AL 2 O 3 ), which are insulating conductive fillers Mixing at least one to produce an insulating crystallization nucleating agent;
A fifth step of compounding the insulating crystallization nucleating agent and a vegetable PLA (Poly Lactic Acid) material to generate a biodegradable composite plastic; And
Sixth step of pelletizing the biodegradable composite plastic after extrusion using twinscrew
Method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that consisting of.
제 1항에 있어서,
상기 활성탄의 입도 크기는 1 ~ 5㎛인 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The particle size of the activated carbon is a method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that 1 ~ 5㎛.
제 1항에 있어서,
상기 나노은은 에탄올베이스이며, 상기 활성탄에 비중대비 입자 침투율이 400-500ppm인 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The nanosilver is an ethanol base, the method of producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the particle penetration rate relative to specific gravity in the activated carbon 400-500ppm.
제 1항에 있어서,
상기 제 1단계의 건조는 상기 활성탄 기공에 있는 수분을 제거하기 위한 것으로 상기 나노은이 침투된 활성탄 중량 1000g 기준으로, 열풍건조온도 90~110℃에서 40~60분간 진행하는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The drying of the first step is to remove moisture in the pores of the activated carbon, based on the weight of the activated carbon in which the nano silver has penetrated, based on the weight of 1000g, LED heat sink, characterized in that for 40 to 60 minutes at a hot air drying temperature 90 ~ 110 ℃ Method for producing a biodegradable composite plastic used as a material of.
제 1항에 있어서,
상기 에폭시수지의 비중은 1.189~1.230이며, 상기 나노은이 침투된 활성탄 무게비 45~50중량%와 에폭시수지 50~55중량% 비율로 혼합한 후 가압리더기로 반응시키는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The specific gravity of the epoxy resin is 1.189 ~ 1.230, the material of the LED heat sink, characterized in that the nano silver is mixed with 45 to 50% by weight of activated carbon weight ratio and 50 to 55% by weight of epoxy resin and reacted with a pressure reader. Method for producing a biodegradable composite plastic used as a.
제 5항에 있어서,
혼합된 상기 나노은이 침투된 활성탄과 상기 에폭시수지를 혼합한 활성탄의 전체 비중은 0.7~0.8인 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
6. The method of claim 5,
Method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the total specific gravity of the activated carbon in which the nano silver is mixed and the activated carbon mixed with the epoxy resin is 0.7 ~ 0.8.
제 5항에 있어서,
상기 가압리더기에 의해 상기 나노은이 침투된 활성탄과 상기 에폭시수지가 혼합된 활성탄을 가온믹서기에서 온도 100~110℃, 60~100RPM 속도로 30~40분간 프리 믹서(free mixer)를 수행한 후, 온도 150~170℃, 200~250RPM 속도로 트윈가압리더기에서 경화시키는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
6. The method of claim 5,
The activated carbon in which the nano silver penetrated by the pressure reader and the activated carbon mixed with the epoxy resin were subjected to a free mixer for 30 to 40 minutes at a temperature of 100 to 110 ° C. and 60 to 100 RPM in a warm mixer, and then Method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that hardened in a twin-pressure reader at 150 ~ 170 ℃, 200 ~ 250RPM speed.
제 7항에 있어서,
상기 프리 믹서(free mixer)수행에서 상기 활성탄 기공 및 표면에 상기 에폭시수지를 침투시키고 표면코팅이 진행되는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
8. The method of claim 7,
The method of manufacturing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the epoxy resin penetrates the pores and the surface of the activated carbon in the free mixer and the surface coating is carried out.
제 1항에 있어서,
상기 열경화는 상기 코팅된 활성탄을 100중량%로 했을 때, 스테아린산(Stearic Acid)을 3~5중량% 추가 첨가한 후 가압리더기에서 20~30분 열경화 시키는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
When the thermal curing is 100% by weight of the coated activated carbon, 3 ~ 5% by weight of stearic acid (Stearic Acid) is added to the material of the LED heat sink characterized in that the heat curing 20 ~ 30 minutes in a pressure reader Method for producing a biodegradable composite plastic used as a.
제 1항에 있어서,
상기 제 5단계의 식물성 PLA 소재에 충격강도와 내열특성을 높이기 위해 생분해성 소재인 PBAT(Polybutylene adipate-co-terephthalate)를 혼합하여 사용하되, PLA 85~90중량%와 PBAT 10~15중량%로 컴파운딩 하여 사용하는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
In order to increase the impact strength and heat resistance of the plant PLA material of the fifth step, a biodegradable polybutylene adipate-co-terephthalate (PBAT) is mixed and used at 85 to 90% by weight of PLA and 10 to 15% by weight of PBAT. Method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the compounding used.
제 1항에 있어서,
상기 절연성 결정화 핵제는 상기 결정화 핵제 40중량%와 상기 절연전도성 필러(filer) 소재 60중량%를 혼합하여 만들어지는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The insulating crystallization nucleating agent is a method of manufacturing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the mixture is made of 40% by weight of the crystallization nucleating agent and 60% by weight of the insulating conductive filler (filer) material.
제 1항에 있어서,
상기 생분해성 복합플라스틱은 상기 PLA 50~60중량%와 절연성 결정화 핵제 40~50중량%를 컴파운딩 하여 생성되는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
The biodegradable composite plastic is a method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the compound is produced by compounding 50 to 60% by weight of PLA and 40 to 50% by weight of the insulating crystallization nucleating agent.
제 1항에 있어서,
상기 트윈스크류의 온도를 170~190℃로 설정하여 압출후 펠렛화 하는 것을 특징으로 하는 LED 히트싱크의 소재로 사용되는 생분해성 복합 플라스틱의 제조방법.
The method of claim 1,
Method for producing a biodegradable composite plastic used as a material of the LED heat sink, characterized in that the twin screw pelletizing after extrusion by setting the temperature of the screw to 170 ~ 190 ℃.
KR1020130030461A 2013-03-21 2013-03-21 Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink KR101281696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130030461A KR101281696B1 (en) 2013-03-21 2013-03-21 Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130030461A KR101281696B1 (en) 2013-03-21 2013-03-21 Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink

Publications (1)

Publication Number Publication Date
KR101281696B1 true KR101281696B1 (en) 2013-07-05

Family

ID=48996468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130030461A KR101281696B1 (en) 2013-03-21 2013-03-21 Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink

Country Status (1)

Country Link
KR (1) KR101281696B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433319B1 (en) * 2013-12-31 2014-08-22 주식회사 오상엠엔이티 Led indoor lighting apparatus
KR101447177B1 (en) 2014-07-29 2014-10-06 주식회사 영남엘이디라이팅 Hybrid LED face lighting apparatus based on complex plastic with PLA coated high efficiency thermally conductive composition and high efficiency thermal-conductive micro-line for improving heat radiation performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283764A (en) 2008-05-23 2009-12-03 Taiheiyo Cement Corp High-heat-radiation carbon material, and electronic component using the same
KR100972753B1 (en) 2009-11-19 2010-07-28 탁명수 Aluminum nitride coating composite for sinking heat, heat sink using the composite and manufacturing method of the heat sink
JP2012171965A (en) 2011-02-17 2012-09-10 Starlite Co Ltd Insulating and thermally-conductive resin composition for extrusion molding and extrusion molded product using the same
JP2012255055A (en) 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283764A (en) 2008-05-23 2009-12-03 Taiheiyo Cement Corp High-heat-radiation carbon material, and electronic component using the same
KR100972753B1 (en) 2009-11-19 2010-07-28 탁명수 Aluminum nitride coating composite for sinking heat, heat sink using the composite and manufacturing method of the heat sink
JP2012171965A (en) 2011-02-17 2012-09-10 Starlite Co Ltd Insulating and thermally-conductive resin composition for extrusion molding and extrusion molded product using the same
JP2012255055A (en) 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433319B1 (en) * 2013-12-31 2014-08-22 주식회사 오상엠엔이티 Led indoor lighting apparatus
KR101447177B1 (en) 2014-07-29 2014-10-06 주식회사 영남엘이디라이팅 Hybrid LED face lighting apparatus based on complex plastic with PLA coated high efficiency thermally conductive composition and high efficiency thermal-conductive micro-line for improving heat radiation performance

Similar Documents

Publication Publication Date Title
KR100972753B1 (en) Aluminum nitride coating composite for sinking heat, heat sink using the composite and manufacturing method of the heat sink
KR20160085253A (en) Heat sink
JP5582553B1 (en) High thermal conductivity heat dissipation sheet and method for manufacturing the same
JP2008512852A (en) Composite heat sink with metal base and graphite fins
CN102463722A (en) Metal clad laminate, method of manufacturing the same, and heat-radiating substrate
JP4916764B2 (en) Anisotropic heat conduction laminated heat dissipation member
CN1997514A (en) Thermal interface material
KR101839920B1 (en) Heat-dissipating Printed Circuit Board and Manufacturing Method Thereof
JP2008120065A (en) Heat radiating film
KR101281696B1 (en) Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink
US20180291172A1 (en) Thermally and/or electrically conductive materials and method for the production thereof
TW201343359A (en) Manufacturing method of carbon heat sink
KR101832769B1 (en) Heat-disspating printed circuit board using carbon-based material and method for fabricating the same
CN103213973B (en) Method for preparing flexible highly oriented graphite heat conduction material
KR101766230B1 (en) Heat exchanger materials using carbon composites and manufacturing method thereof
KR101473708B1 (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101704793B1 (en) Printed circuit boards using the epoxy resin composition and its manufacturing method
KR101894522B1 (en) method for fabricating heat-disspating PCB using carbon-based materal for LED lighting
KR101977125B1 (en) method for fabricating PCB using carbon-based materal for LED lighting
KR101839917B1 (en) Heat-dissipating type PCB and Manufacturing Method Thereof
KR102113191B1 (en) Thermal conductive resin composite and heatsink using the same
KR20130118417A (en) High heat dissipative bendable metal copper clad laminate
KR101457181B1 (en) Improved heat conductivity and emissivity ceramic substrate for heat dissipation and method for manufacturing the same
KR102159078B1 (en) Method for Manufacturing of Heat-radiating Structure
KR101425596B1 (en) Heat-radiating substrate and manufacturing method of the same that

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 7