KR101278981B1 - An aluminum heat exchanger manufacturing method - Google Patents

An aluminum heat exchanger manufacturing method Download PDF

Info

Publication number
KR101278981B1
KR101278981B1 KR1020110058241A KR20110058241A KR101278981B1 KR 101278981 B1 KR101278981 B1 KR 101278981B1 KR 1020110058241 A KR1020110058241 A KR 1020110058241A KR 20110058241 A KR20110058241 A KR 20110058241A KR 101278981 B1 KR101278981 B1 KR 101278981B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
plating
aluminum heat
nickel
aluminum
Prior art date
Application number
KR1020110058241A
Other languages
Korean (ko)
Other versions
KR20120138853A (en
Inventor
지민선
한봉기
Original Assignee
주식회사 글로벌원
지민선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 글로벌원, 지민선 filed Critical 주식회사 글로벌원
Priority to KR1020110058241A priority Critical patent/KR101278981B1/en
Publication of KR20120138853A publication Critical patent/KR20120138853A/en
Application granted granted Critical
Publication of KR101278981B1 publication Critical patent/KR101278981B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/087Heat exchange elements made from metals or metal alloys from nickel or nickel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chemically Coating (AREA)

Abstract

본 발명은 알루미늄 열교환기 제조방법에 관한 것으로서, 알루미늄 열교환기 내부 격벽체의 결합력을 높이고 산성과 알칼리에 모두 약한 알루미늄의 내식성을 향상시킬 수 있도록 한 것이다.
즉, 본 발명은 알루미늄 열교환기의 제조방법에 있어서, 열교환기의 내부 격벽체와 상하 교환기몸체의 내면에 니켈 화학도금하여 이루어지는 것이다.
따라서, 본 발명은 알루미늄 열교환기의 내부를 니켈 화학도금함으로써 내부 격벽체의 결합력이 높아지고 산성과 알칼리에 모두 약한 알루미늄의 내식성이 향상되는 것이다.
The present invention relates to a method for manufacturing an aluminum heat exchanger, to increase the bonding force of the inner partition of the aluminum heat exchanger and to improve the corrosion resistance of aluminum, which is weak to both acid and alkali.
That is, in the manufacturing method of an aluminum heat exchanger, this invention is obtained by carrying out nickel chemical plating on the inner partition of an heat exchanger, and the inner surface of an upper and lower exchanger body.
Therefore, in the present invention, nickel chemical plating of the inside of the aluminum heat exchanger increases the bonding strength of the inner partition and improves the corrosion resistance of aluminum, which is weak to both acid and alkali.

Description

알루미늄 열교환기 제조방법{An aluminum heat exchanger manufacturing method}An aluminum heat exchanger manufacturing method

본 발명은 알루미늄 열교환기 제조방법에 관한 것으로서, 더욱 상세하게는 알루미늄 열교환기의 제조방법에 있어서, 열교환기의 내부 격벽체와 상하 교환기몸체의 내면에 니켈 화학도금하여 내부 격벽체의 결합력을 높이고 산성과 알칼리에 모두 약한 알루미늄의 내식성을 향상시킬 수 있도록 함을 목적으로 한 것이다.The present invention relates to a method for manufacturing an aluminum heat exchanger, and more particularly, in a method for manufacturing an aluminum heat exchanger, by nickel-plating nickel on the inner surfaces of the inner bulkhead of the heat exchanger and the upper and lower exchanger bodies to increase the bonding force of the inner bulkhead and to acidic It aims to improve the corrosion resistance of aluminum which is weak to both alkali and alkali.

본 발명의 다른 목적은 교환기몸체의 외면에 니켈과 구리를 순차로 화학도금하여 표면을 통하여 균등 열전도에 의하여 원활한 열전도가 이루어질 수 있도록 함을 목적으로 한 것이다.Another object of the present invention is to provide a smooth thermal conductivity by the uniform heat conduction through the surface by chemically plating nickel and copper on the outer surface of the exchanger body.

본 발명의 또 다른 목적은 교환기몸체의 일측에 사방 측면이 절연코팅된 후 니켈을 화학도금과 구리를 순차로 도금한 열전소자를 포함하여 열전소자에 의한 열전달효과를 높이고 열전소자의 결로손상을 방지할 수 있도록 함을 목적으로 한 것이다.Another object of the present invention is to increase the heat transfer effect by the thermoelectric element and to prevent condensation damage of the thermoelectric element, including a thermoelectric element which is coated with nickel and chemical plating and copper sequentially after the insulation coating on one side of the exchanger body The purpose is to make it possible.

일반적으로, 열교환기는 내부에 액체 또는 기체의 열교환매체를 통과시키고 외부공기와 열교환시켜 열교환매체를 냉각 또는 가온하는 것이다.In general, a heat exchanger is a liquid or gas heat exchange medium therein and heat exchange with external air to cool or warm the heat exchange medium.

이상과 같은 열교환기는 열교환효율과 용이한 성형을 위하여 알루미늄으로 제조되고 있으며, 내부에 열교환매체가 고르게 분산 순환될 수 있게 주름 성형된 내부 격벽체를 구비하여 실시하고 있으며, 교환기몸체는 뚜껑형태로 이루어진 상부 교환기몸체와 용기형태로 이루어진 하부 교환기몸체로 구성되어 있다.The heat exchanger as described above is made of aluminum for heat exchange efficiency and easy molding. The heat exchanger is provided with a corrugated inner partition wall formed so that the heat exchange medium can be distributed and circulated evenly therein. It consists of an upper exchanger body and a lower exchanger body in the form of a container.

상기한 바와 같이 구성된 열교환기는 상 하부 교환기몸체 중 일측에 내부격벽을 브레이징을 통하여 접합고정하여 제조하고 있다.The heat exchanger configured as described above is manufactured by bonding and fixing the inner partition wall to one side of the upper and lower exchanger bodies through brazing.

그러나, 상기한 바와 같은 열교환기에 사용되는 알루미늄은 산성과 알칼리에 화학적변화를 일으키는 특성을 가지고 있어 브레이징부분이 쉽게 부식손상되는 문제점이 있었다.However, the aluminum used in the heat exchanger as described above has a property of causing chemical changes in acid and alkali, so that the brazing portion is easily damaged by corrosion.

또한, 상기 알루미늄은 열전달 특성상 모서리와 같은 첨단부분으로 집중 방열되는 특성을 가지고 있어 열전달 효율이 떨어지는 문제점이 있었다. In addition, the aluminum has a characteristic that heat dissipation efficiency is deteriorated due to the heat dissipation characteristic to the tip portion such as the edge due to the heat transfer characteristics.

이에, 본 발명은 상술한 바와 같이 종래 알루미늄 열교환기가 브레이징과정에 노출된 부위에 쉽게 부식손상되고, 알루미늄의 특성상 열교환 효율이 떨어지는 문제점을 해결할 수 있도록 한 것이다.Accordingly, the present invention is to solve the problem that the conventional aluminum heat exchanger is easily corroded to the portion exposed to the brazing process, the heat exchange efficiency is deteriorated due to the characteristics of the aluminum as described above.

즉, 본 발명은 알루미늄 열교환기의 제조방법에 있어서, 열교환기의 내부 격벽체와 상하 교환기몸체의 내면에 니켈 화학도금하여 이루어지는 것이다.That is, in the manufacturing method of an aluminum heat exchanger, this invention is obtained by carrying out nickel chemical plating on the inner partition of an heat exchanger, and the inner surface of an upper and lower exchanger body.

또한, 본 발명은 교환기몸체의 외면에 니켈과 구리를 순차로 화학도금이 추가로 이루어지는 것이다.In addition, the present invention is the plating of the nickel and copper in order to the outer surface of the exchanger body is further made of chemical plating.

또한, 본 발명은 교환기몸체의 사방 측면이 절연코팅된 후 니켈을 화학도금하고 구리를 순차로 도금한 열전소자를 추가로 포함하여 이루어진 것이다.In addition, the present invention further comprises a thermoelectric element in which nickel is chemically plated and copper is sequentially plated after the four sides of the exchanger body are insulated coated.

따라서, 본 발명은 알루미늄 열교환기의 내부를 니켈 화학도금함으로써 내부 격벽체의 결합력이 높아지고 산성과 알칼리에 모두 약한 알루미늄의 내식성이 향상되고, 교환기몸체의 외면에 니켈과 구리를 순차로 화학도금함으로써 교환기몸체의 외면을 통한 원활한 열전도가 이루어지며, 교환기몸체의 일측에 사방 측면이 절연코팅된 후 니켈과 구리를 순차로 도금한 열전소자를 포함함으로써 열전소자에 의한 열전달효과가 높아지고 열전소자의 결로손상이 방지되는 것이다.Therefore, in the present invention, nickel chemical plating of the inside of the aluminum heat exchanger increases the bonding strength of the internal partition wall, and the corrosion resistance of aluminum, which is weak to both acid and alkali, is improved, and the chemical exchanger of nickel and copper on the outer surface of the exchanger body in order to exchange the exchanger. Smooth heat conduction is achieved through the outer surface of the body, and the insulation is coated on one side of the exchanger body, and then includes a thermoelectric element in which nickel and copper are sequentially plated, thereby increasing the heat transfer effect by the thermoelectric element and damaging condensation of the thermoelectric element. To be prevented.

도 1 은 본 발명에 따른 일 실시 예를 보인 공정도.
도 2 는 본 발명에 따른 알루미늄 열교환기내부도금과정에 있어 완충저수부를 구비한 것을 보인 공정도.
도 3 은 본 발명에 따른 다른 실시 예로 알루미늄 열교환기의 외면도금과정을 보인 공정도.
도 4 는 본 발명에 따른 또 다른 실시 예로 열전소자 결속과정을 보인 공정도.
1 is a process diagram showing an embodiment according to the present invention.
Figure 2 is a process diagram showing that the buffer reservoir in the internal plating process of the aluminum heat exchanger according to the present invention.
Figure 3 is a process diagram showing the outer plating process of the aluminum heat exchanger in another embodiment according to the present invention.
4 is a process diagram showing a thermoelectric device binding process according to another embodiment according to the present invention.

이하, 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows.

본 발명은 알루미늄 열교환기의 내부 격벽체의 결합력을 높이고 내식성이 향상 되도록하며, 교환기몸체의 외면을 통한 원활한 열전도가 이루어지도록 한 것이다.The present invention is to increase the bonding force of the inner partition of the aluminum heat exchanger and to improve the corrosion resistance, and to achieve a smooth heat conduction through the outer surface of the exchanger body.

즉, 본 발명은 도 1 에 도시된 바와 같이 내부에 열교환매체가 고르게 분산 순환될 수 있게 주름 성형된 내부 격벽체(11)구비하고, 상부 교환기몸체(12)와 하부 교환기몸체(13)로 구성된 알루미늄 열교환기의 제조방법에 있어서, 내부 격벽체(11)를 상, 하부 교환기몸체 중 어느 일 측에 브레이징 결속한 상, 하부 교환기몸체를 결합하여 알루미늄 열교환기(10)를 조립하는 열교환기조립과정(110)과, 상기 알루미늄 열교환기(10)의 내부에 니켈 화학도금액을 주입하여 알루미늄 열교환기의 내벽에 니켈 화학도금하는 열교환기내부도금과정(120)으로 이루어지는 것이다.
That is, the present invention has an inner bulkhead 11 having a corrugated shape so that the heat exchange medium can be evenly distributed and circulated therein as shown in FIG. 1, and includes an upper exchanger body 12 and a lower exchanger body 13. In the manufacturing method of the aluminum heat exchanger, a heat exchanger assembly process of assembling the aluminum heat exchanger (10) by combining the upper and lower exchanger body in which the inner partition body (11) is brazed to one of the upper and lower exchanger bodies. 110 and a heat exchanger inner plating process 120 in which a nickel chemical plating solution is injected into the aluminum heat exchanger 10 and nickel chemically plated on the inner wall of the aluminum heat exchanger.

여기서, 상기 열교환기내부도금과정(120)은 니켈 화학도금액이 알루미늄 열교환기(10)의 유입구와 유출구 중 어느 하나를 통하여 연속 주입되고, 유입구와 유출구 중 다른 하나를 통하여 연속 배출되게 이루어지는 것이다.
Here, the heat exchanger inner plating process 120 is a nickel chemical plating solution is continuously injected through any one of the inlet and outlet of the aluminum heat exchanger 10, and is continuously discharged through the other of the inlet and the outlet.

상기 열교환기내부도금과정(120)의 니켈 화학도금액의 주입과정에 있어 내부 격벽체(11)의 모서리에서 맴돌이 현상에 의하여 기포가 잔류하여 도금불량이 발생하는 것을 방지할 수 있게 니켈 화학도금액이 알루미늄 열교환기(10)로 유입되는 유입단면적 보다 알루미늄 열교환기에서 배출되는 배출단면적이 적게 형성하여 이루어지는 것이다.
In the process of injecting the nickel chemical plating solution of the internal plating process 120 of the heat exchanger, the nickel chemical plating solution may be prevented from forming a defective plating due to bubbles remaining at the edge of the inner partition 11. The discharge cross-sectional area discharged from the aluminum heat exchanger is smaller than the inflow cross-sectional area flowing into the aluminum heat exchanger 10.

한편, 상기 열교환기내부도금과정(120)에 있어 알루미늄 열교환기(10)로의 화학도금액 주입은 화학도금액의 배출 측에 펌프(21)를 구비하여 흡입에 의하여 이루어지게 실시할 수 있는 것이다.On the other hand, in the heat exchanger inner plating process 120, the injection of the chemical plating solution into the aluminum heat exchanger 10 can be carried out by the suction having a pump 21 on the discharge side of the chemical plating solution.

또한, 도 2 에 도시된 바와 같이 상기 펌프(21)의 배출 측에 알루미늄 열교환기(10)보다 높은 곳에 위치하여 기포의 배출을 유도할 수 있게 배출되는 화학도금액을 저수하였다 배출하는 완충저수부(22)를 구비하여 실시할 수 있는 것이다.In addition, as shown in Figure 2 located on the discharge side of the pump 21 is located higher than the aluminum heat exchanger 10 to store the chemical plating solution discharged to induce the discharge of the bubble buffer reservoir for discharging It can be implemented by providing (22).

상기 알루미늄 열교환기(10)의 내부에 니켈 화학도금하여 내부니켈도금층(10a)을 형성한 후 열전도를 높일 수 있게 구리 도금하여 내부구리도금층(10b)을 형성하는 내부구리도금과정을 실시할 수 있는 것이다.Nickel chemical plating on the inside of the aluminum heat exchanger 10 to form the inner nickel plating layer (10a) and then copper plating to increase the thermal conductivity to perform the inner copper plating process to form the inner copper plating layer (10b) will be.

상기 내부구리도금과정은 알루미늄 열교환기(10)의 내부에 구리도금액을 주입하여 실시할 수 있는 것이다.
The internal copper plating process may be performed by injecting a copper plating solution into the aluminum heat exchanger 10.

그리고, 본 발명의 다른 실시 예로는 도 3 에 도시된 바와 같이 알루미늄 열교환기(10)의 외면에 구리 화학도금이 추가로 이루어지게 하는 열교환기외부도금과정(200)을 실시할 수 있는 것이다.In another embodiment of the present invention, as shown in FIG. 3, the outer heat exchanger outer plating process 200 may be performed to further perform copper chemical plating on the outer surface of the aluminum heat exchanger 10.

상기 열교환기외부도금과정(200)에 있어 외부구리도금층(10d)에 의한 알루미늄 열교환기(10)의 외면이 전이침식되는 것을 방지할 수 있게 니켈도금을 우선적으로 실시하여 외부니켈도금층(10c)을 형성하고, 상기 외부니켈도금층(10c)의 상부에 외부구리도금층(10d)이 이루어지게 실시할 수 있는 것이다.In the heat exchanger outer plating process 200, the nickel plating is preferentially performed to prevent the outer surface of the aluminum heat exchanger 10 from being transferred by the outer copper plating layer 10d to the outer nickel plating layer 10c. The outer copper plating layer 10d may be formed on the upper portion of the outer nickel plating layer 10c.

상기 외부니켈도금층(10c)은 5~10㎛의 두께로 형성하고, 상기 외부구리도금층(10d)은 20~30㎛로 실시함이 바람직한 것이다.
The outer nickel plating layer (10c) is formed to a thickness of 5 ~ 10㎛, the outer copper plating layer (10d) is preferably carried out to 20 ~ 30㎛.

또한, 본 발명의 또 다른 실시 예로는 도 4 에 도시된 바와 같이 알루미늄 열교환기(10)의 외면에 열전소자(30)를 결속하는 열전소자 결속과정을 추가로 실시할 수 있는 것이다.In another embodiment of the present invention, as shown in FIG. 4, a thermoelectric device binding process of binding the thermoelectric element 30 to the outer surface of the aluminum heat exchanger 10 may be additionally performed.

상기 열전소자 결속과정은 열전도효율을 높이고 결로에 의한 열전소자(30)의 소자부(31) 손상을 방지할 수 있게 절연수지에 의한 절연코팅층(42)이 이루어지는 소자부절연과정(310)과, 상하면 열전도 세라믹부(32)에는 니켈화학도금과 구리도금이 순차로 이루어지게 하는 세라믹도금과정(320)으로 이루어진 것이다.The thermoelectric device binding process is an element part insulating process 310 is made of an insulating coating layer 42 by an insulating resin to increase the thermal conductivity efficiency and to prevent damage to the device portion 31 of the thermoelectric element 30 by condensation; The upper and lower thermal conductive ceramics 32 are made of a ceramic plating process 320 in which nickel chemical plating and copper plating are sequentially made.

상기 소자부절연과정(310)은 열전소자(30)의 상하면 열전도 세라믹부(32)에 코팅방지를 위한 마스킹테입등으로 마스킹처리를 하고, 열전소자의 외면에 암모니아기의 프라이머를 도포한 후 진공챔버에서 페럴린과 같은 유기물을 승화 코팅하여 이루어지는 것이다.The device portion insulation process 310 is a masking treatment, such as masking tape to prevent the coating on the upper and lower thermal conductive ceramic portion 32 of the thermoelectric element 30, and after applying the primer of the ammonia group on the outer surface of the thermoelectric element vacuum It is made by sublimation coating of organic substances, such as perulin in the chamber.

상기 세라믹도금과정(320)은 절연코팅된 열전소자(30)의 상하면 열전도 세라믹부(32)에 형성한 마스킹테입(41)을 제거하고 니켈도금액에 의하여 외면에 세라믹 니켈도금층(30a)을 형성한 후 세라믹 구리도금층(30b)을 형성한 것으로서, 상기 세라믹 구리도금층(30b)은 전기도금에 의하여 실시할 수 있는 것이다.The ceramic plating process 320 removes the masking tape 41 formed on the upper and lower thermal conductive ceramic portions 32 of the insulating coated thermoelectric element 30 and forms the ceramic nickel plating layer 30a on the outer surface by the nickel plating solution. After that, the ceramic copper plating layer 30b is formed, and the ceramic copper plating layer 30b can be performed by electroplating.

이상과 같이 사방 측면으로 노출되는 열전소자(30)의 소자부(31)가 절연코팅되고 열전소자(30)의 상하면 열전도 세라믹부(32)의 외면에 외부니켈도금층(30a)과 외부구리도금층(30b)이 형성된 열전소자(30)는 열전도본드 또는 쏠더크림에 의하여 알루미늄 열교환기(10)의 외면에 접합하여 실시하는 것이다.
As described above, the element part 31 of the thermoelectric element 30 exposed to all sides is insulated and coated on the outer surface of the upper and lower thermal conductive ceramic portions 32 of the thermoelectric element 30. The outer nickel plating layer 30a and the outer copper plating layer ( The thermoelectric element 30 having the 30b) formed thereon is bonded to the outer surface of the aluminum heat exchanger 10 by a thermal conductive bond or a solder cream.

이하, 본 발명의 사용과정에 대하여 설명하면 다음과 같다.Hereinafter, the use process of the present invention will be described.

상기한 바와 같이 열교환기의 제조방법에 있어서, 내부 격벽체(11)를 상, 하부 교환기몸체 중 어느 일측에 브레이징 결속한 상, 하부 교환기몸체를 결합하여 알루미늄 열교환기(10)를 조립하는 열교환기조립과정(110)과, 상기 알루미늄 열교환기(10)의 내부에 니켈 화학도금액을 주입하여 알루미늄 열교환기(10)의 내벽에 니켈 화학도금하는 열교환기내부도금과정(120)으로 이루어지는 본 발명의 알루미늄 열교환기(10)를 적용하여 실시하게 되면, 알루미늄 열교환기(10)의 내부가 니켈 화학도금층이 형성되어 부식에 의한 손상이 방지되어 열교환 매체의 막힘 등이 발생하지 않고 원활한 열교환이 이루어지는 것이다.In the manufacturing method of the heat exchanger as described above, the heat exchanger for assembling the aluminum heat exchanger (10) by combining the upper and lower exchanger body in which the inner partition 11 is brazed to one of the upper and lower exchanger bodies. Of the present invention comprising an assembly process 110 and a heat exchanger inner plating process 120 in which a nickel chemical plating solution is injected into the aluminum heat exchanger 10 and nickel chemically plated on the inner wall of the aluminum heat exchanger 10. When the aluminum heat exchanger 10 is applied, a nickel chemical plating layer is formed inside the aluminum heat exchanger 10 to prevent damage due to corrosion, so that the heat exchange medium does not become clogged.

또한, 상기 알루미늄 열교환기(10)의 내부에 내부니켈도금층(10a)의 상부에 열전도가 우수한 내부구리도금층(10b)을 형성하여 실시하게 되면, 알루미늄 열교환기(10) 내부에 순환되는 열교환 매체의 열교환이 원활하게 이루어지는 것이다.
In addition, when the inner copper plated layer 10b having excellent thermal conductivity is formed on the inner nickel plated layer 10a inside the aluminum heat exchanger 10, the heat exchange medium circulated inside the aluminum heat exchanger 10 may be formed. Heat exchange is made smoothly.

또한, 본 발명의 다른 실시 예와 같이 알루미늄 열교환기(10)의 외면에 니켈과 구리를 순차로 도금하는 열교환기외부도금과정(200)을 실시하게 되면 알루미늄 열교환기(10)의 표면을 통하여 균등 열전도에 의하여 원활한 열전도가 이루지는 것이다.In addition, when performing the heat exchanger outer plating process 200 to sequentially plate the nickel and copper on the outer surface of the aluminum heat exchanger 10 as in another embodiment of the present invention, evenly through the surface of the aluminum heat exchanger 10 The heat conduction is to achieve a smooth heat conduction.

또한, 본 발명의 또 다른 실시 예와 같이 알루미늄 열교환기(10)의 일 측에 사방 측면으로 노출되는 소자부(31)가 절연코팅된 절연코팅층(42)을 형성하는 소자부절연과정(310)과 상하면의 열전도 세라믹부(32)에 니켈을 화학도금한 외부니켈도금층(30a)을 형성하고 구리를 순차로 도금하여 외부구리도금층(30b)을 형성하는 세라믹도금과정(320)으로 가공된 열전소자(30)를 포함하여 실시하게 되면, 열전소자에 의한 열전달효과가 높아지고 열전소자의 결로손상이 방지되어 내구성이 향상되는 것이다.
In addition, as shown in another embodiment of the present invention, the element portion insulation process 310 for forming an insulation coating layer 42 insulated from the element portion 31 exposed on all sides on one side of the aluminum heat exchanger 10. The thermoelectric element processed by the ceramic plating process 320 which forms the outer nickel plating layer 30a chemically plated with nickel on the thermally conductive ceramic portion 32 on the upper and lower surfaces, and forms the outer copper plating layer 30b by sequentially plating copper. Implementing (30), the heat transfer effect by the thermoelectric element is increased and the dew condensation damage of the thermoelectric element is prevented to improve the durability.

이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, It belongs to the scope of right.

10 : 알루미늄 열교환기
10a: 내부니켈도금층 10b: 내부구리도금층
10c: 외부니켈도금층 10d: 외부구리도금층
11 : 내부 격벽체
12 : 상부 교환기몸체 13 : 하부 교환기몸체
21 : 펌프 22 : 완충저수부
30 : 열전소자
30a: 세라믹 니켈도금층
30b: 세라믹 구리도금층
31 : 소자부
32 : 열전도 세라믹부
41 : 마스킹테입 42 : 절연코팅층
110 : 열교환기조립과정
120 : 열교환기내부도금과정
200 : 열교환기외부도금과정
310 : 소자부절연과정
320 : 세라믹도금과정
10: aluminum heat exchanger
10a: inner nickel plated layer 10b: inner copper plated layer
10c: outer nickel plated layer 10d: outer copper plated layer
11: internal bulkhead
12: upper exchanger body 13: lower exchanger body
21: pump 22: buffer reservoir
30: thermoelectric element
30a: ceramic nickel plated layer
30b: ceramic copper plating layer
31 element
32: thermally conductive ceramic part
41: masking tape 42: insulation coating layer
110: heat exchanger assembly process
120: internal plating process of the heat exchanger
200: heat exchanger outer plating process
310: device portion insulation process
320: ceramic plating process

Claims (7)

알루미늄 열교환기의 제조방법에 있어서;
내부 격벽체(11)를 상, 하부 교환기몸체 중 어느 일측에 브레이징 결속한 상, 하부 교환기몸체를 결합하여 알루미늄 열교환기(10)를 조립하는 열교환기조립과정(110)과, 상기 알루미늄 열교환기(10)의 내부에 니켈 화학도금액을 주입하여 알루미늄 열교환기의 내벽에 니켈 화학도금하는 열교환기내부도금과정(120)으로 이루어지고,
알루미늄 열교환기(10)의 외면에 열전소자(30)를 결속하는 열전소자 결속과정이 추가로 이루어지되,
상기 열전소자 결속과정은 열전도효율을 높이고 결로에 의한 열전소자(30)의 소자부(31) 손상을 방지할 수 있게 절연수지에 의한 절연코팅층(42)이 이루어지는 소자부절연과정(310)과, 상하면 열전도 세라믹부(32)에는 니켈화학도금과 구리도금이 순차로 이루어지게 하는 세라믹도금과정(320)으로 이루어지고,
상기 소자부절연과정(310)은 열전소자(30)의 상하면 열전도 세라믹부(32)에 코팅방지를 위한 마스킹처리를 하고, 열전소자의 외면에 암모니아기의 프라이머를 도포한 후 진공챔버에서 페럴린과 같은 유기물을 승화 코팅하여 이루어지며,
상기 세라믹도금과정(320)은 절연코팅된 열전소자(30)의 상하면 열전도 세라믹부(32)에 형성한 마스킹테입(41)을 제거하고 니켈도금액에 의하여 외면에 세라믹 니켈도금층(30a)을 형성한 후 세라믹 구리도금층(30b)을 형성하여 이루어진 것을 특징으로 하는 알루미늄 열교환기의 제조방법.
A method for producing an aluminum heat exchanger;
The heat exchanger assembly process 110 of assembling the aluminum heat exchanger 10 by combining the upper and lower exchanger bodies brazing the inner partition 11 to one of the upper and lower exchanger bodies, and the aluminum heat exchanger ( 10) a nickel chemical plating solution is injected into the inside of the heat exchanger to form a nickel chemical plating on the inner wall of the aluminum heat exchanger.
The thermoelectric element binding process for binding the thermoelectric element 30 on the outer surface of the aluminum heat exchanger 10 is further made,
The thermoelectric device binding process is an element part insulating process 310 is made of an insulating coating layer 42 by an insulating resin to increase the thermal conductivity efficiency and to prevent damage to the device portion 31 of the thermoelectric element 30 by condensation; The upper and lower thermal conductive ceramics 32 are made of a ceramic plating process 320 in which nickel chemical plating and copper plating are sequentially performed.
The device portion insulating process 310 is a masking treatment for the coating prevention on the upper and lower thermal conductive ceramic portion 32 of the thermoelectric element 30, and after applying a primer of ammonia group to the outer surface of the thermoelectric element, the parylene in the vacuum chamber It is made by sublimation coating of organic substances,
The ceramic plating process 320 removes the masking tape 41 formed on the upper and lower thermal conductive ceramic portions 32 of the insulating coated thermoelectric element 30 and forms the ceramic nickel plating layer 30a on the outer surface by the nickel plating solution. And then forming a ceramic copper plated layer (30b).
제 1 항에 있어서;
상기 열교환기내부도금과정(120)은 니켈 화학도금액이 알루미늄 열교환기(10)의 유입구와 유출구 중 어느 하나를 통하여 연속 주입되고, 유입구와 유출구 중 다른 하나를 통하여 연속 배출되게 이루어지며,
상기 열교환기내부도금과정(120)의 니켈 화학도금액의 주입과정에 있어 내부 격벽체(11)의 모서리에서 맴돌이 현상에 의하여 기포가 잔류하여 도금불량이 발생하는 것을 방지할 수 있게 니켈 화학도금액이 알루미늄 열교환기(10)로 유입되는 유입단면적 보다 알루미늄 열교환기에서 배출되는 배출단면적이 적게 형성하여 이루어진 것을 특징으로 하는 알루미늄 열교환기의 제조방법.
The method of claim 1, further comprising:
The heat exchanger inner plating process 120 is a nickel chemical plating solution is continuously injected through any one of the inlet and outlet of the aluminum heat exchanger 10, it is made to be continuously discharged through the other of the inlet and outlet,
In the process of injecting the nickel chemical plating solution of the internal plating process 120 of the heat exchanger, the nickel chemical plating solution may be prevented from forming a defective plating due to bubbles remaining at the edge of the inner partition 11. Method for producing an aluminum heat exchanger, characterized in that the discharge cross-sectional area discharged from the aluminum heat exchanger is formed less than the inlet cross-sectional area flowing into the aluminum heat exchanger (10).
제 2 항에 있어서;
상기 알루미늄 열교환기(10)의 내부에 니켈 화학도금하여 내부니켈도금층(10a)을 형성한 후 열전도를 높일 수 있게 구리 도금하여 내부구리도금층(10b)을 형성하는 내부구리도금과정으로 이루어진 것을 특징으로 하는 알루미늄 열교환기의 제조방법.
3. The method of claim 2,
Nickel chemical plating on the inside of the aluminum heat exchanger (10) to form an inner nickel plating layer (10a), and then copper plating to increase the thermal conductivity to form an inner copper plating process to form an inner copper plating layer (10b) Method for producing an aluminum heat exchanger.
제 2 항에 있어서;
상기 열교환기내부도금과정(120)에 있어 알루미늄 열교환기(10)로의 화학도금액 주입은 화학도금액의 배출 측에 펌프(21)를 구비하여 흡입에 의하여 이루어지게 하고, 상기 펌프(21)의 배출 측에 알루미늄 열교환기(10)보다 높은 곳에 위치하여 기포의 배출을 유도할 수 있게 배출되는 화학도금액을 저수하였다 배출하는 완충저수부(22)를 구비하여 이루어진 것을 특징으로 하는 알루미늄 열교환기의 제조방법.
3. The method of claim 2,
In the heat exchanger inner plating process 120, the injection of the chemical plating solution into the aluminum heat exchanger 10 is performed by suction having a pump 21 on the discharge side of the chemical plating solution, and The aluminum heat exchanger, which is located above the aluminum heat exchanger 10 on the discharge side, stores the chemical plating liquid discharged to induce the discharge of bubbles. Manufacturing method.
제 1 항에 있어서;
알루미늄 열교환기(10)의 외면에 구리 화학도금이 추가로 이루어지게 하는 열교환기외부도금과정(200)이 추가로 이루어지고,
상기 열교환기외부도금과정(200)에 있어 외부구리도금층(10d)에 의한 알루미늄 열교환기(10)의 외면이 전이침식되는 것을 방지할 수 있게 니켈도금을 우선적으로 실시하여 외부니켈도금층(10c)을 형성하고, 상기 외부니켈도금층(10c)의 상부에 외부구리도금층(10d)이 이루어진 것을 특징으로 하는 알루미늄 열교환기의 제조방법.
The method of claim 1, further comprising:
A heat exchanger outer plating process 200 for additionally making copper chemical plating on the outer surface of the aluminum heat exchanger 10 is further performed.
In the heat exchanger outer plating process 200, the nickel plating is preferentially performed to prevent the outer surface of the aluminum heat exchanger 10 from being transferred by the outer copper plating layer 10d to the outer nickel plating layer 10c. And an outer copper plating layer (10d) formed on top of the outer nickel plating layer (10c).
삭제delete 삭제delete
KR1020110058241A 2011-06-16 2011-06-16 An aluminum heat exchanger manufacturing method KR101278981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110058241A KR101278981B1 (en) 2011-06-16 2011-06-16 An aluminum heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110058241A KR101278981B1 (en) 2011-06-16 2011-06-16 An aluminum heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
KR20120138853A KR20120138853A (en) 2012-12-27
KR101278981B1 true KR101278981B1 (en) 2013-07-02

Family

ID=47905428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110058241A KR101278981B1 (en) 2011-06-16 2011-06-16 An aluminum heat exchanger manufacturing method

Country Status (1)

Country Link
KR (1) KR101278981B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264691A (en) * 1998-03-19 1999-09-28 Isuzu Motors Ltd Heat exchanger
JP2000171178A (en) * 1998-12-07 2000-06-23 Usui Internatl Ind Co Ltd Egr gas-cooling device and its manufacture
KR20040063786A (en) * 2000-11-08 2004-07-14 코루스 알루미늄 발쯔프로두크테 게엠베하 Brazing product having a low melting point
JP2008190771A (en) 2007-02-05 2008-08-21 Sumitomo Precision Prod Co Ltd Plate fin having superior corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264691A (en) * 1998-03-19 1999-09-28 Isuzu Motors Ltd Heat exchanger
JP2000171178A (en) * 1998-12-07 2000-06-23 Usui Internatl Ind Co Ltd Egr gas-cooling device and its manufacture
KR20040063786A (en) * 2000-11-08 2004-07-14 코루스 알루미늄 발쯔프로두크테 게엠베하 Brazing product having a low melting point
JP2008190771A (en) 2007-02-05 2008-08-21 Sumitomo Precision Prod Co Ltd Plate fin having superior corrosion resistance

Also Published As

Publication number Publication date
KR20120138853A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP7097975B2 (en) Cooling plate and battery structure
US9383119B2 (en) Heater
JP6235695B2 (en) Method for manufacturing waterproof electronic device
US20120049315A1 (en) Thermoelectric module and method for fabricating the same
US8754437B2 (en) LED module having a heat sink
JP2008034792A (en) Thermoelectric converter and its manufacturing process
CN103578667B (en) A kind of series connection water-filled radiator based on damping resistance
WO2013147240A1 (en) Flow path member, and heat exchanger and semiconductor device using same
CN107197612B (en) Super-hydrophilic vapor chamber
CN106604607A (en) No-wick ultrathin heat pipe device
JP2018528609A (en) Component modules and power modules
CN107084550A (en) Semiconductor refrigerating component and ice cream maker
KR101278981B1 (en) An aluminum heat exchanger manufacturing method
US20120049316A1 (en) Thermoelectric module and method for fabricating the same
JP6109253B2 (en) Cold plate and manufacturing method thereof
CN103327734A (en) Integrated type high-thermal-conductivity circuit board and manufacturing method thereof
US20070092998A1 (en) Semiconductor heat-transfer method
JP6040570B2 (en) Heat exchanger
JP4252422B2 (en) Method for forming coating layer of heat exchanger
KR101331937B1 (en) A cooling unite used enginer-plastic and its manufacturing method
JP2014223734A (en) Element substrate, liquid discharge head, and manufacturing methods of element substrate and liquid discharge head
CN218219171U (en) Multilayer metal heating element, atomizer and aerosol generating device
JP2003037231A (en) Substrate for module
US20070267300A1 (en) Method of partially electroplating radiator
JP2005226942A (en) Coating layer forming method for heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160417

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170715

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190716

Year of fee payment: 7