KR101277696B1 - Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles - Google Patents

Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles Download PDF

Info

Publication number
KR101277696B1
KR101277696B1 KR1020110042826A KR20110042826A KR101277696B1 KR 101277696 B1 KR101277696 B1 KR 101277696B1 KR 1020110042826 A KR1020110042826 A KR 1020110042826A KR 20110042826 A KR20110042826 A KR 20110042826A KR 101277696 B1 KR101277696 B1 KR 101277696B1
Authority
KR
South Korea
Prior art keywords
gold
magnetic
nanoparticles
microorganisms
acid
Prior art date
Application number
KR1020110042826A
Other languages
Korean (ko)
Other versions
KR20120124902A (en
Inventor
전향숙
최성욱
이나리
장현주
김현정
구민선
Original Assignee
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국식품연구원 filed Critical 한국식품연구원
Priority to KR1020110042826A priority Critical patent/KR101277696B1/en
Publication of KR20120124902A publication Critical patent/KR20120124902A/en
Application granted granted Critical
Publication of KR101277696B1 publication Critical patent/KR101277696B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Abstract

본 발명은 타겟팅-금 자성 나노입자 및 이의 용도에 관한 것이다. 본 발명의 나노입자는 (ⅰ) 자성물질을 포함하는 코어, (ⅱ) 금을 포함하는 쉘 및 (ⅲ) 상기 쉘에 결합된 타겟팅 모이어티(targeting moiety)로 이루어져 있으며, 상기 쉘에 결합된 타겟팅 모이어티(예컨대, 타겟 미생물의 표면 항원에 대한 항체)를 이용하여 타겟 미생물을 효과적으로 분리, 농축 및 검출을 원-스텝으로 할 수 있다. 따라서, 본 발명의 자성 나노입자-기반된 방법은 종래의 복잡하고 시간-소모적인 방법들에 비해 미생물의 분리 및 농축을 매우 간편하게 실시할 수 있을 뿐 아니라, 동시에 효율적인 검출도 할 수 있다.The present invention relates to targeting-gold magnetic nanoparticles and uses thereof. Nanoparticles of the present invention comprises (i) a core comprising a magnetic material, (ii) a shell comprising gold and (iii) a targeting moiety coupled to the shell, wherein the targeting is coupled to the shell. Moieties (eg, antibodies to surface antigens of target microorganisms) can be used to effectively isolate, concentrate, and detect target microorganisms in one step. Thus, the magnetic nanoparticle-based method of the present invention not only makes the isolation and concentration of microorganisms very simple compared to conventional complicated and time-consuming methods, but also enables efficient detection at the same time.

Description

타겟팅-금 자성 나노입자―기반된 미생물의 원-스텝 분리, 농축 및 검출 방법{Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles}Targeting-Gold Magnetic Nanoparticles-Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles}

본 발명은 타겟팅-금 자성 나노입자-기반된 미생물의 원-스텝 분리, 농축 및 검출 방법에 관한 것이다.
The present invention relates to a one-step separation, concentration and detection method of targeting-gold magnetic nanoparticle-based microorganisms.

식품, 의료 및 환경분야에서 매질 속에 포함된 위해미생물을 검출하기 위해서, 그 매질 속에 포함된 미생물만을 선택적으로 분리한 후 극미량 미생물 농도에 따른 검출신호 증가를 위해 일정시간 미생물 배양과정을 거쳐 검출한다. 일반적으로, 미생물 배양시간은 장출혈성 대장균인 경우 12시간 정도이며 미생물에 따라 차이는 있으나 12시간에서 48시간까지 소요된다. 검출시간을 단축시키기 위해, 시료 매질 속 미생물을 신속히 분리하고 농축할 수 있는 기술이 면역자성법을 기반으로 발전하고 있는 추세이다. In order to detect harmful microorganisms contained in the medium in the food, medical and environmental fields, only microorganisms contained in the medium are selectively separated and then detected through a microorganism culture process for a certain time to increase the detection signal according to the microorganism concentration. In general, the microbial incubation time is about 12 hours for E. coli hemorrhagic E. coli, depending on the microorganism takes 12 to 48 hours. In order to shorten the detection time, a technique for rapidly separating and concentrating microorganisms in a sample medium is being developed based on immunomagnetism.

면역자성법은 자성을 가지는 나노 또는 마이크로 크기의 입자 표면에 미생물과 선택적으로 반응하는 항체를 고정시켜 항원-항체 반응을 통해 시료기질 속 미생물과 선택적으로 반응하게끔 유도한 후 자석으로 미생물만 분리하는 기술이다. 종래의 면역자성법은 시료기질 속 미생물을 선택적으로 분리하고 농축하는 기술로써 분리된 미생물을 확인하기 위해서는 또 다른 검출법(평판도말, 비색법, 실-시간 PCR, SPR 및 ELISA 등)을 이용하였다.  Immunomagnetism is a technique of immobilizing an antibody that selectively reacts with a microorganism on the surface of a nano or micro-sized particle having magnetic properties to induce selective reaction with a microorganism in a sample substrate through an antigen-antibody reaction, and then separating only the microorganism with a magnet. to be. Conventional immunomagnetism is a technique for selectively separating and concentrating microorganisms in a sample substrate and using another detection method (platelet smearing, colorimetric method, real-time PCR, SPR and ELISA, etc.) to identify the separated microorganisms.

예를 들어, 대한민국 특허 제0962286호는 표면플라즈몬 공명(SPR)에 의한 식중독균 검출에 있어서, 자성 코어 금 나노입자를 이용하여 표면플라즈몬 공명을 증가시켜 민감도를 개선하는 방법이 개시되어 있다. 이 방법은 고가의 SPR 기기를 이용하여야 하고 분리 및 농축과 검출과정을 별도의 스텝으로 해야 하는 복잡한 문제점이 있다.For example, Korean Patent No. 0962286 discloses a method for improving sensitivity by increasing surface plasmon resonance using magnetic core gold nanoparticles in detecting food poisoning bacteria by surface plasmon resonance (SPR). This method has a complicated problem that requires the use of expensive SPR equipment and separate separation, concentration and detection process.

따라서, 복잡하고 시간-소모적인 상기 종래 방법들을 개선하기 위해 미생물의 분리, 농출 및 검출을 동시에 수행할 수 있는 새로운 방법이 당업계에서 시급히 요구되고 있는 실정이다.
Therefore, there is an urgent need in the art for a new method capable of simultaneously separating, harvesting and detecting microorganisms to improve the complex and time-consuming conventional methods.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 시료 내 타겟 미생물을 효과적으로 분리할 수 있는 나노입자-기반된 방법을 개발하고자 노력하였다. 그 결과, (i) 자성물질을 포함하는 코어, (ii) 금을 포함하는 쉘 및 (iii) 상기 쉘의 표면에 결합되어 있고 미생물의 표면 항원에 결합하는 타겟팅 모이어티(targeting moiety)를 포함하는 타겟팅-금 자성 나노입자를 이용하여 시료 내 타겟 미생물을 동시에 특별한 처리없이 선택적으로 분리/농축, 그리고 검출을 원-스텝으로 할 수 있다는 것을 확인함으로써, 본 발명을 완성하게 되었다.The inventors have sought to develop nanoparticle-based methods that can effectively separate target microorganisms in a sample. As a result, (i) a core comprising a magnetic material, (ii) a shell comprising gold and (iii) a targeting moiety that is bound to the surface of the shell and binds to the surface antigen of the microorganism. The present invention has been completed by confirming that targeting-gold magnetic nanoparticles can selectively separate / concentrate and detect one-step target microorganisms in a sample at the same time without special treatment.

따라서, 본 발명의 목적은 금 자성 나노입자를 이용한 미생물의 원-스텝(one-step) 분리, 농축 및 검출 방법을 제공하는 데 있다.
Accordingly, it is an object of the present invention to provide a one-step separation, concentration and detection method of microorganisms using gold magnetic nanoparticles.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 금 자성 나노입자를 이용한 미생물의 원-스텝(one-step) 분리, 농축 및 검출 방법을 제공한다:According to one aspect of the present invention, the present invention provides a method for one-step separation, concentration and detection of microorganisms using gold magnetic nanoparticles comprising the following steps:

(a) (i) 자성물질을 포함하는 코어, (ii) 금을 포함하는 쉘 및 (iii) 상기 쉘의 표면에 결합되어 있고 미생물의 표면 항원에 결합하는 타겟팅 모이어티(moiety)를 포함하는 타겟팅-금 자성 나노입자에 시료를 접촉시키는 단계; 및 (a) a targeting comprising a (i) core comprising magnetic material, (ii) a shell comprising gold and (iii) a targeting moiety bound to the surface of the shell and binding to the surface antigen of the microorganism Contacting the sample with gold magnetic nanoparticles; And

(b) 상기 단계 (a)의 결과물을 자성이 인가(apply)된 컬럼에 적용하여 상기 미생물을 동시에 분리, 농축 및 검출하는 단계로서, 상기 자성의 인가는 컬럼의 일정부분에서 이루어지며 자성이 인가되어 미생물이 분리되는 컬럼의 부위에 가시광선이 조사되어 흡광도를 측정한다.
(b) applying the result of step (a) to a magnetically applied column to simultaneously separate, concentrate and detect the microorganisms, wherein the magnetic application is performed at a portion of the column and the magnetic application The visible light is irradiated to the portion of the column where the microorganism is separated to measure the absorbance.

본 발명자들은 시료 내 타겟 미생물을 효과적으로 분리할 수 있는 나노입자-기반된 방법을 개발하고자 노력하였다. 그 결과, (i) 자성물질을 포함하는 코어, (ii) 금을 포함하는 쉘 및 (iii) 상기 쉘의 표면에 결합되어 있고 미생물의 표면 항원에 결합하는 타겟팅 모이어티(targeting moiety)를 포함하는 타겟팅-금 자성 나노입자를 이용하여 시료 내 타겟 미생물을 동시에 특별한 처리없이 선택적으로 분리/농축, 그리고 검출을 원-스텝으로 할 수 있다는 것을 확인하였다.The inventors have sought to develop nanoparticle-based methods that can effectively separate target microorganisms in a sample. As a result, (i) a core comprising a magnetic material, (ii) a shell comprising gold and (iii) a targeting moiety that is bound to the surface of the shell and binds to the surface antigen of the microorganism. Using targeting-gold magnetic nanoparticles, it was confirmed that the target microorganisms in the sample can be selectively separated / concentrated and detected in one step without any special treatment at the same time.

본 명세서에서 용어 “원-스텝”은 분석하고자 하는 시료와 타겟팅-금 자성 나노입자의 반응물을 한 번의 과정을 통하여 시료 내 미생물의 분리, 농축 및 검출을 하는 것을 의미한다. 보다 상세하게는, 시료와 타겟팅-금 자성 나노입자의 반응물을 본 발명에서 이용하는 컬럼에 로딩하는 한 번의 과정에 의해, 시료 내 미생물이 분리, 농축 및 검출되는 것을 의미한다.As used herein, the term “one-step” refers to the separation, concentration and detection of microorganisms in a sample through a single process of the sample to be analyzed and the target-gold magnetic nanoparticles. More specifically, it means that the microorganisms in the sample are separated, concentrated and detected by one step of loading the reactant of the sample and the targeting-gold magnetic nanoparticles into the column used in the present invention.

본 발명의 미생물 분리, 농축, 및 검출의 원-스텝 방법은 자성 나노입자-기반된 방법이다.One-step methods of microbial isolation, concentration, and detection of the present invention are magnetic nanoparticle-based methods.

본 발명에 따르면, 본 발명의 단계 (a)는 타겟팅-금 자성 나노입자에 시료를 접촉시켜 실시한다.According to the invention, step (a) of the invention is carried out by contacting the sample with the targeting-gold magnetic nanoparticles.

본 발명의 타겟팅-금 자성 나노입자는 (a) 자성물질을 포함하는 코어, (b) 금을 포함하는 쉘 및 (c) 상기 쉘에 결합된 타겟팅 모이어티(targeting moiety)로 이루어져 있다.The targeting-gold magnetic nanoparticles of the present invention comprise (a) a core comprising a magnetic material, (b) a shell comprising gold and (c) a targeting moiety coupled to the shell.

본 발명의 바람직한 구현예에 따르면, 본 발명의 자성물질을 포함하는 코어는 크기가 바람직하게는 1-100 nm 크기를 가지는 물질을 의미한다. 본 발명에서 사용되는 자성물질을 포함하는 코어는 나노크기를 갖는 물질이라면 형태 및 모양은 특별히 한정되지 않는다(예컨대, 입자, 튜브, 막대기 또는 정사면체와 같은 형태).According to a preferred embodiment of the present invention, the core comprising the magnetic material of the present invention means a material having a size of 1-100 nm preferably. The core including the magnetic material used in the present invention is not particularly limited in shape and shape as long as it has a nano-size material (for example, particles, tubes, rods, or tetrahedrons).

본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 자성물질을 포함하는 코어는 나노입자이다. 상기 “나노입자”는 나노 단위의 직경, 바람직하게는 5-100 nm, 보다 바람직하게는 8-50 nm, 가장 바람직하게는 10-30 nm의 직경을 가지는 다양한 물질의 입자를 의미한다. 상기 나노입자는 나노크기를 갖는 입자라면 특별히 제한되지 않는다. 예컨대, 금속 나노입자, 금속산화물 입자 등을 들 수 있다. 금속 입자의 구체예로서는, Au, Ag, Pd, Pt, Cu, Ni, Co, Fe, Mn, Ru, Rh, Os, Ir 등을 들 수 있다. 금속산화물 입자는 화학식 MxOy(단, M은 금속, O는 산소, x와 y는 정수를 나타낸다)로 나타낼 수 있는 화합물을 가리키고, 예컨대 Fe2O3, Fe3O4, Ag2O, TiO2, SiO2 등을 포함하지만, 이에 한정되는 것은 아니다.According to a preferred embodiment of the present invention, the core comprising the magnetic material used in the present invention is a nanoparticle. The term “nanoparticle” refers to particles of various materials having a diameter in nano units, preferably 5-100 nm, more preferably 8-50 nm, and most preferably 10-30 nm. The nanoparticles are not particularly limited as long as they are particles having a nano size. For example, metal nanoparticle, metal oxide particle, etc. are mentioned. Specific examples of the metal particles include Au, Ag, Pd, Pt, Cu, Ni, Co, Fe, Mn, Ru, Rh, Os, Ir and the like. Metal oxide particles refer to compounds represented by the chemical formula M x O y (wherein M represents a metal, O represents oxygen, and x and y represent an integer), such as Fe 2 O 3 , Fe 3 O 4 , Ag 2 O , TiO 2 , SiO 2 , and the like, but are not limited thereto.

보다 바람직하게는, 본 발명에서 이용되는 자성물질을 포함하는 코어는 금속산화물 나노입자를 의미한다. 본 명세서에서 용어“금속산화물 나노입자”는 나노 단위의 직경, 바람직하게는 1-100 nm, 보다 바람직하게는 1-50 nm, 가장 바람직하게는 5-30 nm의 직경을 가지는 금속입자(예컨대, 철, 니켈, 백금, 망간)와 이의 산화물을 포함하나, 이에 제한되지 않고 단체가 자성의 성질을 갖는 모든 나노크기의 입자를 포함한다. 이러한 작은 입자 크기는 본 발명의 나노입자가 목적의 세포(예컨대, 박테리아)와 용이하게 결합할 수 있다.More preferably, the core including the magnetic material used in the present invention means a metal oxide nanoparticle. As used herein, the term “metal oxide nanoparticles” refers to metal particles having a diameter in nano units, preferably 1-100 nm, more preferably 1-50 nm, most preferably 5-30 nm (eg, Iron, nickel, platinum, manganese) and oxides thereof, including, but not limited to, all nano-sized particles having a magnetic property. This small particle size allows the nanoparticles of the invention to easily bind to the cell of interest (eg, bacteria).

보다 더 바람직하게는, 본 발명에서 이용되는 타겟팅-금 자성 나노입자에서 자성 코어는 MxOy(단, M은 금속, O는 산소, x와 y는 정수를 나타낸다)로 표시되는 금속산화물이고, 가장 바람직하게는 Fe2O3 또는 Fe3O4이다.Even more preferably, in the targeting-gold magnetic nanoparticles used in the present invention, the magnetic core is a metal oxide represented by M x O y (wherein M is a metal, O is oxygen and x and y are integers). , Most preferably Fe 2 O 3 or Fe 3 O 4 .

본 발명의 가장 바람직한 구현예에 따르면, 본 발명에서 이용되는 타겟팅-금 자성 나노입자에서 쉘은 금을 포함한다. 금은 안정한 입자의 형태로 제조가 쉬우며, 크기 조절이 용이하고, 망간, 알루미늄, 카드늄, 납, 수은, 코발트, 니켈, 베릴륨 등의 중금속과 달리 인체에 무해하여 높은 생체친화성을 가진다.According to the most preferred embodiment of the present invention, in the targeting-gold magnetic nanoparticles used in the present invention, the shell comprises gold. Gold is easy to manufacture in the form of stable particles, easy to control the size, unlike the heavy metals such as manganese, aluminum, cadmium, lead, mercury, cobalt, nickel, beryllium, harmless to the human body has a high bio-compatibility.

본 발명에서 이용되는 금 나노입자는 예컨대, 다음과 같이 제조될 수 있다: HAuCl4를 금 공급원으로 하고, 소듐 시트레이트를 환원제로 하여 HAuCl4를 환원시켜 금 나노입자를 제조한다. 이 경우, 금 나노입자의 크기는 첨가하는 시트레이트를 달리해 줌으로써 조절이 가능한다. 즉, 시트레이트의 첨가량을 증가시킬수록 핵형성(nucleation)이 많이 되기 때문에 금 나노입자의 크기는 감소한다.The gold nanoparticles used in the present invention can be prepared, for example, as follows: HAuCl 4 is used as a gold source, and sodium citrate is used as a reducing agent to reduce HAuCl 4 to prepare gold nanoparticles. In this case, the size of the gold nanoparticles can be adjusted by varying the citrate added. That is, the size of the gold nanoparticles decreases as the amount of citrate increases, so that nucleation increases.

금 나노입자는 직경이 100 nm 이상으로 커질 경우 나노 입자로서의 특성이 소멸될 뿐 아니라, 나노 물질의 특성이 없는 금 표면과 티올기 등의 작용기와의 결합은 약하기 때문에 본 발명의 타겟팅-금 자성 나노입자는 제조하기 어렵다. 따라서, 본 발명의 금 나노입자는 직경은 바람직하게는 5-100 nm, 보다 바람직하게는 8-50 nm, 가장 바람직하게는 10-30 nm이다.When the gold nanoparticles become larger than 100 nm in diameter, their properties as nanoparticles are not only lost, but the binding of the gold surface having no properties of nanomaterials to functional groups such as thiol groups is weak. Particles are difficult to manufacture. Therefore, the gold nanoparticles of the present invention preferably have a diameter of 5-100 nm, more preferably 8-50 nm, and most preferably 10-30 nm.

바람직하게는, 본 발명의 금 자성 나노입자의 표면은 타겟팅 모이어티와의 결합에 이용될 수 있는 물질로 코팅되어 있다. 예를 들어, 상기 물질은 머캅도헥사데카노익 산(Mercaptohexadecanoic acid, MHDA), 시스타민, 폴리에틸렌글리콜(PEG), 덱스트란, 폴리비닐피롤리돈, 알부민, 폴리비닐알코올, 폴리에틸렌이민, 키토산, 히아루론산, 폴리락틱글라이코릭산(PLGA), 폴리락틱산, 폴리락타이드, 폴리글라이콜릭산, 폴리아미노산, 폴리아세탈, 폴리오써칼본에이트, 폴리칼본에이트, 폴리칼보락톤 폴리아크릴산, 폴리메타아크릴산, 폴리사카라이드, 폴리케탈, 폴리에테르, 폴리아마이드,폴리말레익안하드라이드, 폴리메틸비닐에테르 및 상기 고분자의 공중합체를 포함하지만, 이에 한정되는 것은 아니다. 가장 바람직하게는, 머캅도헥사데카노익 산이다.Preferably, the surface of the gold magnetic nanoparticles of the present invention is coated with a material that can be used for binding to the targeting moiety. For example, the substance may be mercaptohexadecanoic acid (MHDA), cystamine, polyethylene glycol (PEG), dextran, polyvinylpyrrolidone, albumin, polyvinyl alcohol, polyethyleneimine, chitosan, Hyaluronic Acid, Polylactic Glycolic Acid (PLGA), Polylactic Acid, Polylactide, Polyglycolic Acid, Polyamino Acid, Polyacetal, Polytherabolate, Polycarbonate, Polycarbolactone Polyacrylic Acid, Polymethacrylic Acid , Polysaccharides, polyketals, polyethers, polyamides, polymaleic anhydrides, polymethylvinyl ethers and copolymers of the above polymers, but are not limited thereto. Most preferably, mercapdohexadecanoic acid.

본 명세서의 용어 “타겟팅 모이어티(targeting moiety)”는 타겟 미생물의 표면에 존재하는 항원에 결합할 수 있는 모든 물질을 의미한다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 타겟팅 모이어티는 단백질, 펩타이드, 항체 또는 이의 단편을 포함하고, 보다 바람직하게는 펩타이드, 항체 또는 이의 단편을 포함하며, 가장 바람직하게는 항체 또는 이의 단편을 포함한다. As used herein, the term “targeting moiety” means any substance capable of binding to an antigen present on the surface of a target microorganism. According to a preferred embodiment of the invention, the targeting moiety of the invention comprises a protein, peptide, antibody or fragment thereof, more preferably a peptide, antibody or fragment thereof, most preferably an antibody or fragment thereof It includes.

본 발명의 타겟팅 모이어티는 항체의 Fab 및 Fc 부위를 포함하며, 이 Fab 부위를 통하여 타겟 미생물의 표면 항원과 비공유결합 하게 된다. 본 명세서에서 용어 “Fab 부위”는 타겟 미생물의 표면 항원(예컨대, 수용체)과 상호작용하는 항체의 일 부위를 의미한다. 일반적으로, 파파인으로 전장 항체를 절단하면 Fab 부위와 Fc 부위 두 부위를 얻게 된다. 하나의 클래스에서 모든 항체의 Fab 부위는 거의 동일한 특성이 있다.Targeting moieties of the present invention comprises an F ab and F c region of antibodies, and is non-covalently bonded to the surface antigen of a target microbe through the F ab regions. As used herein, the term “F ab site” refers to a site of an antibody that interacts with a surface antigen (eg, a receptor) of a target microorganism. In general, cleavage of full-length antibodies with papain yields two sites, the F ab region and the Fc region. The F ab regions of all antibodies in one class have nearly identical characteristics.

본 발명의 바람직한 구현예에 따르면, Fab 부위는 IgG의 Fab 부위를 의미한다.According to a preferred embodiment, F ab and F ab portion means a portion of the IgG.

한편, 타겟 미생물의 표면 항원과 결합하는 특성을 갖는 범위 내에서는 Fab부위는 통상적인 Fab부위의 일부 서열일수도 있다.On the other hand, in the range having the property of binding to the surface antigens of the target microbe F ab sites it is conventional may be a part sequence of the F ab regions.

본 발명의 바람직한 구현예에 따르면, 타겟팅 모이어티는 항체의 Fab 부위를 포함하는 항체, 앱타머, 폴리펩타이드, 펩타이드, 리간드, 렉틴, 당, 지질, 당지질 또는 핵산이며, 보다 바람직하게는, 항체의 Fab 부위를 포함하는 항체, 앱타머 또는 리간드이며, 가장 바람직하게는 항체이다.According to a preferred embodiment of the invention, the targeting moiety is an antibody, aptamer, polypeptide, peptide, ligand, lectin, sugar, lipid, glycolipid or nucleic acid comprising the F ab region of the antibody, more preferably the antibody An antibody, aptamer or ligand comprising the F ab region of, most preferably an antibody.

타겟팅 모이어티가 Fab 부위를 포함하는 항체인 경우에는, 타겟팅 모이어티로서 전장 항체가 이용될 수 있다. 전장 항체는 폴리클론 또는 단일클론 항체를 포함한다. 세포의 특정 표면 분자에 결합하는 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법(Kohler and Milstein, European Journal of Immunology, 6:511-519(1976)), 재조합 DNA 방법(미국 특허 제4,816,56호) 또는 파아지 항체 라이브러리 방법(Clackson et al, Nature, 352:624-628(1991) 및 Marks et al, J. Mol. Biol., 222:58, 1-597(1991))에 의해 제조될 수 있다. 항체 제조에 대한 일반적인 과정은 Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984; 및 Coligan , CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY, 1991에 상세하게 기재되어 있으며, 상기 문헌들은 본 명세서에 참조로서 삽입된다. 예를 들어, 단일클론 항체를 생산하는 하이브리도마 세포의 제조는 불사멸화 세포주를 항체-생산 림프구와 융합시켜 이루어지며, 이 과정에 필요한 기술은 당업자에게 잘 알려져 있으며 용이하게 실시할 수 있다. 폴리클로날 항체는 항원으로서의 세포 표면 분자를 적합한 동물에게 주사하고, 이 동물로부터 항혈청을 수집한 다음, 공지의 친화성(affinity) 기술을 이용하여 항혈청으로부터 항체를 분리하여 얻을 수 있다.If the targeting moiety is an antibody comprising a F ab site, a full length antibody may be used as the targeting moiety. Full length antibodies include polyclonal or monoclonal antibodies. Antibodies that bind to specific surface molecules of a cell can be prepared by methods commonly practiced in the art, such as fusion methods (Kohler and Milstein, European Journal of Immunology , 6: 511-519 (1976)), recombinant DNA methods ( US Pat. No. 4,816,56) or phage antibody library method (Clackson et al, Nature , 352: 624-628 (1991) and Marks et al, J. Mol. Biol. , 222: 58, 1-597 (1991) It can be prepared by). General procedures for antibody preparation are described in Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual , Cold Spring Harbor Press, New York, 1999; Zola, H., Monoclonal Antibodies: A Manual of Techniques , CRC Press, Inc., Boca Raton, Florida, 1984; And Coligan, CURRENT PROTOCOLS IN IMMUNOLOGY , Wiley / Greene, NY, 1991, which are incorporated herein by reference. For example, the preparation of hybridoma cells producing monoclonal antibodies is accomplished by fusing an immortalized cell line with an antibody-producing lymphocyte, and the techniques necessary for this process are well known and readily practicable by those skilled in the art. Polyclonal antibodies can be obtained by injecting a cell surface molecule as an antigen into a suitable animal, collecting antisera from the animal and then isolating the antibody from the antisera using known affinity techniques.

다음으로, 본 발명의 단계 (b)는 상술한 단계 (a)의 결과물을 자성이 인가(apply)된 컬럼에 적용하여 미생물을 동시적으로 분리, 농축 및 검출을 원-스텝으로 하는 단계로서, 상기 자성의 인가는 컬럼의 일정부분에서 이루어지며 자성이 인가되어 미생물이 분리되는 컬럼의 부위에 가시광선이 조사되어 흡광도를 측정한다.Next, step (b) of the present invention is to apply the result of step (a) to the magnetically applied column to simultaneously isolate, concentrate and detect microorganisms in one step. The magnetic application is performed at a predetermined portion of the column, and the magnetic light is applied to the portion of the column where the microorganisms are separated, and thus the absorbance is measured.

본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 컬럼은 그 상부에 막 필터를 포함하며 상기 막 필터에 의해 상기 컬럼에 적용된 상기 단계 (a)의 결과물에서 상기 타겟팅-금 자성 나노입자가 결합된 미생물의 흐름(flow)을 지연시킨다.According to a preferred embodiment of the present invention, the column used in the present invention includes a membrane filter thereon and the targeting-gold magnetic nanoparticles are bound in the result of step (a) applied to the column by the membrane filter. Delay the flow of microorganisms.

본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용될 수 있는 막 필터는 50-1,000 nm의 크기를 가지고, 보다 바람직하게는, 70-900 nm의 크기를 가지며, 보다 더 바람직하게는 90-850 nm의 크기를 가지고, 가장 바람직하게는 100-800 nm의 크기를 가진다.According to a preferred embodiment of the invention, the membrane filter which can be used in the present invention has a size of 50-1,000 nm, more preferably has a size of 70-900 nm, even more preferably 90-850 nm in size, most preferably 100-800 nm.

본 발명의 금 자성 나노입자가 결합된 타겟 미생물은 자성 하에서(예컨대, 영구자석 하에서) 분리될 수 있다. 따라서, 본 발명의 방법은 크기 및 자성을 이용하여 보다 특이적이고 효과적으로 타겟 미생물을 분리 및 농축시킬 수 있다.Target microorganisms to which the gold magnetic nanoparticles of the present invention are bound may be separated under magnetic (eg, under permanent magnets). Thus, the method of the present invention can utilize size and magnetism to isolate and concentrate the target microorganism more specifically and effectively.

본 발명의 바람직한 구현예에 따르면, 상기 자성의 인가는 영구자석 또는 전자석에 의해 이루어진다.According to a preferred embodiment of the present invention, the magnetic application is made by a permanent magnet or an electromagnet.

더 나아가, 본 발명의 단계 (b)는 상술한 단계 (a)의 결과물에 대한 가시광선 영역 흡광도를 측정함으로써, 본 발명의 방법은 분리된 타겟 미생물의 양을 정량적으로 측정할 수 있다.Furthermore, step (b) of the present invention measures the absorbance of visible region to the result of step (a) described above, so that the method of the present invention can quantitatively measure the amount of the target microorganism isolated.

본 발명의 바람직한 구현예에 따르면, 상기 흡광도의 측정은 상기 컬럼에 연결된 스펙트로포토미터를 이용하여 실시하며, 이를 통해 타겟 미생물의 검출이 가능할 뿐 아니라 동시에 미생물의 양을 정량적으로 검출할 수 있다.According to a preferred embodiment of the present invention, the measurement of the absorbance is performed using a spectrophotometer connected to the column, through which not only the detection of the target microorganism but also the amount of the microorganism can be detected quantitatively.

본 명세서에서 사용되는 용어 “정량적(quantitative)”은 본 발명의 금 자성 나노입자와 결합된 타겟 미생물의 양을 수치적으로 검출할 수 있다는 것을 의미한다. 보다 상세하게는, 자성(예컨대, 영구자석) 하에서 캡처된 타겟 미생물-금 자성 나노입자 복합체에 대한 가시광선 영역의 광을 조사하여 흡광도의 변화를 측정하고 상기 흡광도의 변화를 타겟 미생물의 수로 환산함으로써 이루어진다.As used herein, the term “quantitative” means that it is possible to numerically detect the amount of the target microorganism bound to the gold nanoparticles of the present invention. More specifically, by irradiating light in the visible region with respect to the target microorganism-gold magnetic nanoparticle complex captured under the magnetic (eg permanent magnet) by measuring the change in absorbance and converting the change in absorbance by the number of target microorganisms Is done.

본 발명의 바람직한 구현예에 따르면, 상기 캡처된 타겟 미생물-금 자성 나노입자 복합체와 타겟 미생물의 결합은 상기 금 자성 나노입자의 흡광도 변화와 선형적인 상관관계를 가진다(참고: 도 7).According to a preferred embodiment of the present invention, the binding of the captured target microorganism-gold magnetic nanoparticle complex and the target microorganism has a linear correlation with the absorbance change of the gold magnetic nanoparticles (see FIG. 7).

본 발명의 바람직한 구현예에 따르면, 본 발명에서 이용되는 가시광선 영역은 500-600 nm의 범위를 가지고, 보다 바람직하게는 520-560 nm의 범위를 가지며, 가장 바람직하게는 530-540 nm의 범위를 가진다.According to a preferred embodiment of the present invention, the visible light region used in the present invention has a range of 500-600 nm, more preferably in the range of 520-560 nm, most preferably in the range of 530-540 nm. Has

본 발명의 바람직한 구현예에 따르면, 본 발명의 방법에 의해 검출되는 타겟 미생물(예컨대, 대장균)의 정량적 검출 범위는 101-109 세포, 보다 바람직하게는 101-108 세포이며 가장 바람직하게는 101-106 세포이다.According to a preferred embodiment of the invention, the quantitative detection range of the target microorganism (eg E. coli) detected by the method of the invention is 10 1-10 9 cells, more preferably 10 1-10 8 cells and most preferably Is 10 1 -10 6 cells.

본 발명의 바람직한 구현예에 따르면, 본 발명의 방법을 이용하여 분리, 농축 및 검출될 수 있는 타겟 미생물은 상술한 타겟팅 모이어티에 의해 결정된다.According to a preferred embodiment of the invention, the target microorganism which can be isolated, concentrated and detected using the method of the invention is determined by the targeting moiety described above.

본 발명에 이해 분리, 농축 및 검출될 수 있는 타겟 미생물은 바람직하게는, 유해 미생물로서, 보다 바람직하게는 유해 진핵생물 및 유해 박테리아이고, 예를 들어 대장균(예컨대, E. coli O157:H7), 살모넬라(Salmonella; 예컨대, Salmonella enteritidis, Salmonella typhi), 쉬켈라(Shigella; 예컨대, Shigella dysenteriae), 엔테로박테리아세(Enterobacteriaceae; 예컨대, Klebsiella pneumoniae), 슈도모나스(Pseudomonas; 예컨대, Pseudomonas aeruginosa), 모락셀라(Moraxella; 예컨대, Moraxella catarrhalis), 헬리코박터(Helicobacter; 예컨대, Helicobacter pylori), 스테노트로포모나스(Stenotrophomonas; 예컨대, Stenotrophomonas maltophilia) 등을 포함하지만, 이에 한정되는 것은 아니다. 예를 들어, 식중독-유발 미생물(예컨대, 살모넬라 엔테리티디스)의 표면에 위치한 항원에 특이적인 타겟팅 모이어티와 결합된 타겟팅-금 자성 나노입자를 이용하면, 시료 내 식중독-유발 미생물의 존재를 검출할 수 있을 뿐 아니라, 분리(/농축)할 수 있다.Target microorganisms that can be isolated, concentrated and detected in the present invention are preferably harmful microorganisms, more preferably harmful eukaryotes and harmful bacteria, for example E. coli (e.g. E. coli 0157: H7), Salmonella (Salmonella; e. g., Salmonella enteritidis, Salmonella typhi), Shh Kella (Shigella; e. g., Shigella dysenteriae), Enterobacter bacteria three (Enterobacteriaceae; for example, Klebsiella pneumoniae), Pseudomonas (Pseudomonas; e.g., Pseudomonas aeruginosa), morak Cellar (Moraxella ; e.g., Moraxella catarrhalis), Helicobacter pylori (Helicobacter; e.g., Helicobacter pylori), Pomona's (Stenotrophomonas by stacking notes; and the like e.g., Stenotrophomonas maltophilia), but the embodiment is not limited thereto. For example, using targeting-gold magnetic nanoparticles coupled with targeting moieties specific for antigens located on the surface of food poisoning-inducing microorganisms (eg, Salmonella enteritidis), the presence of food poisoning-inducing microorganisms in a sample can be detected. Not only can it be done, but it can also be separated (/ enriched).

상술한 바와 같이, 본 발명은 타겟팅-금 자성 나노입자를 이용하여 미생물을 원-스텝(one-step)으로 분리, 농축 및 검출할 수 있는 편의성, 민감도 및 정확도가 개선된 신규한 방법이다.As described above, the present invention is a novel method with improved convenience, sensitivity, and accuracy for separating, concentrating, and detecting microorganisms in one-step using targeting-gold magnetic nanoparticles.

본 발명자들은 이미 대한민국 특허 제0962286호를 통하여, 자성 코어 금 나노입자를 이용하여 미생물을 검출할 수 있음을 제시한 바 있다. 그러나, 상기 특허 문헌에 기재된 방법은 기본적으로 SPR에 기초한 것으로서, 이 방법은 고가의 SPR 기기를 이용하여야 하고 과정이 복잡한 문제점이 있었다. 본 발명자들은 상기 선행기술의 문제점을 극복하기 위하여, 본 발명을 구상 및 완성하였고, 본 발명을 통하여 보다 간단하고 저가의 장치를 이용하여 미생물을 원-스텝으로 분리, 농축 및 검출할 수 있는 방법을 제시한다.
The present inventors have already suggested through the Republic of Korea Patent No. 0962286 that microorganisms can be detected using magnetic core gold nanoparticles. However, the method described in the patent document is basically based on SPR, and this method has to use an expensive SPR device and has a complicated process. The inventors have devised and completed the present invention in order to overcome the problems of the prior art, and through the present invention a method for separating, concentrating and detecting microorganisms in one-step using a simpler and less expensive device. present.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 타겟팅-금 자성 나노입자를 이용하여 시료 내 타겟 미생물을 동시적으로 그리고 원-스텝으로 분리, 농축 및 검출할 수 있다.(a) The present invention enables targeting, gold magnetic nanoparticles to separate, concentrate and detect target microorganisms in a sample simultaneously and in one-step.

(b) 본 발명의 금 자성 나노입자-기반된 방법은 종래의 복잡하고 시간-소모적인 방법들에 비해 미생물의 분리 및 농축을 매우 간편하게 실시할 수 있을 뿐 아니라, 동시에 효율적인 검출도 할 수 있다.
(b) The gold magnetic nanoparticle-based method of the present invention not only makes the isolation and concentration of microorganisms very simple compared to conventional complicated and time-consuming methods, but also enables efficient detection at the same time.

도 1은 미생물과 선택적으로 반응할 수 있는 본 발명의 금 자성 나노입자를 관찰한 결과이다.
도 2는 본 발명의 금 자성 나노입자를 제조하는 과정을 도식적으로 나타낸 결과이다.
도 3은 본 발명의 금 자성 나노입자와 시료를 반응시켜 분리하는 과정을 보여주는 도면이다.
도 4는 막 필터를 이용하여 타겟 미생물을 분리하는 과정을 보여주는 도면이다.
도 5는 본 발명의 금 자성 나노입자가 결합된 미생물을 자성 하에서 분리 및 농축하는 과정을 나타내는 도식이다.
도 6은 분리된 미생물의 양을 측정하는 과정(a) 및 현미경 결과(b)를 보여주는 도면이다.
도 7은 본 발명의 금 자성 나노입자가 결합된 미생물을 가시광선 영역에서 측정한 흡광도 결과이다.
1 is a result of observing the gold magnetic nanoparticles of the present invention that can selectively react with microorganisms.
Figure 2 is a schematic representation of the process of producing the magnetic gold nanoparticles of the present invention.
3 is a view illustrating a process of separating and reacting the gold magnetic nanoparticles of the present invention with a sample.
4 is a diagram illustrating a process of separating target microorganisms using a membrane filter.
Figure 5 is a schematic diagram showing the process of separating and concentrating the microorganism to which the gold magnetic nanoparticles of the present invention are bound.
6 is a view showing a process (a) and microscopic results (b) of measuring the amount of separated microorganisms.
7 is an absorbance result of measuring the microorganism to which the gold magnetic nanoparticles of the present invention are bound in the visible region.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

미생물과 선택적으로 반응할 수 있는 금자성 입자의 제작Fabrication of Au-magnetic Particles that Can React with Microorganisms selectively

0.5M NaOH와 0.1M FeCl24H2O, 0.2M Fe3Cl64H2O, 0.4M HCl가 혼합된 혼합 수용액 25 ml을 기계적 교반기를 이용하여 2,000 rpm의 속도로 80℃에서 30분 동안 교반하고, 상기 교반액으로부터 영구자석을 이용하여 상층액을 분리하였다. 0.04 M HCl을 사용하여 중화시킨 후, 증류수 및 에탄올을 이용하여 세척하고 최종 200 ml가 되도록 에탄올에 분산시켜 나노입자 크기의 Fe2O3 또는 Fe3O4 자성체 코어를 제작하였다. 상기한 바와 같이, 제작된 자성체 코어 표면을 아민 작용기로 개질시키기 위해, 에탄올 50 ml에 녹여진 1.0 M 아미노프로필트리에톡시실레인(Aminopropyltriethoxysilane)과 상기 분산된 나노입자를 24시간 동안 반응시켰다. 원심분리 또는 영구자석을 이용하여 에탄올로 3회 내지 5회 세척한 후 최종적으로 100 ml 증류수에 분산시켰다.25 ml of a mixed aqueous solution of 0.5M NaOH and 0.1M FeCl 2 4H 2 O, 0.2M Fe 3 Cl 6 4H 2 O, and 0.4M HCl was stirred at 80 rpm at a speed of 2,000 rpm for 30 minutes using a mechanical stirrer. Then, the supernatant was separated from the stirring solution using a permanent magnet. After neutralization with 0.04 M HCl, washed with distilled water and ethanol and dispersed in ethanol to the final 200 ml to prepare a nanoparticle-size Fe 2 O 3 or Fe 3 O 4 magnetic core. As described above, in order to modify the prepared magnetic core surface with an amine functional group, 1.0 M aminopropyltriethoxysilane dissolved in 50 ml of ethanol and the dispersed nanoparticles were reacted for 24 hours. After centrifugation or permanent magnet washing with ethanol three to five times and finally dispersed in 100 ml distilled water.

이후, 자성 코어를 가지는 금 나노입자는 상기 아민기로 표면 개질된 자체 나노입자의 분산액 10 ml에 0.08 g의 HAuCl43H2O이 용해된 증류수 70 ml을 첨가하고 환류 교반시킨 다음, 1% 소듐 사이트레이트(sodium citrate)를 첨가한 후 2시간 동안 반응시켰다. 영구자석을 이용하여 정제하여 금 자성 나노입자를 제작하였다(도 1).
Subsequently, gold nanoparticles having a magnetic core were added with 70 ml of distilled water in which 0.08 g of HAuCl 4 3H 2 O was dissolved in 10 ml of the dispersion of the nanoparticles surface-modified with the amine group, and stirred under reflux, followed by 1% sodium site. The reaction was carried out for 2 hours after the addition of sodium citrate. Purification using a permanent magnet to produce gold magnetic nanoparticles (Fig. 1).

면역자성-기반 금 자성 나노입자를 이용한 시료전처리 기술Sample preparation technology using immunomagnetic-based gold magnetic nanoparticles

상기 제작된 금 자성 나노입자를 1 mM 머캅도헥사데카노익 산(Mercaptohexadecanoic acid, MHDA)이 용해된 에탄올과 12시간 동안 반응시킨 후, 영구자석을 이용하여 MHDA가 고정된 금 자성 나노입자를 분리 및 정제하였다. 상기 분리/정제된 금 자성 나노입자를 0.4 M EDC(N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride)와 0.1 M NHS(N-Hydroxysulfosuccinimide)의 혼합액에서 5분 동안 반응시킨 후, 항체(10 ㎍/ml의 항-0157)가 용해된 PBS(pH 7.4) 용액과 2시간 동안 반응시켜 금 자성 나노입자 표면에 항체를 고정화하였다. 그 후, 비특이적 반응을 제거하기 위해 BSA와 30분 동안 반응시켜 코팅시킨 후 영구자석을 이용하여 항체 고정된 금 자성 나노입자를 정제하였다(도 2).After reacting the prepared gold magnetic nanoparticles with ethanol in which 1 mM mercaptohexadecanoic acid (MHDA) was dissolved for 12 hours, MHDA-fixed gold magnetic nanoparticles were separated using a permanent magnet. And purified. The separated and purified gold magnetic nanoparticles were reacted with 0.4 M EDC (N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride) and 0.1 M NHS (N-Hydroxysulfosuccinimide) for 5 minutes, followed by antibody (10 The antibody was immobilized on the surface of the magnetic gold nanoparticles by reacting with a solution of PBS (pH 7.4) dissolved in μg / ml of anti-0157) for 2 hours. Thereafter, the reaction was coated with BSA for 30 minutes to eliminate the nonspecific reaction, and then the antibody-fixed gold magnetic nanoparticles were purified using permanent magnets (FIG. 2).

다양한 농도의 대장균(Escherichia coli O157:H7)으로 오염시킨 PBS 용액을 모델 시료로 사용하여 상기 제작된 항체 고정된 금 자성 나노입자의 성능을 검증하였다. 다양한 농도의 미생물(0, 10, 103, 105 및 106 세포/ml)을 포함하는 250 mL PBS 모델 시료에 상기 제작한 금 자성 나노입자 200 ㎕를 첨가한 후 5분 동안 교반하였다. 450 nm의 동공 크기를 갖는 나일론 필터를 사용하여 용액을 여과시켜 수 ㎛ 크기를 갖는 미생물과 그 미생물 표면에 흡착된 금 자성 나노입자 만을 분리하였다(도 3 및 도 4).PBS solution contaminated with various concentrations of Escherichia coli ( Esherichia coli 0157: H7) was used as a model sample to verify the performance of the prepared antibody-fixed gold magnetic nanoparticles. To a 250 mL PBS model sample containing various concentrations of microorganisms (0, 10, 10 3 , 10 5 and 10 6 cells / ml) was added 200 μl of the gold magnetic nanoparticles prepared above and stirred for 5 minutes. The solution was filtered using a nylon filter having a pore size of 450 nm to separate only microorganisms having a size of several micrometers and gold magnetic nanoparticles adsorbed on the surface of the microorganisms (FIGS. 3 and 4).

필터 상의 미생물은 5 ml 증류수를 사용하여 재분산시켰으며 분산된 미생물은 영구자석을 이용하여 분리 및 농축시켰다(도 5). 또한, 영구자석 맞은 편에 UV-Vis 분광분석기(spectrometer)를 설치하고 영구자석을 반사판으로 사용하여 반사 모드에서 미생물 표면에 흡착된 금 자성 나노입자의 가시선 흡수 스펙트럼 변화를 농축과 동시에 확인하였다(도 6a).The microorganisms on the filter were redispersed using 5 ml distilled water and the dispersed microorganisms were separated and concentrated using permanent magnets (FIG. 5). In addition, a UV-Vis spectrometer was installed opposite the permanent magnet and the permanent magnet was used as a reflector to confirm the visible absorption spectrum change of the gold nanoparticles adsorbed on the surface of the microorganism in the reflection mode at the same time (concentration). 6a).

도 6b는 E. coli O157:H7을 금 자성 나노입자와 반응시키 전(왼쪽 사진)과 E. coli O157:H7을 금 자성 나노입자와 반응시키고 난 후 필터를 사용하여 분리한 후 재분산시켜 측정(오른쪽 사진)한 전자현미경 사진이다. 도 6b에서 볼 수 있듯이, 금 자성 나노입자는 E. coli O157:H7의 표면에 선택적으로 잘 반응하여 흡착되어 있고 미반응된 금 자성 나노입자가 E. coli O157:H7 주변에 거의 존재하지 않는다는 것을 확인할 수 있었다.Figure 6b is measured by reacting E. coli O157: H7 with gold magnetic nanoparticles (pictured left) and by reacting E. coli O157: H7 with gold magnetic nanoparticles, separating them using a filter, and then redispersing them. (Picture on the right) A picture of an electron microscope. That it is not substantially present in the ambient H7: As can be seen in 6b, magnetic gold nanoparticles E. coli O157: is adsorbed selectively respond well to the surface of the H7 and Poultry magnetic nanoparticles unreacted E. coli O157 I could confirm it.

도 7은 영구자석을 이용하여 금 자성 나노입자와 반응한 E. coli O157:H7을 분리/농축하는 과정에서 가시선 흡수 스펙트럼을 이용하여 E. coli O157:H7의 농도를 확인한 결과이다. 농축 시작 10분 동안 후 측정한 결과이며 초기 모델시료인 PBS 250 ml에 오염시킨 E. coli O157:H7의 농도 대비 가시선 스펙트럼의 결과(도 8, 왼쪽 패널)이다. E. coli O157:H7의 농도(0, 10, 103, 105 및 106 세포/ml)가 증가할 수록 금 자성 나노입자가 가지는 고유 흡수파장인 530-540 nm에서 흡수 세기가 증가하는 것을 알 수 있었다. 또한, 도 7의 왼쪽 패널 내 화살표가 지시하는 최대흡수 파장(540 nm)에서 E. coli O157:H7 농도별 파장 세기를 정리하면 선형적으로 증가하는 것을 볼 수 있다(도 7의 오른쪽 패널). E. coli O157:H7을 오염시킨 않은 시료(농도 0 세포/ml)에서 0.01 정도의 흡수 세기를 가지는 것은 필터에서 완전히 분리되지 않은 미반응 금 자성 나노입자의 신호이다. 이는 10 세포/ml 농도와 비교해도 10% 미만의 무시할 만큼 작은 신호에 해당한다. 따라서, 금 자성 나노입자를 이용한 시료 전처리 동시 검출은 모델시료에서 10 세포/ml까지 측정할 수 있는 고감도 검출법임을 알 수 있다.7 shows the results of confirming the concentration of E. coli O157: H7 using a visible absorption spectrum in the process of separating / concentrating E. coli O157: H7 reacted with gold magnetic nanoparticles using permanent magnets. The result was measured 10 minutes after the start of the concentration, and is the result of the visible spectrum versus the concentration of E. coli O157: H7 contaminated with 250 ml of the initial model sample PBS (FIG. 8, left panel). As the concentration of E. coli O157: H7 (0, 10, 10 3 , 10 5 and 10 6 cells / ml) increased, the absorption intensity increased at 530-540 nm, which is the intrinsic absorption wavelength of the magnetic nanoparticles. Could know. In addition, it can be seen that the linear increase in the wavelength intensity for each concentration of E. coli O157: H7 at the maximum absorption wavelength (540 nm) indicated by the arrow in the left panel of FIG. 7 (right panel of FIG. 7). An absorption intensity of about 0.01 in a sample contaminated with E. coli O157: H7 (concentration 0 cells / ml) is a signal of unreacted gold magnetic nanoparticles that are not completely isolated from the filter. This corresponds to a negligibly small signal of less than 10% compared to the 10 cell / ml concentration. Therefore, it can be seen that simultaneous detection of sample pretreatment using gold magnetic nanoparticles is a highly sensitive detection method capable of measuring up to 10 cells / ml in a model sample.

결과적으로, 금 자성 나노입자는 영구 자석에 영향을 받는 자성의 성질과 특정 가시선 영역(530-540 nm)을 흡수하는 금 나노입자 성질을 함께 가지는 나노미터 크기 수준의 다기능성 입자이며, 이를 이용하여 기존 면역자성법과 검출법을 시료 전처리 과정에서 동시에 적용할 수 있었다. 본 발명은 시료에서 특정 미생물의 분리/농축 과정을 실시간으로 모니터링 할 수 있는 방법을 제시하였으며 기존 미생물 시료 전처리 과정과 검출 과정을 단일화하여 전과정을 단순화시켜 시료 전처리의 정확성, 재현성 및 신뢰성을 향상시키고 미량의 미생물을 고속으로 검출할 수 있는 방법을 제시하였다.
As a result, the gold magnetic nanoparticles are nanometer-sized multifunctional particles having both magnetic properties affected by permanent magnets and gold nanoparticles absorbing certain visible region (530-540 nm). Existing immunomagnetic and detection methods could be applied simultaneously in sample preparation. The present invention provides a method for real-time monitoring of the separation / concentration process of a specific microorganism in a sample, and by simplifying the whole process by unifying the existing microbial sample pretreatment and detection process, the accuracy, reproducibility and reliability of sample pretreatment are improved and trace amount is reduced. A method for detecting microorganisms at high speed has been proposed.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명 의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

다음 단계를 포함하는 금 자성 나노입자를 이용한 미생물의 원-스텝(one-step) 분리, 농축 및 검출 방법:
(a) (i) 자성물질을 포함하는 코어, (ii) 금을 포함하는 쉘 및 (iii) 상기 쉘의 표면에 결합되어 있고 미생물의 표면 항원에 결합하는 타겟팅 모이어티(moiety)를 포함하는 타겟팅-금 자성 나노입자에 시료를 접촉시키는 단계; 및
(b) 상기 단계 (a)의 결과물을 자성이 인가(apply)된 컬럼에 적용하여 상기 미생물을 동시에 분리, 농축 및 검출하는 단계로서, 상기 자성의 인가는 컬럼의 일정부분에서 이루어지며 자성이 인가되어 미생물이 분리되는 컬럼의 부위에 가시광선이 조사되어 흡광도를 측정한다.
One-step separation, concentration and detection of microorganisms using gold magnetic nanoparticles comprising the following steps:
(a) a targeting comprising a (i) core comprising magnetic material, (ii) a shell comprising gold and (iii) a targeting moiety bound to the surface of the shell and binding to the surface antigen of the microorganism Contacting the sample with gold magnetic nanoparticles; And
(b) applying the result of step (a) to a magnetically applied column to simultaneously separate, concentrate and detect the microorganisms, wherein the magnetic application is performed at a portion of the column and the magnetic application The visible light is irradiated to the portion of the column where the microorganism is separated to measure the absorbance.
제 1 항에 있어서, 상기 자성의 인가는 영구자석 또는 전자석에 의해 이루어지는 것을 특징으로 하는 방법.
The method of claim 1, wherein the magnetic application is performed by a permanent magnet or an electromagnet.
제 1 항에 있어서, 상기 흡광도 측정은 상기 컬럼에 연결된 스펙트로포토미터를 이용하여 실시하는 것을 특징으로 하는 방법.
The method of claim 1, wherein the absorbance measurement is performed using a spectrophotometer connected to the column.
제 1 항에 있어서, 상기 흡광도 측정은 상기 미생물의 검출을 가능하게 하며 상기 미생물의 검출은 정량적 검출인 것을 특징으로 하는 방법.
The method of claim 1, wherein the absorbance measurement enables detection of the microorganism and the detection of the microorganism is quantitative detection.
제 1 항에 있어서, 상기 자성물질은 MxOy(단, M은 금속으로 Fe, Au, Pt, Ni 또는 Mn이며, O는 산소, x와 y는 정수를 나타낸다)인 것을 특징으로 하는 방법.
The method of claim 1, wherein the magnetic material is M x O y (wherein M is Fe, Au, Pt, Ni or Mn, O is oxygen, and x and y represent an integer). .
제 5 항에 있어서, 상기 MxOy은 Fe2O3 또는 Fe3O4인 것을 특징으로 하는 방법.
The method of claim 5, wherein the M x O y is Fe 2 O 3 or Fe 3 O 4 .
제 1 항에 있어서, 상기 타겟팅 모이어티는 항체 또는 이의 단편인 것을 특징으로 하는 방법.
The method of claim 1, wherein the targeting moiety is an antibody or fragment thereof.
제 1 항에 있어서, 상기 컬럼은 그 상부에 막 필터를 포함하며 상기 막 필터에 의해 상기 컬럼에 적용된 상기 단계 (a)의 결과물에서 상기 타겟팅-금 자성 나노입자가 결합된 미생물의 흐름(flow)을 지연시키는 것을 특징으로 하는 방법.
The flow of microorganisms of claim 1, wherein the column includes a membrane filter thereon and the targeting-gold magnetic nanoparticles are combined in the result of step (a) applied to the column by the membrane filter. Delaying the process.
제 1 항에 있어서, 상기 가시광선 영역은 500-600 nm의 범위를 가지는 것을 특징으로 하는 방법.
The method of claim 1, wherein the visible region is in the range of 500-600 nm.
제 1 항에 있어서, 상기 금 자성 나노입자는 5-100 nm의 크기를 가지는 나노입자인 것을 특징으로 하는 방법.
The method of claim 1, wherein the gold magnetic nanoparticles are nanoparticles having a size of 5-100 nm.
제 1 항에 있어서, 상기 금 자성 나노입자의 표면은 타겟팅 모이어티와의 결합에 이용될 수 있는 물질로 코팅되어 있는 것을 특징으로 하는 방법.
The method of claim 1, wherein the surface of the magnetic gold nanoparticles is coated with a material that can be used for binding to the targeting moiety.
제 11 항에 있어서, 상기 금 자성 나노입자의 표면은 머캅도헥사데카노익 산(Mercaptohexadecanoic acid, MHDA), 시스타민, 폴리에틸렌글리콜(PEG), 덱스트란, 폴리비닐피롤리돈, 알부민, 폴리비닐알코올, 폴리에틸렌이민, 키토산, 히아루론산, 폴리락틱글라이코릭산(PLGA), 폴리락틱산, 폴리락타이드, 폴리글라이콜릭산, 폴리아미노산, 폴리아세탈, 폴리오써칼본에이트, 폴리칼본에이트, 폴리칼보락톤 폴리아크릴산, 폴리메타아크릴산, 폴리사카라이드, 폴리케탈, 폴리에테르, 폴리아마이드,폴리말레익안하드라이드, 폴리메틸비닐에테르 또는 상기 고분자의 공중합체에 의해 코팅되어 있는 것을 특징으로 하는 방법.
The method of claim 11, wherein the surface of the gold magnetic nanoparticles are mercaptohexadecanoic acid (MHDA), cystamine, polyethylene glycol (PEG), dextran, polyvinylpyrrolidone, albumin, polyvinyl Alcohol, Polyethylenimine, Chitosan, Hyaluronic Acid, Polylactic Glycolic Acid (PLGA), Polylactic Acid, Polylactide, Polyglycolic Acid, Polyamino Acid, Polyacetal, Polytherabolic Acid, Polycarbonate Tonic polyacrylic acid, polymethacrylic acid, polysaccharide, polyketal, polyether, polyamide, polymaleic anhydride, polymethylvinyl ether or a copolymer of the above polymer.
제 12 항에 있어서, 상기 금 자성 나노입자의 표면은 머캅도헥사데카노익 산에 의해 코팅되어 있는 것을 특징으로 하는 방법.
13. The method of claim 12, wherein the surface of the gold magnetic nanoparticles is coated with mercapdohexadecanoic acid.
제 1 항에 있어서, 상기 미생물은 식중독-유발 미생물인 것을 특징으로 하는 방법.The method of claim 1, wherein the microorganism is a food poisoning-inducing microorganism.
KR1020110042826A 2011-05-06 2011-05-06 Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles KR101277696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110042826A KR101277696B1 (en) 2011-05-06 2011-05-06 Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110042826A KR101277696B1 (en) 2011-05-06 2011-05-06 Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles

Publications (2)

Publication Number Publication Date
KR20120124902A KR20120124902A (en) 2012-11-14
KR101277696B1 true KR101277696B1 (en) 2013-06-24

Family

ID=47510161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110042826A KR101277696B1 (en) 2011-05-06 2011-05-06 Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles

Country Status (1)

Country Link
KR (1) KR101277696B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101582110B1 (en) 2013-10-10 2016-01-04 한양대학교 산학협력단 Method for detecting microorganism using metal nanoparticle and kit for detecting microorganism
CN104897901B (en) * 2015-05-12 2017-07-11 西安金磁纳米生物技术有限公司 A kind of method of the acridinium ester chemiluminescent immunology detection HE4 based on gold-magnetic particles
WO2017204442A2 (en) * 2016-05-26 2017-11-30 서울대학교 산학협력단 Kit and method for detecting marker substance using asymmetric beads
KR102220208B1 (en) * 2018-06-22 2021-02-25 서울대학교산학협력단 Nanoparticles structure
KR102145618B1 (en) * 2018-12-10 2020-08-20 대한민국 Composition and method for simultaneous detection of foodborne pathogens using immunomagnetic particle
KR102170259B1 (en) * 2019-07-15 2020-10-28 주식회사 어큐노스 Solution Substitution Type Magnetic Particle Concentration Device and Method for Rapid Detection of Bacteria Based on Fluorescence Imaging
KR102438373B1 (en) * 2020-09-04 2022-08-30 한국식품연구원 Preparing method of immunomagnetic particle for pre-processing of food sample and Pre-processing Method of food sample using immunomagnetic particle prepared therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1;NANOTECHNOLOGY *

Also Published As

Publication number Publication date
KR20120124902A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
KR101277696B1 (en) Methods for Separating, Concentrating and Detecting Microorganisms in One-Step Using Targeting-Gold Magnetic Nanoparticles
Choi et al. Noble metal-assisted surface plasmon resonance immunosensors
Seo et al. Development of a rapid response biosensor for detection of Salmonella typhimurium
US8143072B2 (en) System for detecting nanoparticles using modulated surface plasmon resonance
EP1715344A1 (en) Immobilisation of antigenic carbohydrates to support detection of pathogenic micro-organisms
Ye et al. An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@ Pt/SiO2 nanocomposites and immune magnetic nanoparticles
Li et al. A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti‐IgG
US9464281B2 (en) Method for concentrating viruses, method for concentrating cells or bacteria, and magnetic composite
CN112326623A (en) Silicon-core-silver-shell composite nano label marked by double-layer Raman molecules, preparation method and immunochromatography application
CN1268930C (en) Assembled magnetic composite micro particle, and its preparing method and use
KR20140094035A (en) DNA labeled Core/Shell nanoparticle having fluorescence, and method of detecting a bioactive material
JP6598681B2 (en) Silica particles having reactive functional groups on the surface and method for producing the same
WO2008053229A1 (en) Magnetic recognition system
CN111650379A (en) Preparation and immunochromatography application of gold shell magnetic Raman-enhanced nano tag
KR101669658B1 (en) Method for separating, concentrating and detecting target material in sample solution
CN116953226A (en) Double DTNB encoded nanogap enhanced SERS (surface enhanced Raman Scattering) tag and application thereof in detection of SARS-CoV-2
JP2007078595A (en) Functional particle and its manufacturing method
JP2020025536A (en) Sugar chain-immobilized magnetic metal nanoparticles, virus capture, concentration, purification and detection
Oh et al. Surface plasmon resonance immunosensor for detection of Legionella pneumophila
CN111220802B (en) Clenbuterol hydrochloride small molecule hapten high sensitivity detection test paper based on nano antibody and preparation method thereof
US20110294110A1 (en) Set of magnetic labels
Wang et al. Aspects of recent development of immunosensors
Ji et al. Functionalized magnetic nanobeads for SERS-based detection of Staphylococcus aureus
JP2006169623A (en) Functional particle and its production method
Parvaneh et al. Efficient conjugation of anti-HBsAg antibody to modified core-shell magnetic nanoparticles (Fe3O4@ SiO2/NH2)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170908

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 7

R401 Registration of restoration