KR101276166B1 - Autoclaved light weight concrete composition including the thermosetting resin - Google Patents

Autoclaved light weight concrete composition including the thermosetting resin Download PDF

Info

Publication number
KR101276166B1
KR101276166B1 KR1020110026524A KR20110026524A KR101276166B1 KR 101276166 B1 KR101276166 B1 KR 101276166B1 KR 1020110026524 A KR1020110026524 A KR 1020110026524A KR 20110026524 A KR20110026524 A KR 20110026524A KR 101276166 B1 KR101276166 B1 KR 101276166B1
Authority
KR
South Korea
Prior art keywords
thermosetting resin
weight
parts
resin
concrete composition
Prior art date
Application number
KR1020110026524A
Other languages
Korean (ko)
Other versions
KR20120108535A (en
Inventor
강대구
김영곤
추용식
송훈
이종규
서성관
Original Assignee
한국세라믹기술원
(주) 에스와이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, (주) 에스와이씨 filed Critical 한국세라믹기술원
Priority to KR1020110026524A priority Critical patent/KR101276166B1/en
Publication of KR20120108535A publication Critical patent/KR20120108535A/en
Application granted granted Critical
Publication of KR101276166B1 publication Critical patent/KR101276166B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/124Chlorides of ammonium or of the alkali or alkaline earth metals, e.g. calcium chloride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/126Urea
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents

Abstract

본 발명은 열경화성 수지를 함유한 경량기포콘크리트 조성물에 관한 것으로서, 보다 상세하게는 규사, 생석회 및 시멘트로 이루어진 혼합물에 제품의 강도 등 물성향상을 위하여 열경화성 수지를 혼합한 경량기포콘크리트 조성물에 관한 것으로, 본 발명에서는 시멘트, 규사 및 생석회를 포함하는 시멘트 혼합물 100중량부에 대하여 알루미늄 분말 0.04 ~ 0.05중량부, 증류수 6 ~ 7중량부를 혼합하여 된 조성물 총 중량에 대해 열경화성 수지 1.5 ~ 2.5중량%를 포함하도록 첨가한 것을 특징으로 하는 열경화성 수지를 함유한 경량기포콘크리트 조성물이 개시된다.The present invention relates to a lightweight foamed concrete composition containing a thermosetting resin, and more particularly, to a lightweight foamed concrete composition in which a thermosetting resin is mixed with a mixture of silica sand, quicklime and cement to improve physical properties such as strength of a product. According to the present invention, the thermosetting resin is included in an amount of 1.5 to 2.5% by weight based on the total weight of the composition obtained by mixing 0.04 to 0.05 parts by weight of aluminum powder and 6 to 7 parts by weight of distilled water with respect to 100 parts by weight of the cement mixture including cement, silica sand and quicklime. A lightweight foamed concrete composition containing a thermosetting resin added is disclosed.

Description

열경화성 수지를 함유한 경량기포콘크리트 조성물{Autoclaved light weight concrete composition including the thermosetting resin}Light-weight foamed concrete composition containing thermosetting resin {Autoclaved light weight concrete composition including the thermosetting resin}

본 발명은 열경화성 수지를 함유한 경량기포콘크리트 조성물에 관한 것으로서, 보다 상세하게는 규사, 생석회 및 시멘트로 이루어진 혼합물에 제품의 강도 등 물성향상을 위하여 열경화성 수지를 혼합한 경량기포콘크리트 조성물에 관한 것이다.
The present invention relates to a lightweight foamed concrete composition containing a thermosetting resin, and more particularly, to a lightweight foamed concrete composition in which a thermosetting resin is mixed with a mixture of silica sand, quicklime, and cement to improve physical properties such as strength of a product.

ALC(auto clave light weight concrete)는 블록이나 판넬을 만드는 공업화 생산품으로, 경량이고 다공질이며 흡습성이 높은 특성을 갖고 있는데 단열, 흠음 및 차음성은 우수하지만 구조재로서 사용은 재한되고 주로 간막이벽, 비내력 외벽 등에 적용되고 있다.ALC (auto clave light weight concrete) is an industrialized product that makes blocks or panels. It is lightweight, porous, and hygroscopic. It has excellent insulation, scratches, and sound insulation, but is limited to use as a structural material. It is applied to exterior walls.

ALC(auto clave light weight concrete)는 발포제에 의하여 콘크리트 내부에 무수한 기포를 독립적으로 분산시켜 중량을 가볍게 한 기포콘크리트의 일종으로 블록과 사전에 철근이 보강된 패널형태로서 생산되고 있으며 경량콘크리트의 일반적 장점인 경량성, 단열성, 내화 및 시공성 등에서 우수한 성능을 보이고 있다. ALC (auto clave light weight concrete) is a kind of foam concrete that is light weight by dispersing countless bubbles in concrete by foaming agent independently. It is produced in the form of panel reinforced with reinforcement of blocks. It has excellent performance in phosphor light weight, heat insulation, fire resistance and workability.

ALC는 석회질, 규산질 원료와 기포제 및 혼화제를 주원료로 물과 혼합하여 슬러리를 만든 후 고온·고압의 오토클레이브(Autoclave)에서 증기야생과정을 거쳐 구조적으로 안정된 판상구조의 토벌모라이트(Tobermorite) 결정을 이루는 과정으로 제조된다. ALC forms a slurry by mixing lime, siliceous raw material, foaming agent, and admixture with water as the main raw materials, and then forms structurally stable Tobermorite crystals through a steam wild process in an autoclave of high temperature and high pressure. It is manufactured by the process of forming.

이 과정에서 규산질 원료와 석회질 원료의 조합 비율은 ALC 제조회사별로 각각 다르나, 그 소재 및 제품으로서의 물리적, 화확적 성질에는 큰 차이가 없으며,오히려 각각의 제조 과정에 적합한 원료의 배합이 채택되고 있는 실정이다.
In this process, the combination ratio of siliceous material and calcareous material is different for each ALC manufacturer, but there is no significant difference in physical and chemical properties of the material and product. Rather, the formulation of a suitable raw material for each manufacturing process is adopted. to be.

본 발명은 ALC 소재에 고강도 콘크리트 원료를 적용하였을 때 나타나는 문제점을 보완하기 위하여 ALC소재에 열경화성 수지(Thermosetting Resin)를 적용하여 종래 ALC 대비 동등 또는 그 이상의 물성을 확보할 수 있는 열경화성 수지를 함유한 경량기포콘크리트 조성물을 제공하는 것을 그 해결과제로 한다.
The present invention is applied to a thermosetting resin (Thermosetting Resin) to the ALC material in order to supplement the problems appearing when applying a high-strength concrete raw material to the ALC material lightweight containing a thermosetting resin that can secure the same or more properties than the conventional ALC It is a problem to provide a foamed concrete composition.

상기한 과제를 해결한 본 발명의 열경화성 수지를 함유한 경량기포콘크리트 조성물은 샌드슬러리(Sand slury)와 리턴슬러리(Return slury)로 구성되는 규사 100중량부에 대하여 시멘트 18 ~ 20중량부, 생석회 8 ~ 9중량부를 포함하여 이루어지는 시멘트 혼합물 100중량부에 대하여 알루미늄 분말 0.04 ~ 0.05중량부, 증류수 6 ~ 7중량부를 혼합하여 된 조성물 총 중량에 대해 열경화성 수지 1.5 ~ 2.5중량%를 포함하도록 첨가한 것을 특징으로 한다. The lightweight foamed concrete composition containing the thermosetting resin of the present invention solved the above problems is 18 to 20 parts by weight of cement, 100 to 20 parts by weight of silica sand composed of sand slurries and return slury, lime 8 It is added to include 1.5 to 2.5% by weight of the thermosetting resin to the total weight of the composition of 0.04 to 0.05 parts by weight of aluminum powder, 6 to 7 parts by weight of distilled water with respect to 100 parts by weight of the cement mixture comprising 9 parts by weight. It is done.

삭제delete

여기서, 상기 규사는 구성비로 샌드슬러리:리턴슬러리는 1:0.5~0.6의 중량비를 가지는 것을 특징으로 한다. Here, the silica sand is characterized in that the sand slurry: the return slurry has a weight ratio of 1: 0.5 ~ 0.6.

여기서, 상기 조성물에 20% NH4CL 수용액을 열경화성 수지의 첨가량 대비 2중량%를 더 첨가하는 것을 특징으로 한다. Here, 20% NH 4 CL aqueous solution is added to the composition, characterized in that 2% by weight is further added relative to the amount of the thermosetting resin.

여기서, 상기 열경화성 수지는 멜라민 수지 또는 요소수지인 것을 특징으로 한다.
Here, the thermosetting resin is characterized in that the melamine resin or urea resin.

본 발명에 따른 열경화성 수지를 함유한 경량기포콘크리트 조성물은 동일한 결정상 내에서 열경화성 수지가 토버모라이트(Tobermorite) 사이에 결합되어 가교역할을 함으로서 성형체의 강도 증진 효과를 가져오며, 열전도율을 낮추어 주어 단열효과가 우수한 효과가 있다. 즉, ALC 소재에 열경화성 수지를 혼합함으로써 경량기포콘크리트의 각종 물성을 종래의 것과 동등하거나 그 이상의 증진 효과가 있는 것이다.
The lightweight foamed concrete composition containing the thermosetting resin according to the present invention has a thermosetting resin is bonded between Tobermorite in the same crystal phase to bring a crosslinking role to increase the strength of the molded body, lower the thermal conductivity to give a thermal insulation effect Has an excellent effect. In other words, by mixing the thermosetting resin in the ALC material, various physical properties of the lightweight foam concrete have the same or more enhancement effect than the conventional one.

도 1은 본 발명에 따른 조성물의 열경화성 수지의 함량에 따른 성형체를 가열 후 상태변화를 관찰한 사진이다.
도 2는 본 발명에 따른 조성물의 열경화성 수지의 함량에 따른 압축강도와 휨강도를 측정한 결과를 도시한 그래프이다.
도 3은 본 발명에 따라 열경화성 수지를 첨가하여 된 성형체의 미세구조와 첨가하지 않은 성형체의 미세구조를 비교한 사진이다.
도 4는 본 발명에 따른 열경화성 수지의 함량에 따른 XRD 측정 그래프이다.
도 5는 본 발명에 따른 조성물의 비중별 압축강도의 예상 결과를 도시한 그래프이다.
1 is a photograph observing the state change after heating the molded body according to the content of the thermosetting resin of the composition according to the present invention.
Figure 2 is a graph showing the results of measuring the compressive strength and flexural strength according to the content of the thermosetting resin of the composition according to the present invention.
Figure 3 is a photograph comparing the microstructure of the molded article without the thermosetting resin added and the molded article according to the present invention.
Figure 4 is a XRD measurement graph according to the content of the thermosetting resin according to the present invention.
Figure 5 is a graph showing the expected result of the compressive strength by specific gravity of the composition according to the present invention.

이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따른 열경화성 수지를 함유한 경량기포콘크리트 조성물은 시멘트, 규사 및 생석회를 포함하는 시멘트 혼합물 100중량부에 대하여 알루미늄 분말 0.04 ~ 0.05중량부, 증류수 6 ~ 7중량부를 혼합하여 된 조성물 총 중량에 대해 열경화성 수지 1.5 ~ 2.5중량%를 포함하도록 첨가하여 된다. The lightweight foamed concrete composition containing the thermosetting resin according to the present invention is added to the total weight of the composition by mixing 0.04 to 0.05 parts by weight of aluminum powder and 6 to 7 parts by weight of distilled water based on 100 parts by weight of the cement mixture including cement, silica sand and quicklime. It may be added so as to contain 1.5 to 2.5% by weight of the thermosetting resin.

상기 시멘트 조성물은 규사 100중량부에 대하여 시멘트 18 ~ 20중량부, 생석회 8 ~ 9중량부를 포함하여 이루어지며, 상기 규사는 샌드슬러리(Sand slury)와 리턴슬러리(Return slury)로 구성되며, 구성비로 샌드슬러리:리턴슬러리는 1:0.5~0.6의 중량비를 가지도록 혼합하는 것이 바람직하다. The cement composition comprises 18 to 20 parts by weight of cement and 8 to 9 parts by weight of quicklime with respect to 100 parts by weight of silica sand, and the silica sand is composed of sand slurries and return slury. The sand slurry: the return slurry is preferably mixed so as to have a weight ratio of 1: 0.5 to 0.6.

본 발명에 따르면, 열경화성 수지의 경화제로서 상기 조성물에 20% NH4Cl 수용액을 열경화성 수지의 첨가량 대비 2중량%를 더 첨가할 수 있다. 상기 수용액을 첨가함으로써 시공시 콘크리트의 경화속도를 조절할 수 있게 되는 것이다.According to the present invention, a 20% NH 4 Cl aqueous solution may be further added to the composition as a curing agent of the thermosetting resin by 2% by weight relative to the amount of the thermosetting resin added. By adding the aqueous solution it is possible to control the curing rate of the concrete during construction.

본 발명에 사용되는 상기 열경화성 수지는 저분자의 중합체를 가열하면 중합도가 증가하여 큰 힘을 가해도 변형하지 않는 성질을 이용한 것으로, 분자 내에 3개 이상의 반응기를 가진 비교적 저분자량의 물질로 이루어졌다. 즉, 저분자 혼합물에서 적당한 점성을 가진 액체를 원료로 하여 열을 가하면 가교 형성이 진행되면서 입체적인 그물모양 구조를 형성하므로, 큰 응력을 가해도 변형되지 않고 용제에도 녹지 않으며 온도를 올려도 녹지 않게 된다. 종류에 따라서는 열을 가하면 어느 정도 물러지거나 강도가 떨어지는 것도 있지만, 대부분은 분해되거나 증발해 버린다. 일반적으로 내열성, 내용제성, 내약품성, 기계적 성질, 전기절연성이 좋으며, 충전제를 넣어 강인한 성형물을 만들 수가 있다. 또 고강도 섬유와 조합하여 섬유강화플라스틱을 제조하는 데에도 사용된다. 열경화성 수지는 축중합형과 첨가중합형으로 나뉘는데 축중합형에는 페놀수지, 요소수지, 멜라민수지, 첨가중합형에는 에폭시수지, 폴리에스터수지 등을 예시할 수 있으며, 본 발명에 따르면 바람직하게는 멜라민 수지 또는 요소수지를 사용하는 것이 좋다.
The thermosetting resin used in the present invention utilizes a property of increasing the degree of polymerization when the polymer of low molecular weight is heated and does not deform even when a large force is applied. That is, when heat is applied as a raw material of a liquid having a moderate viscosity in a low molecular weight mixture, cross-linking is formed, thereby forming a three-dimensional network structure. Therefore, even when a large stress is applied, it is not deformed, does not melt in the solvent, and does not melt even at elevated temperatures. Depending on the type of heat, some of them may recede or lose strength, but most of them will decompose or evaporate. In general, it has good heat resistance, solvent resistance, chemical resistance, mechanical properties, and electrical insulation, and it is possible to make a strong molding by adding a filler. It is also used in the manufacture of fiber reinforced plastics in combination with high strength fibers. Thermosetting resins are divided into condensation polymerization type and addition polymerization type, but phenol resin, urea resin, melamine resin may be exemplified in the condensation polymerization type, epoxy resin, polyester resin, etc. in the addition polymerization type, preferably melamine according to the present invention. It is recommended to use resin or urea resin.

본 발명에서는 상기 개시된 열경화성 수지를 함유한 경량기포콘크리트 조성물에 열경화성 수지로서 ALC소재에 멜라민 수지와 요소수지의 배합량을 조절하여, ALC성형체를 제조한 후 기초물성 및 기능성 평가를 실시하였다. In the present invention, by adjusting the blending amount of the melamine resin and urea resin in the ALC material as a thermosetting resin in the lightweight foamed concrete composition containing the thermosetting resin disclosed above, the ALC molded product was prepared, and then evaluated the basic properties and functionalities.

기초물성 측정 방법으로는 수열합성이 끝난 성형체를 160(mm)의 크기로 절단하여 건조기 100 조건에서 항량이 될 때가지 충분히 건조한 후 부피비중 및 휨강도를 측정, 50(mm)의 크기로 절단 후 동일 조건으로 건조시킨 후 압축강도를 측정한다. 또한 성형체를 200(mm)의 크기로 절단 후 동일 조건으로 건조시키고 열전도율을 측정한다. 성형체의 제조 조건별 미세구조 관찰 및 XRD Pattern을 확인한다.Basic measurement method is to cut the hydrothermally synthesized molded product into 160 (mm) size and dry it sufficiently until it becomes the quantity under dryer 100 condition.Measure specific gravity and bending strength, and cut it to 50 (mm) size. After drying under conditions, the compressive strength is measured. In addition, after cutting the molded body to the size of 200 (mm) and dried under the same conditions and measure the thermal conductivity. Observe the microstructure observation and XRD pattern according to the manufacturing conditions of the molded product.

가. 열경화성 수지의 함량에 따른 성형체 제조 및 기초물성 측정end. Preparation of molded product and measurement of basic properties according to the content of thermosetting resin

열경화성 수지를 ALC 소재에 적용하기 위해 출발원료인 규사, 생석회 및 시멘트를 분말 원료로서 총 100%로 가정하고 제품의 강도에 큰 영향을 미치는 CaO/SiO2비를 (주)SYC의 현재 적용중인 배합비에 따라 기준 배합비를 설정하였다.In order to apply thermosetting resin to ALC material, it is assumed that silica, quicklime, and cement are 100% of the starting materials as powder raw materials, and the ratio of CaO / SiO 2 which has a great influence on the strength of the product is currently applied. According to the standard formulation ratio was set.

현재 현장에서 적용중인 배합은 Sand slurry 및 Return slurry를 사용하며 그것의 고형분량을 계산하였으며 시멘트 및 소량의 생석회가 사용되었다. 발포제는 알루미늄 분말을 혼합분말 대비 0.08% 사용하였으며, 혼합수량은 혼합분말 (Raw Mix) 대비 70%로 고정하였다. 열경화성 수지의 선정 및 경화제(20% NH4Cl 수용액)의 함량을 알아보기 위하여 그림 1-23과 같이 경화제의 함량을 제어(열경화성 수지 대비 0%, 2%, 4%, 6%)하여 열경화성 수지를 Autoclave에서 180-7시간 동안 가열한 후, 상태 변화를 살펴보았다. 첨부도면 도 1에서 보는 것과 같이 열경화성 수지를 가열하였을 때 요소 수지는 Autoclave내에서 불완전 연소되어 까맣게 타버린 것을 확인할 수 있었다. 반면 멜라민 수지는 가열하여도 그 상태가 양호하게 보존되는 것을 알 수 있었다. 또한 멜라민 수지에 경화제 2%를 첨가하였을 때, 가열 후 멜라민 수지의 상태가 가장 양호하게 굳은 것을 확인할 수 있었다.Currently, the formulation used in the field uses sand slurry and return slurry, its solid content is calculated, and cement and small amount of quicklime are used. The blowing agent used aluminum powder 0.08% compared to the mixed powder, the mixing amount was fixed to 70% compared to the mixed powder (Raw Mix). To select the thermosetting resin and the content of the curing agent (20% NH 4 Cl aqueous solution), control the content of the curing agent (0%, 2%, 4%, 6% compared to the thermosetting resin) as shown in Figure 1-23. After heating for 180-7 hours in an autoclave, the state change was examined. As shown in FIG. 1, when the thermosetting resin was heated, the urea resin was burned incompletely by burning in the autoclave. On the other hand, the melamine resin was found to be well preserved even when heated. In addition, when 2% of the curing agent was added to the melamine resin, it was confirmed that the state of the melamine resin hardened best after heating.

경화제의 양을 열경화성 수지 대비 2%로 고정하고 ALC 소재에 적용될 열경화성 수지의 최적 배합비를 찾기 위하여 수지의 양을 혼합분말 대비 외할로 제어, 성형체를 제조한 후 비중 및 압축강도, 휨강도를 측정하고 최적의 배합비를 도출하였다. 수열합성 시 최고 온도 및 유지시간은 180 -7시간으로 고정하였으며, 수열합성이 끝난 성형체는 각각의 물성 측정 방향에 맞추어 적절한 크기로 습식 절단하고 항량 건조하여 물성측정 및 평가를 시행한다. 기본 원료 및 열경화성 수지의 배합 설계는 하기 표 1 및 2와 같다. 단위는 [g]이다.In order to fix the amount of curing agent at 2% of the thermosetting resin and to find the optimum mixing ratio of the thermosetting resin to be applied to the ALC material, control the amount of the resin to the foreign powder compared to the mixed powder, manufacture the molded body, measure the specific gravity, the compressive strength, the bending strength, and then optimize the The compounding ratio of was derived. The maximum temperature and holding time for hydrothermal synthesis were fixed at 180 -7 hours, and the hydrothermally synthesized molded parts were wet-cut to the appropriate size and subjected to constant drying to measure properties and evaluated. The blending design of the basic raw material and the thermosetting resin is shown in Tables 1 and 2 below. The unit is [g].

하기 표 1 및 2의 멜라민 수지와 요소수지는 시멘트, 생석회, 샌드슬러리, 리턴슬러리, 알루미늄 분말 및 증류수의 혼합량 총량 대비 하기 표1 및 2에 개시된 양을 첨가하였다.
The melamine resin and urea resin of Tables 1 and 2 were added to the amounts shown in Tables 1 and 2 to the total amount of cement, quicklime, sand slurry, return slurry, aluminum powder and distilled water.

시멘트cement 생석회quicklime Sand slurry (d=1.58)Sand slurry (d = 1.58) Return slurry (d=1.35)Return slurry (d = 1.35) 알루미늄
분말
aluminum
powder
증류수Distilled water 멜라민수지
(중량%)
Melamine resin
(weight%)
10601060 470470 35413541 19841984 4.24.2 630630 00 10601060 470470 35413541 19841984 4.24.2 630630 22 10601060 470470 35413541 19841984 4.24.2 630630 44

상기 표1의 조성에 상기 멜라민 수지 함량 대비 경화제로 20% NH4Cl 수용액을 (멜라민 수지 첨가량 [g]×2%가 되도록 첨가하였다. To the composition of Table 1, a 20% NH 4 Cl aqueous solution was added as a curing agent to the melamine resin content (total amount of melamine resin [g] × 2%).

시멘트cement 생석회quicklime Sand slurry (d=1.58)Sand slurry (d = 1.58) Return slurry (d=1.35)Return slurry (d = 1.35) 알루미늄 분말Aluminum powder 증류수Distilled water 요소수지
(중량%)
Urea Resin
(weight%)
10601060 470470 35413541 19841984 4.24.2 630630 00 10601060 470470 35413541 19841984 4.24.2 630630 22 10601060 470470 35413541 19841984 4.24.2 630630 44

상기 표1의 조성에 상기 요소수지 함량 대비 경화제로 20% NH4Cl 수용액을 요소수지 첨가량 [g]×2%가 되도록 첨가하였다.
To the composition of Table 1, 20% NH 4 Cl aqueous solution was added to the amount of urea resin [g] × 2% as a curing agent relative to the urea resin content.

수열합성이 끝난 성형체는 휨강도 측정을 위하여 160(mm)의 크기로 절단하여 건조기 100조건에서 항량이 될 때까지 충분히 건조한다. 또한 성형체를 50(mm)의 크기로 절단하여 동일 조건으로 건조시킨 후 부피비중 및 압축강도를 측정한다. 시편의 비중은 open pore를 포함하는 부피비중을 측정하였으며 그 결과를 표 3에 나타내었다. 단위는 [g/㎤]이다.The hydrothermally synthesized molded body is cut to a size of 160 (mm) to measure the bending strength and dried sufficiently until it becomes a quantity under 100 conditions of a dryer. In addition, the molded body is cut to a size of 50 (mm), dried under the same conditions, and then measured for specific gravity and compressive strength. Specific gravity of the specimen was measured by the volume specific gravity including the open pore and the results are shown in Table 3. The unit is [g / cm 3].

비고Remarks 멜라민 수지Melamine resin 요소 수지Urea resin 0%0% 2%2% 4%4% 0%0% 2%2% 4%4% 절건비중Weight ratio 0.480.48 0.470.47 0.460.46 0.480.48 0.470.47 0.460.46

멜라민 수지 및 요소 수지를 첨가하였을 때의 절건 비중은 0.46g/cm3부터 0.47g/cm3으로 나타났으며 그 차이는 크지 않은 것으로 확인되었다. 이전의 실험과 마찬가지로 절건비중 측정에 사용된 시험편을 압축강도 시험기를 사용하여 열경화성 수지의 함량에 따른 압축강도를 측정한 결과와, 160(mm)의 크기의 시편을 휨강도시험기를 사용하여 휨강도를 측정한 결과를 표 4 및 첨부도면 도 2에 나타내었다. 단위는 [MPa]이다. When the melamine resin and the urea resin were added, the specific dry weight ranged from 0.46 g / cm 3 to 0.47 g / cm 3 , and the difference was not large. As in the previous experiments, the compressive strength tester was used for the test piece used to measure the dry weight, and the compressive strength was measured according to the content of the thermosetting resin, and the bending strength was measured for the test piece of 160 (mm). One result is shown in Table 4 and accompanying drawings. The unit is [MPa].

비고Remarks 멜라민 수지Melamine resin 요소 수지Urea resin 0%0% 2%2% 4%4% 0%0% 2%2% 4%4% 압축강도Compressive strength 3.703.70 5.065.06 4.714.71 3.703.70 4.974.97 4.654.65 휨강도Flexural strength 1.481.48 2.892.89 2.482.48 1.481.48 2.752.75 2.342.34

열경화성 수지의 함량에 다른 압축강도는 4.65MPa부터 5.06MPa까지 다양하게 나타났으며, 열경화성 수지를 첨가하지 않은 성형체와 비교했을 때, 약 26.88%의 강도증진효과를 나타내었다. 이는 ALC 소재의 수열합성시 Tobermorite 사이에 열경화성 수지가 결합하여 하중을 흡수분산 시키는 가교역할을 한 것으로 판단된다. 이것은 첨부도면 도 3의 주사전자 현미경 사진에 잘 나타나 있다.The compressive strengths varying from 4.65 MPa to 5.06 MPa vary depending on the content of the thermosetting resin. The compressive strength of the thermosetting resin was about 26.88% when compared to the molded article without the thermosetting resin. It is believed that the thermosetting resin is bonded between Tobermorite during the hydrothermal synthesis of the ALC material, thereby acting as a crosslinking agent to absorb and disperse the load. This is well illustrated in the scanning electron micrograph of FIG. 3.

도 3의 미세구조 사진을 살펴보면, 열경화성 수지를 첨가하지 않은 성형체의 경우 규칙적인 Tobermorite의 생성이 확인되었지만, 육각판상 모양이 길게 형성되어 강도 발현에 나쁜 영향을 미쳤을 것으로 판단된다. 하지만 열경화성 수지를 첨가한 성형체의 경우 기공내의 Tobermorite 사이에 열경화성 수지가 결합되어 하중을 받았을 때, 탄성을 발휘하여 하중의 흡수 및 분산 작용을 했을 것이라고 판단된다. 하지만 압축강도 결과표에서 볼 수 있듯이 과량의 열경화성 수지(4%)가 첨가되었을 때에는 강도 발현에 좋지 않은 영향을 미치는 것으로 나타났다.Referring to the microstructure photograph of FIG. 3, in the case of the molded article to which the thermosetting resin was not added, regular formation of Tobermorite was confirmed, but it was determined that the hexagonal plate shape was formed long to adversely affect the strength development. However, in the case of the molded article to which the thermosetting resin was added, the thermosetting resin was bonded between the Tobermorite in the pores, and when the thermosetting resin was loaded, it was considered to have exhibited elasticity and absorbed and dispersed the load. However, as shown in the compressive strength results table, an excessive amount of thermosetting resin (4%) was found to adversely affect the strength development.

첨부도면 도 4는 열경화성 수지의 함량에 따른 XRD Pattern을 분석한 것이다. 열경화성 수지를 첨가하지 않은 성형체와 멜라민 수지 및 요소 수지 2%를 첨가한 성형체의 XRD Pattern분석을 통해 Tobermorite의 형성 및 다른 결정상의 존재여부 등을 파악해 보았다.Figure 4 is an analysis of the XRD Pattern according to the content of the thermosetting resin. The formation of Tobermorite and the presence of other crystal phases were investigated through XRD pattern analysis of the molded article without the thermosetting resin and the molded article containing the melamine resin and the 2% urea resin.

XRD 측정을 통해 Tobermorite 의 형성을 측정한 결과, 시험편 모두 동일한 Tobermorite와 Quartz가 형성되었음을 알 수 있었다. 즉 동일한 결정상 내에서 열경화성 수지가 Tobermorite 사에에 결합되어 가교역할을 함으로서 성형체의 강도 증진 효과를 가져 온 것으로 판단된다.As a result of measuring the formation of Tobermorite through XRD measurement, it was found that the same Tobermorite and Quartz were formed in all specimens. In other words, the thermosetting resin is bonded to Tobermorite in the same crystal phase, and the crosslinking role is considered to have the effect of enhancing the strength of the molded body.

나. 열경화성 수지의 함량에 따른 기능성 측정 및 평가I. Functional measurement and evaluation according to the content of thermosetting resin

소재의 단열 매커니즘은 주로 포논 및 포톤의 영향으로 설명될 수 있으며, The thermal insulation mechanism of the material can be explained mainly by the influence of phonons and photons,

포논(고체 내부의 격자 파동 등을 이루는 에너지 입자) 및 포톤(주로 기체에서 고려되는 특정 값의 에너지와 운동량을 갖는 입자로서 포논에 비해 매우 작은 값으로 일반적으로 무시함)의 전도가 낮아질수록 단열특성이 우수하다고 알려져 있다. 특히 공기는 열용량이 작아 고체보다 낮은 열전도율을 나타내며, 열전도율이 낮은 기체의 경우(예를 들어 기공 내 기체), 열전도(K) 특성은 기체 분자의 농도(C), 분자간의 충돌에 의한 에너지 평형이 성립되는 조건에서의 충돌 간 평균거리 즉 평균자유행로(L) 및 기체 분자의 평균 속도(V)에 비례한다. (K=(1/3)CVL) 본 발명에서는 평판열류계법을 적용한 열전도율 시험기(HC-074, EKO사, Japan)를 이용하여 실험을 실시하였고, 측정 시편은 200(mm)의 크기로 제작하였고, 열전도율 측정 결과를 표 5에 나타내었다. 결과를 분석해보면 열경화성 수지를 첨가하지 않은 경우 0.118W/mK, 요소 수지를 각각 2%, 4%를 첨가한 경우 0.105W/mK, 0.098W/mK, 멜라민 수지를 각각 2%, 4%첨가한 경우 모두 0.098W/mK를 나타내었고, 열경화성 수지를 첨가하면 열전도율이 낮아진다는 것을 알 수 있었다. 이는 압축강도와 마찬가지로 ALC 소재에 결합된 열경화성 수지가 열을 흡수하여 열전도율을 낮추는 효과를 나타내는 것이라 판단된다.
As the conduction of phonons (energy particles that make up lattice waves, etc. inside solids) and photons (mainly negligible values that are very small compared to phonons, which are particles with a certain value of energy and momentum, usually considered in gases) This is known to be excellent. In particular, air exhibits lower thermal conductivity than solids due to its low heat capacity, and in the case of a gas having low thermal conductivity (for example, gas in pores), the thermal conductivity (K) has a difference in the concentration of gas molecules (C) and energy balance due to collision between molecules. It is proportional to the mean distance between collisions under the conditions established, that is, the mean free path L and the mean velocity V of the gas molecules. (K = (1/3) CVL) In the present invention, the experiment was carried out using a thermal conductivity tester (HC-074, EKO, Japan) to which the plate heat flow method was applied, and the test specimen was manufactured to a size of 200 (mm). , Thermal conductivity measurement results are shown in Table 5. According to the results, 0.118W / mK without thermosetting resin, 2% and 4% with urea resin, 0.105W / mK, 0.098W / mK and 4% with melamine resin were added, respectively. In all cases, 0.098 W / mK was observed, and it was found that the thermal conductivity was lowered when the thermosetting resin was added. This is determined that the thermosetting resin bonded to the ALC material exhibits the effect of absorbing heat and lowering the thermal conductivity, similar to the compressive strength.

비고Remarks 멜라민 수지Melamine resin 요소 수지Urea resin 0%0% 2%2% 4%4% 0%0% 2%2% 4%4% 열전도율Thermal conductivity 0.1180.118 0.0980.098 0.0980.098 0.1180.118 0.1050.105 0.0980.098

상기 표 5의 단위는 [W/mK]이다.The unit of Table 5 is [W / mK].

다. 고강도 콘크리트 원료 및 열경화성 수지의 ALC 적용에 따른 비교 및 평가All. Comparison and Evaluation of High Strength Concrete Raw Material and Thermosetting Resin According to ALC Application

고강도 콘크리 원료 및 열경화성 수지의 ALC 적용에 따른 절건비중 및 압축강도 측정 결과를 살펴보면 아래의 표 6과 같다.The results of the measurement of dry weight and compressive strength according to ALC application of high strength concrete raw material and thermosetting resin are shown in Table 6 below.

절건비중(g/cm3)Dry weight (g / cm 3 ) 압축강도(MPa)Compressive strength (MPa) 고강고 콘크리트 원료High strength concrete raw material 0.860.86 14.414.4 0.830.83 15.615.6 0.740.74 8.218.21 0.720.72 7.927.92 0.550.55 3.323.32 0.540.54 3.113.11 열경화성 수지Thermosetting resin 0.520.52 3.183.18 0.480.48 4.004.00 0.470.47 5.065.06 0.460.46 4.714.71 0.470.47 4.974.97 0.460.46 4.654.65

위의 실험 결과에서 살펴보면, 고강도 콘크리트 원료를 ALC 소재에 적용하면 약 0.70g/cm3의 비중을 기점으로 강도 증감율이 확연히 차이나는 것을 알 수 있다.Looking at the above experimental results, when the high-strength concrete raw material is applied to the ALC material, it can be seen that the strength increase and decrease rate is significantly different based on the specific gravity of about 0.70 g / cm 3 .

즉, 비중 0.70g/cm3 이상의 고비중 ALC 소재 제조 시에는 고강도 콘크리트 원료를 ALC 소재에 적용하면 양질의 성형체를 제조할 수 있으나, 반대로 비중 0.70g/cm3 이하의 저비중 ALC 소재 제조 시에는 고강도 콘크리트 원료의 적용이 부적합하다는 것이다. 또한 열경화성 수지를 약 0.70g/cm3 이하의 저비중 ALC 소재 제조에 적용할 경우, 양질의 성형체를 제조할 수 있으나, 그와 반대로 0.70g/cm3 이상의 고비중 소재 제조 시에는 열경화성 수지의 적용이 부적합하다는 것을 의미한다.That is, specific gravity 0.70g / cm 3 when the production of ALC or more high-boiling material is applied to high-strength concrete material in the ALC materials can be produced molded products of good quality, but, on the contrary density 0.70g / cm 3 or less ALC low specific gravity of the material during manufacture, the The application of high strength concrete raw materials is inadequate. In addition, when the thermosetting resin is applied to the production of low specific gravity ALC materials of about 0.70 g / cm 3 or less, high-quality molded bodies can be produced. On the contrary, the application of the thermosetting resin when the high specific gravity materials of 0.70 g / cm 3 or more is manufactured. This means that it is inappropriate.

비중별 압축강도의 예상도를 첨부도면 도 5에 도시하였다.
The expected degree of compressive strength by specific gravity is shown in FIG. 5.

Claims (5)

샌드슬러리(Sand slury)와 리턴슬러리(Return slury)로 구성되는 규사 100중량부에 대하여 시멘트 18 ~ 20중량부, 생석회 8 ~ 9중량부를 포함하여 이루어지는 시멘트 혼합물 100중량부에 대하여 알루미늄 분말 0.04 ~ 0.05중량부, 증류수 6 ~ 7중량부를 혼합하여 된 조성물 총 중량에 대해 요소수지 1.5 ~ 2.5중량%를 포함하도록 첨가한 것을 특징으로 하는 열경화성 수지를 함유한 경량기포콘크리트 조성물.
Aluminum powder 0.04 to 0.05 with respect to 100 parts by weight of the cement mixture including 18 to 20 parts by weight of cement and 8 to 9 parts by weight of quicklime, based on 100 parts by weight of silica sand consisting of sand slurries and return slury. Lightweight foamed concrete composition containing a thermosetting resin, characterized in that the addition of urea resin 1.5 to 2.5% by weight based on the total weight of the composition by mixing by weight, 6 to 7 parts by weight of distilled water.
삭제delete 제 1 항에 있어서,
상기 규사는 구성비로 샌드슬러리:리턴슬러리는 1:0.5~0.6의 중량비를 가지는 것을 특징으로 하는 열경화성 수지를 함유한 경량기포콘크리트 조성물.
The method of claim 1,
The silica sand is a light weight foam concrete composition containing a thermosetting resin, characterized in that the sand slurry: the return slurry has a weight ratio of 1: 0.5 ~ 0.6.
제 1 항에 있어서,
상기 조성물에 20% NH4CL 수용액을 열경화성 수지의 첨가량 대비 2중량%를 더 첨가하는 것을 특징으로 하는 열경화성 수지를 함유한 경량기포콘크리트 조성물.
The method of claim 1,
Lightweight foamed concrete composition containing a thermosetting resin, characterized in that the 20% NH 4 CL aqueous solution is added to the composition 2% by weight relative to the addition amount of the thermosetting resin.
삭제delete
KR1020110026524A 2011-03-24 2011-03-24 Autoclaved light weight concrete composition including the thermosetting resin KR101276166B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110026524A KR101276166B1 (en) 2011-03-24 2011-03-24 Autoclaved light weight concrete composition including the thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110026524A KR101276166B1 (en) 2011-03-24 2011-03-24 Autoclaved light weight concrete composition including the thermosetting resin

Publications (2)

Publication Number Publication Date
KR20120108535A KR20120108535A (en) 2012-10-05
KR101276166B1 true KR101276166B1 (en) 2013-06-18

Family

ID=47280130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110026524A KR101276166B1 (en) 2011-03-24 2011-03-24 Autoclaved light weight concrete composition including the thermosetting resin

Country Status (1)

Country Link
KR (1) KR101276166B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626803B1 (en) 2015-09-23 2016-06-03 (주)삼표산업 Light-weight foamed concrete composite for secondary products and a method for manufacturing concrete secondary products using the same
KR101646519B1 (en) 2015-12-24 2016-08-09 (주)삼표산업 A Manufacturing Method of Foamed Concrete for Radiant Heating Floor Panel
KR20190119688A (en) 2018-04-12 2019-10-23 주식회사 하우이씨엠 Room temperature curing non-cement composition for light weight block
KR20200047489A (en) 2020-04-27 2020-05-07 주식회사 하우이씨엠 Room temperature curing non-cement composition for light weight block

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015299B1 (en) 2017-06-15 2019-08-28 한국과학기술연구원 Catalysts for reforming bio-gas and methods of manufacturing the same
KR101958429B1 (en) 2017-08-18 2019-03-15 한국과학기술연구원 Perovskite catalysts for reforming bio-gas and methods of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860007179A (en) * 1985-03-08 1986-10-08 김인호 Manufacturing method of insulation material using cake which is paper waste
JPH07187743A (en) * 1993-12-24 1995-07-25 Kao Corp Light-weight aerated concrete compositioon
KR20010073807A (en) * 2000-01-20 2001-08-03 장인순 Polymer concrete foam and preparation method thereof
JP3442104B2 (en) * 1993-06-21 2003-09-02 旭化成株式会社 Manufacturing method of lightweight cellular concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860007179A (en) * 1985-03-08 1986-10-08 김인호 Manufacturing method of insulation material using cake which is paper waste
JP3442104B2 (en) * 1993-06-21 2003-09-02 旭化成株式会社 Manufacturing method of lightweight cellular concrete
JPH07187743A (en) * 1993-12-24 1995-07-25 Kao Corp Light-weight aerated concrete compositioon
KR20010073807A (en) * 2000-01-20 2001-08-03 장인순 Polymer concrete foam and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626803B1 (en) 2015-09-23 2016-06-03 (주)삼표산업 Light-weight foamed concrete composite for secondary products and a method for manufacturing concrete secondary products using the same
KR101646519B1 (en) 2015-12-24 2016-08-09 (주)삼표산업 A Manufacturing Method of Foamed Concrete for Radiant Heating Floor Panel
KR20190119688A (en) 2018-04-12 2019-10-23 주식회사 하우이씨엠 Room temperature curing non-cement composition for light weight block
KR20200047489A (en) 2020-04-27 2020-05-07 주식회사 하우이씨엠 Room temperature curing non-cement composition for light weight block

Also Published As

Publication number Publication date
KR20120108535A (en) 2012-10-05

Similar Documents

Publication Publication Date Title
KR101276166B1 (en) Autoclaved light weight concrete composition including the thermosetting resin
CN102167619B (en) Low-thermal-conductivity aerated concrete and preparation method thereof
KR101782845B1 (en) High thermal insulating and light-weight aerated concrete mix using hydrophilic nano aerogel powder and preparing method of light-weight aerated concrete
US8979997B2 (en) Concrete mixture and method of forming the same
CN110713391A (en) Light cement insulation board for energy-saving building and preparation method
Dong et al. Effects of aggregate gradation and polymer modifiers on properties of cement-EPS/vitrified microsphere mortar
ITTO20110656A1 (en) COMPOSITION FOR THE MANUFACTURE OF AN EXPANDED TANNIN MATERIAL, EXPANDED MATERIAL THAT CAN BE OBTAINED, AND ITS A MANUFACTURING PROCEDURE.
Madyan et al. Organic functionalization of clay aerogel and its composites through in-situ crosslinking
Wang et al. Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength
CN108191370A (en) A kind of heat insulating energy saving material and preparation method thereof
Liu et al. In situ preparation of intrinsic flame retardant urea formaldehyde/aramid fiber composite foam: Structure, property and reinforcing mechanism
CN109701494A (en) Aerogel composite and preparation method thereof
CN112745058A (en) Foaming agent and foam concrete containing same
KR20130138275A (en) Composite material comprising nanoporous particles
CN106280185A (en) A kind of light wood-plastic composite fiber plate and preparation method thereof
KR101819430B1 (en) Pannel unit and manufacturing method thereof
KR101376296B1 (en) ALC composition with alkalies and fabrication method of ALC using this composition
Kim et al. Semi-Rigid polyurethane foam and polymethylsilsesquioxane aerogel composite for thermal insulation and sound absorption
CN107140936A (en) A kind of preparation method of the hollow glass microballoon base insulation material of suitable industrialized mass production
Strzałkowski et al. The dynamic thermal properties of aerogel-incorporated concretes
KR20120069324A (en) Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete
CN109734950A (en) Aerogel composite and preparation method thereof
KR100588421B1 (en) The manufacturing method of ceramic body having good adiabatic capacity
JP3212590B1 (en) Humidity control building materials
JP3212587B1 (en) Humidity control building materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180611

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190603

Year of fee payment: 7