KR101271937B1 - Steel having excellent strength and impact toughness and method for manufacturing the same - Google Patents

Steel having excellent strength and impact toughness and method for manufacturing the same Download PDF

Info

Publication number
KR101271937B1
KR101271937B1 KR1020100124277A KR20100124277A KR101271937B1 KR 101271937 B1 KR101271937 B1 KR 101271937B1 KR 1020100124277 A KR1020100124277 A KR 1020100124277A KR 20100124277 A KR20100124277 A KR 20100124277A KR 101271937 B1 KR101271937 B1 KR 101271937B1
Authority
KR
South Korea
Prior art keywords
steel
impact toughness
manufacturing
excellent strength
carbide
Prior art date
Application number
KR1020100124277A
Other languages
Korean (ko)
Other versions
KR20120063200A (en
Inventor
조재영
박인규
유승호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100124277A priority Critical patent/KR101271937B1/en
Publication of KR20120063200A publication Critical patent/KR20120063200A/en
Application granted granted Critical
Publication of KR101271937B1 publication Critical patent/KR101271937B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 강도 및 충격인성이 우수한 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 해상 풍력용 타워 및 기초 구조물 등의 용접 구조용으로 사용될 수 있는 강도 및 충격인성이 우수한 강재 및 그 제조방법에 관한 것이다.
본 발명은 중량%로, C: 0.04~0.20%, Mn: 0.3~2.5%, Si: 0.01~0.6%, Nb: 0.005~0.10%, Mo: 0.01~1.0%, Cr: 0.05~1.0%, Ti: 0.005~0.1%, Al: 0.005~0.5%, N: 15~150ppm, P: 0.02%이하, S: 0.01%이하를 포함하고, 추가로 Cu: 0.010~1.0%, Ni: 0.01~2.0%, V: 0.005~0.3%, Co: 0.005~0.2%, W: 0.005~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하며, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 하기 관계식 1로 표현되는 탄화물 지수(CI)가 0.04~0.15이고, 1mm2당 5×105~20×105개의 탄화물을 포함하는 강도 및 충격인성이 우수한 강재 및 그 제조방법을 제공한다.
[관계식 1] = 0.146×Nb + 0.272×Ti + 0.261×V + 0.071×Mo + 0.081×W + 0.167×Cr + 0.037×Co
The present invention relates to a steel having excellent strength and impact toughness and a method of manufacturing the same, and more particularly, to a steel having excellent strength and impact toughness and a method of manufacturing the same that can be used for welding structures such as offshore wind towers and foundation structures. will be.
In the present invention, by weight%, C: 0.04-0.20%, Mn: 0.3-2.5%, Si: 0.01-0.6%, Nb: 0.005-0.10%, Mo: 0.01-1.0%, Cr: 0.05-1.0%, Ti : 0.005 to 0.1%, Al: 0.005 to 0.5%, N: 15 to 150 ppm, P: 0.02% or less, S: 0.01% or less, further Cu: 0.010 to 1.0%, Ni: 0.01 to 2.0%, Carbide index represented by the following relation 1, containing at least one member selected from the group consisting of V: 0.005 to 0.3%, Co: 0.005 to 0.2%, and W: 0.005 to 0.2%, balance Fe and other unavoidable impurities Provided is a steel having an excellent strength and impact toughness (CI) of 0.04 to 0.15 and containing 5 × 10 5 to 20 × 10 5 carbides per 1 mm 2 , and a method of manufacturing the same.
[Relationship 1] = 0.146 x Nb + 0.272 x Ti + 0.261 x V + 0.071 x Mo + 0.081 x W + 0.167 x Cr + 0.037 x Co

Description

강도 및 충격인성이 우수한 강재 및 그 제조방법{STEEL HAVING EXCELLENT STRENGTH AND IMPACT TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME}Steel material with excellent strength and impact toughness and its manufacturing method {STEEL HAVING EXCELLENT STRENGTH AND IMPACT TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 강도 및 충격인성이 우수한 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 해상 풍력용 타워 및 기초 구조물 등의 용접 구조용으로 사용될 수 있는 강도 및 충격인성이 우수한 강재 및 그 제조방법에 관한 것이다.The present invention relates to a steel having excellent strength and impact toughness and a method of manufacturing the same, and more particularly, to a steel having excellent strength and impact toughness and a method of manufacturing the same that can be used for welding structures such as offshore wind towers and foundation structures. will be.

최근 친환경 에너지 자원으로 태양력, 풍력 등의 대체 에너지 개발이 활발히 진행되고 있다. 풍력발전의 경우, 육상에 주로 건설되던 풍력발전기가 최근 고효율화 및 소음 등의 공해 저감에 유리한 해상에 건설되고 있는 추세이다. 특히, 북미나 북유럽 등의 극저온 해상 지역으로의 설치 확대가 예상되며, 이에 따라 저온 충격인성 보증용 노말라이징 열처리 강재 개발이 필요한 실정이다.
Recently, development of alternative energy such as solar power and wind power is being actively conducted as an environmentally friendly energy resource. In the case of wind power generation, wind power generators, which were mainly built on land, have been recently constructed on the sea, which is advantageous for high efficiency and reduction of pollution such as noise. In particular, the expansion of installation in cryogenic offshore areas such as North America and Northern Europe is expected. Accordingly, the development of normalized heat-treated steel for low temperature impact toughness is required.

풍력발전기 등에 사용되는 강재의 경우, 주로 노말라이징 열처리라는 방법에 의해 생산되고 있다. 하지만, 기존 노말라이징 열처리 과정 중에 주로 역변태 오스테나이트가 주로 입계에서 형성되어 성장함으로써 조대한 오스테나이트가 형성되며, 냉각 중에 이러한 조대한 오스테나이트로부터 페라이트가 생성한다.
In the case of steel materials used in wind power generators and the like, they are mainly produced by a method called normalizing heat treatment. However, during the conventional normalizing heat treatment process, inversely transformed austenite is formed mainly at grain boundaries and grows to form coarse austenite, and ferrite is formed from the coarse austenite during cooling.

즉, 이러한 노말라이징 열처리는 조대한 페라이트를 형성시켜 강도의 저하 및 저온 충격인성 보증이라는 중요한 강재의 특성을 부여하기에는 많은 문제가 있다. In other words, such normalizing heat treatment has many problems in forming coarse ferrite to impart important steel properties such as lowering strength and guaranteeing low temperature impact toughness.

본 발명의 일측면은 조성성분 및 제조조건을 적절히 제어하여 탄화물을 강재 내에 고르게 분포시킴으로써, 인장강도와 충격인성을 향상시킨 강재 및 그 제조방법을 제공하고자 한다.One aspect of the present invention is to provide a steel and a method for producing the same by improving the tensile strength and impact toughness by appropriately controlling the composition components and manufacturing conditions to distribute the carbide evenly in the steel.

본 발명은 중량%로, C: 0.04~0.20%, Mn: 0.3~2.5%, Si: 0.01~0.6%, Nb: 0.005~0.10%, Mo: 0.01~1.0%, Cr: 0.05~1.0%, Ti: 0.005~0.1%, Al: 0.005~0.5%, N: 15~150ppm, P: 0.02%이하, S: 0.01%이하를 포함하고, 추가로 Cu: 0.010~1.0%, Ni: 0.01~2.0%, V: 0.005~0.3%, Co: 0.005~0.2%, W: 0.005~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하며, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 하기 관계식 1로 표현되는 탄화물 지수(CI)가 0.04~0.15이고, 1mm2당 5×105~20×105개의 탄화물을 포함하는 강도 및 충격인성이 우수한 강재를 제공한다.In the present invention, by weight%, C: 0.04-0.20%, Mn: 0.3-2.5%, Si: 0.01-0.6%, Nb: 0.005-0.10%, Mo: 0.01-1.0%, Cr: 0.05-1.0%, Ti : 0.005 to 0.1%, Al: 0.005 to 0.5%, N: 15 to 150 ppm, P: 0.02% or less, S: 0.01% or less, further Cu: 0.010 to 1.0%, Ni: 0.01 to 2.0%, Carbide index represented by the following relation 1, containing at least one member selected from the group consisting of V: 0.005 to 0.3%, Co: 0.005 to 0.2%, and W: 0.005 to 0.2%, balance Fe and other unavoidable impurities Provided is a steel having an excellent strength and impact toughness (CI) of 0.04 to 0.15 and containing 5 × 10 5 to 20 × 10 5 carbides per 1 mm 2 .

[관계식 1] = 0.146×Nb + 0.272×Ti + 0.261×V + 0.071×Mo + 0.081×W + 0.167×Cr + 0.037×Co
[Relationship 1] = 0.146 x Nb + 0.272 x Ti + 0.261 x V + 0.071 x Mo + 0.081 x W + 0.167 x Cr + 0.037 x Co

상기 강재는 Ca: 0.0005~0.0060%를 추가로 포함할 수 있으며, 인장강도가 500MPa이상이며, -50℃에서의 샤르피충격에너지가 150J이상인 것이 바람직하다.
The steel may further comprise Ca: 0.0005 ~ 0.0060%, the tensile strength is 500MPa or more, Charpy impact energy at -50 ℃ is preferably 150J or more.

본 발명은 중량%로, C: 0.04~0.20%, Mn: 0.3~2.5%, Si: 0.01~0.6%, Nb: 0.005~0.10%, Mo: 0.01~1.0%, Cr: 0.05~1.0%, Ti: 0.005~0.1%, Al: 0.005~0.5%, N: 15~150ppm, P: 0.02%이하, S: 0.01%이하를 포함하고, 추가로 Cu: 0.010~1.0%, Ni: 0.01~2.0%, V: 0.005~0.3%, Co: 0.005~0.2%, W: 0.005~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하며, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 하기 관계식 1로 표현되는 탄화물 지수(CI)가 0.04~0.15인 강재를 1050~1250℃에서 재가열하는 재가열단계; 상기 재가열된 강재를 1250℃~Ar3에서 압연하는 압연단계; 상기 압연된 강재를 Ac3~1000℃온도에서 가열한 후, (1.3×t + 10~30)분동안 유지하는 가열유지단계(단, t는 강재의 두께(mm)를 의미함); 및 상기 가열유지된 강재를 공냉하는 단계를 포함하는 강도 및 충격인성이 우수한 강재의 제조방법을 제공한다.In the present invention, by weight%, C: 0.04-0.20%, Mn: 0.3-2.5%, Si: 0.01-0.6%, Nb: 0.005-0.10%, Mo: 0.01-1.0%, Cr: 0.05-1.0%, Ti : 0.005 to 0.1%, Al: 0.005 to 0.5%, N: 15 to 150 ppm, P: 0.02% or less, S: 0.01% or less, further Cu: 0.010 to 1.0%, Ni: 0.01 to 2.0%, Carbide index represented by the following relation 1, containing at least one member selected from the group consisting of V: 0.005 to 0.3%, Co: 0.005 to 0.2%, and W: 0.005 to 0.2%, balance Fe and other unavoidable impurities A reheating step of reheating the steel having a (CI) of 0.04 to 0.15 at 1050 to 1250 ° C; Rolling the reheated steel at 1250 ° C. to Ar 3; Heating the rolled steel at a temperature of Ac 3 to 1000 ° C., and maintaining a heating (1.3 × t + 10 to 30) minute (where t denotes the thickness of the steel (mm)); And it provides a method of producing a steel having excellent strength and impact toughness comprising the step of air-cooling the heated and maintained steel.

[관계식 1] = 0.146×Nb + 0.272×Ti + 0.261×V + 0.071×Mo + 0.081×W + 0.167×Cr + 0.037×Co
[Relationship 1] = 0.146 x Nb + 0.272 x Ti + 0.261 x V + 0.071 x Mo + 0.081 x W + 0.167 x Cr + 0.037 x Co

상기 강재는 Ca: 0.0005~0.0060%를 추가로 포함할 수 있다.The steel may further comprise Ca: 0.0005 to 0.0060%.

본 발명의 일측면에 따르면, 500MPa이상의 인장강도와 -50℃에서 150J이상의 샤르피충격에너지를 갖는 강재를 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a steel having a tensile strength of 500MPa or more and Charpy impact energy of 150J or more at -50 ° C.

도 1은 탄화물로부터 노말라이징 열처리시에 역변태 오스테나이트가 형성되는 것을 나타내는 모식도이다.
도 2는 본 발명에 부합하는 발명예들의 탄화물 지수에 따른 탄화물 밀도를 나타낸 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows that reverse transformation austenite is formed at the time of normalizing heat processing from carbide.
Figure 2 is a graph showing the carbide density according to the carbide index of the invention examples in accordance with the present invention.

이하, 본 발명에 대하여 설명한다.
Hereinafter, the present invention will be described.

C: 0.04~0.20중량%C: 0.04-0.20 wt%

C의 함량이 0.04%미만이면 탄화물을 충분히 형성시킬 수 없게 된다. 그러나, C의 함량이 0.2%를 초과하게 되면 펄라이트 분율이 많아져서 유효한 탄화물 개수가 적어지게 되므로, 상기 C의 범위를 0.04~0.20%로 한정하는 것이 바람직하다. 용접용 강구조물로 사용되는 판재의 경우에는 용접성을 위해 C의 범위를 0.04~0.15%로 한정하는 것이 바람직하다.
If the content of C is less than 0.04%, carbides cannot be formed sufficiently. However, when the content of C exceeds 0.2%, the pearlite fraction increases, so that the number of effective carbides decreases. Therefore, it is preferable to limit the range of C to 0.04 to 0.20%. In the case of a plate used as a steel structure for welding, it is preferable to limit the range of C to 0.04 to 0.15% for weldability.

Mn: 0.3~2.5%Mn: 0.3 ~ 2.5%

Mn은 고용강화에 의해 강도를 향상시키는 유용한 원소이므로 0.3% 이상 첨가할 필요가 있다. 그러나, 2.5%를 초과하는 경우에는 과도한 경화능의 증가로 인해 용접부의 인성을 크게 저하시키므로, 상기 Mn의 함량은 0.3~2.5%로 한정하는 것이 바람직하다.
Mn is a useful element that improves strength by solid solution strengthening, so it is necessary to add 0.3% or more. However, when the content exceeds 2.5%, the toughness of the weld portion is greatly reduced due to excessive increase in the hardenability, so that the content of Mn is preferably limited to 0.3 to 2.5%.

Si: 0.01~0.6%Si: 0.01 ~ 0.6%

Si는 탈산제로 사용되며 강도 향상 효과가 있어 유용하지만, 0.6%를 초과하여 첨가되는 경우에는 저온인성을 저하시키며 동시에 용접성도 악화시킨다. 한편, 0.01%미만으로 첨가되는 경우에는 탈산 효과가 불충분하게 되므로, 상기 Si의 함량은 0.01~0.6%로 한정하는 것이 바람직하다.
Si is used as a deoxidizer and is useful because of its strength-improving effect, but when added in excess of 0.6%, Si lowers toughness at the same time and deteriorates weldability. On the other hand, when added in less than 0.01% deoxidation effect is insufficient, it is preferable to limit the content of Si to 0.01 ~ 0.6%.

Nb: 0.005~0.10%Nb: 0.005 to 0.10%

Nb는 TMCP 강의 제조에 있어서 가장 중요한 원소이고, NbC 또는 NbCN의 형태로 석출하여 모재 및 용접부의 강도를 크게 향상시킨다. 또한, 고온으로 재가열할 경우, 고용된 Nb는 오스테나이트의 재결정을 억제하고, 페라이트 또는 베이나이트의 변태를 억제하여 조직을 미세화시키는 효과가 있다. 이외에도 본 발명에서는 조압연 후 슬라브가 냉각될 때 낮은 냉각 속도로도 베이나이트를 형성하게 할 뿐만 아니라 최종 압연후의 냉각시에도 오스테나이트의 안정성을 크게 높여 낮은 속도의 냉각에서도 도상 마르텐사이트 생성을 촉진하는 역할도 한다. 상기 효과를 위해, Nb는 0.005%이상 첨가되는 것이 바람직하나, 0.10%를 초과하는 경우에는 강재의 모서리에 취성크랙을 야기할 가능성이 증대되므로 바람직하지 않다. 이에 따라, 상기 Nb의 함량은 0.005~0.10%의 범위로 한정하는 것이 바람직하다.
Nb is the most important element in the production of TMCP steel and precipitates in the form of NbC or NbCN to greatly improve the strength of the base metal and the welded portion. In addition, when reheated at a high temperature, the dissolved Nb has an effect of suppressing recrystallization of austenite and suppressing transformation of ferrite or bainite to refine the structure. In addition, the present invention not only allows bainite to be formed even at low cooling rate when the slab is cooled after rough rolling, but also greatly improves the stability of austenite during cooling after the final rolling, thereby promoting the generation of martensite at low speed. It also plays a role. For the above effect, Nb is preferably added at 0.005% or more, but when it exceeds 0.10%, the possibility of causing brittle cracks in the corners of the steel increases, which is not preferable. Accordingly, the content of Nb is preferably limited to the range of 0.005 ~ 0.10%.

Mo: 0.01~1.0%Mo: 0.01 ~ 1.0%

Mo는 소량의 첨가만으로도 경화능을 크게 향상시켜 페라이트의 생성을 억제하는 효과가 있고, 강도 또한 크게 향상시킬 수 있기 때문에 0.01%이상의 첨가가 필요하나, 1.0%를 초과하는 경우에는 용접부의 경도를 과도하게 증가시키고 인성을 저해할 가능성이 있다. 따라서, 상기 Mo의 함량은 0.01~1.0%의 범위로 한정하는 것이 바람직하며, 본 발명에서는 인장강도의 확보를 위해 도상 마르텐사이트를 적절한 범위로 형성시키기 위해서는 0.02~0.2%의 범위로 한정하는 것이 보다 바람직하다.
Mo needs to be added at 0.01% or more because Mo can greatly improve the hardenability and suppress the formation of ferrite, and the strength can be greatly improved even with a small amount of addition. However, if it exceeds 1.0%, the hardness of the weld is excessive. May increase and inhibit toughness. Therefore, the Mo content is preferably limited to the range of 0.01 to 1.0%, and in the present invention, in order to form the island martensite in an appropriate range for securing the tensile strength, it is more limited to the range of 0.02 to 0.2%. desirable.

Cr: 0.05~1.0%Cr: 0.05 to 1.0%

Cr은 경화능을 증가시켜 강도의 증가에 큰 효과가 있으므로 이러한 효과를 얻기위해서는 0.05% 이상의 첨가가 필요하나, 1.0%를 초과하는 경우에는 용접성을 크게 저하시킬 수 있으므로, 0.05~1.0%의 범위로 첨가되는 것이 바람직하다. 또한, 비교적 낮은 냉각속도에서도 안정적인 도상 마르텐사이트를 얻기 위해서는 0.2~0.5%의 범위로 첨가하는 것이 보다 바람직하다.
Since Cr has a great effect on increasing the strength by increasing the hardenability, it is necessary to add 0.05% or more in order to obtain such effects, but when it exceeds 1.0%, the weldability can be greatly reduced, so the range of 0.05 to 1.0% It is preferred to be added. Moreover, in order to obtain stable phase martensite even at a comparatively low cooling rate, it is more preferable to add in 0.2 to 0.5% of range.

Ti: 0.005~0.1%Ti: 0.005 to 0.1%

Ti의 첨가는 재가열시 결정립의 성장을 억제하여 저온인성을 크게 향상시킬수 있으므로 그 효과를 발현시키기 위해서는 0.005%이상이 첨가되어야 한다. 다만, 0.1%를 초과하는 경우에는 연주 노즐의 막힘이나 중심부 정출에 의한 저온인성이 감소되는 문제점이 있으므로, 상기 Ti의 함량은 0.005~0.1%의 범위로 한정하는 것이 바람직하다.
Addition of Ti can greatly improve low-temperature toughness by inhibiting grain growth upon reheating, so 0.005% or more must be added to express the effect. However, if the content exceeds 0.1%, there is a problem in that low temperature toughness due to clogging of the playing nozzle or crystallization of the center part is reduced. Therefore, the Ti content is preferably limited to 0.005 to 0.1%.

Al: 0.005~0.5%Al: 0.005-0.5%

Al은 용강을 저렴하게 탈산할 수 있는 원소이므로 0.005%이상 첨가되는 것이 바람직하나, 0.5%를 초과하는 경우에는 연속주조시 노즐막힘을 야기하므로, 상기 Al의 함량은 0.005~0.5%의 범위로 한정하는 것이 바람직하다.
Since Al is an element capable of cheaply deoxidizing molten steel, it is preferable to add 0.005% or more, but if it exceeds 0.5%, it causes nozzle clogging during continuous casting. Therefore, the Al content is limited to 0.005 to 0.5%. It is desirable to.

N: 15~150ppmN: 15 ~ 150ppm

N의 첨가는 강도를 증가시키는 반면 인성을 크게 감소시키기 때문에 150ppm 이하로 그 함량을 제한할 필요가 있다. 다만, 15ppm 이하의 N함량 제어는 제강부하를 증가시키기 때문에 상기 N 함량의 하한은 15ppm인 것이 바람직하다.
Since the addition of N increases the strength while greatly reducing the toughness, it is necessary to limit the content to 150 ppm or less. However, since the N content control of 15 ppm or less increases the steelmaking load, the lower limit of the N content is preferably 15 ppm.

P: 0.02%이하P: 0.02% or less

P는 강도향상 및 내식성에 유리한 원소이지만, 충격인성을 크게 저해하는 원소이므로 가능한 낮게 함유되는 것이 바람직하나, 제조공정상 불가피하게 함유되는 불순물이므로, 그 상한을 0.02%로 한정하여 관리하는 것이 바람직하다.
Although P is an element that is advantageous in improving the strength and corrosion resistance, it is preferable to be contained as low as possible because it is an element that greatly impairs impact toughness. However, since P is an inevitable impurity in the manufacturing process, it is preferable to limit the upper limit to 0.02%.

S: 0.01%이하S: 0.01% or less

S는 MnS 등을 형성하여 충격인성을 크게 저해하는 원소이므로 가능한 낮게 함유되는 것이 바람직하나, 제조공정상 불가피하게 함유되는 불순물이므로, 그 상한을 0.01%로 한정하여 관리하는 것이 바람직하다.
Since S is an element which forms MnS or the like and greatly impairs the impact toughness, S is preferably contained as low as possible. However, since S is an impurity inevitably contained in the manufacturing process, it is preferable to limit the upper limit to 0.01%.

Cu: 0.010~1.0%Cu: 0.010 ~ 1.0%

Cu는 모재의 인성 저하를 최소한으로 하면서 동시에 강도를 높일 수 있는 원소이므로, 그 효과가 나타나기 위해서는 0.01% 이상이 첨가되어야 한다. 한편, 1.0%를 초과하는 경우에는 제품 표면 품질을 크게 저해하므로, 상기 Cu의 함량은 0.010~1.0%%로 한정하는 것이 바람직하다.
Since Cu is an element capable of increasing the strength while minimizing the toughness of the base metal, at least 0.01% must be added in order for the effect to appear. On the other hand, if it exceeds 1.0%, since the surface quality of the product is greatly inhibited, the content of Cu is preferably limited to 0.010 to 1.0 %%.

Ni: 0.01~2.0%Ni: 0.01 to 2.0%

Ni은 모재의 강도와 인성을 동시에 향상시킬수 있는 원소이며, 그 효과가 나타나기 위해서는 0.01% 이상이 첨가되어야 한다. 다만, Ni은 고가의 원소이므로 2.0%를 초과하는 경우에는 경제성이 저하되며, 용접성 열화의 문제점도 가지게 된다. 따라서, 상기 Ni의 함량은 0.01~2.0%의 범위로 한정하는 것이 바람직하다.
Ni is an element that can improve the strength and toughness of the base material at the same time, and 0.01% or more must be added for the effect to appear. However, since Ni is an expensive element, when it exceeds 2.0%, the economic efficiency is lowered, and there is also a problem of deterioration in weldability. Therefore, the content of Ni is preferably limited to the range of 0.01 to 2.0%.

V: 0.005~0.3%V: 0.005-0.3%

V 은 다른 미세합금에 비해 고용되는 온도가 낮으며, 용접열영향부에 석출하여 강도의 하락을 방지하는 효과가 있어 0.005% 이상 첨가하는 것이 바람직하다. 다만, 0.3%를 초과하는 경우에는 저하시킬 수 있으므로, 상기 V는 0.005~0.3%로 한정하는 것이 바람직하다.
The temperature of V is lower than that of other fine alloys, and it is preferable to add 0.005% or more because it has an effect of preventing the drop in strength by depositing in the weld heat affected zone. However, when exceeding 0.3%, since it can reduce, it is preferable to limit said V to 0.005 to 0.3%.

Co: 0.005~0.2%Co: 0.005 ~ 0.2%

Co는 기지조직의 연화를 방지하고, 탄화물 형성에 유리한 원소이지만 고가이므로, 0.005~0.2%의 범위로 첨가되는 것이 바람직하다.
Co is an element advantageous to prevent softening of the matrix structure and to form carbides, but is expensive, so it is preferably added in the range of 0.005 to 0.2%.

W: 0.005~0.2%W: 0.005-0.2%

W는 기지조직의 연화를 방지하고 탄화물을 석출하는 효과적인 원소이긴 하나, 고가이므로, 0.005~0.2%의 범위로 첨가되는 것이 바람직하다.
W is an effective element that prevents softening of the matrix structure and precipitates carbide, but is expensive, so it is preferably added in the range of 0.005 to 0.2%.

Ca: 0.0005~0.0060%Ca: 0.0005-0.0060%

Ca는 CaS를 형성시켜 MnS의 비금속개재물을 억제하기 위해 첨가될 수 있는데, 이를 위해서는 0.0005%이상 첨가하는 것이 바람직하다. 그러나, 그 함량이 0.0060%를 초과하면 강중에 함유된 산소와 반응하여 비금속대재물인 CaO를 생성하므로, 상기 Ca의 함량은 0.0005~0.0060%로 하는 것이 바람직하다.
Ca may be added to form CaS to suppress non-metallic inclusions of MnS, for which 0.0005% or more may be added. However, if the content is more than 0.0060%, and reacts with oxygen contained in the steel to produce CaO, a nonmetallic substitute, the content of Ca is preferably 0.0005 to 0.0060%.

본 발명의 강재는 상기 성분조건을 만족하는 것과 동시에 하기 관계식 1로 표현되는 탄화물 지수(CI)가 0.04~0.15의 범위를 갖는 것이 바람직하다.
The steel material of the present invention preferably satisfies the above component conditions and at the same time, the carbide index (CI) represented by the following relational formula 1 has a range of 0.04 to 0.15.

[관계식 1] = 0.146×Nb + 0.272×Ti + 0.261×V + 0.071×Mo + 0.081×W + 0.167×Cr + 0.037×Co
[Relationship 1] = 0.146 x Nb + 0.272 x Ti + 0.261 x V + 0.071 x Mo + 0.081 x W + 0.167 x Cr + 0.037 x Co

상기 탄화물 지수가 0.04미만인 경우에는 탄화물을 형성하는 원소가 부족하여 압연 후에 기지 내부에 탄화물 개수가 부족하여 노말라이징 열처리 시에 역변태 오스테나이트의 핵생성 사이트가 부족하여 미세한 오스테나이트를 형성할 수 없게된다. 0.15를 초과하는 경우에는 압연 후 기재 내의 탄화물이 많아지게 되며 특히, 조대한 탄화물이 형성되어 인성을 저해하는 역할을 하게 된다.
When the carbide index is less than 0.04, the carbide-forming elements are insufficient, and the number of carbides is insufficient in the base after rolling, so that the nucleation site of reverse transformation austenite cannot be formed at the time of normalizing heat treatment, so that fine austenite cannot be formed. do. When it exceeds 0.15, carbides in the substrate increase after rolling, and in particular, coarse carbides are formed to serve to inhibit toughness.

본 발명이 제안하는 강재는 1mm2당 5×105~20×105개의 탄화물을 포함하는 것이 바람직하다. 도 1은 탄화물로부터 노말라이징 열처리시에 역변태 오스테나이트가 형성되는 것을 나타내는 모식도이며, (a)는 기존재, (b)는 발명재를 나타낸다. 도 1에서 알 수 있는 바와 같이, 탄화물은 노말라이징 열처리시에 역변태 오스테나이트 핵생성 사이트로 작용하게 되며, 기존재와 달리, 탄화물을 다량으로 생성시킴으로써, 미세한 오스테나이트 결정립을 형성시켜 공냉 중에 미세 페라이트로 변태되게 하여, 강재의 강도 및 저온 충격 물성을 향상시킬 수 있다. 상기 효과를 발현시키기 위해서는 강재 내부에 1mm2당 5×105개 이상의 탄화물을 형성시킬 필요가 있으나, 20×105개를 초과하는 경우에는 조대한 탄화물 형성도 촉진되어 인성을 저해하는 부작용을 일으키게 된다.
The steel proposed by the present invention preferably contains 5 × 10 5 to 20 × 10 5 carbides per mm 2 . BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows that reverse transformation austenite is formed at the time of normalizing heat treatment from carbide, (a) is an existing material, (b) shows an invention material. As can be seen in Figure 1, the carbide acts as a reverse transformation austenite nucleation site during normalizing heat treatment, unlike the existing material, by producing a large amount of carbide, to form fine austenite grains to fine during air cooling By transforming to ferrite, the strength and low temperature impact properties of the steel can be improved. In order to express the effect, it is necessary to form 5 × 10 5 or more carbides per 1 mm 2 inside the steel, but when it exceeds 20 × 10 5 , coarse carbides are also promoted to cause side effects that impair toughness. do.

전술한 바와 같이, 본 발명이 제안하는 성분계, 성분관계식 및 탄화물 수를 만족하는 강재는 500MPa이상의 인장강도를 갖게 되며, -50℃에서의 샤르피충격에너지 또한 150J이상을 갖게 되어, 우수한 강도 및 저온 충격인성을 확보하게 된다.
As described above, steel materials satisfying the component system, component relations, and number of carbides proposed by the present invention have a tensile strength of 500 MPa or more, and Charpy impact energy at -50 ° C also has 150 J or more, which is excellent in strength and low temperature impact. Toughness is secured.

이하, 본 발명의 제조방법에 대하여 설명한다.
Hereinafter, the production method of the present invention will be described.

상기한 조성성분 및 성분관계식을 만족하는 강재에 대하여 1050~1250℃에서 재가열을 실시한다. 주조중에 형성된 Ti, Nb 탄화물 및 이들의 복합탄화물을 고용시키기 위해서는 1050℃이상의 온도에서 재가열을 실시하는 것이 바람직하다. 다만, 과다하게 높은 온도로 재가열할 경우에는 오스테나이트가 조대화될 우려가 있으므로, 상기 재가열온도의 상한은 1250℃로 한정하는 것이 바람직하다.
Reheating is performed at 1050 to 1250 ° C for the steel that satisfies the above compositional components and component relations. In order to solidify the Ti, Nb carbides and their composite carbides formed during casting, it is preferable to reheat at a temperature of 1050 ° C or higher. However, when reheating excessively high temperature, austenite may coarsen, so the upper limit of the reheating temperature is preferably limited to 1250 ° C.

이후, 상기 재가열된 강재를 1250℃~Ar3에서 압연한다. 이 때, 압연은 통상조건의 압연을 적용할 수 있다. Ar3온도는 다음과 같다.
Thereafter, the reheated steel is rolled at 1250 ° C to Ar3. At this time, rolling can apply rolling of normal conditions. Ar3 temperature is as follows.

Ar3 = 916 - 310×C - 80×Mn - 20×Cu - 15×Cr - 55×Ni - 80×Mo
Ar3 = 916-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo

이후, 상기 압연된 강재를 Ac3~1000℃에서 가열한 후, (1.3×t + 10~30)분동안 유지(단, t는 강재의 두께(mm)를 의미함)하게 되는데, Ac3 온도는 노말라이징 열처리 시에 강재를 오스테나이트 영역으로 가열하는 최소 온도가 된다. Ac3 온도 미만으로 가열하게 되면 오스테나이트와 페라이트가 공존하는 영역이 되어 공냉 후에 조대한 페라이트가 형성하게 된다. 1000℃를 초과하게 되면 오스테나이트가 조대하게 성장하는 단계로 진입하게 되어 공냉 후에 조대한 페라이트 형성하고 되고, 이에 따라 강도 및 인성이 저하될 수 있다. Ac3온도는 다음과 같다.
Thereafter, the rolled steel is heated at Ac 3 to 1000 ° C., and then maintained for (1.3 × t + 10 to 30) minutes (where t denotes the thickness of the steel (mm)), where Ac 3 is normal. At the time of rising heat treatment, there is a minimum temperature for heating the steel to the austenite region. Heating below the Ac3 temperature results in the coexistence of austenite and ferrite to form coarse ferrite after air cooling. When the temperature exceeds 1000 ° C., austenite enters a coarse growth stage, and coarse ferrite is formed after air cooling, thereby decreasing strength and toughness. Ac3 temperature is as follows.

Ac3 = 910 - 203×C1/2 - 15.2×Ni + 44.7×Si + 104×V + 31.5×Mo + 13.1×W
Ac3 = 910-203 × C 1 /2-15.2 × Ni + 44.7 × Si + 104 × V + 31.5 × Mo + 13.1 × W

이후, 상기 가열유지된 강재를 공냉함으로써 본 발명이 제안하는 강재를 확보할 수 있다.
Subsequently, the steel proposed by the present invention can be secured by air-cooling the heated and maintained steel.

이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 예일 뿐, 본 발명의 권리범위를 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely examples for describing the present invention in more detail, and do not limit the scope of the present invention.

(실시예)(Example)

하기 표 1 및 2에 기재된 성분계를 갖는 강 슬라브에 대하여 재가열 후, 압연하여, 강재를 제조하였다. 이후, 하기 표 3의 조건으로 노말라이징 열처리 및 유지한 후, 공냉하였다. 이 때, 재가열 온도는 1150℃, 압연온도는 950℃였다. 상기 제조된 강재에 대하여 탄화물 밀도와 기계적 물성을 측정한 후, 그 결과를 하기 표 3에 나타내었다.
The steel slabs having the component systems shown in Tables 1 and 2 below were reheated and then rolled to prepare steel materials. Then, after the heat treatment and maintenance normalized under the conditions of Table 3, it was air-cooled. At this time, the reheating temperature was 1150 ° C and the rolling temperature was 950 ° C. Carbide density and mechanical properties of the prepared steels were measured, and the results are shown in Table 3 below.

구분division 화학조성(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl NiNi CuCu CrCr 발명예1Inventory 1 0.040.04 0.20.2 1.551.55 0.0130.013 0.0020.002 0.0150.015 0.250.25 0.10.1 0.30.3 발명예2Inventive Example 2 0.080.08 0.40.4 1.71.7 0.0130.013 0.0050.005 0.0320.032 0.10.1 00 0.20.2 발명예3Inventory 3 0.0870.087 0.20.2 1.551.55 0.0120.012 0.0020.002 0.0130.013 00 00 0.20.2 발명예4Honorable 4 0.10.1 0.30.3 1.41.4 0.0130.013 0.0020.002 0.0130.013 0.210.21 0.20.2 0.050.05 발명예5Inventory 5 0.0720.072 0.20.2 1.51.5 0.0130.013 0.0020.002 0.0130.013 00 0.220.22 0.30.3 발명예6Inventory 6 0.0860.086 0.30.3 1.41.4 0.0130.013 0.0030.003 0.0130.013 00 00 0.240.24 발명예7Honorable 7 0.090.09 0.40.4 1.51.5 0.0130.013 0.0020.002 0.0130.013 00 00 0.180.18 비교예1Comparative Example 1 0.0050.005 0.20.2 1.51.5 0.0140.014 0.0030.003 0.0340.034 00 00 0.110.11 비교예2Comparative Example 2 0.180.18 0.30.3 0.80.8 0.0130.013 0.0010.001 0.0380.038 00 00 00 비교예3Comparative Example 3 0.080.08 0.40.4 1.21.2 0.0130.013 0.0050.005 0.0240.024 00 00 0.150.15 비교예4Comparative Example 4 0.060.06 0.20.2 1.41.4 0.0150.015 0.0090.009 0.0430.043 00 00 0.10.1

구분division 화학조성(중량%)Chemical composition (% by weight) 탄화물
지수
Carbide
Indices
MoMo TiTi NbNb VV CoCo WW N
(ppm)
N
(ppm)
CaCa
발명예1Inventory 1 0.050.05 0.0150.015 0.040.04 0.030.03 0.020.02 0.050.05 3535 -- 0.0760.076 발명예2Inventive Example 2 0.10.1 0.0140.014 0.020.02 00 00 00 5555 0.00150.0015 0.0470.047 발명예3Inventory 3 0.250.25 0.0230.023 0.060.06 00 0.040.04 0.060.06 4242 -- 0.0720.072 발명예4Honorable 4 0.30.3 0.0130.013 0.030.03 0.050.05 00 0.030.03 4242 0.00350.0035 0.0530.053 발명예5Inventory 5 0.040.04 0.020.02 0.030.03 00 0.020.02 0.050.05 4242 -- 0.0680.068 발명예6Inventory 6 0.20.2 0.0220.022 0.070.07 0.040.04 0.020.02 0.070.07 4242 -- 0.0870.087 발명예7Honorable 7 0.110.11 0.030.03 0.040.04 00 0.030.03 0.040.04 4242 -- 0.0560.056 비교예1Comparative Example 1 00 0.0120.012 0.030.03 00 00 0.030.03 3232 -- 0.0280.028 비교예2Comparative Example 2 0.040.04 0.0130.013 0.040.04 00 00 0.040.04 2828 -- 0.0220.022 비교예3Comparative Example 3 00 0.0270.027 0.020.02 0.050.05 0.10.1 0.050.05 2626 -- 0.0360.036 비교예4Comparative Example 4 0.030.03 0.0190.019 0.040.04 00 00 0.040.04 4343 -- 0.0250.025

구분division 노말라이징 온도(℃)Normalizing Temperature (℃) 제품두께
(mm)
Thickness
(mm)
유지시간
(분)
Retention time
(minute)
탄화물 밀도
(×105개/mm2)
Carbide density
(× 10 5 pieces / mm 2 )
인장강도
(MPa)
The tensile strength
(MPa)
vE-50℃
(J)
vE -50 ℃
(J)
발명예1Inventory 1 907907 7575 113113 11.6211.62 656656 251251 발명예2Inventive Example 2 902902 3030 5454 9.159.15 598598 211211 발명예3Inventory 3 898898 5555 8787 11.4811.48 652652 248248 발명예4Honorable 4 896896 6060 9393 8.878.87 591591 206206 발명예5Inventory 5 896896 7070 109109 11.6111.61 656656 251251 발명예6Inventory 6 901901 3030 5454 11.211.2 646646 244244 발명예7Honorable 7 901901 5050 8080 8.158.15 574574 194194 비교예1Comparative Example 1 935935 2020 4141 1.351.35 414414 8484 비교예2Comparative Example 2 869869 2525 4949 0.40.4 391391 6969 비교예3Comparative Example 3 901901 5050 8080 2.262.26 435435 9999 비교예4Comparative Example 4 901901 6060 9393 3.333.33 460460 116116

상기 표 1 내지 3에서 알 수 있는 바와 같이, 본 발명에 부합하는 조성성분 및 범위를 가지는 발명예 1 내지 7은 다량의 탄화물이 형성됨에 따라 우수한 인장강도와 저온 충격인성 값을 가지고 있는 것이 확인되었다.
As can be seen from Tables 1 to 3, Inventive Examples 1 to 7 having compositional components and ranges according to the present invention were confirmed to have excellent tensile strength and low temperature impact toughness values as a large amount of carbides were formed. .

그러나, 본 발명의 조성성분 및 범위를 만족하지 않는 비교예 1 내지 4는 낮은 수준의 탄화물을 확보하게 됨에 따라, 인장강도는 물론, 저온 충격인성 또한 낮은 수준을 가지고 있음을 알 수 있다.
However, Comparative Examples 1 to 4, which do not satisfy the composition and range of the present invention, as it secures a low level of carbide, it can be seen that not only tensile strength, but also low-temperature impact toughness.

도 2는 발명예 1 내지 7의 탄화물 지수에 따른 탄화물 밀도를 나타낸 그래프이다. 도 2에서 알 수 있듯이, 탄화물 지수가 증가함에 따라 탄화물 밀도 또한 선형적으로 증가하고 있음을 알 수 있다.2 is a graph showing carbide density according to the carbide index of Inventive Examples 1 to 7. As can be seen in Figure 2, it can be seen that the carbide density also increases linearly as the carbide index increases.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 중량%로, C: 0.04~0.20%, Mn: 0.3~2.5%, Si: 0.01~0.6%, Nb: 0.005~0.10%, Mo: 0.01~1.0%, Cr: 0.05~1.0%, Ti: 0.005~0.1%, Al: 0.005~0.5%, N: 15~150ppm, P: 0.02%이하, S: 0.01%이하를 포함하고, 추가로 Cu: 0.010~1.0%, Ni: 0.01~2.0%, V: 0.005~0.3%, Co: 0.005~0.2%, W: 0.005~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하며, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고,
하기 관계식 1로 표현되는 탄화물 지수(CI)가 0.04~0.15인 강재를 1050~1250℃에서 재가열하는 재가열단계;
상기 재가열된 강재를 1250℃~Ar3에서 압연하는 압연단계;
상기 압연된 강재를 Ac3~1000℃에서 가열한 후, (1.3×t + 10~30분)동안 유지하는 가열유지단계(단, t는 강재의 두께(mm)를 의미함); 및
상기 가열유지된 강재를 공냉하는 단계를 포함하는 강도 및 충격인성이 우수한 강재의 제조방법.
[관계식 1] = 0.146×Nb + 0.272×Ti + 0.261×V + 0.071×Mo + 0.081×W + 0.167×Cr + 0.037×Co
By weight%, C: 0.04-0.20%, Mn: 0.3-2.5%, Si: 0.01-0.6%, Nb: 0.005-0.10%, Mo: 0.01-1.0%, Cr: 0.05-1.0%, Ti: 0.005-- 0.1%, Al: 0.005-0.5%, N: 15-150 ppm, P: 0.02% or less, S: 0.01% or less, Cu: 0.010-1.0%, Ni: 0.01-2.0%, V: 0.005 It comprises at least one selected from the group consisting of ˜0.3%, Co: 0.005 to 0.2%, W: 0.005 to 0.2%, consisting of the balance Fe and other unavoidable impurities,
A reheating step of reheating the steel having a carbide index (CI) of 0.04 to 0.15 represented by the following relation 1 at 1050 to 1250 ° C;
Rolling the reheated steel at 1250 ° C. to Ar 3;
After heating the rolled steel at Ac3 ~ 1000 ℃, maintaining the heating step for (1.3 × t + 10 ~ 30 minutes) (where t means the thickness of the steel (mm)); And
Method of producing a steel having excellent strength and impact toughness comprising the step of air-cooling the heated and maintained steel.
[Relationship 1] = 0.146 x Nb + 0.272 x Ti + 0.261 x V + 0.071 x Mo + 0.081 x W + 0.167 x Cr + 0.037 x Co
제5항에 있어서, 상기 강재는 Ca: 0.0005~0.0060%를 추가로 포함하는 강도 및 충격인성이 우수한 강재의 제조방법.The method of claim 5, wherein the steel further comprises Ca: 0.0005 to 0.0060%.
KR1020100124277A 2010-12-07 2010-12-07 Steel having excellent strength and impact toughness and method for manufacturing the same KR101271937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100124277A KR101271937B1 (en) 2010-12-07 2010-12-07 Steel having excellent strength and impact toughness and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100124277A KR101271937B1 (en) 2010-12-07 2010-12-07 Steel having excellent strength and impact toughness and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20120063200A KR20120063200A (en) 2012-06-15
KR101271937B1 true KR101271937B1 (en) 2013-06-07

Family

ID=46683762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100124277A KR101271937B1 (en) 2010-12-07 2010-12-07 Steel having excellent strength and impact toughness and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101271937B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239184B1 (en) 2019-09-04 2021-04-12 주식회사 포스코 Steel plate having excellent strength and low-temperature impact toughness and method for manufacturing thereof
KR102321319B1 (en) 2019-12-19 2021-11-03 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201513A (en) 2002-01-10 2003-07-18 Sanyo Special Steel Co Ltd High strength case hardening steel
KR20060051497A (en) * 2004-09-22 2006-05-19 가부시키가이샤 고베 세이코쇼 Low yield ratio high tension steel plate having small acoustic anistropy and excellent weldability, and its producing method
KR100973923B1 (en) 2007-12-20 2010-08-03 주식회사 포스코 High strength steel for construction having excellent low temperature toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201513A (en) 2002-01-10 2003-07-18 Sanyo Special Steel Co Ltd High strength case hardening steel
KR20060051497A (en) * 2004-09-22 2006-05-19 가부시키가이샤 고베 세이코쇼 Low yield ratio high tension steel plate having small acoustic anistropy and excellent weldability, and its producing method
KR100973923B1 (en) 2007-12-20 2010-08-03 주식회사 포스코 High strength steel for construction having excellent low temperature toughness

Also Published As

Publication number Publication date
KR20120063200A (en) 2012-06-15

Similar Documents

Publication Publication Date Title
KR101253890B1 (en) Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same
KR100973923B1 (en) High strength steel for construction having excellent low temperature toughness
KR101205144B1 (en) H-steel for building structure and method for producing the same
KR20090052950A (en) High strength and low yield ratio steel for structure having excellent low temperature toughness
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101899689B1 (en) Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same
KR101271792B1 (en) Steel having excellent strength and impact toughness and method for manufacturing the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR101070132B1 (en) Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
KR101185277B1 (en) Method of manufacturing 500mpa grade for lpg type steel sheet
KR101899677B1 (en) Hot dip coated steel material having excellent workability and method for manufacturing same
KR101889182B1 (en) Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same
KR101304822B1 (en) Ultra high strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR101271937B1 (en) Steel having excellent strength and impact toughness and method for manufacturing the same
KR101317275B1 (en) Steel sheet having good low temperature toughness
KR20100046995A (en) High-strength corrosion resistance steel, and method for producing the same
KR20160078849A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101679668B1 (en) Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
KR101304644B1 (en) High strength steel plate having excellent fatigue crack arrestability and manufacturing method the same
KR20120071618A (en) Steel sheet for construction having high strength and low yield ratio and method for manufacturing the same
KR101105128B1 (en) Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
KR20160147153A (en) Manufacturing method of high strength steel plate for line pipe and high strength steel plate for line pipe
KR20160078625A (en) Hot rolled steel sheet for steel pipe having excellent strength and method for manufacturing the same
KR20200075964A (en) Ultra-high strength and high toughness steel plate and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190529

Year of fee payment: 7