KR101262245B1 - Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof - Google Patents

Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof Download PDF

Info

Publication number
KR101262245B1
KR101262245B1 KR1020110018653A KR20110018653A KR101262245B1 KR 101262245 B1 KR101262245 B1 KR 101262245B1 KR 1020110018653 A KR1020110018653 A KR 1020110018653A KR 20110018653 A KR20110018653 A KR 20110018653A KR 101262245 B1 KR101262245 B1 KR 101262245B1
Authority
KR
South Korea
Prior art keywords
working electrode
oxygen demand
biological oxygen
sensor
electrode catalyst
Prior art date
Application number
KR1020110018653A
Other languages
Korean (ko)
Other versions
KR20110099661A (en
Inventor
성영식
김한수
김지선
이익재
Original Assignee
주식회사 과학기술분석센타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 과학기술분석센타 filed Critical 주식회사 과학기술분석센타
Publication of KR20110099661A publication Critical patent/KR20110099661A/en
Application granted granted Critical
Publication of KR101262245B1 publication Critical patent/KR101262245B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)

Abstract

본 발명은 미생물 고정화를 이용한 생물학적 산소 요구량 측정 센서 및 그 제조방법에 관한 것이다. 본 발명의 생물학적 산소 요구량 측정 센서는 신속하게 결과를 얻을 수 있으면서도 그 정확도 또한 뛰어나다. 아울러, 상기 센서의 제조방법 역시 종래 센서 제조방법에 비해 간단하여 작업성이 높은 장점이 있다.The present invention relates to a biological oxygen demand measurement sensor using a microorganism immobilization and a method of manufacturing the same. The biological oxygen demand measurement sensor of the present invention can be quickly obtained, but also excellent in accuracy. In addition, the manufacturing method of the sensor is also simple compared to the conventional sensor manufacturing method has the advantage of high workability.

Description

미생물 고정화를 이용한 생물학적 산소요구량 측정센서용 작용전극 촉매 및 그 제조방법 {Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof}[Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process]

본 발명은 미생물 고정화를 이용한 생물학적 산소요구량 측정센서, 그 중에서도 특히 반응이 일어나는 작용전극의 촉매와 그 제조방법, 나아가 이를 포함한 작용전극 그리고 측정센서에 관한 것이다. 구체적으로 본 발명의 작용전극 촉매는, 전도성 지지체인 탄소나노튜브 (Carbon Nano Tubes. CNT)와 감도 증가물질인 폴리비닐에 활성이 아주 뛰어난 CdS 또는 Cu2S를 감마선으로 고정시키고 미생물을 추가로 고정시켜 센서의 감도를 최대화시킨 것을 특징으로 한다.The present invention relates to a biological oxygen demand measurement sensor using a microorganism immobilization, and in particular, a catalyst of the working electrode, and a method of manufacturing the same, and further comprising a working electrode and a measuring sensor. Specifically, in the working electrode catalyst of the present invention, carbon nanotubes (CNT), which are conductive supports, and polyvinyl, which is a sensitivity increasing material, fix CdS or Cu 2 S having excellent activity with gamma rays and additionally fix microorganisms. It is characterized by maximizing the sensitivity of the sensor.

생물학적 산소요구량 (生物學的酸素要求量. biological oxygen demand. BOD)이란 호기성 미생물이 일정기간 동안 물속에 있는 유기물을 분해할 때 사용하는 산소의 양을 말하며, 물의 오염된 정도를 표시하는 지표로 사용된다. 생화학적 산소요구량 (生化學的酸素要求量. biochemical oxygen demand)이라고도 한다. 하천·호소·해역 등의 자연수역에 도시폐수·공장폐수가 방류되면 그중에 산화되기 쉬운 유기물질이 있어 수질이 오염된다. 이러한 유기물질은 수중의 호기성세균에 의해 산화되며, 이에 소요되는 용존산소의 양을 mg/ℓ 또는 ppm으로 나타낸 것이 생물학적 산소요구량이다. 수질규제 항목 중 가장 일반적이다. 보통 호기성 미생물이 충분히 생육 가능한 상태에서 시료를 20 ℃에서 5 일 동안 방치하였을 때 소비되는 산소량(BOD)을 말한다. BOD 수치는 온도가 올라감에 따라 약간 증가한다. 도시폐수의 경우 BOD 반응은 20 ℃에서 약 20 일이 걸리는데 이와 같이 끝까지 반응시켜서 얻은 것을 최종 BOD 농도라고 한다. 처음 BOD 지표를 사용하기 시작한 영국 하천의 유하시간(流下時間)이 5 일 정도이므로 BOD도 20 ℃에서 5 일간의 산소소비량으로 규정된 것이 사용되고 있다. 이와 같은 방법으로 측정한 농도값은 BOD5 또는 5일 BOD라고 하며, 일반적으로 BOD라고 한다. 끝까지 완전반응시켜서 얻은 BOD 농도값은 반드시 최종 BOD 또는 BODL이라고 표시한다.Biological oxygen demand (BOD) is the amount of oxygen used by aerobic microorganisms to decompose organic matter in water for a certain period of time, and is used as an indicator of the degree of contamination of water. do. It is also known as biochemical oxygen demand. When urban wastewater and factory wastewater are discharged into natural waters such as rivers, lakes, and seas, there are organic substances that are easily oxidized, and water quality is contaminated. These organic substances are oxidized by aerobic bacteria in water, and the amount of dissolved oxygen required for this is expressed in mg / l or ppm, which is the biological oxygen demand. It is the most common among water quality control items. Normally, it refers to the amount of oxygen consumed (BOD) when the sample is left at 20 ° C. for 5 days in a state in which aerobic microorganism is sufficiently grown. BOD levels increase slightly as the temperature rises. In the case of municipal wastewater, the BOD reaction takes about 20 days at 20 ° C. The end-to-end reaction is called the final BOD concentration. In the UK, the first time the BOD index is used, the flow time of the river is about 5 days, so the BOD is defined as the oxygen consumption for 5 days at 20 ℃. The concentration value measured in this way is called BOD5 or 5-day BOD, and is generally called BOD. The BOD concentration value obtained by complete reaction to the end must be marked as the final BOD or BODL.

BOD 측정법은 환경보전법 시행규칙에서 규정하고, 그 기준 역시 하천의 이용목적에 따라 규정되어 있다. BOD를 측정하기 위해서는 미리 pH 완충액·희석수(稀釋水, 용존산소를 포화시키고 무기영양염류를 함유한 pH 7.2의 완충액)·식종세균(植種細菌)·시약 등을 준비하고, 채취한 시료에 이러한 것들을 알맞게 혼합하여 희석한 후, 희석된 시료와 희석수를 각각 20 ℃ 부란기에 넣어서 5 일간 배양한다. BOD값을 구하는 식은 다음과 같다:BOD measurement is defined in the Enforcement Rules of the Environmental Conservation Act, and its criteria are also defined according to the purpose of using the river. In order to measure BOD, a pH buffer solution, dilution water (a pH 7.2 buffer containing dissolved oxygen and saturation of dissolved oxygen), a bacterial bacterium, a reagent, and the like are prepared. After these mixtures are properly mixed and diluted, the diluted samples and diluted water are put in a 20 ° C. incubator and incubated for 5 days. The equation for calculating the BOD value is:

[수학식 1][Equation 1]

BOD(mg/ℓ) = [ (D1 - D2) - (B1 - B2) * f ] / PBOD (mg / L) = [(D1-D2)-(B1-B2) * f] / P

D1: 희석된 시료의 용존산소 (DO: mg/ℓ) D1: dissolved oxygen in diluted sample (DO: mg / l)

D2: 5 일 배양 후 희석된 시료의 (DO: mg/ℓ)D2: (DO: mg / l) of diluted sample after 5 days of culture

B1: 배양 전 희석식종수의 (DO: mg/ℓ) B1: Number of diluted species before incubation (DO: mg / l)

B2: 5 일 배양 후 희석식종수의 (DO: mg/ℓ) B2: After 5 days of incubation of the diluted species (DO: mg / l)

f: 희석식종수에 대한 시료의 식종비 f: The planting ratio of the sample to the dilution type tree

P: 시료량의 비율P: ratio of sample amount

f = D1에서의 식종(%) / B1에서의 식종(%).
f =% of seeds at D1 /% of seeds at B1.

BOD는 수중의 오염된 정도를 측정하는 지표로 사용되기에 문제점도 갖고 있다. 수중의 유기물질 중에는 경성세제(硬性洗劑)나 농약, 리그닌(lignin)처럼 생물분해가 불가능하거나 또는 생물분해가 곤란한 유기물질 등이 있는데 그러한 것들은 BOD값에 포함되지 않는다. 또한 오염원 중에 호기성 미생물의 활성을 저하시키는 유독물질이 존재하여 BOD 수치가 낮아지거나, 장기간의 측정 시에 암모니아와 같은 무기물질에 의해 산소소비량 수치가 높아지기 때문에 BOD의 값이 부정확하게 측정될 수 있다.BOD is also problematic because it is used as an indicator to measure the degree of contamination in water. Among the organic substances in water, there are organic substances that are not biodegradable or difficult to biodegrade, such as light detergents, pesticides, and lignin, which are not included in the BOD value. In addition, the BOD value may be inaccurately measured due to the presence of a toxic substance that lowers the activity of aerobic microorganisms in the contaminant, and thus lowers the BOD level or increases the oxygen consumption level by inorganic substances such as ammonia during long-term measurement.

나아가, 이러한 BOD의 측정에는 장시간이 소요되어 이의 단축이 절실히 요구되고 있다.Furthermore, the measurement of such a BOD takes a long time and there is an urgent need for shortening thereof.

이러한 문제를 해결하기 위하여 본 발명은, 전도성 지지체인 탄소나노튜브 (Carbon Nano Tubes. CNT)와 감도 증가물질인 폴리비닐에 CdS 또는 Cu2S를 감마선으로 고정시키고 미생물을 추가로 고정하여 센서의 감도를 최대화시킨 생물학적 산소요구량 측정센서용 작용전극 촉매를 제공하는 것을 그 목적으로 한다.In order to solve this problem, the present invention, by fixing the CdS or Cu 2 S to gamma-ray and carbon microtubes of the conductive support carbon nanotubes (CNT) and the sensitivity increasing material polyvinyl chloride and the sensitivity of the sensor It is an object of the present invention to provide a working electrode catalyst for a biological oxygen demand measurement sensor that maximizes.

또한, 본 발명은 상기 생물학적 산소요구량 측정센서용 작용전극 촉매를 포함한 생물학적 산소요구량 측정센서용 작용전극을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a working electrode for a biological oxygen demand measuring sensor including the working electrode catalyst for the biological oxygen demand measuring sensor.

또한, 본 발명은 상기 생물학적 산소요구량 측정센서용 작용전극을 포함한 생물학적 산소요구량 측정센서를 제공하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a biological oxygen demand measuring sensor including a working electrode for the biological oxygen demand measuring sensor.

또한, 본 발명은 상기 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법을 제공하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a method for producing a working electrode catalyst for a biological oxygen demand measurement sensor.

본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매는 상술한 바와 같은 목적을 달성하기 위하여, In order to achieve the object as described above, the working electrode catalyst for biological oxygen demand measurement sensor of the present invention,

탄소나노튜브 (Carbon Nano Tube. CNT) 100 중량부; 100 parts by weight of carbon nanotubes (CNT);

폴리비닐 70 내지 140 중량부; 70 to 140 parts by weight of polyvinyl;

카드뮴 또는 구리 10 내지 50 중량부; 10 to 50 parts by weight of cadmium or copper;

고체 전해질 750 내지 1600 중량부; 및 750 to 1600 parts by weight of the solid electrolyte; And

호기성 세균 150 내지 350 중량부Aerobic bacteria 150 to 350 parts by weight

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

또한, 상기 탄소나노튜브는 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)인 것이 바람직하다.In addition, the carbon nanotube is preferably a multi-walled carbon nanotube (MWCNT).

또한, 상기 폴리비닐은 4-비닐페닐보론산 (4-vinylphenylboronic acid. VP)의 중합체인 것이 바람직하다.In addition, the polyvinyl is preferably a polymer of 4-vinylphenylboronic acid (VP).

또한, 상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)인 것이 바람직하다.In addition, the solid electrolyte is a tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer).

또한, 상기 호기성 세균은 Pseudomonas putida 또는 Alkaligenes xylosoxidans의 초음파 분쇄물인 것이 바람직하다.In addition, the aerobic bacteria is Pseudomonas Preference is given to ultrasonic grinding of putida or Alkaligenes xylosoxidans .

한편, 본 발명의 생물학적 산소요구량 측정센서용 작용전극은 상기 생물학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 것을 특징으로 한다.On the other hand, the working electrode for biological oxygen demand measuring sensor of the present invention is characterized in that the working electrode catalyst for the biological oxygen demand measuring sensor is coated.

한편, 본 발명의 생물학적 산소요구량 측정센서는 상기 생물학적 산소요구량 측정센서용 작용전극을 포함한 것을 특징으로 한다.On the other hand, the biological oxygen demand measuring sensor of the present invention is characterized in that it comprises a working electrode for the biological oxygen demand measuring sensor.

또한, 본 발명의 생물학적 산소요구량 측정센서는 Ag/AgCl의 기준전극 및 백금 와이어 (Pt wire)의 보조전극을 추가로 포함할 수 있다.In addition, the biological oxygen demand measurement sensor of the present invention may further include a reference electrode of Ag / AgCl and an auxiliary electrode of platinum wire (Pt wire).

한편, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 On the other hand, the production method of the working electrode catalyst for biological oxygen demand measurement sensor of the present invention

(A) 2-프로판올을 3 내지 10 부피% 함유한 물에 탄소나노튜브, 4-비닐페닐보론산(VP), CdSO4 또는 CuSO4, 및 Na2S2O3를 탄소나노튜브 : 4-비닐페닐보론산 : CdSO4 또는 CuSO4 : Na2S2O3 의 중량비가 100 : 70 내지 140 : 35 내지 95 : 35 내지 70 이 되도록 첨가하고, 감마선을 조사하여 카드뮴 또는 구리가 폴리비닐 및 탄소나노튜브에 고정화된 Cd/Cu-VP-CNT를 제조하는 단계; (A) carbon nanotube, 4-vinylphenylboronic acid (VP), CdSO4 or CuSO4, and Na2S2O3 in water containing 3 to 10% by volume of 2-propanol, carbon nanotube: 4-vinylphenylboronic acid: CdSO4 or CuSO4: Na2S2O3 is added in a weight ratio of 100: 70 to 140: 35 to 95:35 to 70 and irradiated with gamma rays to prepare Cd / Cu-VP-CNT in which cadmium or copper is immobilized on polyvinyl and carbon nanotubes. Making;

(B) 상기 제조한 Cd/Cu-VP-CNT 및 고체 전해질을 Cd/Cu-VP-CNT : 고체 전해질의 중량비가 10 : 20 내지 100 이 되도록 물에 첨가하고 혼합하는 단계(B) adding and mixing the prepared Cd / Cu-VP-CNT and the solid electrolyte to water so that the weight ratio of Cd / Cu-VP-CNT: solid electrolyte is 10:20 to 100

(C) 상기 혼합된 Cd/Cu-VP-CNT 및 고체 전해질을 작용전극 표면에 묻히고 건조시키는 단계; 및 (C) immersing the mixed Cd / Cu-VP-CNT and the solid electrolyte on the working electrode surface and drying; And

(D) 상기 건조된 작용전극 표면에 추가로 호기성 세균 배양액을 묻히고 건조시키는 단계(D) a step of burying the aerobic bacteria culture medium further dried on the dried working electrode surface

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

또한, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A)의 감마선 조사 전에 질소를 물에 주입하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the method for producing a working electrode catalyst for biological oxygen demand measurement sensor of the present invention preferably further comprises the step of injecting nitrogen into the water before gamma irradiation of step (A).

또한, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A) 이전에 탄소나노튜브를 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the method for producing a working electrode catalyst for a biological oxygen demand measurement sensor of the present invention preferably further comprises the step of purifying the carbon nanotubes with a mixture of sulfuric acid and nitric acid before step (A).

또한, 상기 단계 (A)의 감마선은 코발트-60 광원을 통해 발생한 감마선인 것이 바람직하다.In addition, the gamma ray of the step (A) is preferably a gamma ray generated through the cobalt-60 light source.

또한, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A) 이후 단계 (B) 이전에 상기 감마선 조사 후 원심분리하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the method for producing a working electrode catalyst for a biological oxygen demand measurement sensor of the present invention preferably further comprises the step of centrifugation after the gamma irradiation before step (B) after the step (A).

본 발명의 생물학적 산소요구량 측정 센서는 신속하게 결과를 얻을 수 있으면서도 그 정확도 또한 뛰어나다. 아울러, 상기 센서의 제조방법 역시 종래 센서 제조방법에 비해 간단하여 작업성이 높은 장점이 있다.The biological oxygen demand measuring sensor of the present invention can be quickly obtained, but also excellent in accuracy. In addition, the manufacturing method of the sensor is also simple compared to the conventional sensor manufacturing method has the advantage of high workability.

도 1은 전도성 지지체를 제조하는 단계를 도시한 개략도이다.
도 2는 미생물 코팅막을 형성하는 단계를 도시한 개략도이다.
도 3은 본 발명의 작용전극의 촉매 구성을 나타낸 도면이다.
도 4는 주사 속도 100 mV/s에서 상이한 페놀 농도 (l : 0.5 내지 5 mM)를 함유하는 0.1 M 인산 완충용액에서 Cd/Cu-VP-CNT의 순환 전압-전류도 (a) 및 페놀 농도의 보정 도면 (b)이다.
도 5는 주사 속도 100 mV/s에서 3 mM 페놀을 함유하는 0.1 mM 인산 완충용액에서 Cd-VP-CNT (a) 및 Cu-VP-CNT (b)의 반응에 대한 pH의 영향을 나타낸 도면이다.
1 is a schematic diagram illustrating the step of preparing a conductive support.
Figure 2 is a schematic diagram showing the step of forming a microbial coating film.
3 is a view showing the catalyst configuration of the working electrode of the present invention.
Figure 4 shows the cyclic voltage-current diagram (a) and phenol concentration of Cd / Cu-VP-CNT in 0.1 M phosphate buffer containing different phenol concentrations (l: 0.5 to 5 mM) at an injection rate of 100 mV / s. The correction figure (b).
FIG. 5 shows the effect of pH on the reaction of Cd-VP-CNT (a) and Cu-VP-CNT (b) in 0.1 mM phosphate buffer containing 3 mM phenol at an injection rate of 100 mV / s. .

이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description, numerous specific details, such as specific elements, are set forth in order to provide a thorough understanding of the present invention, and it is to be understood that the present invention may be practiced without these specific details, It will be obvious to those who have knowledge of. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명은 전도성지지체인 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tubes, MWCNT)와 CdS 또는 Cu2S 표면 위에 유기물의 분해능력이 우수한 효소를 부착하여 농도에 따른 산화환원 전위를 측정하도록 개발한 것이다.The present invention has been developed to measure the redox potential according to the concentration by attaching an enzyme capable of degrading organic matter on the surface of the multi-walled carbon nanotubes (MWCNT) and CdS or Cu 2 S, which are conductive supports. .

최종적으로 전극의 구성은 촉매제가 코팅된 작용전극과 Ag/AgCl이 코팅된 기준전극, 그리고 백금 와이어 (Pt wire)로 된 보조전극으로 구성되며, CV (Cyclic voltametry) 측정기를 이용해 각각을 연결하여 제작한다 (도 1 및 도 2).Finally, the composition of the electrode consists of a working electrode coated with a catalyst, a reference electrode coated with Ag / AgCl, and an auxiliary electrode made of platinum wire (Pt wire), which is connected to each other using a CV (Cyclic voltametry) measuring instrument. 1 and 2.

즉, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매는 That is, the working electrode catalyst for biological oxygen demand measurement sensor of the present invention

폴리비닐 70 내지 140 중량부; 70 to 140 parts by weight of polyvinyl;

카드뮴 황화물 또는 구리 황화물 30 내지 70 중량부; 30 to 70 parts by weight of cadmium sulfide or copper sulfide;

고체 전해질 850 내지 1650 중량부; 및 850 to 1650 parts by weight of the solid electrolyte; And

호기성 세균 150 내지 350 중량부Aerobic bacteria 150 to 350 parts by weight

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

상기 탄소나노튜브는 특히 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)인 것이 지지체의 전도성 증가에 따른 센서의 감도 향상에 바람직하다.The carbon nanotubes, in particular, are multi-walled carbon nanotubes (MWCNTs), which are preferable for improving the sensitivity of the sensor according to the increase in conductivity of the support.

그리고, 상기 폴리비닐은 탄소나노튜브와 함께 지지체를 구성하는 것으로서 다양한 비닐 중합체가 사용될 수 있으며, 특히 4-비닐페닐보론산 (4-vinylphenylboronic acid. VP)의 중합체가 바람직하다.In addition, the polyvinyl may be used as a constituent support with carbon nanotubes, and various vinyl polymers may be used, and a polymer of 4-vinylphenylboronic acid (VP) is particularly preferable.

고체전해질 (固體電解質, solid electrolyte)은 고체상태에서 이온의 이동에 의하여 전류를 통할 수 있는 물질로서, 산화지르코늄, 나트륨 β-알루미나, 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer), Nafion?, 아사히막 등의 고분자 물질 등이 있으며, 새로운 종류의 전지들과 센서를 만드는데 이용되고 전해질 공업에서 격막으로 이용되기도 한다. 본 발명에서 상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)인 것이 특히 바람직하다.Solid electrolyte is a substance that can pass current through the movement of ions in the solid state. Zirconium oxide, sodium β-alumina, tetrafluoroethylene-perfluoro-3,6-dioxa- 4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer), Nafion ? And polymer materials such as the Asahi membrane. They are used to make new kinds of batteries and sensors, and they are also used as diaphragms in the electrolyte industry. In the present invention, the solid electrolyte is tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7- octenesulfonic acid copolymer).

또한, 상기 호기성 세균은 산소 존재 하에서 유기물을 산화시키는 세균이라면 무방하며, 나아가 세균 자체일 수도 있으나 산화효소 기능만 남기고 나머지 기능은 물리적, 화학적, 또는 생물학적으로 제거한 효소 자체인 것이 더욱 바람직하다. 본 발명에서는 특히 Pseudomonas putida 또는 Alkaligenes xylosoxidans의 초음파 분쇄물인 것이 바람직하다.In addition, the aerobic bacteria may be any bacteria that oxidize organic matter in the presence of oxygen, and furthermore, the aerobic bacteria may be bacteria themselves, but more preferably, the remaining functions are enzymes themselves that are physically, chemically, or biologically removed. In the present invention, in particular Pseudomonas putida or Alkaligenes Preferably it is an ultrasonic mill of xylosoxidans .

한편, 본 발명의 생물학적 산소요구량 측정센서용 작용전극은 본 발명의 상기 생물학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 것을 특징으로 하고, 본 발명의 생물학적 산소요구량 측정센서는 본 발명의 상기 생물학적 산소요구량 측정센서용 작용전극을 포함한 것을 특징으로 한다.On the other hand, the working electrode for the biological oxygen demand measuring sensor of the present invention is characterized in that the working electrode catalyst for the biological oxygen demand measuring sensor of the present invention is coated, the biological oxygen demand measuring sensor of the present invention is the biological oxygen of the present invention It is characterized in that it comprises a working electrode for the required measurement sensor.

한편, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 먼저 2-프로판올을 3 내지 10 부피% 함유한 물에 탄소나노튜브, 4-비닐페닐보론산(VP), CdSO4 또는 CuSO4, 및 Na2S2O3를 탄소나노튜브 : 4-비닐페닐보론산 : CdSO4 또는 CuSO4 : Na2S2O3 의 중량비가 100 : 70 내지 140 : 35 내지 95 : 35 내지 70 이 되도록 첨가하고, 감마선을 조사하여 카드뮴 또는 구리가 폴리비닐 및 탄소나노튜브에 고정화된 Cd/Cu-VP-CNT를 제조하는 것으로 이루어진다.On the other hand, the method of manufacturing a working electrode catalyst for biological oxygen demand sensor of the present invention is first carbon nanotube, 4-vinylphenyl boronic acid (VP), CdSO4 or CuSO4, in water containing 3 to 10% by volume of 2-propanol, And Na 2 S 2 O 3 is added so that the weight ratio of carbon nanotube: 4-vinylphenyl boronic acid: CdSO 4 or CuSO 4: Na 2 S 2 O 3 is 100: 70 to 140: 35 to 95:35 to 70, and the gamma ray is irradiated to prevent cadmium or copper from polyvinyl. And Cd / Cu-VP-CNT immobilized on carbon nanotubes.

본 발명의 특징 중 하나인 감마선은 비닐 중합체의 생성 및 금속 촉매의 생성과 같은 역할을 수행하며, 구체적으로 다음과 같은 기작을 따른다.Gamma rays, which are one of the features of the present invention, play a role such as the production of vinyl polymers and the production of metal catalysts, and specifically follow the following mechanism.

먼저 수용액에 감마선이 조사되면, 아래 나타낸 식과 같이 여러 종류의 물질들이 생성되는데, When gamma rays are irradiated to the aqueous solution, various kinds of substances are produced as shown below.

[반응식 1][Reaction Scheme 1]

H2O → eaq -, H+, H·, OH·, H2O2, H2 H 2 O → e aq -, H +, H ·, OH ·, H 2 O 2, H 2

용해되어 있는 전자 eaq - 와 H 라디칼은 강력한 환원제로 사용되며, 반응식 2와 반응식 3에 나타낸 바와 같이 금속이온들을 제로 원자가수(zero-valent)로 환원시킨다.The dissolved electrons e aq - and H radicals are used as strong reducing agents, reducing the metal ions to zero-valent valences as shown in Schemes 2 and 3.

[반응식 2][Reaction Scheme 2]

M+ + eaq - → M0 M + + e aq - → M 0

[반응식 3]Scheme 3

M+ + H· → M0 + H+ M + + H · → M 0 + H +

유사하게, Cd, Cu와 같은 원소의 이온들도 여러 단계의 반응에 의해 환원된다. Similarly, ions of elements such as Cd and Cu are also reduced by several stages of reaction.

OH 라디칼 역시 반응식 2와 반응식 3과 같이 이온이나 제로 원자가수의 금속원자를 산화시킬 수 있는데, 산화제(OH·)를 보호하기 위해, 2-프로판올을 반응용액에 첨가하면, OH 라디칼 (OH·)은 2-프로판올과 반응식 4와 같이 반응하고, 그 결과로 금속이온은 반응식 5와 같이 2-프로판올에 의해 제로 원자가 금속원자로 환원된다. The OH radicals can also oxidize ions or zero valence metal atoms as in Scheme 2 and Scheme 3. To protect the oxidizer (OH ·), 2-propanol is added to the reaction solution. The silver reacts with 2-propanol as in Scheme 4. As a result, the metal ion is reduced to zero valence metal atom by 2-propanol as in Scheme 5.

[반응식 4][Reaction Scheme 4]

(CH3)2CHOH + ·OH → (CH3)2C·OH + H2O (CH 3 ) 2 CHOH + · OH → (CH 3 ) 2 COH + H 2 O

[반응식 5]Scheme 5

M+ + (CH3)2C·OH → M0 + (CH3)2C=O + H+ M + + (CH 3 ) 2 COH → M 0 + (CH 3 ) 2 C = O + H +

본 발명의 측정센서용 작용전극 촉매는 상기 감마선 조사 후 원심분리하는 단계를 추가로 포함함으로써 CdS 또는 Cu2S가 폴리비닐 및 탄소나노튜브에 안정적으로 고정시키는 것이 더욱 바람직하다.The working electrode catalyst for measuring sensor of the present invention further comprises the step of centrifugation after the gamma irradiation, so that CdS or Cu 2 S is more preferably fixed to polyvinyl and carbon nanotubes stably.

이렇게 제조된 Cd/Cu-VP-CNT 및 고체 전해질을 Cd/Cu-VP-CNT : 고체 전해질의 중량비가 10 : 20 내지 100 이 되도록 물에 첨가하고 혼합한 후, 상기 혼합된 Cd/Cu-VP-CNT 및 고체 전해질을 작용전극 표면에 묻히고 건조시킨 다음, 상기 건조된 작용전극 표면에 추가로 호기성 세균 배양액을 묻히고 건조시킴으로써 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매를 제조한다.The Cd / Cu-VP-CNT and the solid electrolyte thus prepared are added to water and mixed so that the weight ratio of Cd / Cu-VP-CNT: solid electrolyte is 10:20 to 100, and the mixed Cd / Cu-VP The CNT and the solid electrolyte are buried on the working electrode surface and dried, and then, the aerobic bacterial culture solution is further buried and dried on the dried working electrode surface to prepare a working electrode catalyst for a biological oxygen demand sensor.

또한, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 감마선 조사 전에 질소를 물에 주입하여 반응매질 중에서 산소를 제거하는 단계를 추가로 포함하는 것이 바람직하다. 그리고, 제조과정 중에 혼입될 수 있는 촉매와 비결정화된 탄소 불순물 제거를 위해 본 발명에 사용되는 탄소나노튜브는 폴리비닐과의 혼합 전에 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the method for producing a working electrode catalyst for a biological oxygen demand measurement sensor of the present invention preferably further comprises the step of removing oxygen from the reaction medium by injecting nitrogen into the water before the gamma irradiation. In addition, the carbon nanotubes used in the present invention for removing the catalyst and amorphous carbon impurities that may be incorporated during the manufacturing process may further include purifying with a mixture of sulfuric acid and nitric acid before mixing with polyvinyl. Do.

또한, 본 발명의 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조시 사용되는 감마선은 코발트-60 광원을 통해 발생한 감마선이 바람직하다.In addition, the gamma ray used in the preparation of the working electrode catalyst for the biological oxygen demand sensor is preferably a gamma ray generated through a cobalt-60 light source.

이하, 본 발명의 실시예에 대하여 설명한다.
EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.

실시예Example

실시예Example 1:  One: CdSCdS -- VPVP -- CNTCNT 촉매의 제조방법 Preparation method of catalyst

CdSO4, Cu(Ⅱ)SO4 와 Na2S2O3, Nafion?, 4-비닐페닐보론산 (4-vinylphenylboronic acid, VPBAc)은 Sigma-Aldrich (USA)사에서 구입하여 정제없이 사용하였으며, 다층벽 탄소나노튜브 (MWCNT. CM-95)는 한화 나노테크 사 (Korea)에서 제공받았다. CdSO 4 , Cu (II) SO 4 and Na 2 S 2 O 3 , Nafion ? , 4-vinylphenylboronic acid (VPBAc) was purchased from Sigma-Aldrich (USA) and used without purification. The multilayer wall carbon nanotubes (MWCNT.CM-95) were manufactured by Hanwha Nanotech Co., Ltd. Was provided).

촉매와 비결정화된 탄소불순물 제거를 위해 다층벽 탄소나노튜브는 황산과 질산의 혼합물 (H2SO4 / HNO3 = 3 / 1 부피비)에 의해 처리하여 분해하였으며, 정제 분해된 탄소나노튜브는 다양한 비닐 단량체들을 융합시키기 위한 지지체로 사용되었다. Multi-walled carbon nanotubes were decomposed by treatment with a mixture of sulfuric acid and nitric acid (H 2 SO 4 / HNO 3 = 3/1 by volume) to remove catalyst and amorphous carbon impurities. It was used as a support for fusing vinyl monomers.

다음으로, 물 (188 ml)에 탄소나노튜브 (0.3 g) 와 4-비닐페닐보론산 (0.3g), CdSO4 (0.001 mol), Na2S2O3 (0.001 mol)을 혼합하고 라디칼 제거제 역할을 하는 2-프로판올을 12 ml 첨가하였다. 산소기체를 제거하기 위해 수용액에 30 분 동안 질소기체를 불어 넣은 후, 상온, 상압 조건에서 Co-60 광원으로 방사선을 30 kGy (dose rate = 1.0 × 104 Gy/h)양으로 조사하였다.Next, carbon nanotube (0.3 g) with 4-vinylphenylboronic acid (0.3 g), CdSO 4 (0.001 mol), Na 2 S 2 O 3 in water (188 ml) (0.001 mol) was mixed and 12 ml of 2-propanol was added to act as a radical scavenger. The nitrogen gas was blown into the aqueous solution for 30 minutes to remove the oxygen gas, and then irradiated with a Co-60 light source at 30 kGy (dose rate = 1.0 × 10 4 Gy / h) at room temperature and atmospheric pressure.

실시예Example 2:  2: CuCu 22 SS -- VPVP -- CNTCNT 촉매 제조 Catalyst preparation

물 (188 ml)에 탄소나노튜브 (0.3 g) 와 4-비닐페닐보론산 (0.3 g), CuSO4 (0.001 mol), Na2S2O3 (0.001 mol)을 혼합하고 라디칼 제거제 역할을 하는 2-프로판올 12 ml를 첨가하였다. 산소기체를 제거하기 위해 수용액에 30 분 동안 질소기체를 불어 넣은 후, 상온, 상압 조건에서 Co-60 광원으로 방사선을 30 kGy (dose rate = 1.0 × 104 Gy/h)양으로 조사하였다. 최종적으로 Cu2S 나노입자는 원심분리에 의해 VP-CNT에 침적하여 제조하였다.Carbon nanotube (0.3 g) with 4-vinylphenylboronic acid (0.3 g) in water (188 ml), CuSO 4 (0.001 mol), Na 2 S 2 O 3 (0.001 mol) were mixed and 12 ml of 2-propanol was added to act as a radical scavenger. The nitrogen gas was blown into the aqueous solution for 30 minutes to remove the oxygen gas, and then irradiated with a Co-60 light source at 30 kGy (dose rate = 1.0 × 10 4 Gy / h) at room temperature and atmospheric pressure. Finally, Cu 2 S nanoparticles were prepared by depositing in VP-CNT by centrifugation.

실시예 3: BOD 측정용 전극의 제조Example 3 Preparation of Electrode for BOD Measurement

Cd/Cu-VP-CNT 10 mg을 5 % Nafion? 용액 1.0 ml에 분산시킨 다음 혼합용액 10 μL를 내경 2.0 mm의 유리탄소 전극 (glassy carbon electrode) 표면에 살짝 찍어 코팅하고, 제조된 전극은 상온에서 3 시간 건조시켰다. 10 mg of Cd / Cu-VP-CNT with 5% Nafion ? After dispersing in 1.0 ml of solution, 10 μL of the mixed solution was slightly coated on the surface of a glassy carbon electrode having an internal diameter of 2.0 mm, and the prepared electrode was dried at room temperature for 3 hours.

이와 별도로 Pseudomonas putida 또는 Alkaligenes xylosoxidans를 Brain Heart Infusion (Difco, USA)에 접종하여 30 ℃에서 48 시간 동안 배양하였다. 배양 후 원심분리를 통해 균체를 회수한 뒤 65 %, 2 분간 초음파처리하여 균체의 세포벽을 파쇄하였다. Separately Pseudomonas putida or Alkaligenes Xylosoxidans was inoculated to Brain Heart Infusion (Difco, USA) and incubated at 30 ° C. for 48 hours. After incubation, the cells were recovered by centrifugation and sonicated at 65% for 2 minutes to disrupt the cell walls of the cells.

상기 건조된 전극을 상기 박테리아 배양액 (10 μL)에 담가 표면을 코팅한 후 상온에서 1 시간 동안 자연건조시켜 본 발명의 작용전극을 최종 제조하였다.
The dried electrode was immersed in the bacterial culture solution (10 μL) and the surface was coated, followed by air drying at room temperature for 1 hour to finally prepare the working electrode of the present invention.

이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Of course it is possible. Accordingly, the scope of the present invention should not be construed as being limited to the above-described embodiments, but should be determined by equivalents to the appended claims, as well as the following claims.

Claims (13)

탄소나노튜브 (Carbon Nano Tube. CNT) 100 중량부;
폴리비닐 70 내지 140 중량부;
카드뮴 황화물 또는 구리 황화물 30 내지 70 중량부;
고체 전해질 850 내지 1650 중량부; 및
호기성 세균 150 내지 350 중량부
를 포함하는 생물학적 산소요구량 (Biological Oxygen Demand. BOD) 측정센서용 작용전극 촉매.
100 parts by weight of carbon nanotubes (CNT);
70 to 140 parts by weight of polyvinyl;
30 to 70 parts by weight of cadmium sulfide or copper sulfide;
850 to 1650 parts by weight of the solid electrolyte; And
Aerobic bacteria 150 to 350 parts by weight
Biological Oxygen Demand (BOD) measuring electrode comprising a working electrode catalyst for the sensor.
청구항 1에 있어서,
상기 탄소나노튜브는 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)인 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The carbon nanotubes are multi-walled carbon nanotubes (Multi Wall Carbon Nano Tube. MWCNT), the working electrode catalyst for a biological oxygen demand sensor.
청구항 1에 있어서,
상기 폴리비닐은 4-비닐페닐보론산 (4-vinylphenylboronic acid. VP)의 중합체인 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The polyvinyl is a working electrode catalyst for a biological oxygen demand sensor, characterized in that the polymer of 4-vinylphenylboronic acid (4-vinylphenylboronic acid.VP).
청구항 1에 있어서,
상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)인 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The solid electrolyte is a tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer A working electrode catalyst for a biological oxygen demand measurement sensor, characterized in that).
청구항 1에 있어서,
상기 호기성 세균은 Pseudomonas putida 또는 Alkaligenes xylosoxidans의 초음파 분쇄물인 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The aerobic bacteria is a working electrode catalyst for a biological oxygen demand sensor, characterized in that the ultrasonic milling of Pseudomonas putida or Alkaligenes xylosoxidans .
청구항 1 내지 청구항 5 중 어느 한 청구항의 생물학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 생물학적 산소요구량 측정센서용 작용전극.The working electrode for a biological oxygen demand measuring sensor according to any one of claims 1 to 5, wherein the working electrode for a biological oxygen demand measuring sensor coated with a catalyst. 청구항 6의 생물학적 산소요구량 측정센서용 작용전극을 포함한 생물학적 산소요구량 측정센서.Biological oxygen demand measuring sensor comprising a working electrode for a biological oxygen demand measuring sensor of claim 6. 청구항 7에 있어서,
Ag/AgCl의 기준전극 및 백금 와이어 (Pt wire)의 보조전극을 추가로 포함하는 것을 특징으로 하는 생물학적 산소요구량 측정센서.
The method of claim 7,
Biological oxygen demand sensor, characterized in that it further comprises a reference electrode of Ag / AgCl and the auxiliary electrode of platinum wire (Pt wire).
(A) 2-프로판올을 3 내지 10 부피% 함유한 물에 탄소나노튜브, 4-비닐페닐보론산(VP), CdSO4 또는 CuSO4, 및 Na2S2O3를 탄소나노튜브 : 4-비닐페닐보론산 : CdSO4 또는 CuSO4 : Na2S2O3 의 중량비가 100 : 70 내지 140 : 35 내지 95 : 35 내지 70 이 되도록 첨가하고, 감마선을 조사하여 카드뮴 또는 구리가 폴리비닐 및 탄소나노튜브에 고정화된 Cd/Cu-VP-CNT를 제조하는 단계;
(B) 상기 제조한 Cd/Cu-VP-CNT 및 고체 전해질을 Cd/Cu-VP-CNT : 고체 전해질의 중량비가 10 : 20 내지 100 이 되도록 물에 첨가하고 혼합하는 단계
(C) 상기 혼합된 Cd/Cu-VP-CNT 및 고체 전해질을 작용전극 표면에 묻히고 건조시키는 단계; 및
(D) 상기 건조된 작용전극 표면에 추가로 호기성 세균 배양액을 묻히고 건조시키는 단계
를 포함하는 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
(A) carbon nanotube, 4-vinylphenylboronic acid (VP), CdSO 4 or CuSO 4 , and Na 2 S 2 O 3 in water containing 3 to 10% by volume of 2-propanol: Vinylphenylboronic acid: CdSO 4 or CuSO 4 : Na 2 S 2 O 3 The weight ratio of 100: 70 to 140: 35 to 95: 35 to 70 is added, and gamma rays are irradiated with cadmium or copper to polyvinyl and carbon Preparing Cd / Cu-VP-CNT immobilized on the nanotubes;
(B) adding and mixing the prepared Cd / Cu-VP-CNT and the solid electrolyte to water so that the weight ratio of Cd / Cu-VP-CNT: solid electrolyte is 10:20 to 100
(C) immersing the mixed Cd / Cu-VP-CNT and the solid electrolyte on the working electrode surface and drying; And
(D) a step of burying the aerobic bacteria culture medium further dried on the dried working electrode surface
Method for producing a working electrode catalyst for biological oxygen demand measurement sensor comprising a.
청구항 9에 있어서,
상기 단계 (A)의 감마선 조사 전에 질소를 물에 주입하는 단계를 추가로 포함하는 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 9,
Method of producing a working electrode catalyst for a biological oxygen demand sensor, characterized in that it further comprises the step of injecting nitrogen into the water before the gamma irradiation of step (A).
청구항 9에 있어서,
상기 단계 (A) 이전에 탄소나노튜브를 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함하는 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 9,
Method of producing a working electrode catalyst for biological oxygen demand sensor, characterized in that further comprising the step of purifying the carbon nanotubes with a mixture of sulfuric acid and nitric acid before step (A).
청구항 9에 있어서,
상기 단계 (A)의 감마선은 코발트-60 광원을 통해 조사하는 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 9,
The gamma ray of step (A) is a method of producing a working electrode catalyst for biological oxygen demand sensor, characterized in that irradiated through a cobalt-60 light source.
청구항 9에 있어서,
상기 단계 (A) 이후 단계 (B) 이전에,
상기 감마선 조사 후 원심분리하는 단계를 추가로 포함하는 것을 특징으로 하는 생물학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 9,
After step (A) and before step (B),
Method for producing a working electrode catalyst for biological oxygen demand measurement sensor, characterized in that it further comprises the step of centrifugation after the gamma irradiation.
KR1020110018653A 2010-03-02 2011-03-02 Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof KR101262245B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100018710 2010-03-02
KR1020100018710 2010-03-02

Publications (2)

Publication Number Publication Date
KR20110099661A KR20110099661A (en) 2011-09-08
KR101262245B1 true KR101262245B1 (en) 2013-05-09

Family

ID=44952454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110018653A KR101262245B1 (en) 2010-03-02 2011-03-02 Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof

Country Status (1)

Country Link
KR (1) KR101262245B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267082A (en) * 2014-10-14 2015-01-07 四川农业大学 Method for rapidly measuring BOD (biochemical oxygen demand) by collagenous fiber immobilized escherichia coli serving as biosensor recognition element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325424B1 (en) 1998-02-05 2002-09-19 이규성 Bio-sensor for measuring BOD
US20050247573A1 (en) 2004-03-23 2005-11-10 Hideaki Nakamura Biosensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325424B1 (en) 1998-02-05 2002-09-19 이규성 Bio-sensor for measuring BOD
US20050247573A1 (en) 2004-03-23 2005-11-10 Hideaki Nakamura Biosensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI-HOON YANG et al., Journal of Sensors, Vol. 2009, Article ID 916515 (2009).

Also Published As

Publication number Publication date
KR20110099661A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
Feier et al. Electrochemical detection and removal of pharmaceuticals in waste waters
Zhang et al. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability
US9046478B2 (en) Microbially-based sensors for environmental monitoring
CN102608181A (en) Method for detecting biochemical oxygen demand
US9423373B2 (en) Method for detecting biochemical oxygen demand
Verma et al. Development of biological oxygen demand biosensor for monitoring the fermentation industry effluent
Ivandini et al. Yeast-based biochemical oxygen demand sensors using Gold-modified boron-doped diamond electrodes
Anam et al. Comparing natural and artificially designed bacterial consortia as biosensing elements for rapid non-specific detection of organic pollutant through microbial fuel cell
Qi et al. Integrated Determination of Chemical Oxygen Demand and Biochemical Oxygen Demand.
Lin et al. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water
CN104330455A (en) Method and device of on-line monitoring nitrate nitrogen through microbial electrolytic tank technology
González-Pabón et al. Sorting the main bottlenecks to use paper-based microbial fuel cells as convenient and practical analytical devices for environmental toxicity testing
Chee et al. Development of highly sensitive BOD sensor and its evaluation using preozonation
US8569045B2 (en) Water toxicity detecting apparatus and method using sulfur particles
Han et al. Switchover of electrotrophic and heterotrophic respirations enables the biomonitoring of low concentration of BOD in oxygen-rich environment
KR101262245B1 (en) Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof
KR100945666B1 (en) A toxic monitoring system by using thiosulfate and the method of thereof
CN109987719B (en) Device and method for separating electrogenesis bacteria
Okochi et al. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant
CN113075280B (en) Biochemical oxygen demand BOD and toxicity integrated detection method
Lee et al. Amperometric tyrosinase biosensor based on carbon nanotube–titania–nafion composite film
JP4798502B2 (en) BOD measurement method
Chee Biosensor for the determination of biochemical oxygen demand in rivers
Salunke et al. The sources of heavy metals, its impact on human life and the progress in electrochemical sensor
Górski et al. Low BOD determination methods: The state-of-the-art

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee