KR100325424B1 - Bio-sensor for measuring BOD - Google Patents

Bio-sensor for measuring BOD Download PDF

Info

Publication number
KR100325424B1
KR100325424B1 KR1019980003301A KR19980003301A KR100325424B1 KR 100325424 B1 KR100325424 B1 KR 100325424B1 KR 1019980003301 A KR1019980003301 A KR 1019980003301A KR 19980003301 A KR19980003301 A KR 19980003301A KR 100325424 B1 KR100325424 B1 KR 100325424B1
Authority
KR
South Korea
Prior art keywords
bod
biosensor
microorganisms
sample
measuring
Prior art date
Application number
KR1019980003301A
Other languages
Korean (ko)
Other versions
KR19990069205A (en
Inventor
이규성
Original Assignee
이규성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이규성 filed Critical 이규성
Priority to KR1019980003301A priority Critical patent/KR100325424B1/en
Publication of KR19990069205A publication Critical patent/KR19990069205A/en
Application granted granted Critical
Publication of KR100325424B1 publication Critical patent/KR100325424B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/40Pseudomonas putida

Abstract

PURPOSE: A biosensor is provided to measure a BOD(Biochemical Oxygen Demand) of a wide rage of concentration in a short period time. CONSTITUTION: The changed amount of dissolved oxygen is measured by using a biosensor using pseudomonas putida having a high dissolving ability. Thereby, the preprocessing of a sample is unnecessary, obstacle materials do not influence and the BOD is measured in a short period time regardless of the concentration of the sample.

Description

생물화학적산소요구량 측정용 바이오센서 {Bio-sensor for measuring BOD}Biosensor for measuring biochemical oxygen demand {Bio-sensor for measuring BOD}

본 발명은 하천수, 생활·산업계의 오수, 분뇨, 하수, 폐수 등에 함유된 유기물질을 측정하는데 이용되는 생물화학적산소요구량(이하, BOD: Biochemical Oxygen Demand라 함)을 측정하는 바이오센서 및 이를 이용한 BOD 측정방법에 관한 것이다.The present invention provides a biosensor for measuring the biochemical oxygen demand (hereinafter referred to as BOD: Biochemical Oxygen Demand) used for measuring organic substances contained in river water, sewage, manure, sewage, and waste water of the living and industrial fields, and BOD using the same. It relates to a measuring method.

현재, 사용되고 있는 환경부 수질오염 공정시험법에 공시되어 있는 BOD측정법은 시료를 20℃에서 5일간 저장하여 두었을 때 시료중의 호기성 미생물의 증식과 호흡작용에 의하여 소비되는 용존산소의 양으로부터 BOD값을 측정하는 방법이다.Currently, the BOD measurement method disclosed in the Ministry of Environment's Water Pollution Process Test is used to determine the BOD value from the amount of dissolved oxygen consumed by proliferation and respiration of aerobic microorganisms in the sample when the sample is stored at 20 ° C for 5 days. How to measure.

일반적으로 BOD측정은 시료의 예상 BOD값으로 단계적 희석배율을 정하여 3∼5종의 희석검액 두 개를 1조로 하여 조제하는 희석법이 사용된다. 처음의 희석 시료자체의 용존산소량과 20℃에서 5일간 배양할 때 소비된 용존산소의 양은 용존산소 측정법에 따라 측정한다. 이 때, 5일간 저장한 후의 산소소비량이 40∼70% 범위 안의 희석검액인 것을 선택하여 처음의 용존산소량과 5일간 배양한 후에 남아있는 용존산소량의 차로부터 BOD를 계산한다. 다만, 시료를 식종하여 BOD를 측정할 때는 실험에 사용한 식종액을 희석수로 단계적으로 희석하여 실험하고, 배양후의 산소소비량이 40∼70% 범위 안에 있는 식종 희석수를 선택하여 배양전후의 용존산소량과 식종액 함유율을 구하고 시료의 BOD값을 보정한다.In general, the BOD measurement is a dilution method in which two to three dilution test solutions are prepared by setting the dilution ratio stepwise to the expected BOD value of the sample. The amount of dissolved oxygen in the first dilution sample itself and the amount of dissolved oxygen consumed when incubated at 20 ° C. for 5 days are measured according to the dissolved oxygen measurement method. At this time, the oxygen consumption after 5 days of storage is selected from the dilution test solution in the range of 40 to 70%, and the BOD is calculated from the difference between the initial dissolved oxygen amount and the amount of dissolved oxygen remaining after 5 days of culture. However, when measuring the BOD by seeding the sample, experiment by diluting the seedling solution used in the experiment with dilution water step by step, and selecting the dilution water of the seed after the culture of oxygen consumption in the range of 40 to 70%. Determine the seedling solution content and correct the BOD value of the sample.

시료를 희석할 때에는, 시료에 독성물질이 함유되어 있거나 구리 또는 납, 아연 등의 금속이온이 함유된 시료는 호기성미생물의 증식에 영향을 주어 정상적인 BOD값을 나타내지 않게 되므로, 시험적정여부를 검토하여야 한다.When diluting a sample, a sample containing toxic substances or containing metal ions such as copper, lead, or zinc does not affect the growth of aerobic microorganisms and does not show normal BOD values. do.

또한, 시료중의 용존산소가 소비되어 산소의 양보다 적을 때에는 시료를 희석수로 적당히 희석하여 사용하여야 하며, 공장폐수나 혐기성발효의 상태에 있는 시료는 호기성산화에 필요한 미생물을 식종하여야 한다. 또한, 시료가 산성이거나 알칼리성일 때, 잔류염소등의 산화성물질이 함유되어 있을 때, 용존산소가 과포화 상태일 때는 전처리를 하여야 한다.In addition, when the dissolved oxygen in the sample is less than the amount of oxygen, the sample should be diluted with dilution water appropriately and the sample in plant wastewater or anaerobic fermentation should be seeded with microorganisms necessary for aerobic oxidation. In addition, pretreatment should be performed when the sample is acidic or alkaline, when oxidizing substances such as residual chlorine are contained, and when dissolved oxygen is supersaturated.

이처럼 BOD측정을 위하여는, 전반적인 시료검토 및 희석조제, 전처리, 희석수검토와 시험적정여부 등의 시험전반에 대한 검토와 동시에 용존산소의 농도를 결정하며, 적정하는 등의 복잡한 공정을 갖고 있어서 BOD를 측정하려면 고도의 숙련된 기술이 필요하다.In order to measure BOD, BOD has a complex process such as overall sample review, dilution aid, pretreatment, dilution water review, test eligibility, and determination of dissolved oxygen concentration and titration. The measurement requires highly skilled skills.

이에, 이러한 결점들을 극복하기 위하여 BOD측정용 바이오센서가 개발되었으며, 이는 상기 측정방법과 비교하면 아주 간편하게 BOD를 측정할 수 있는 장점이 있다. 일반적인 BOD측정용 바이오센서의 구조는 도1에 제시되는 바와 같이 미생물이 고정화된 산소전극(10)과, 미생물에서 발생된 전자의 이동을 용이하게 하기 위한 전위발생기(20)와, 전류측정기(30)를 구비하여서 미생물과 측정될 용액 사이에서 발생하는 생물의 환원활성도를 전기적인 신호로 보내어 이로부터 생물화학적 산소요구량을 301ns 정도에서 측정하도록 구성되어 있다. 도면중 미설명부호 40은 전기적 신호로부터 BOD를 산출하는 CPU를 나타낸 것이고, 50은 측정된 BOD를 기록하기 위한 레코드수단을, 60은 측정된 BOD를 표시하기 위한 디스플레이를 각각 나타낸 것이다.Accordingly, in order to overcome these drawbacks, a biosensor for measuring BOD has been developed, which has the advantage of being able to measure BOD very simply compared to the measuring method. As shown in FIG. 1, a general BOD measurement biosensor has an oxygen electrode 10 to which microorganisms are immobilized, a potential generator 20 to facilitate movement of electrons generated from a microorganism, and a current meter 30. ), It is configured to send the reduction activity of the organisms generated between the microorganism and the solution to be measured as an electrical signal and to measure the biochemical oxygen demand at about 301 ns. In the figure, reference numeral 40 denotes a CPU for calculating a BOD from an electrical signal, 50 denotes a recording means for recording the measured BOD, and 60 denotes a display for displaying the measured BOD.

도 2는 BOD측정용 바이오센서를 이용하여 BOD를 측정하는 과정을 설명하기 위한 것으로, 항온수조에서 유기물이 들어 있는 액체시료가 바이오센서를 통과하게 하면 바이오센서에 고정된 미생물이 유기물을 섭취하면서 호흡활성으로 액체시료중의 용존산소를 소모하게 되고, 그 결과로 인한 시료중의 용존산소 감소량과 유기물질량을 산소전극에서 전류값으로 나타내게 되며, 이 전류값을 전류측정기로 측정하고 CPU에서 BOD로 연산하여 기록하고 디스플레이하게 된다.2 is for explaining the process of measuring the BOD using a biosensor for measuring BOD, when a liquid sample containing organics in a constant temperature water tank passes through the biosensor, the microorganisms fixed on the biosensor inhaled while ingesting the organics By activating, the dissolved oxygen in the liquid sample is consumed. As a result, the amount of dissolved oxygen and the amount of organic matter in the sample are represented by the current value at the oxygen electrode. The current value is measured by a current meter and calculated by the CPU as BOD. To record and display.

BOD측정용 바이오센서의 요부는 전극으로, 도 3에 예시되는 바와 같이 음극,양극 및 전해질로 되는 산소전극의 하부 표면에 미생물막이 부착된 미생물 전극이다. 통상적으로 산소전극의 음극은 납(Pb)이 주로 사용되고, 양극은 백금(Pt)이 주로 사용되며, 전해질은 수산화칼륨(KOH)이 주로 사용된다. 또한 미생물막은 일반적으로 다공성막 내부에 미생물이 수용된 구조를 갖는다.The main part of the biosensor for BOD measurement is an electrode, as illustrated in FIG. 3, a microbial electrode having a microbial film attached to a lower surface of an oxygen electrode including a cathode, an anode, and an electrolyte. Usually, lead (Pb) is mainly used as a cathode of an oxygen electrode, platinum (Pt) is used as a positive electrode, and potassium hydroxide (KOH) is used as an electrolyte. In addition, the microbial membrane generally has a structure in which microorganisms are accommodated inside the porous membrane.

종래의 BOD측정용 바이오센서는 미생물로서 효모(Trichosp oron cutaneum)를 사용하는 것이 알려져 있으나, 이러한 BOD 센서는 공장폐수와같은 고농도 BOD의 측정은 가능하나, 하천수나 호소수, 지하수와 같이 5mg/ℓ 이하의 저농도의 BOD는 측정할 수 없는 단점이 있다. 이는 BOD센서에 고정되어 있는 미생물이 난분해성물질을 측정시간내에 호흡활성을 할 수 없기 때문이다.Conventional BOD measurement biosensors are known to use yeast ( trichosp oron cutaneum ) as microorganisms, but these BOD sensors can measure high concentrations of BOD such as factory wastewater, but less than 5mg / l such as river water, lake water, and groundwater. Low concentrations of BOD can not be measured. This is because the microorganisms fixed in the BOD sensor cannot respiratory activity within the measurement time.

또한, 미생물로서슈도모나스(Pseudomonas)속 혼합균 및 잡균을 사용하는 BOD측정용 바이오센서도 알려져 있으나, 공지의 이러한 BOD 센서는 측정 용액중에 중금속 이온과 염소이온이 존재하는 경우 정량분석이 어렵고 측정시간도 30분 정도로 느리다는 단점이 있는 것이었다.Further, as the microorganism Pseudomonas (Pseudomonas) in a mixed bacteria and although biosensors for BOD measurement using the bacteria are also known, such a BOD sensor noted, it is difficult to quantitatively analyze if the heavy metal ion and chloride ion present in the measurement solution is measured time The disadvantage is that it is as slow as 30 minutes.

따라서 본 발명은 이러한 결점들을 극복하기 위하여 하천·지하수 등과 같은 저농도부터 분뇨·공장 폐수와 같은 고농도까지의 다양한 농도에서 BOD측정이 가능하며, 단시간내에 BOD를 측정할 수 있는 바이오센서를 제공하는 것을 과제로 한다.Therefore, the present invention is capable of measuring BOD at various concentrations from low concentrations such as rivers and groundwater to high concentrations such as manure and factory wastewater to overcome these drawbacks, and to provide a biosensor capable of measuring BODs in a short time. Shall be.

상기한 과제를 해결하기 위한 연구에서 종래의슈도모나스(Pseudomonas)속 혼합균 및 잡균을 사용하는 BOD측정용 바이오센서가 측정 용액중에 중금속 이온과 염소이온이 존재하는 경우 정량분석이 어려운 이유가 미생물이 혼합균이기 때문이며, 미생물이 혼합균이나 잡균이 아니고 슈도모나스속 미생물 중에서 특정한 단일 미생물, 즉슈도모나스 퓨티다단일균을 사용하면 중금속 이온과 염소이온의 영향없이 정량분석이 가능하게 된다는 사실을 알게 되어 본 발명을 완성하게 된 것이다.The blends of the biosensor for BOD measurement using conventional Pseudomonas (Pseudomonas) in a mixed fungus and bacteria in the study for solving the above problems of heavy metal ions and chloride ions present in the measurement solution was the reason why the quantitative analysis difficult microorganism This is because the microorganism is a mixed microorganism and not a mixed or miscellaneous microorganism, and a specific single microorganism among the Pseudomonas genus, namely Pseudomonas putida single bacterium, enables the quantitative analysis without the influence of heavy metal ions and chlorine ions. It is complete.

도 1은 일반적인 생물화학적산소요구량 측정용 바이오센서의 구조를 개략적으로 나타낸 도면,1 is a view schematically showing the structure of a biosensor for measuring a general biochemical oxygen demand,

도 2는 생물화학적산소요구량 측정용 바이오센서로 생물화학적산소요구량 측정하는 한 형태를 개략적으로 나타낸 도면,FIG. 2 is a view schematically showing one form of measuring biochemical oxygen demand with a biosensor for measuring biochemical oxygen demand;

도 3은 도 1의 바이오센서의 요부인 미생물이 고착된 산소전극의 구조를 나타낸 도면,3 is a view showing the structure of the oxygen electrode is a microorganism fixed to the main part of the biosensor of FIG.

도 4는 본 발명에 따르는 생물화학적산소요구량 측정용 바이오센서를 사용하여 BOD를 측정한 실험(실시예)에서 BOD와 전류값의 상관성을 나타내는 그래프이다.4 is a graph showing the correlation between the BOD and the current value in the experiment (Example) measured the BOD using a biosensor for measuring biochemical oxygen demand according to the present invention.

그러므로 본 발명에 의하면 미생물이 고정화된 산소전극(10)과, 미생물에서 발생된 전자의 이동을 용이하게 하기 위한 전위발생기(20)와, 전류측정기(30)를 구비하여서 미생물과 측정될 용액사이에서 발생하는 생물의 환원활성도를 전기적인 신호로 보내어 이로부터 생물화학적 산소요구량을 측정하는 바이오센서에 있어서,Therefore, according to the present invention, the oxygen electrode 10 to which the microorganisms are immobilized, the potential generator 20 for facilitating the movement of electrons generated in the microorganism, and the current measuring device 30 are provided to provide a solution between the microbe and the solution to be measured. In the biosensor which sends the reducing activity of the generated organisms as an electrical signal and measures the biochemical oxygen demand therefrom,

상기 미생물이슈도모나스 퓨티다(Pseudomonas Putida)인 것을 특징으로 하는 BOD측정용 바이오센서가 제공된다. Provided is a biosensor for measuring BOD, wherein the microorganism is Pseudomonas Putida .

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 BOD측정용 바이오센서는 산소전극에 고정되는 미생물로서 슈도모나스 퓨티다를 사용하는 것에 주된 특징이 있다.The biosensor for measuring BOD of the present invention has a main feature in using Pseudomonas putida as a microorganism fixed to an oxygen electrode.

생물학적인 방법에 의한 수처리는 물속에 존재하는 유기물질을 미생물에 반응시켜 무기물로 전환시키는 것이다. 이 과정에서 유기물과 미생물세포의 접촉에 의한 흡착으로 미생물 효소에 의해 영양물질인 유기물이 무기물로 분해된다. 따라서, 단시간에 유기물질을 무기물로 빨리 전환시키기 위해서는 미생물의 생식과 성장속도를 빠르게 하여야 하며, 본 발명의 바이오센서는 이러한 특성의 미생물을 토양이나 폐수처리장 등에서 단리(Screening)한 활성오니를 특수배양해 난분해성 유기물질등을 고분해 할 수 있는 능력을 갖도록 해서 이들을 센서의 소자로 이용한다.Biological treatment of water is the conversion of organic matter from water into inorganic matter by reaction with microorganisms. In this process, nutrients are decomposed into inorganic substances by microbial enzymes by adsorption by contact between organic substances and microbial cells. Therefore, in order to quickly convert organic substances into inorganic substances in a short time, the reproduction and growth rate of microorganisms should be increased, and the biosensor of the present invention specially cultures activated sludge screening microorganisms having such characteristics in soil or wastewater treatment plants. It has the ability to decompose highly decomposable organic substances and uses them as sensor elements.

본 발명에서 제시하는슈도모나스 퓨티다는 난분해성물질에 의해 측정시간내에 호흡활성이 상승하여 저농도 BOD의 지하수부터 고농도 BOD의 분뇨, 난분해성 물질을 함유하는 폐수 등에 이르기 까지 광범위한 농도의 BOD 측정을 가능하게 한다. Pseudomonas putida presented in the present invention is retarded activity is increased by the hardly decomposable substance within the measurement time, it is possible to measure the BOD of a wide range of concentrations from the groundwater of low concentration BOD to the manure of high concentration BOD, wastewater containing hardly decomposable substances, etc. do.

슈도모나스 퓨티다를 이용한 본 발명의 바이오 센서는 1.5 내지 12분이면 BOD측정이 가능해 기존의 바이오센서 보다 월등한데, 그 이유는 미생물이 혼합균이나 잡균이 아니고 단일균으로 성장곡선이 정상기와 증식은 내생호흡단계에서 유기물을 분해하기 때문이다. BOD 측정시간은 센서표면에서 용존산소를 측정하기 위해 미생물과 산소전극의 결합시키는 방법에 따라 단축시킬 수 있으며, 저산소조건일 경우도 반응이 촉진되어 전기화학적으로나 광화학적인 신호에 의해서 미생물 농도를 증가시킬 수 있다.The biosensor of the present invention using Pseudomonas putida can measure BOD in 1.5 to 12 minutes, which is superior to conventional biosensors because the microorganisms are not mixed or mixed bacteria, but the growth curve is normal and the proliferation is endogenous. This is because it breaks down organic matter in the respiratory stage. The BOD measurement time can be shortened by the method of combining microorganisms and oxygen electrodes to measure dissolved oxygen on the surface of the sensor, and even under low oxygen conditions, the reaction is accelerated to increase the concentration of microorganisms by electrochemical or photochemical signals. Can be.

슈도모나스 퓨티다의 수명은 9-15일 정도이며, BOD측정 조건의 pH 7.4에서 25-35℃의 수온으로 BOD 측정범위는 1-950mg/L이다. Pseudomonas putida has a lifespan of about 9-15 days and a BOD measurement range of 1-950 mg / L with a water temperature of 25-35 ° C. at pH 7.4 under BOD measurement conditions.

본 센서는 중금속 이온과 염소이온의 영향없이 정량분석이 가능한데, 그 이유는 미생물 조직과 활동에 영향을 받지 않을 정도로슈도모나스 퓨티다가 강해 내성이 크기 때문이다.The sensor can be quantitatively analyzed without the influence of heavy metal ions and chlorine ions because Pseudomonas putida is so resistant that it is not affected by microbial tissue and activity.

또한 본 발명에 따라 BOD를 측정할 때에는 시료의 온도가 20±1℃가 되게 유지하며, 시료의 pH가 중성이 아닐 경우에는 완충액을 사용하여 시료를 중성으로 만든 후 센서를 통과시켜 BOD를 측정토록 하는 것이 바람직하다.In addition, when measuring the BOD according to the present invention, the temperature of the sample is maintained at 20 ± 1 ℃, if the pH of the sample is not neutral, the sample is made neutral with a buffer solution and then passed through the sensor to measure the BOD It is desirable to.

이상 설명한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명은 하기 실시예로 한정되는 것은 아님을 이해하여야 할 것이다.Features and other advantages of the present invention as described above will become more apparent from the following examples. However, it should be understood that the present invention is not limited to the following examples.

〈실시예〉<Example>

난분해성 유기물을 함유한 인공합성폐수(후민산 25%, 리그닌 14%, 탄난산 26%, 아라비아고무 28%, 계면활성제 5.5%, 유기물 1.5%)을 사용해서 유기물질의 분해능력이 우수한바실루스(Bacillus)속,슈도모나스(Pseudomonas)속,트리코스포론(Trichosporon)속,플라보박테리움(Flavobacterium)속의 미생물들을 각각 인공합성 폐수실험을 하여 고분해성활성오니를 스크리닝하였다. 그 결과 상기한 미생물들중슈도모나스 퓨티다(Pseudomonas Putida)가 가장 호흡활성이 강한 것으로 나타났다. Bacillus is excellent in degrading organic substances using artificial synthetic wastewater containing 25% humic acid, 14% lignin, 26% tannic acid, 28% gum arabic, 5.5% surfactant, and 1.5% organic matter. Bacillus) were screened genus Pseudomonas (Pseudomonas) in, tri course isophorone (Trichosporon) genus Flavobacterium (Flavobacterium) decomposable activated sludge and respectively to the synthetic wastewater in the test of microorganisms. As a result, Pseudomonas Putida showed the strongest respiratory activity among the above-mentioned microorganisms.

도 3과 같이 산소전극 표면에슈도모나스 퓨티다(Pseudomonas Putida)를 고정화된 도 1의 바이오센서를 도 2와 같이 세팅하였다.As shown in FIG. 3, the biosensor of FIG. 1 having Pseudomonas Putida immobilized on the surface of the oxygen electrode was set as shown in FIG. 2.

중금속영향을 조사하기 위하여, 난분해성 유기물이 함유된 인공폐수(후민산 25%, 리그닌 14%, 탄난산 26%, 아라비아고무 28%, 계면활성제 5.5%, 유기물 1.5%)에 BOD 1㎎/ℓ당 Cu2+, Zn2+, Fe3+, Cr3+를 1㎎/ℓ씩 주입한 후 BOD를 측정하였다.To investigate the effects of heavy metals, BOD 1mg / ℓ in artificial wastewater containing hardly degradable organic matter (25% humic acid, 14% lignin, 26% tannic acid, 28% gum arabic, 5.5% surfactant, 1.5% organic matter) After injecting sugar Cu 2+ , Zn 2+ , Fe 3+ , Cr 3+ at 1 mg / l, BOD was measured.

이 후, 미생물 분해율을 조사한 바, Cu2+, Zn2+, Fe3+가 함유된 경우에는 중금속이 함유되지 않았을 경우와 동일한 수치의 BOD가 측정되었으며, Cr3+가 함유된 경우에는 중금속이 함유되지 않았을 경우보다 약 0.12% 낮은 BOD의 값이 측정되었으나, 이 수치는 유기물질 농도측정에는 큰 영향이 없는 것으로 밝혀졌다.Subsequently, when the microbial decomposition rate was examined, BOD of Cu 2+ , Zn 2+ and Fe 3+ was measured to have the same value as that of no heavy metal, and that of Cr 3+ did not contain heavy metal. A BOD value of about 0.12% lower was measured, but this value was found to have no significant effect on the measurement of organic concentration.

이처럼 인공합성폐수는 고성능 우점균 미생물의 호흡활성을 저해하지 않으며, 중금속, 난분해성 계면활성제 등이 하천수 등에 함유되어도 측정이 가능하고, 전처리 등이 없이도 측정할 수가 있음을 알 수 있다.As such, artificial synthetic wastewater does not inhibit the respiratory activity of high-performance dominant microorganisms, and it can be measured even if the heavy metal, the hardly degradable surfactant is contained in the river water, etc., and without the pretreatment.

또한, 인공합성폐수에 대한 BOD별 전류값의 상관성을 도 3에 나타내었다. 기존 BOD5법과 바이오센서법으로 측정한 값을 비교한 바, 98∼110%로 비슷하게 나타남을 알 수 있다.In addition, the correlation of the current value for each BOD for the synthetic wastewater is shown in FIG. Comparing the values measured by the conventional BOD 5 method and the biosensor method, it can be seen that they are similar to 98 ~ 110%.

본 발명의 바이오센서를 이용하므로써, 단시간 내에 BOD를 측정할 수 있으며, 측정시 시료의 전처리가 필요 없고, 방해물질의 영향도 받지 않으며, 고농도에서 저농도까지의 다양한 농도측정이 가능하여 실제 정부의 수계관리와 수질오염방지 대책에 이용할 수 있다.By using the biosensor of the present invention, it is possible to measure the BOD within a short time, do not need to pre-treat the sample at the time of measurement, without the influence of interference substances, and can measure a variety of concentrations from high concentration to low concentration in actual government water system It can be used for management and water pollution prevention measures.

Claims (1)

미생물이 고정화된 산소전극과, 미생물에서 발생된 전자의 이동을 용이하게 하기 위한 전위발생기와, 전류측정기를 구비하여서 미생물과 측정될 용액사이에서 발생하는 생물의 환원활성도를 전기적인 신호로 보내어 이로부터 생물화학적 산소요구량을 측정하는 공지의 바이오센서에 있어서,It is equipped with an oxygen electrode to which microorganisms are immobilized, an electric potential generator for facilitating the movement of electrons generated in microorganisms, and an electric current meter, which transmits the reduction activity of the organisms generated between the microorganisms and the solution to be measured as an electrical signal. In a known biosensor for measuring biochemical oxygen demand, 상기 미생물이슈도모나스 퓨티다(Pseudomonas Putida)인 것을 특징으로 하는 생물화학적산소요구량 측정용 바이오센서.The biosensor for measuring biochemical oxygen demand, characterized in that the microorganism is Pseudomonas Putida .
KR1019980003301A 1998-02-05 1998-02-05 Bio-sensor for measuring BOD KR100325424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980003301A KR100325424B1 (en) 1998-02-05 1998-02-05 Bio-sensor for measuring BOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980003301A KR100325424B1 (en) 1998-02-05 1998-02-05 Bio-sensor for measuring BOD

Publications (2)

Publication Number Publication Date
KR19990069205A KR19990069205A (en) 1999-09-06
KR100325424B1 true KR100325424B1 (en) 2002-09-19

Family

ID=37478213

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980003301A KR100325424B1 (en) 1998-02-05 1998-02-05 Bio-sensor for measuring BOD

Country Status (1)

Country Link
KR (1) KR100325424B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464668B1 (en) * 2002-03-21 2005-01-03 한국해양연구원 Micro oxygen detector
KR101262245B1 (en) 2010-03-02 2013-05-09 주식회사 과학기술분석센타 Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337453A (en) * 1991-05-13 1992-11-25 Mizuo Iki Method for quickly measuring bod and microorganism electrode to be used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337453A (en) * 1991-05-13 1992-11-25 Mizuo Iki Method for quickly measuring bod and microorganism electrode to be used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464668B1 (en) * 2002-03-21 2005-01-03 한국해양연구원 Micro oxygen detector
KR101262245B1 (en) 2010-03-02 2013-05-09 주식회사 과학기술분석센타 Catalyst Using Immobilization of Microorganism of Working Electrode for BOD Measuring Sensor and Manufacturing Process thereof

Also Published As

Publication number Publication date
KR19990069205A (en) 1999-09-06

Similar Documents

Publication Publication Date Title
Liu et al. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement
Chee et al. Optical fiber biosensor for the determination of low biochemical oxygen demand
Pankhania Hydrogen metabolism in sulphate‐reducing bacteria and its role in anaerobic corrosion
Kharkova et al. A mediator microbial biosensor for assaying general toxicity
Commault et al. Geobacter-dominated biofilms used as amperometric BOD sensors
Zhao et al. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes
CN113504280B (en) Bioelectrochemical method for real-time in-situ detection of nitrite in sewage
Lin et al. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water
US20140326617A1 (en) Method for detecting biochemical oxygen demand
Han et al. Switchover of electrotrophic and heterotrophic respirations enables the biomonitoring of low concentration of BOD in oxygen-rich environment
Sun et al. Enhancing nitrogen removal efficiency and anammox metabolism in microbial electrolysis cell coupled anammox through different voltage application
Lin et al. Highly selective and sensitive nitrite biocathode biosensor prepared by polarity inversion method coupled with selective removal of interfering electroactive bacteria
Morris et al. Ferricyanide-mediated microbial reactions for environmental monitoring
US4789434A (en) Method and apparatus for measuring corrosion current induced by microbiological activities
Chen et al. Production of bioelectricity may play an important role for the survival of Xanthomonas campestris pv. campestris (Xcc) under anaerobic conditions
Block et al. Ecotoxicity testing using aquatic bacteria
Kim et al. Microbial fuel cell-type biochemical oxygen demand sensor
KR100325424B1 (en) Bio-sensor for measuring BOD
CN111443116A (en) Toxicity evaluation method based on microbial fuel cell
Hosetti et al. Catalase activity in wastewater
Wang et al. Direct toxicity assessment of copper (II) ions to activated sludge process using a p-benzoquinone-mediated amperometric biosensor
Quek et al. Bio-electrochemical sensor for fast analysis of assimilable organic carbon in seawater
Hrenovic et al. Use of prokaryotic and eukaryotic biotests to assess toxicity of wastewater from pharmaceutical sources
CN111855947A (en) Toxicity detection method based on BOD difference value before and after degradation of activated sludge
Kale et al. Rapid determination of biochemical oxygen demand

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee