KR101260412B1 - Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof - Google Patents

Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof Download PDF

Info

Publication number
KR101260412B1
KR101260412B1 KR1020110031201A KR20110031201A KR101260412B1 KR 101260412 B1 KR101260412 B1 KR 101260412B1 KR 1020110031201 A KR1020110031201 A KR 1020110031201A KR 20110031201 A KR20110031201 A KR 20110031201A KR 101260412 B1 KR101260412 B1 KR 101260412B1
Authority
KR
South Korea
Prior art keywords
weight
concrete
powder
friendly low
blast furnace
Prior art date
Application number
KR1020110031201A
Other languages
Korean (ko)
Other versions
KR20120113476A (en
Inventor
김경민
박형철
최용민
서신석
조성현
배준영
김종백
Original Assignee
한일시멘트 (주)
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한일시멘트 (주), (주)대우건설 filed Critical 한일시멘트 (주)
Priority to KR1020110031201A priority Critical patent/KR101260412B1/en
Publication of KR20120113476A publication Critical patent/KR20120113476A/en
Application granted granted Critical
Publication of KR101260412B1 publication Critical patent/KR101260412B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 매트기초, 합벽, 댐, 교량의 교각과 앵커리지, 댐 등 부재가 큰 콘크리트 구조물에 있어서 수화열과 CO2를 저감할 수 있는 친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법에 관한 것으로서, 상세하게는 산업부산물인 고로 슬래그 미분말과 플라이애시를 다량으로 사용하여 시멘트의 사용량을 큰 폭으로 감소시켜 CO2 배출과 수화열을 동시에 저감시키고, 고미분말의 고로슬래그와 무수석고 및 알칼리 활성화제를 사용하여 혼화재의 다량 사용에 따른 조기강도 저하를 크게 개선시킨 친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법에 관한 것이다.The present invention is an eco-friendly low-heating mixed cement composition capable of reducing the heat of hydration and CO 2 in concrete structures with large members such as mat foundations, cladding walls, dams, bridge piers and anchorages, dams, and eco-friendly low-heat concretes using the same It relates to a manufacturing method, in detail, by using a large amount of blast furnace slag powder and fly ash, which are industrial by-products, to significantly reduce the amount of cement used, thereby simultaneously reducing CO 2 emission and hydration heat, and blast furnace slag and anhydrous gypsum of high fine powder. And it relates to an environment-friendly low-heating mixed cement composition that greatly improves the early strength reduction due to the use of a large amount of admixture using an alkali activator, and an environment-friendly low-heating concrete using the same and a method of manufacturing the same.

Description

친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법{ENVIRONMENTALLY FRIENDLY LOW HEAT MIX CEMENT COMPOSITION, ENVIRONMENTALLY FRIENDLY LOW HEAT CONCRETE USING THEREOF, AND MANUFACTURING METHOD THEREOF}Eco-friendly low-heat mixed cement composition, eco-friendly low-heat concrete and manufacturing method using the same

본 발명은 매트기초, 합벽, 댐, 교량의 교각과 앵커리지 등 부재가 큰 콘크리트 구조물에 있어서 수화열과 CO2를 저감할 수 있는 친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법에 관한 것으로서, 상세하게는 산업부산물인 고로 슬래그 미분말과 플라이애시를 다량으로 사용하여 시멘트의 사용량을 큰 폭으로 감소시켜 CO2 배출과 수화열을 동시에 저감시키고, 폐콘크리트 미분말을 일정량 활용함으로써 자원재활용 할 수 있고, 고미분말의 고로슬래그와 무수석고 및 알칼리 활성화제를 사용하여 혼화재의 다량 사용에 따른 조기강도 저하를 크게 개선시킨 친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법에 관한 것이다.The present invention is an eco-friendly low-heating mixed cement composition that can reduce the heat of hydration and CO 2 in concrete structures with large members such as mat foundations, plywood walls, dams, bridges and anchorage of bridges, and eco-friendly low-heating concrete using the same, and a manufacturing method thereof In detail, the use of blast furnace slag powder and fly ash, which are industrial by-products in large quantities, greatly reduces the amount of cement used, thereby simultaneously reducing CO 2 emission and hydration heat, and utilizing waste concrete fine powder to recycle resources. It is possible to use the high-temperature blast furnace slag and anhydrous gypsum and alkali activator to reduce the premature strength due to the use of a large amount of admixture, and to reduce the environmentally friendly low-heating mixed cement composition, and the low-heating concrete using the same It is about.

콘크리트는 제조가 쉽고, 경제적이며, 내구성이 우수하여 현재 가장 많이 사용되고 있는 건설재료이지만, 어떠한 형태이든 다양한 균열이 발생하기 쉬운 문제점을 가지고 있다. 특히, 건축구조물의 매트기초와 합벽, 댐, 교량의 교각과 앵커리지 등 부재가 큰 매스콘크리트의 경우 콘크리트의 수화열에 의한 균열이 발생하기 쉽다.Concrete is easy to manufacture, economical and durable, and is currently the most used construction material, but any form has a problem that is likely to cause various cracks. Particularly, in the case of mass concrete having large members such as mat foundations, building walls, dams, bridge piers and anchorages of building structures, cracks are likely to occur due to heat of hydration of concrete.

콘크리트는 시멘트와 물이 혼합되면 시멘트의 여러 성분과 물이 화학반응을 일으키는 수화반응이 일어난다. 콘크리트는 수화반응에 의해 응결과 경화과정을 걸쳐 강도를 발현하게된다. 또한 수화반응에 의해 수화열이 다량으로 발생하고, 이로 인해 콘크리트의 내부온도는 상승하게 된다.In concrete, when cement and water are mixed, a hydration reaction occurs in which various components of cement and water react chemically. Concrete develops strength through the curing and curing process by hydration. In addition, a large amount of heat of hydration is generated by the hydration reaction, thereby increasing the internal temperature of the concrete.

일반적인 콘크리트 구조물은 부재의 두께가 크지 않기 때문에 수화열이 외부로 빠져나가는 시간이 짧아 콘크리트 내부에 수화열이 잘 축적되지 않고, 축적되더라도 큰 문제가 되지 않는다.In general concrete structures, because the thickness of the member is not large, the time for the heat of hydration to escape to the outside is short, and the heat of hydration does not accumulate well in the concrete.

그러나 건축구조물의 매트기초와 합벽, 댐, 교량의 교각과 앵커리지 등과 같이 부재가 큰 매스콘크리트는 부재가 커 발생된 콘크리트 수화열이 외부로 방출되는 시간이 늦기 때문에 콘크리트 내부에 열이 축적된다. 이때 콘크리트 내부에 열이 축적되어 콘크리트 내ㅇ외부 온도차가 일반적으로 25℃이상 발생하면, 온도응력이 발생하고, 이 온도응력이 콘크리트가 견딜 수 있는 자체의 인장강도보다 커질 경우 콘크리트 수화열에 의한 균열이 발생한다.However, large concrete masses such as mat foundations, building walls, dams, bridge piers and anchorages of building structures accumulate heat inside the concrete due to the slow release time of the generated concrete hydration heat to the outside. At this time, if heat accumulates inside the concrete and the temperature difference between the inside and the outside of the concrete generally occurs more than 25 ° C, a temperature stress occurs, and when the temperature stress is larger than its tensile strength that the concrete can withstand, cracks due to the heat of hydration of the concrete Occurs.

이때 매스콘크리트에서 수화열에 의한 균열은 구속조건에 따라 내부구속과 외부구속에 의한 균열로 크게 나누어진다. 내부구속에 의한 균열은 수화열에 의해 콘크리트 내부의 온도는 높아지지만 외부 표면은 외기 온도에 의해 냉각되기 때문에 내부와 외부의 온도 상승량이 달라져 내ㅇ외부 온도차가 발생하게 되고, 이로 인해 인장응력이 발생하여 균열이 발생하게 된다. 내부구속에 의한 균열은 댐이나 교량기초와 같은 매스콘크리트에서 자주 발생한다. 외부구속에 의한 균열은 매스콘크리트와 기초(지반 또는 기타설 콘크리트)사이의 온도차에 의한 변형을 기초가 구속함으로써 발생하는 균열로 주로 매스콘크리트 온도 하강할 때 콘크리트의 체적은 수축하지만 기초에 구속된 매스콘크리트 하단부에 인장응력이 발생하여 균열이 발생한다. 이러한 외부구속에 의한 균열은 주로 박스형 구조물의 벽체와 옹벽 등에서 주로 발생한다. At this time, cracks due to heat of hydration in mass concrete are largely divided into cracks caused by internal binding and external binding depending on the constraint conditions. Due to the internal confinement, the temperature inside the concrete is increased by the heat of hydration, but the external surface is cooled by the outside temperature, so the internal and external temperature increase is different, which causes the internal and external temperature difference, which causes tensile stress. Cracks will occur. Cracks caused by internal confinement often occur in mass concrete such as dams and bridge foundations. Cracks caused by external confinement are cracks caused by restraining the deformation caused by the temperature difference between the mass concrete and the foundation (ground or other concrete). The volume of concrete contracts when the mass concrete temperature falls, but the mass constrained to the foundation Tensile stress occurs at the bottom of concrete, causing cracks. The crack caused by the external restraint mainly occurs in the walls and retaining walls of the box-shaped structure.

이와 같이 콘크리트 구조물에 발생하는 온도균열을 제어하기 위해 재료적 측면, 시공적 측면, 설계 구조적 측면에서 다양한 기술이 개발되어 왔다. 재료적 측면에서는 4종 저열 포틀랜드 시멘트, 고로슬래그 미분말과 플라이애시가 혼합된 저발열 혼합시멘트, 잠열재 등을 사용하는 방법이 있고, 시공측면에서는 프리쿨링, 파이프 쿨링, 분할 타설 등이 있고, 설계구조적 측면에서는 온도철근 배근, 균열유발 줄눈 설치 등이 있다. As such, various techniques have been developed in terms of material, construction, and design structural aspects to control temperature cracking occurring in concrete structures. In terms of materials, there are four types of low heat Portland cement, low heat mixing cement mixed with blast furnace slag powder and fly ash, latent heat material, etc., and in terms of construction, there are precooling, pipe cooling, and split casting. Structural aspects include temperature reinforcement and crack-induced joints.

상기의 콘크리트 온도균열 제어 기술 중 콘크리트의 수화열 저감하여 온도균열을 발생을 제어하는 재료적 측면이 주로 사용되고 있다. 그러나 4종 저열 포틀랜드 시멘트 또는 잠열재를 사용하는 방법은 가격이 비싸기 때문에 경제적 측면에서 활용도 떨어지고, 고로슬래그 미분말과 플라이애시가 혼합된 저발열 혼합시멘트는 수화열 저감 효과가 우수하지만 상대적으로 초기강도가 저하되는 문제점이 있다.Among the concrete temperature crack control technology, the material aspect of controlling the generation of temperature cracks by reducing the heat of hydration of concrete is mainly used. However, the method using four types of low heat Portland cement or latent heat materials is expensive, and thus it is not economically feasible, and the low heat mixed cement mixed with blast furnace slag powder and fly ash has excellent effect of reducing hydration heat, but relatively low initial strength. There is a problem.

또한, 에너지 절감, 환경보존, CO2 배출 저감 등을 기본으로 하는 녹색성장ㅇ저에너지는 국내뿐 아니라 세계적인 추세로 건설분야에서도 이를 실현하기 위한 노력이 진행되고 있다. 건설분야에서 콘크리트는 시멘트(시멘트 1㎏이 생산될 때 이산화탄소는 0.9㎏ 발생됨)를 사용량을 대폭 줄이고, 산업부산물인 고로슬래그 미분말, 플라이애시, 폐콘크리트 미분말 등을 대량 사용함으로써 CO2를 배출을 절감 및 자원재활용을 할 수 있는 친환경 저발열 혼합시멘트 및 콘크리트 개발이 요구되고 있다.In addition, green growth and low energy based on energy saving, environmental preservation, and CO 2 emission reduction are being made in the construction field as well as domestic. In the construction field, concrete significantly reduces the use of cement (1 kg of cement is produced, 0.9 kg of carbon dioxide), and reduces CO 2 emissions by using blast furnace slag fine powder, fly ash, and waste concrete fine powder, which are industrial by-products. And the development of eco-friendly low heat mixed cement and concrete that can be recycled resources is required.

본 발명은 상기와 같은 요구에 부응하기 위한 것으로, 산업부산물인 고로슬래그 미분말과 플라이애시를 대량으로 재활용하여 콘크리트 수화열 저감으로 인한 온도균열을 방지하고, 고분말의 고로슬래그와 무수석고 및 알칼리 활성화제를 사용하여 기존 저발열 혼합시멘트와 비교하여 조기강도 발현이 우수한 친환경 저발열 혼합시멘트 조성물과, 이를 사용한 친환경 저발열 콘크리트 및 이의 제조방법을 제공하는데 그 목적이 있다. The present invention is to meet the above requirements, by recycling a large amount of blast furnace slag powder and fly ash, which is an industrial by-product to prevent temperature cracking due to the reduction of heat of hydration of concrete, blast furnace slag and anhydrous gypsum and alkali activator of high powder The purpose of the present invention is to provide an eco-friendly low-heating mixed cement composition having excellent early strength expression compared to the existing low-heating mixed cement, and an eco-friendly low-heating concrete using the same and a method of manufacturing the same.

또한, 본 발명은 기존 저발열 콘크리트 대비 시멘트 사용량 감소로 CO2 배출을 감소시키고, 폐콘크리트 미분말을 재활용할 수 있도록 하는 친환경 저발열 혼합시멘트 조성물과, 이를 사용한 친환경 저발열 콘크리트 및 이의 제조 방법을 제공하는데 다른 목적이 있다.In addition, the present invention provides an eco-friendly low-heating mixed cement composition for reducing CO 2 emissions by reducing the amount of cement used compared to the existing low-heating concrete, and to recycle the waste concrete fine powder, eco-friendly low-heating concrete using the same and a method of manufacturing the same Has a different purpose.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,According to an aspect of the present invention,

친환경 저발열 혼합시멘트 조성물에 있어서, 고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고분말 고로 슬래그 3~6중량%와; 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 것을 특징으로 한다.In an environmentally friendly low heat generation cement composition, 20 to 55.9% by weight of blast furnace slag powder; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the solid powder blast furnace slag; 1 to 5% by weight of high powder anhydrous gypsum; And 0.1 to 1% by weight of an alkali activator.

여기에서, 상기 친환경 저발열 혼합시멘트 조성물은 상기 혼합시멘트 조성물 100중량부에 대하여 폐콘크리트 미분말을 3~10중량부를 더 혼합한다.Here, the eco-friendly low calorific mixed cement composition further mixes 3 to 10 parts by weight of fine waste powder based on 100 parts by weight of the mixed cement composition.

여기에서 또한, 상기 폐콘크리트 미분말은 폐콘크리트를 파쇄하여 순환골재로 만드는 과정에서 발생되는 미분말을 포집한 것으로 분말도 2,500~3,500㎠/g이다.Here, the waste concrete fine powder is to collect the fine powder generated in the process of crushing the waste concrete to form a circulating aggregate, the powder is also 2,500 ~ 3,500 ㎠ / g.

여기에서 또, 상기 고분말 고로 슬래그는 고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 4,500~5,500㎠/g이다.In addition, the high-powder blast furnace slag is pulverized blast furnace slag to increase the reactivity, the powder is also 4,500 ~ 5,500 cm 2 / g.

여기에서 또, 상기 고분말 무수석고는 무수석고를 미분쇄하여 반응성을 높인 것으로 분말도 8,000~12,000㎠/g이다.Here, the high powder anhydrous gypsum is finely crushed anhydrous gypsum to increase the reactivity, the powder is also 8,000 ~ 12,000 cm 2 / g.

여기에서 또, 상기 알칼리 활성화제는 K2SO4, KOH, NaOH, Ca(OH)2중 선택된 어느 하나가 적용된다.
Here, the alkali activator is any one selected from K 2 SO 4 , KOH, NaOH, Ca (OH) 2 is applied.

본 발명의 다른 특징은,According to another aspect of the present invention,

고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고분말 고로 슬래그 3~6중량%와; 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 친환경 저발열 혼합시멘트 조성물과, 골재와, 물과, 감수제 및 혼화제(AE제 : air-entraining agent)를 혼합하여 제조되는 것을 특징으로 한다.Blast furnace slag fine powder 20 to 55.9% by weight; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the solid powder blast furnace slag; 1 to 5% by weight of high powder anhydrous gypsum; And an environment-friendly low heat generation cement composition comprising 0.1-1% by weight of an alkali activator, aggregate, water, a water reducing agent, and a admixture (AE: air-entraining agent).

여기에서, 상기 친환경 저발열 혼합시멘트 조성물은 상기 혼합시멘트 조성물 100중량부에 대하여 폐콘크리트 미분말 3~10중량부를 더 혼합한다.
Here, the eco-friendly low calorific mixed cement composition further mixes 3 to 10 parts by weight of finely divided waste powder based on 100 parts by weight of the mixed cement composition.

본 발명의 또 다른 특징은,According to still another aspect of the present invention,

상기의 제조방법에 의해 제조된 친환경 저발열 콘크리트를 특징으로 한다.Characterized by environmentally friendly low-heat concrete produced by the above manufacturing method.

상기와 같이 구성되는 본 발명인 친환경 저발열 혼합시멘트 조성물과, 이를 이용한 친환경 저발열 콘크리트 및 이의 제조방법에 따르면, 시멘트 사용량을 대폭 저감하는 대신 산업부산물인 고로슬래그 미분말과 플라이애시를 대량 사용함으로써 콘크리트 수화열에 의한 온도균열 발생을 방지할 수 있을 뿐 아니라 고분말로 분쇄한 고로슬래그와 무수석고 및 알칼리 활성화제를 사용하여 기존 저발열 콘크리트의 문제점인 조기강도를 증진시킬 수 있다.According to the eco-friendly low-heating mixed cement composition of the present invention configured as described above, eco-friendly low-heating concrete using the same, and a method of manufacturing the same, instead of drastically reducing the amount of cement, industrial petroleum blast furnace slag powder and fly ash are used in large quantities. In addition to preventing the occurrence of temperature cracks by blast furnace slag crushed with high powder and anhydrous gypsum and alkali activator can be used to improve the early strength, which is a problem of the existing low-heat concrete.

또한, 본 발명에 따르면 기존 저발열 콘크리트와 비교하여 시멘트 사용량을 줄임으로써 CO2의 배출량을 감소시켰고, 폐콘크리트 미분말을 사용함으로써 자원을 재활용할 수 있다.In addition, according to the present invention, the amount of CO 2 is reduced by reducing the amount of cement used as compared with the existing low heat generation concrete, and resources can be recycled by using waste concrete fine powder.

도 1은 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 압축강도를 나타낸 그래프이다.
도 2는 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 재령 28일의 기준으로 한 압축강도 발현율을 나타낸 그래프이다.
도 3은 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 단열온도 상승량을 나타낸 그래프이다.
1 is a graph showing the compressive strength of environmentally friendly low heat concrete (Example 1, Example 2) and Comparative Examples 1, 2, 3 according to the present invention.
Figure 2 is a graph showing the expression of compressive strength based on the environmentally friendly low heat concrete (Example 1, Example 2) and Comparative Examples 1, 2, 3 of 28 days of the present invention.
Figure 3 is a graph showing the thermal insulation temperature rise of environmentally friendly low heat concrete (Example 1, Example 2) and Comparative Examples 1, 2, 3 according to the present invention.

이하, 본 발명에 따른 친환경 저발열 혼합시멘트 조성물을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings an environmentally friendly low heat generation cement composition according to the present invention.

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions of the present invention, and may be changed according to the intentions or customs of the user, the operator, and the like. Therefore, the definition should be based on the contents throughout this specification.

도 1은 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 압축강도를 나타낸 그래프이고, 도 2는 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 재령 28일의 기준으로 한 압축강도 발현율을 나타낸 그래프이며, 도 3은 본 발명에 따른 친환경 저발열 콘크리트(실시예1, 실시예2)와 비교예1, 2, 3의 단열온도 상승량을 나타낸 그래프이다.1 is a graph showing the compressive strength of environmentally friendly low heat concrete (Example 1, Example 2) and Comparative Examples 1, 2, 3 according to the present invention, Figure 2 is an eco-friendly low heat concrete (Example) 1, Example 2) and Comparative Examples 1, 2, and 3 are graphs showing the compressive strength expression rate based on the age of 28 days, Figure 3 is an environmentally friendly low heat concrete (Example 1, Example 2) according to the present invention And a graph showing the increase in heat insulation temperature of Comparative Examples 1, 2, and 3.

먼저, 본 발명에 따른 친환경 저발열 혼합시멘트 조성물은, 고로슬래그 미분말과, 플라이애시와, 보통 포틀랜드 시멘트와, 고분말 고로슬래그와, 고분말 석고와, 알칼리 활성제로 이루어진다.First, the environmentally friendly low heat generation cement composition according to the present invention is composed of blast furnace slag fine powder, fly ash, ordinary portland cement, high powder blast furnace slag, high powder gypsum, and alkali activator.

그리고, 본 발명에 따른 친환경 저발열 혼합시멘트 조성물은 혼합시멘트 조성물에 폐콘크리트 미분말을 더 혼합한다.In addition, the eco-friendly low calorific mixture cement composition according to the present invention further mixes the waste concrete fine powder to the mixed cement composition.

이때, 본 발명에 따른 친환경 저발열 혼합시멘트 조성물은 고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고분말 고로 슬래그 3~6중량%와; 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 것이 바람직하고, 혼합시멘트 조성물 100중량부에 대하여 폐콘크리트 미분말 3~10중량부를 더 혼합하는 것이 바람직하다.At this time, the environment-friendly low calorific mixture cement composition according to the present invention 20 to 55.9% by weight of blast furnace slag powder; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the solid powder blast furnace slag; 1 to 5% by weight of high powder anhydrous gypsum; And it is preferable that it consists of 0.1-1 weight% of alkali activators, and it is preferable to further mix 3-10 weight part of fine waste powders with respect to 100 weight part of mixed cement compositions.

그리고, 고로 슬래그 미분말은 20~55.9중량%를 혼합하는 데, 20중량% 미만으로 사용하게 되면 매스 콘크리트에서 수화열 저감 효과가 미미하고, 55.9중량%를 초과하게 되면 수화열은 저감되지만 초기강도는 저하된다. 이때, 고로 슬래그 미분말은 4,500~5,500㎠/g의 분말도를 갖는 제품을 사용하는 것이 바람직하다.In addition, the blast furnace slag powder is mixed 20 ~ 55.9% by weight, but when used at less than 20% by weight, the effect of reducing the heat of hydration in the mass concrete is insignificant, and when it exceeds 55.9% by weight, the heat of hydration is reduced but the initial strength is lowered. . At this time, it is preferable to use the blast furnace slag fine powder which has a powder degree of 4,500-5,500 cm <2> / g.

플라이애시는 20~35중량%를 혼합하는 데, 20중량% 미만으로 사용하게 되면 수화열 저감효과가 적고, 35중량%를 초과하게 되면 초기강도가 저하된다.Fly ash is mixed 20 ~ 35% by weight, less than 20% by weight is less effective to reduce the heat of hydration, when exceeding 35% by weight is lowered the initial strength.

보통 포틀랜드 시멘트는 20~33중량%를 혼합하는 데, 20중량% 미만이면 전체적인 시멘트량이 부족하여 콘크리트의 강도가 감소하고, 33중량%를 초과하게 되면 전체적인 시멘트량이 증가되어 수화열이 증가되는 단점이 있다. 그리고, 보통 포틀랜드 시멘트에 대한 물리화학적 성질 및 용도는 이미 널리 알려진 바 이하에서 상세한 설명은 생략하도록 한다.In general, Portland cement mixes 20 to 33% by weight. If less than 20% by weight, the total amount of cement is insufficient and the strength of concrete decreases. If the content exceeds 33% by weight, the total amount of cement increases and the heat of hydration increases. . In addition, the physicochemical properties and uses of ordinary portland cement are well known, and thus detailed descriptions thereof will be omitted.

고분말 고로 슬래그는 3~6중량%를 혼합하는 데, 3중량% 미만이면 조기강도 증가 효과가 미미한 단점이 있고, 6중량%를 초과하게 되면 굳지 않은 콘크리트의 점성이 증가하여 시공성 저하되는 단점이 있다. 이때, 고분말 고로 슬래그는 고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 6,000~8,000㎠/g의 분말도를 갖는 제품을 사용하는 것이 바람직하다.The high-powder blast furnace slag is mixed 3 to 6% by weight, but less than 3% by weight has a disadvantage in that the early strength increase effect is insignificant. When it exceeds 6% by weight, the viscosity of the unconsolidated concrete increases and the workability is deteriorated. have. At this time, the high-powder blast furnace slag is finely pulverized blast furnace slag to increase the reactivity, it is preferable to use a product having a powder degree of 6,000 ~ 8,000 cm2 / g powder.

고분말 무수석고는 1~5중량%를 혼합하는 데, 1중량% 미만이면 조기강도 증가 효과가 미미한 단점이 있고, 5중량%를 초과하게 되면 굳지 않은 콘크리트의 응결이 지연되는 단점이 있다. 이때, 고분말 무수석고는 무수석고를 미분쇄하여 반응성을 높인 것으로 분말도 8,000~12,000㎠/g의 분말도를 갖는 제품을 사용하는 것이 바람직하다.The high powder anhydrous gypsum is mixed 1 to 5% by weight, but less than 1% by weight has a disadvantage in that the early increase in strength is insignificant. At this time, the high powder anhydrous gypsum is finely pulverized anhydrous gypsum to increase the reactivity, it is preferable to use a product having a powder degree of 8,000 ~ 12,000 cm 2 / g.

알칼리 활성화제는 K2SO4, KOH, NaOH, Ca(OH)2중 선택된 어느 하나가 적용되고, 알칼리 활성화제는 0.1~1중량%를 혼합하는 데, 0.1중량% 미만이면 조기강도 증가효과가 미미한 단점이 있고, 1중량%를 초과하게 되면 조기강도 증가 효과가 우수하나 장기강도가 저하하는 단점이 있다.Alkali activator is applied to any one selected from K2SO4, KOH, NaOH, Ca (OH) 2, Alkali activator is mixed 0.1 to 1% by weight, less than 0.1% by weight is a disadvantage that the early strength increase effect is insignificant And, if it exceeds 1% by weight, the early strength increase effect is excellent, but there is a disadvantage that the long-term strength is lowered.

폐콘크리트 미분말은 폐콘크리트를 파쇄하여 순환골재로 만드는 과정에서 발생되는 미분말을 포집한 것으로 분말도 2,500~3,500㎠/g이다. 폐콘크리트 미분말은 결합재 100중량부에 대하여 폐콘크리트 미분말을 3~10중량부를 사용하는 데, 폐콘크리트 미분말을 3중량부 미만으로 사용하게 되면 수화열 저감효과가 미미한 단점하고, 10중량부를 초과하게 되면 콘크리트의 강도가 저하되는 단점이 있다.The waste concrete fine powder is a fine powder generated in the process of crushing the waste concrete into a circulating aggregate. The powder is also 2,500 ~ 3,500㎠ / g. The waste concrete fine powder uses 3 to 10 parts by weight of the waste concrete powder with respect to 100 parts by weight of the binder. When the waste concrete fine powder is used in less than 3 parts by weight, the effect of reducing heat of hydration is insignificant. There is a disadvantage that the strength of is lowered.

한편, 본 발명에 따른 친환경 저발열 콘크리트는 고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고분말 고로 슬래그 3~6중량%와; 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 친환경 저발열 혼합시멘트 조성물과, 골재와, 물과, 감수제 및 혼화제(AE제 : air-entraining agent)를 혼합하여 제조된다.On the other hand, eco-friendly low heat concrete according to the present invention 20 to 55.9% by weight of blast furnace slag fine powder; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the solid powder blast furnace slag; 1 to 5% by weight of high powder anhydrous gypsum; And an environmentally friendly low heat generation cement composition comprising 0.1 to 1% by weight of an alkali activator, aggregate, water, a water reducing agent, and a admixture (AE: air-entraining agent).

이때, 본 발명에 따른 친환경 저발열 콘크리트의 친환경 저발열 혼합시멘트 조성물은 프리 믹서에 의해 균일하게 혼합되는 것이 바람직하다. 프리믹서는 일정 각도로 경사진 상태에서 회전하는 외통(Rotating Mixing Pan)과 반대방향으로 회전하는 믹싱툴(Mixing Tool)에 의하여 강력한 대각선 흐름(Cross Flow)과 역류흐름(Counter Flow)이 발생되어 단시간내 균일한 혼합이 실시되며, 배치(Batch)식 또는 연속(Continuous)식 운전이 가능한 장치를 말한다. 또, 프리믹서는 외통 및 바닥면과 밀착해서 스크레퍼(Scraper)가 설치되어 친환경 저발열 혼합시멘트 조성물의 흐름을 교란하여 혼합을 가속화하고, 친환경 저발열 혼합시멘트 조성물의 부착 방지와 혼합 완료 후 배출이 용이하게 하는 역할을 함으로써, 친환경 저발열 혼합시멘트 조성물의 분산성 및 균질성을 극대화하여 연속입도 결합재의 품질향상을 도모할 수 있다.
At this time, the eco-friendly low heat generation cement composition of the eco-friendly low heat concrete according to the present invention is preferably uniformly mixed by a pre-mixer. The premixer generates powerful diagonal flow and counter flow by the mixing tool which rotates in the opposite direction to the rotating mixing pan which is inclined at an angle. It is a device that is uniformly mixed and capable of batch or continuous operation. In addition, the premixer is in close contact with the outer cylinder and the bottom surface, and a scraper is installed, which disturbs the flow of the eco-friendly low heat generation cement composition and accelerates the mixing. By facilitating the role, it is possible to maximize the dispersibility and homogeneity of the environment-friendly low-heat mixed cement composition to improve the quality of the continuous particle size binder.

《실시예 1》&Quot; Example 1 &

실시예 1에 따른 친환경 저발열 혼합시멘트의 조성물은 보통 포틀랜드 시멘트 24.7중량%와; 고로슬래그 미분말 40중량%와; 플라이애시 30중량%와; 고분말 고로슬래그 3중량%와; 고분말 무수석고 2중량%와; 알칼리 활성화제 0.3중량%로 혼합하였다.
The composition of environmentally friendly low heat generation cement according to Example 1 is usually 24.7% by weight of Portland cement; 40% by weight of blast furnace slag fine powder; 30% by weight of fly ash; 3% by weight of blast furnace slag; 2% by weight of high powder anhydrous gypsum; Mix with 0.3% by weight of alkali activator.

《실시예 2》&Quot; Example 2 &quot;

실시예 2에 따른 친환경 저발열 혼합시멘트의 조성물은 보통 포틀랜드 시멘트 24.7중량%와; 고로슬래그 미분말 40중량%와; 플라이애시 25중량%와; 고분말 고로슬래그 3중량%와; 고분말 무수석고 2중량%와; 알칼리 활성화제 0.3중량%와; 폐콘크리트 미분말 5중량%로 혼합하였다.
The composition of environmentally friendly low heat generation cement according to Example 2 is usually 24.7% by weight of Portland cement; 40% by weight of blast furnace slag fine powder; 25% by weight of fly ash; 3% by weight of blast furnace slag; 2% by weight of high powder anhydrous gypsum; 0.3 wt% of an alkali activator; 5% by weight of finely ground concrete was mixed.

《비교예 1》&Quot; Comparative Example 1 &

비교예1은 기존 매스콘크리트에서 수화열 저감을 목적으로 사용되고 있는 분말도 3,400cm2/g인 4종 저열 포틀랜드 시멘트를 사용하였다.
In Comparative Example 1, four types of low heat Portland cement having a powder degree of 3,400 cm 2 / g, which are used for reducing heat of hydration in the existing mass concrete, were used.

《비교예 2》&Quot; Comparative Example 2 &

비교예 2는 4종 저열 포틀랜드 시멘트 100중량에 대하여 수화열을 더 저감시키기 위하여 플라이애시를 20중량% 더 혼합한 것이다.
In Comparative Example 2, the fly ash was further mixed by 20% by weight in order to further reduce the heat of hydration with respect to 100 weights of the four low-heat Portland cements.

《비교예 3》`` Comparative Example 3 ''

비교예 3은 기존 매스콘크리트에서 수화열 저감 목적으로 고로슬래그 미분말과 플라이애시가 혼합된 분말도 3,900㎠/g인 저발열 혼합시멘트를 사용하였다.
In Comparative Example 3, a low calorific mixture cement having a blast furnace slag fine powder and fly ash powder 3,900 cm 2 / g was used for the purpose of reducing heat of hydration in the existing mass concrete.

《시험예 1》&Quot; Test Example 1 &

시험예1은 상기 실시예1, 실시예2, 비교예1, 비교예2 및 비교예3을 각각 결합재로 사용한 저발열 콘크리트 특성을 검토한 것으로, 저발열 콘크리트의 배합은 표 1과 같다. 표 2는 실시예1, 실시예2, 비교예1, 비교예2 및 비교예3에 대한 저발열 콘크리트의 굳지 않은 콘크리트, 재령별 압축강도 및 재령 28일에 대한 압축강도 발현율을 나타낸 것이다.
Test Example 1 is to examine the properties of low heat concrete using Example 1, Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3 as a binder, respectively, the formulation of the low heat concrete is shown in Table 1. Table 2 shows the low heat concrete for Example 1, Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3, the solidified concrete, age-specific compressive strength and compressive strength expression rate for the 28 days of age.

Figure 112011024694595-pat00001
Figure 112011024694595-pat00001

Figure 112011024694595-pat00002
Figure 112011024694595-pat00002

표 2에 나타난 바와같이 실시예1, 실시예2와, 비교예1, 비교예2 및 비교예3의 굳지 않은 콘크리트 특성을 살펴보면, 슬럼프와 공기량에서 큰 차이가 없는 것을 확인할 수 있다. As shown in Table 2, when looking at the concrete properties of Example 1, Example 2 and Comparative Example 1, Comparative Example 2 and Comparative Example 3, it can be seen that there is no significant difference in the amount of slump and air.

또한 표 2와 도 1에 도시된 것과 같이 실시예 1의 압축강도는 재령 3일(14.6MPa), 재령 7일(26.0MPa), 재령 28일(42.4MPa), 재령 56일(46.3MPa) 모두 증가되었고, 실시예 2의 압축강도도 재령 3일(13.0MPa), 재령 7일(25.2MPa), 재령 28일(41.1MPa), 재령 56일(44.1MPa) 모두 증가되었다. 특히 실시예1 및 실시예2의 3일과 7일 초기재령 압축강도가 비교예1, 2 및 비교예3과 비교하면 향상되었음을 확인할 수 있다.In addition, as shown in Table 2 and Figure 1, the compressive strength of Example 1 is 3 days (14.6 MPa), 7 days (26.0 MPa), 28 days (42.4 MPa), 56 days (46.3 MPa) The compressive strength of Example 2 was also increased in all 3 days (13.0 MPa), 7 days (25.2 MPa), 28 days (41.1 MPa), and 56 days (44.1 MPa) ages. In particular, it can be seen that the 3 and 7 days of the early age compressive strength of Examples 1 and 2 compared with Comparative Examples 1, 2 and Comparative Example 3.

또한, 도 2에 도시된 것과 같이 재령 28일을 기준으로 압축강도 발현율을 비교하면, 실시예1은 재령 3일에서 34.5%, 재령 7일에서 61.3%를 발현하였고, 실시예2는 재령 3일에서 31.6%, 재령 7일에서 61.3%를 발현하여 비교예1(재령 3일-26.1%, 재령 7일 49.5%), 비교예2(재령 3일-17.7%, 재령 7일-39.5%) 및 비교예3(재령 3일-23.0%, 재령 7일-53.0%)보다 초기 재령에서 높은 압축강도 발현율을 보였다. 그러나, 재령 56일에서는 실시예1, 실시예2, 비교예1, 비교예2 및 비교예3 모두 유사한 압축강도 발현율을 보이고 있다.
In addition, when comparing the compressive strength expression rate based on 28 days of age as shown in Figure 2, Example 1 expressed 34.5% at age 3, 61.3% at age 7, Example 2 was 3 days of age 31.6%, 61.3% at 7 days of age, Comparative Example 1 (age 3 days-26.1%, age 7 days 49.5%), Comparative Example 2 (age 3 days-17.7%, age 7 days-39.5%) and The compressive strength expression rate was higher in early age than in Comparative Example 3 (age 3 days-23.0%, age 7 days-53.0%). However, at age 56, Example 1, Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3 all showed similar compressive strength expression rates.

《시험예 2》&Quot; Test Example 2 &

시험예2는 상기 실시예 1, 실시예2, 비교예1, 비교예2 및 비교예3에 대하여 시멘트의 수화반응에 의해 콘크리트의 온도가 상승함에 따라 주위의 온도를 상승시켜 콘크리트가 완전 단열상태에서 수화반응에 따른 온도가 상승하는 양을 파악한 것으로, 도3은 그에 따른 콘크리트의 단열온도상승 시험결과를 도시한 그래프이다. In Test Example 2, the concrete was completely insulated by increasing the ambient temperature as the temperature of the concrete increased by the hydration reaction of cement with respect to Examples 1, 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3. Figure 3 is a graph showing the result of the heat insulation temperature rise of the concrete according to the amount of the temperature rise according to the hydration reaction.

또한, 도2에 도시된 바와 같이 재령 28일을 100%으로 기준으로 실시예1, 실시예2, 비교예1, 비교예2 및 비교예3의 콘크리트 단열온도 상승량을 비교하면, 비교예1의 콘크리트 단열온도 상승량은 35.9℃, 비교예2의 콘크리트 단열온도 상승량은 33.7℃, 비교예3의 콘크리트 단열온도 상승량은 32.0℃인 반면 실시예1의 콘크리트 단열온도 상승량은 29.5℃로 비교예1보다 6.4℃, 비교예2보다 4.2℃, 비교예3보다 2.5℃ 낮은 것이 확인되었다. 또한, 실시예2의 콘크리트 단열온도 상승량은 28.6℃로 비교예1보다 7.3℃, 비교예2보다 5.1℃, 비교예3보다 3.4℃ 낮은 것이 확인되었다.In addition, as shown in Figure 2 when comparing the concrete heat insulation temperature rise of Example 1, Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3 based on the 28 days of age 28, Comparative Example 1 The concrete insulation temperature increase is 35.9 ℃, the concrete insulation temperature rise of Comparative Example 2 is 33.7 ℃, the concrete insulation temperature rise of Comparative Example 3 is 32.0 ℃ while the concrete insulation temperature rise of Example 1 is 29.5 ℃ 6.4 than Comparative Example 1 It was confirmed that it was 4.2 degreeC lower than C and the comparative example 2, and 2.5 degreeC lower than the comparative example 3. In addition, it was confirmed that the amount of increase in the concrete insulation temperature of Example 2 was 28.6 ° C, which was 7.3 ° C lower than Comparative Example 1, 5.1 ° C lower than Comparative Example 2, and 3.4 ° C lower than Comparative Example 3.

본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood, however, that the invention is not to be limited to the specific forms thereof, which are to be considered as being limited to the specific embodiments, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. .

Claims (9)

친환경 저발열 혼합시멘트 조성물에 있어서,
고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 4,500~5,500㎠/g인 고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 6,000~8,000㎠/g인 고분말 고로 슬래그 3~6중량%와; 무수석고를 미분쇄하여 반응성을 높인 것으로 분말도 8,000~12,000㎠/g인 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 친환경 저발열 혼합시멘트 조성물과, 상기 혼합시멘트 조성물 100중량부에 대하여 폐콘크리트를 파쇄하여 순환골재로 만드는 과정에서 발생되는 미분말을 포집한 것으로 분말도 2,500~3,500㎠/g인 폐콘크리트 미분말을 3~10중량부를 더 혼합하는 것을 특징으로 하는 친환경 저발열 혼합시멘트 조성물.
In an environment-friendly low heat generation cement composition,
20 to 55.9% by weight of fine blast furnace slag powder having a powder degree of 4,500 to 5,500 cm 2 / g to finely pulverize blast furnace slag; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the fine powder blast furnace slag powder 6,000 ~ 8,000 ㎠ / g to increase the reactivity by grinding the blast furnace slag; Fine powder anhydrous gypsum 1 ~ 5% by weight of fine powder 8,000 ~ 12,000 cm 2 / g to fine regrind anhydrous gypsum; And an environmentally friendly low calorific mixture cement composition comprising 0.1 to 1% by weight of an alkali activator, and fine powder generated in the process of crushing waste concrete to form circulating aggregate with respect to 100 parts by weight of the mixed cement composition. Eco-friendly low heat mixing cement composition, characterized in that 3 to 10 parts by weight of finely mixed waste concrete 3,500 cm 2 / g.
삭제delete 삭제delete 삭제delete 삭제delete 제 1 항에 있어서,
상기 알칼리 활성화제는,
K2SO4, KOH, NaOH, Ca(OH)2중 선택된 어느 하나가 적용되는 것을 특징으로 하는 친환경 저발열 혼합시멘트 조성물.
The method of claim 1,
The alkali activator,
K 2 SO 4 , KOH, NaOH, Ca (OH) 2 Any one selected from the environment-friendly low-heat mixed cement composition is applied.
고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 4,500~5,500㎠/g인 고로 슬래그 미분말 20~55.9중량%와; 플라이애시 20~35중량%와; 보통 포틀랜드 시멘트 20~33중량%와; 고로 슬래그를 미분쇄하여 반응성을 높인 것으로 분말도 6,000~8,000㎠/g인 고분말 고로 슬래그 3~6중량%와; 무수석고를 미분쇄하여 반응성을 높인 것으로 분말도 8,000~12,000㎠/g인 고분말 무수석고 1~5중량%; 및 알칼리 활성화제 0.1~1중량%로 이루어지는 친환경 저발열 혼합시멘트 조성물과, 골재와, 물과, 감수제와, 혼화제(AE제 : air-entraining agent) 및 상기 혼합시멘트 조성물 100중량부에 대하여 폐콘크리트를 파쇄하여 순환골재로 만드는 과정에서 발생되는 미분말을 포집한 것으로 분말도 2,500~3,500㎠/g인 폐콘크리트 미분말을 3~10중량부를 혼합하여 제조되는 것을 특징으로 하는 친환경 저발열 콘크리트의 제조방법.20 to 55.9% by weight of fine blast furnace slag powder having a powder degree of 4,500 to 5,500 cm 2 / g to finely pulverize blast furnace slag; 20 to 35% by weight of fly ash; Usually 20-33% by weight of Portland cement; 3 to 6% by weight of the fine powder blast furnace slag powder 6,000 ~ 8,000 ㎠ / g to increase the reactivity by grinding the blast furnace slag; Fine powder anhydrous gypsum 1 ~ 5% by weight of fine powder 8,000 ~ 12,000 cm 2 / g to fine regrind anhydrous gypsum; And waste concrete based on 100 parts by weight of an environment-friendly low heat mixed cement composition composed of 0.1 to 1% by weight of an alkali activator, aggregate, water, a water reducing agent, an admixture (AE agent: air-entraining agent) and the mixed cement composition. A method for producing environmentally friendly low heat concrete, characterized in that to collect the fine powder generated in the process of crushing the aggregates by crushing the fine powder 2,500 ~ 3,500 ㎠ / g of waste concrete powder is prepared by mixing 3 to 10 parts by weight. 삭제delete 제 7 항의 제조방법에 의해 제조된 친환경 저발열 콘크리트.Eco-friendly low heat concrete produced by the manufacturing method of claim 7.
KR1020110031201A 2011-04-05 2011-04-05 Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof KR101260412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110031201A KR101260412B1 (en) 2011-04-05 2011-04-05 Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110031201A KR101260412B1 (en) 2011-04-05 2011-04-05 Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20120113476A KR20120113476A (en) 2012-10-15
KR101260412B1 true KR101260412B1 (en) 2013-05-07

Family

ID=47283032

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110031201A KR101260412B1 (en) 2011-04-05 2011-04-05 Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101260412B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101935491B1 (en) * 2018-07-17 2019-01-04 주식회사 네이처 White soil solidifier composition based on furnace slag having supper fines powder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317749B1 (en) * 2012-11-22 2013-10-15 강남훈 Blast furnace slag composite for concrete with desulfurization gypsum formed in the petroleum refining
KR101503841B1 (en) * 2013-09-23 2015-03-25 (주)대우건설 Environment-friendly geopolymer composition for stabilization of soft ground and strength enhancement and the method using thereof
KR101584324B1 (en) * 2014-06-25 2016-01-14 (주)대우건설 Concrete composition for carbon dioxide reduction, high fludity and high durability
WO2016039512A1 (en) * 2014-09-11 2016-03-17 주식회사 씨엠디기술단 Blast furnace slag fine powder composition capable of improving carbonation resistance and initial strength
KR101627236B1 (en) * 2015-10-15 2016-06-07 현대엔지니어링 주식회사 Root-proofing concrete and Root-proofing layer construction method using the same
CN112723843B (en) * 2020-12-26 2022-06-21 湖北工业大学 Preparation method of weak-base-excited nickel slag high-strength concrete
CN113636822A (en) * 2021-07-19 2021-11-12 中铁第一勘察设计院集团有限公司 Improved construction waste roadbed filler using sintered brick micro powder as modifier and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066652A1 (en) 2006-09-14 2008-03-20 Michael Fraser Low density cements for use in cementing operations
KR101001221B1 (en) 2010-06-23 2010-12-15 아세아시멘트주식회사 High early-strength concrete compound with low carbon, high early-strength concrete with low carbon using thereof, and the manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066652A1 (en) 2006-09-14 2008-03-20 Michael Fraser Low density cements for use in cementing operations
KR101001221B1 (en) 2010-06-23 2010-12-15 아세아시멘트주식회사 High early-strength concrete compound with low carbon, high early-strength concrete with low carbon using thereof, and the manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101935491B1 (en) * 2018-07-17 2019-01-04 주식회사 네이처 White soil solidifier composition based on furnace slag having supper fines powder

Also Published As

Publication number Publication date
KR20120113476A (en) 2012-10-15

Similar Documents

Publication Publication Date Title
KR101260412B1 (en) Environmentally friendly low heat mix cement composition, environmentally friendly low heat concrete using thereof, and manufacturing method thereof
Sua-iam et al. Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
KR100884715B1 (en) Composition of blended cement using high-volume industrial by-products and method of thereof
Kraus et al. Use of foundry silica-dust in manufacturing economical self-consolidating concrete
EP2514727B1 (en) An alkali activated limestone concrete composition and use of composition in concrete casting
Nazari et al. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder
CN105948619A (en) Anti-crack mass concrete prepared by utilizing fly ash and mineral powder double-mixing technology
CN107488012B (en) Wet-mixed composite lightweight aggregate concrete and preparation method thereof
CA2985958C (en) Concrete composition with very low shrinkage
KR101138243B1 (en) Composition of ready-mixed concrete using industrial wastes
Abd Razak et al. Fire performance of fly-ash-based geopolymer concrete: Effect of burning temperature on mechanical and microstructural properties
CN101168483B (en) High-performance panel concrete and preparation method thereof
Bijivemula et al. Analysis of mechanical and durability properties of alkali activated blocks using PET flakes and Fly-ash
KR100993797B1 (en) Composition of ready-mixed concrete using industrial wastes
KR101043932B1 (en) Non-sintering inorganic binder comprising bottom-ash and concrete composition using thereof
KR100908675B1 (en) Concrete composition for revealing high early strength
KR101856380B1 (en) Concrete Composition Using Utilizing Liquid Activator
JP5866731B2 (en) Heavy concrete
KR102535232B1 (en) High-strength bonding materials and steam curing concrete structures equipped with them
KR101188498B1 (en) Composition for non-cement concrete using bottom ash and manufacturing method thereof
KR20170079661A (en) Composition of eco-friendly ready-mixed concrete using industrial wastes
KR102011335B1 (en) Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar
JP2014019588A (en) Paste composition and mortar composition
Vishnuram et al. Fly-ash and GGBS based geo-polymer concrete with granite powder as partial replacement of M-Sand for sustainability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160426

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 7