KR101259956B1 - Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same - Google Patents

Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same Download PDF

Info

Publication number
KR101259956B1
KR101259956B1 KR1020110003476A KR20110003476A KR101259956B1 KR 101259956 B1 KR101259956 B1 KR 101259956B1 KR 1020110003476 A KR1020110003476 A KR 1020110003476A KR 20110003476 A KR20110003476 A KR 20110003476A KR 101259956 B1 KR101259956 B1 KR 101259956B1
Authority
KR
South Korea
Prior art keywords
leu
lys
ile
ser
ala
Prior art date
Application number
KR1020110003476A
Other languages
Korean (ko)
Other versions
KR20120082138A (en
Inventor
한성옥
유경옥
김승욱
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020110003476A priority Critical patent/KR101259956B1/en
Priority to US13/641,946 priority patent/US8772000B2/en
Priority to PCT/KR2011/002712 priority patent/WO2011132890A2/en
Publication of KR20120082138A publication Critical patent/KR20120082138A/en
Application granted granted Critical
Publication of KR101259956B1 publication Critical patent/KR101259956B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01006Glycerol dehydrogenase (1.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01029Glycerone kinase (2.7.1.29), i.e. dihydroxyacetone kinase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 글리세롤을 발효원으로 이용하도록 조작되어진 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)의 TATA 결합단백질 SPT3와 15의 과발현을 통한 바이오 에탄올 생산능이 향상된 형질전환체 및 그 형질전환체를 이용한 에탄올 생산방법에 관한 것으로, 더욱 상세하게는 글리세롤을 발효원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산능 및 삼투압에 대한 내성 증대를 위하여 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 효모 RNA 폴리머라제 인자, 예컨대 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통하여 에탄올 생산능이 향상되어진 형질전환체 및 이들을 이용한 에탄올 생산 증대 방법에 대한 것이다. The present invention is Saccharomyces engineered to use glycerol as a fermentation source ( Saccharomyces cerevisiae ) is a transformant having improved bioethanol production capacity through the overexpression of TATA binding protein SPT3 and 15 and ethanol production method using the transformant, and more specifically, a transformant manufactured to use glycerol as a fermentation source. My body saccharide to access three Levy jiae to the resistance increase of the ethanol-producing ability and the osmotic pressure of from (Saccharomyces cerevisiae ) and transformants with improved ethanol production capacity through overexpression of yeast RNA polymerase factors, such as TATA binding proteins SPT3 and SPT15, and a method for increasing ethanol production using them.

Description

바이오 에탄올 생산 향상용 TATA 결합 단백질 SPT3 와 15가 유전자 삽입된 형질전환체 및 그 균주를 이용한 에탄올 생성방법{Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same}Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same}

본 발명은 글리세롤을 발효원으로 이용하도록 조작되어진 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)의 TATA 결합단백질 SPT3와 15의 과발현을 통한 바이오 에탄올 생산능이 향상된 형질전환체 및 그 형질전환체를 이용한 에탄올 생산방법에 관한 것으로, 더욱 상세하게는 글리세롤을 발효원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산능 및 삼투압에 대한 내성 증대를 위하여 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 효모 RNA 폴리머라제 인자, 예컨대 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통하여 에탄올 생산능이 향상되어진 형질전환체 및 이들을 이용한 에탄올 생산 증대 방법에 대한 것이다.
The present invention provides a transformant having improved bioethanol production ability through overexpression of TATA binding protein SPT3 and 15 of Saccharomyces cerevisiae , which has been manipulated to use glycerol as a fermentation source, and ethanol using the transformant. relates to a production method, and more particularly, to a saccharide My process three Levy jiae (Saccharomyces to increase the resistance of the ethanol-producing ability and the osmotic pressure in the transformant been designed to use glycerol as a fermentation source cerevisiae ) and transformants with improved ethanol production capacity through overexpression of yeast RNA polymerase factors, such as TATA binding proteins SPT3 and SPT15, and a method for increasing ethanol production using them.

에탄올은 현재 산업 용매로써 거대한 시장을 형성하고 있으며, 앞으로 자동차 등의 수송연료로 사용 가능성이 현실화되고 있어 계속적인 수요 증가가 예상되고 있다. Ethanol is currently forming a huge market as an industrial solvent, and the possibility of using it as a transport fuel for automobiles is becoming a reality, and demand for continuous increase is expected.

글리세롤은 C3H8O3로 C6H12O6인 글루코오스 (glucose)에 비하여 1단계 환원된 물질로서 미생물의 대사 과정에서 보다 향상된 환원력을 제공할 수 있다. 발효를 통하여 생산되는 많은 물질이 그 대사과정에서 환원력을 요구하는 경우가 많기 때문에 글리세롤을 기질로 효과적으로 이용할 수 있다면, 원하는 발효산물의 수율 및 생산성의 향상을 가져 올 수 있다. 현재 바이오 디젤의 생산량이 늘어남에 따라 글리세롤의 생산량 늘어났기 때문에 가격이 급격히 하락하고 있는 실정이다. 상기한 바와 같이 바이오디젤의 생산량이 급증함에 따라, 부산물인 글리세롤의 생산도 늘어나 글리세롤을 포함하고 있는 부산물을 효과적으로 처리하는 문제가 발생할 것이다. 따라서 글리세롤을 이용하여 효과적으로 발효에 의해 유용한 발효산물을 생산할 수 있다면 많은 부속 효과를 가져 올 수 있다.Glycerol is a one-step reduced substance compared to glucose, which is C6H12O6 with C3H8O3, which can provide improved reducing power in metabolic processes of microorganisms. Since many substances produced through fermentation often require reducing power in their metabolism, if glycerol can be effectively used as a substrate, the yield and productivity of the desired fermentation product can be improved. As the production of biodiesel has increased, the production of glycerol has increased, leading to a sharp drop in prices. As described above, as the production of biodiesel increases rapidly, the production of glycerol as a by-product increases, which may cause a problem of effectively treating by-products containing glycerol. Therefore, if glycerol can be used to effectively produce a useful fermentation product by fermentation can bring a number of side effects.

본 발명은 기존의 글리세롤을 효율적으로 이용하도록 개발되어진 균주의 개량을 통한 에탄올 생산능의 증대를 위하여 사카로마이세스 세레비제의 TATA 결합단백질의 과발현을 통하여 에탄올 생산능의 증대를 이루었다.The present invention achieves an increase in ethanol production capacity through overexpression of TATA binding protein of Saccharomyces cerevisiae in order to increase ethanol production capacity through improvement of a strain developed to efficiently use the existing glycerol.

현재, 대사산물의 과다생산에 의한 생산 저해는 많은 유전자에 의해 영향을 받는다는 것이 일반적으로 받아들여지고 있다. 그러나, 대부분의 세포 및 대사 조작 접근법은 벡터 구축물 및 형질전환 효능에서의 실험적 한계로 인해 거의 단일 유전자의 결실 또는 과다발현에 의지한다. 이러한 한계는 다중 유전자 변형의 동시 탐구를 불가능하게 하며, 유전자 변형 연구를 단일 유전자가 한번에 변형되는 제한된 순차적 접근법에 국한시킨다. 본 연구에서 연구되어진 광역 전사 기구는 모든 세포 시스템 (원핵 및 진핵생물)에서 전사체를 제어하는 역할을 한다. 광역 전사 기구는 RNA 폴리머라제 분자와 상호작용하거나 그의 활성을 조절함으로써 유전자 전사에 영향을 끼치는 단백질일 수 있다. 광역 전사 기구는 또한 전사될 세포의 게놈의 능력을 변경시키는 단백질일 수 있다 (예를 들여, 메틸트랜스퍼라제, 히스톤 메틸트랜스퍼라제, 히스톤 아세틸라제 및 데아세틸라제). It is now generally accepted that production inhibition by overproduction of metabolites is affected by many genes. However, most cellular and metabolic engineering approaches rely on deletion or overexpression of nearly single genes due to experimental limitations in vector constructs and transformation efficacy. These limitations make it impossible to simultaneously explore multiple genetic variants and limit genetic studies to limited sequential approaches in which a single gene is modified at one time. The widespread transcriptional machinery studied in this study is responsible for the control of transcripts in all cellular systems (prokaryotes and eukaryotes). Wide-area transcriptional mechanisms may be proteins that affect gene transcription by interacting with or regulating the activity of RNA polymerase molecules. Wide area transcriptional machinery can also be proteins that alter the ability of the genome of the cell to be transcribed (eg, methyltransferase, histone methyltransferase, histone acetylase and deacetylase).

박테리아 시스템에서, 시그마 인자는 RNA 폴리머라제 홀로효소의 프로모터 선호도에 초점을 맞춤으로써 광역 전사를 조정하는데 중요한 역할을 수행한다 (R. R. Burgess, L. Anthony, Curr. Opin. Microbiol 4, 126-131 (2001)). 본 발명은 게놈-범위 수준에서 프로모터에 대한 선호도를 변화시키면서 시그마 인자를 생성하는 능력을 개발하였다. 통상적인 균주 개선 패러다임은 주로 순차적인, 단일-유전자 변형의 생성에 의존하며, 이는 종종 광역 최대치에 도달하는데 실패하기도 한다. 그 이유는 대사 경로가 복잡하고 (H. Alper, K. Miyaoku, G.Stephanopoulos, Nat Biotechnol 23, 612-616 (2005); H. Alper, Y.-S. Jin, J. F. Moxley, G.Stephanopoulos, Metab Eng 7, 155-164 (2005)), 돌연변이가 동시에 도입되는 경우에만 유익한 합성 돌연변이체를 포괄하기 때문이다. 본 발명자들은 TATA 접합 단백질을 과발현 함으로써 여러 동시 유전자 발현 변화를 유사하게 도입하여 전세포 조작을 용이하게 하기 위한 시그마 인자의 광역 조절 기능을 개발하였다. In bacterial systems, sigma factors play an important role in modulating global transcription by focusing on the promoter preference of RNA polymerase holoenzymes (RR Burgess, L. Anthony, Curr. Opin.Microbiol 4, 126-131 (2001). )). The present invention has developed the ability to generate sigma factors while changing the preference for promoters at the genome-range level. Conventional strain improvement paradigms rely primarily on the generation of sequential, single-gene modifications, which often fail to reach wide area maximums. The reasons for this are complex metabolic pathways (H. Alper, K. Miyaoku, G. Stephanopoulos, Nat Biotechnol 23, 612-616 (2005); H. Alper, Y.-S. Jin, JF Moxley, G. Stephanopoulos, Metab Eng 7, 155-164 (2005)), because they encompass beneficial synthetic mutants only when mutations are introduced simultaneously. The inventors have developed a broad regulatory function of sigma factors to facilitate whole cell manipulation by introducing several simultaneous gene expression changes similarly by overexpressing a TATA conjugate protein.

특히 에탄올 생성과 관계된 경우 진균, 및 그러한 진핵 세포에 관련된 RNA 폴리머라제 II 인자에 대해 광범위하게 적용될 수 있다. 표현형 특성, 특히 배양 배지에서 글리세롤(및 다른 당) 및/또는 에탄올의 내성, 및/또는 당업계에 공지된 다양한 공급원료로부터 세포에 의한 에탄올 생성의 개선을 위한, 다른 진핵 세포 및 이러한 세포의 상응하는 광역 전사 기구의 용도를 포함할 수 있다. It can be widely applied to fungi, and RNA polymerase II factors related to such eukaryotic cells, especially when related to ethanol production. Other eukaryotic cells and their corresponding counterparts for improving phenotypic properties, in particular resistance of glycerol (and other sugars) and / or ethanol in the culture medium, and / or improved ethanol production by cells from various feedstocks known in the art. It may include the use of a wide area transfer mechanism.

본 발명에서는 사카로마이세스 세레비지애에서의 글리세롤을 탄소원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산 증대를 위하여 TATA 결합 단백질(SPT3,15)를 과 발현 하여 에탄올 생산량 증대를 이루었다. In the present invention, the expression of TATA binding protein (SPT3,15) was increased to increase the ethanol production in the transformants prepared to use glycerol as a carbon source in Saccharomyces cerevisiae.

본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 글리세롤을 발효원으로 이용시 바이오 에탄올 제조에 있어서 생산균주인 효모에서 바이오에탄올 생산량이 증대될 수 있도록 개량되어진 균주를 제공하는 것이다.The present invention solves the above problems, and the object of the present invention was devised by the necessity of the above is a strain that has been improved so that the production of bioethanol in yeast which is a production strain in the production of bioethanol when using glycerol as a fermentation source To provide.

본 발명의 다른 목적은 상기 형질전환체를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the transformant.

본 발명의 또 다른 목적은 상기 형질전환체를 이용한 에탄올 생산방법을 제공하는 것이다. Still another object of the present invention is to provide a method for producing ethanol using the transformant.

본 발명의 또 다른 목적은 상기 형질전환체를 포함하는 에탄올 생성용 조성물을 제공하는 것이다.Another object of the present invention to provide a composition for producing ethanol comprising the transformant.

상기와 같은 목적을 달성하기 위하여, 본 발명은 사카로마이시스 세레비지애 SPT(Suppressor of Ty)3와 SPT(Suppressor of Ty) 15(이하 각각 'SPT 3', 'SPT15'라 함) 유전자를 함유하는 발현벡터 pGupSpt3.15를 제공한다.In order to achieve the above object, the present invention is Saccharomyces Roman Isis three Levy jiae SPT (S u p pressor of T y) 3 and SPT (S u p pressor of T y) 15 ( hereinafter, each 'SPT 3', ' An expression vector pGupSpt3.15 containing the gene) is provided.

본 발명의 일 구체예에 있어서, TATA 결합단백질 SPT3는 서열번호 1에 기재된 아미노산 서열을 가지는 것이 바람직하나, 서열번호 1에 기재된 단백질에 하나 이상의 치환, 결손, 부가 등의 돌연변이가 SPT3 활성을 가진 돌연변이체도 본 발명의 SPT15에 포함된다.In one embodiment of the invention, the TATA binding protein SPT3 preferably has an amino acid sequence set forth in SEQ ID NO: 1, but one or more substitutions, deletions, additions, etc. mutations in the protein described in SEQ ID NO: 1 mutations having SPT3 activity Sieves are also included in SPT15 of the present invention.

본 발명의 일 구체예에 있어서, 상기 TATA 결합단백질 SPT3는 서열번호 1에 기재된 염기 서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시를 고려하여 상기 서열번호 2에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 본 발명의 SPT3 유전자에 포함된다.In one embodiment of the present invention, the TATA binding protein SPT3 preferably has the nucleotide sequence of SEQ ID NO: 1, but considering the degeneracy of the genetic code of the base sequence of SEQ ID NO: 2 and 80% of the phase Genes with homology, preferably 85% homology, more preferably 90% homology, most preferably 95% homology, are also included in the SPT3 gene of the present invention.

본 발명의 또 다른 일 구체예에 있어서, 상기 TATA 결합단백질 SPT15 는 서열번호 3에 기재된 아미노산 서열을 가지는 것이 바람직하나, 서열번호 3에 기재된 단백질에 하나 이상의 치환, 결손, 부가 등의 돌연변이가 유발된 TATA 결합단백질 SPT15 활성을 가진 돌연변이체도 본 발명의 TATA 결합단백질 SPT15에 포함된다.In another embodiment of the present invention, the TATA binding protein SPT15 preferably has an amino acid sequence set forth in SEQ ID NO: 3, but one or more substitutions, deletions, additions, etc. mutations are caused to the protein described in SEQ ID NO: 3 Mutants having TATA binding protein SPT15 activity are also included in the TATA binding protein SPT15 of the present invention.

본 발명의 또 다른 일 구체예에 있어서, 상기 TATA 결합단백질 SPT15는 서열번호 4에 기재된 염기 서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시를 고려하여 상기 서열번호 4에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 본 발명의 TATA 결합단백질 SPT15 유전자에 포함된다.In another embodiment of the present invention, the TATA binding protein SPT15 preferably has the nucleotide sequence set forth in SEQ ID NO: 4, but 80% of the nucleotide sequence set forth in SEQ ID NO: 4 in consideration of the degeneracy of the genetic code Genes having homology, preferably 85% homology, more preferably 90% homology, and most preferably 95% homology, are included in the TATA binding protein SPT15 gene of the present invention.

본 발명의 일 구현예에 있어서, 상기 본 발명의 발현벡터는 도 3a에 기재된 개열지도를 가지는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the expression vector of the present invention preferably has a cleavage map described in Figure 3a, but is not limited thereto.

또한 본 발명은 상기 본 발명의 발현벡터로 형질전환된 형질전환체를 제공한다.In another aspect, the present invention provides a transformant transformed with the expression vector of the present invention.

본 발명의 일 구체예에 있어서, 상기 TATA 결합단백질 SPT3와 SPT15 유전자가 삽입된 형질전환체는 바람직하게는 효모, 더욱 바람직하게는 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 속 미생물 유래인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the TATA binding protein SPT3 and SPT15 gene is inserted into the transformant is preferably yeast, more preferably Saccharomyces ( Saccharomyces) cerevisiae ) is preferably derived from a microorganism, but is not limited thereto.

또한 본 발명은 상기 본 발명의 발현벡터를 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제, 및 글리세롤 업테이크 프로테인 유전자를 포함하는 형질전환체에 도입하여 제조된 형질전환체를 제공한다.The present invention also provides a transformant prepared by introducing the expression vector of the present invention into a transformant comprising a glycerol dehydrogenase, a dihydroxyacetone kinase, and a glycerol uptake protein gene.

본 발명의 일 구체예에 있어서, 상기 글리세롤 디히드로게나제 (glycerol dehydrogenase)는 서열번호 5에 기재된 아미노산 서열을 가지는 것이 바람직하나, 서열번호 5에 기재된 단백질에 하나 이상의 치환, 결손, 부가 등의 돌연변이가 유발된 글리세롤 디히드로게나제 활성을 가진 돌연변이체도 포함할 수 있다.In one embodiment of the invention, the glycerol dehydrogenase (glycerol dehydrogenase) is preferably having an amino acid sequence of SEQ ID NO: 5, one or more mutations, deletions, additions, etc. to the protein of SEQ ID NO: 5 Mutants with glycerol dehydrogenase activity induced may also be included.

본 발명의 일 구체예에 있어서, 상기 글리세롤 디히드로게나제 (glycerol dehydrogenase) 유전자는 서열번호 6에 기재된 염기 서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시를 고려하여 상기 서열번호 6에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 포함할 수 있다.        In one embodiment of the present invention, the glycerol dehydrogenase gene is preferably one having the nucleotide sequence of SEQ ID NO: 6, the base of SEQ ID NO: 6 in consideration of the degeneracy of the genetic code It may also include genes having 80% homology with the sequence, preferably 85% homology, more preferably 90% homology, most preferably 95% homology.

본 발명의 또 다른 일 구체예에 있어서, 상기 디히드록시아세톤 키나아제(dihydroxyacetone kinase)는 서열번호 7에 기재된 아미노산 서열을 가지는 것이 바람직하나, 서열번호 7에 기재된 단백질에 하나 이상의 치환, 결손, 부가 등의 돌연변이가 유발된 디히드록시아세톤 키나아제 활성을 가진 돌연변이체도 포함할 수 있다.       In another embodiment of the present invention, the dihydroxyacetone kinase (dihydroxyacetone kinase) preferably has an amino acid sequence of SEQ ID NO: 7, one or more substitutions, deletions, additions, etc. to the protein of SEQ ID NO: It may also include a mutant having dihydroxyacetone kinase activity induced by a mutation of.

본 발명의 또 다른 일 구체예에 있어서, 상기 디히드록시아세톤 카나아제 유전자는 서열번호 8에 기재된 염기 서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시를 고려하여 상기 서열번호 8에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 포함할 수 있다.       In another embodiment of the present invention, the dihydroxyacetone kinase gene preferably has the nucleotide sequence of SEQ ID NO: 8, but in consideration of the degeneracy of the genetic code base sequence of SEQ ID NO: 8 And genes having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95% homology.

본 발명의 또 다른 일 구체예에 있어서, 상기 글리세롤 업테이크 프로테인은 서열번호 9에 기재된 아미노산 서열을 가지는 것이 바람직하나, 서열번호 9에 기재된 단백질에 하나 이상의 치환, 결손, 부가 등의 돌연변이가 유발된 디히드록시아세톤 키나아제 활성을 가진 돌연변이체도 포함할 수 있다.       In another embodiment of the present invention, the glycerol uptake protein preferably has an amino acid sequence set forth in SEQ ID NO: 9, but one or more substitutions, deletions, additions, etc. mutations are caused to the protein described in SEQ ID NO: 9 Mutants with dihydroxyacetone kinase activity may also be included.

본 발명의 또 다른 일 구체예에 있어서, 상기 글리세롤 업테이크 프로테인 유전자는 서열번호 10에 기재된 염기 서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시를 고려하여 상기 서열번호 10에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 포함할 수 있다.       In another embodiment of the present invention, the glycerol uptake protein gene preferably has a nucleotide sequence set forth in SEQ ID NO: 10, in consideration of the degeneracy of the genetic code and the base sequence described in SEQ ID NO: 10 and 80 It may also include genes having% homology, preferably 85% homology, more preferably 90% homology, most preferably 95% homology.

또한 본 발명은 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제, 및 글리세롤 업테이크 프로테인 유전자를 포함하는 형질전환체에 상기 본 발명의 발현벡터를 도입하는 단계를 포함하는 에탄올 생성용 형질전환체 제조방법을 제공한다.In another aspect, the present invention is a method for producing a transformant for producing ethanol comprising the step of introducing the expression vector of the present invention into a transformant comprising a glycerol dehydrogenase, dihydroxyacetone kinase, and glycerol uptake protein gene To provide.

상기 본 발명의 형질전환체 제조방법의 일 구체예에 있어서, 상기 재조합된 벡터 pGupSpt3.15Cas 및 pGcyaDak는 도 3a 및 3b에 기재된 개열지도를 가지는 것이 바람직하나 이에 한정되지 아니한다. In one embodiment of the method for producing a transformant of the present invention, the recombinant vectors pGupSpt3.15Cas and pGcyaDak preferably have a cleavage map described in FIGS. 3A and 3B, but are not limited thereto.

또한 본 발명은 글리세롤을 기질로 하여 상기 본 발명의 형질전환체를 배양하는 단계를 포함하는 글리세롤을 이용한 에탄올 생산 방법을 제공한다.The present invention also provides a method for producing ethanol using glycerol comprising culturing the transformant of the present invention using glycerol as a substrate.

또한 본 발명은 본 발명의 형질전환체를 포함하는 에탄올 생산용 조성물을 제공한다.본 발명의 에탄올 생성물 조성물은 예를 들어 상기 형질전환체를 배양하여 글리세롤을 기질로 하여 에탄올을 생성하는데 적합한 폴리펩타이드, 브로쓰, 세포 용해물, 정제 또는 정제되지 않은 효소 추출물 또는 폴리펩타이드 등을 포함한다.The present invention also provides a composition for producing ethanol comprising the transformant of the present invention. The ethanol product composition of the present invention is a polypeptide suitable for producing ethanol based on glycerol by culturing the transformant, for example. , Broths, cell lysates, purified or unpurified enzyme extracts or polypeptides, and the like.

본 발명에서 효모를 숙주로서 사용하는 경우는, 발현벡터로서, 예를 들면 YEp13, YCp50, pRS계, pYEX계 벡터 등이 이용가능하다. 프로모터로서는, 예를 들면 GAL프로모터, AOD프로모터 등을 사용할 수 있다. 효모에의 재조합체 DNA의 도입방법으로서는, 예를 들면 일렉트로포레이션법(Method Enzymol., 194, 182-187(1990)), 스페로플라스트법(Proc. Natl. Acad. Sci.USA, 84, 1929-1933(1978)), 아세트산리튬법(J. Bacteriol., 153, 163-168(1983)) 등이 이용가능하다.In the case of using the yeast as a host in the present invention, as the expression vector, for example, YEp13, YCp50, pRS-based, pYEX-based vectors and the like can be used. As a promoter, a GAL promoter, an AOD promoter, etc. can be used, for example. Examples of methods for introducing the recombinant DNA into yeast include electroporation (Method Enzymol., 194, 182-187 (1990)), spearoflast method (Proc. Natl. Acad. Sci. 1929-1933 (1978)) and the lithium acetate method (J. Bacteriol., 153, 163-168 (1983)).

또, 재조합벡터에는, 발현의 억제 또는 증폭, 또는 유도를 위한 각종의 기능을 가진 발현억제용의 단편이나, 형질전환체의 선택을 위한 마커나 항생물질에 대한 내성유전자, 또는, 균체밖으로의 분비를 목적으로 한 시그널을 코딩하는 유전자 등을 또 가진 것도 가능하다.In the recombinant vector, fragments for suppressing expression having various functions for suppressing or amplifying or inducing expression, markers for selection of transformants, resistance genes against antibiotics, or secreted out of the cells It is also possible to have a gene for encoding a signal for the purpose of.

본 발명의 형질전환체를 배양하는 방법은, 숙주의 배양에 사용되는 통상의 방법을 사용하면 된다.As a method of culturing the transformant of the present invention, a conventional method used for culturing a host may be used.

또 배양방법은, 배치(batch)식, 유동배치식, 연속배양, 리액터형식 등, 통상의 미생물의 배양에 사용하는 어떠한 방법도 사용할 수 있다.대장균 등의 세균을 숙주로 해서 얻게 된 형질전환체를 배양하는 배지로서는, 완전배지 또는 합성배지, 예를 들면 LB배지,NB배지 등을 들 수 있다. 또, 배양온도는 상기 언급한 적온의 범위에서 배양함으로써 SPT3, SPT15을 균체 내에 축적시키고, 회수한다.As the culture method, any method used for culturing ordinary microorganisms, such as batch type, flow batch type, continuous culture, and reactor type, can be used. Transformants obtained by using bacteria such as Escherichia coli as a host As a medium for culturing, medium or synthetic medium, for example, LB medium, NB medium and the like can be given. Incidentally, the incubation temperature is accumulated in the above-mentioned temperature range, and the SPT3 and SPT15 are accumulated in the cells and recovered.

탄소원은 미생물의 증식에 필요하고, 예를 들면 글루코스, 프럭토스, 슈크로스, 말토스, 갈락토스, 전분 등의 당류; 에탄올, 프로판올, 부탄올 등의 저급알콜류; 글리세롤 등의 다가알콜류; 아세트산, 시트르산, 숙신산, 타르타르산, 락트산, 글루콘산 등의 유기산; 프로피온산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 노난산, 데칸산, 운데칸산, 도데칸산 등의 지방산 등을 이용할 수 있다.The carbon source is required for the growth of microorganisms, and for example, sugars such as glucose, fructose, sucrose, maltose, galactose, and starch; Lower alcohols such as ethanol, propanol and butanol; Polyhydric alcohols such as glycerol; Organic acids such as acetic acid, citric acid, succinic acid, tartaric acid, lactic acid and gluconic acid; Fatty acids such as propionic acid, butanoic acid, pentanic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid and dodecanoic acid can be used.

질소원으로서는, 예를 들면 암모니아, 염화암모늄, 황산암모늄, 인산암모늄등의 암모늄염 외에, 펩톤, 고기즙, 효모엑기스,맥아엑기스, 카제인분해물, 옥수수 침지액 등의 천연물유래의 것을 들 수 있다. 또, 무기물로서는, 예를 들면 인산제 1칼륨,인산제 2칼륨, 인산마그네슘, 황산마그네슘, 염화나트륨 등을 들 수 있다. 배양액에, 카나마이신, 암피실린, 테트라사이클린, 클로람페니콜, 스트렙토마이신 등의 항생물질을 첨가해도 된다.Examples of the nitrogen source include ammonium salts such as ammonia, ammonium chloride, ammonium sulfate and ammonium phosphate, as well as those derived from natural products such as peptone, meat juice, yeast extract, malt extract, caseinate and corn steep liquor. Moreover, as an inorganic substance, 1 potassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, etc. are mentioned, for example. You may add antibiotics, such as kanamycin, ampicillin, tetracycline, chloramphenicol, and streptomycin, to a culture liquid.

또, 프로모터가 유도성의 발현벡터를 사용해서 형질전환한 미생물을 배양하는 경우는, 프로모터의 종류에 적합한 유도물질을 배지에 첨가하면 된다. 예를 들면, 이소프로필--D-티오갈락토피라노시드(IPTG), 테트라사이클린, 인돌아크릴산(IAA) 등을 유도물질로서 들 수 있다.In addition, when the promoter cultures the microorganism transformed using an inducible expression vector, an inducer suitable for the type of promoter may be added to the medium. For example, isopropyl-D-thiogalactopyranoside (IPTG), tetracycline, indole acrylic acid (IAA), etc. are mentioned as an inducer.

SPT3, SPT15의 취득은, 얻게 되는 배양물 중으로부터, 균체 또는 상청액을 원심 회수하여, 균체파쇄, 추출, 친화성크로마토그래피, 양이온 또는 음이온교환크로마토그래피, 겔여과 등을 단독으로 또는 적당히 조합함으로써 행할 수 있다.Acquisition of SPT3 and SPT15 is carried out by centrifugation of the cells or supernatant from the culture obtained, followed by cell disruption, extraction, affinity chromatography, cation or anion exchange chromatography, gel filtration, or the like alone or as appropriately combined. Can be.

얻게 된 정제물질이 목적의 효소인 것의 확인은, 통상의 방법, 예를 들면 SDS-폴리아크릴아미드겔 전기영동, 웨스턴블로팅등에 의해 행할 수 있다.Confirmation that the obtained purified substance is the target enzyme can be performed by a conventional method, for example, SDS-polyacrylamide gel electrophoresis, western blotting or the like.

이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.

본 발명은 글리세롤을 발효원으로 이용하도록 조작되어진 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)의 TATA 결합단백질인 SPT3와 SPT3의 과발현을 통한 바이오 에탄올 생산능이 향상된 형질전환체 및 그 형질전환체를 이용한 에탄올 생산방법에 관한 것으로, 더욱 상세하게는 글리세롤을 발효원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산능 및 삼투압에 대한 내성 증대를 위하여 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 효모 RNA 폴리머라제 인자, 예컨대 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통하여 에탄올 생산능이 향상되어진 형질전환체 및 이들을 이용한 에탄올 생산 증대 방법에 대한 것이다.The present invention provides a transformant having improved bioethanol production ability through overexpression of SPT3 and SPT3, which are TATA binding proteins of Saccharomyces cerevisiae , which have been manipulated to use glycerol as a fermentation source, and using the transformant The present invention relates to a method for producing ethanol, and more particularly, to increase ethanol production capacity and resistance to osmotic pressure in transformants prepared to use glycerol as a fermentation source, Saccharomyces cerevisiae ) and transformants with improved ethanol production capacity through overexpression of yeast RNA polymerase factors, such as TATA binding proteins SPT3 and SPT15, and a method for increasing ethanol production using them.

본 발명의 사카로마이세스 세레비지애 속 미생물로부터 유래한 TATA 결합단백질 SPT3와 SPT15를 인코딩하는 유전자의 과발현을 통한 에탄올 생산능 및 삼투압에 대한 내성을 증대시킴으로써 에탄올 생산능이 증가된 이 균주에 글리세롤을 효율적으로 이용하는 유전자를 형질 전환시켜 기존의 형질전환체와 비교시 에탄올 생산능이 증가됨을 확인하였다. 또한, 본 발명에 따라 글리세롤을 탄소원으로 이용하도록 제작되어진 사카로마이세스 세레비지애 속 미생물로부터 생산되어지는 글리세롤의 생산을 저해한 효모 형질 전환체는 공정에 유용하게 사용될 수 있다. 글리세롤을 기질로 한 발효결과 상기 유전자 삽입된 효모 형질 전환체가 그렇지 않은 효모균주보다 많은 양의 에탄올을 생성하였다.Glycerol was added to this strain with increased ethanol production capacity by increasing the resistance to ethanol production and osmotic pressure through overexpression of the TATA binding proteins SPT3 and SPT15 encoding genes derived from Saccharomyces cerevisiae microorganism of the present invention. By transforming the gene to be used efficiently, it was confirmed that the ethanol production capacity is increased compared to the existing transformants. In addition, a yeast transformant that inhibits the production of glycerol produced from Saccharomyces cerevisiae microorganism prepared to use glycerol as a carbon source according to the present invention can be usefully used in the process. As a result of fermentation using glycerol as a substrate, the gene-inserted yeast transformant produced a greater amount of ethanol than the yeast strain that was not.

본 발명의 실시예에서는 사카로마이세스 세레비지에를 주형으로 한 PCR반응을 통하여 SPT3와 SPT15 각각 1.0kb, 0.7kb의 PCR product를 얻었고, 얻어진 PCR product를 효모에 형질전환 함으로써 TATA 결합 단백질 SPT3, SPT15 과발현 균주를 제작하였다. 이후, 상기 Gcy와 Dak을 양방향 삽입한 재조합 벡터를 이용하여 효모 숙주세포를 형질 전환시켰다. 이후, Gup1의 유전자 삽입을 위하여 효모-유전자 삽입벡터( yeast-integration vector)에 구축하였으며 이를 사카로마이세스 세레비지애에 유전자 삽입하였다. 상기 유전자로부터 발현되는 단백질의 글리세롤을 이용한 에탄올 생산을 조사하였다.In the embodiment of the present invention, the PCR products of SPT3 and SPT15 were respectively obtained 1.0 kb and 0.7 kb by PCR using Saccharomyces cerevisiae as a template, and the TATA binding protein SPT3, SPT15 overexpressing strains were prepared. Thereafter, yeast host cells were transformed using a recombinant vector in which both Gcy and Dak were inserted. Subsequently, the yeast-integration vector was constructed for the gene insertion of Gup1, and the gene was inserted into Saccharomyces cerevisiae. Ethanol production using glycerol of the protein expressed from the gene was investigated.

이로써, 본 발명에 따라 재조합되고 형질 전환 된 YPH499(pGcyaDak, pGupSpt3.15Cas)에 의하여 에탄올 생산이 증가되는 것을 확인할 수 있었다.As a result, it was confirmed that ethanol production was increased by the recombinant and transformed YPH499 (pGcyaDak, pGupSpt3.15Cas) according to the present invention.

따라서 대표적인 에탄올 생산균주인 효모 사카로마이시스 세레비지애(Saccharomyces cerevisiae)에서의 글리세롤을 이용한 에탄올 생산량의 증대를 위하여 본 발명자는 사카로마이시스 세레비지애로부터 유래한 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통한 바이오 에탄올 생산능이 향상된 형질전환체 및 그 형질전환체를 이용한 에탄올 생산방법에 관한 것으로, 더욱 상세하게는 글리세롤을 발효원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산능 및 삼투압에 대한 내성 증대를 위하여 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 효모 RNA 폴리머라제 인자, 예컨대 TATA 결합단백질인 SPT3와 SPT15의 과발현 벡터, 그 글리세롤을 이용하도록 유전자 도입된 재조합 벡터의 형질 전환 및 글리세롤 업테이크 프로테인 (Gup1)의 도입을 통하여 효모 형질 전환체를 개발하여 이를 대한민국 서울시 서대문구 홍제1동 유림빌딩 소재 한국미생물보존센터(KCCM)에 2010년 12월 17일 기탁번호 KCCM11153P로 기탁하였다. 뿐만 아니라 상기 효모 형질 전환체가 탄소원으로 글리세롤을 효율적으로 이용하여 에탄올 생산이 효율적으로 증가한다는 것을 확인함으로써 본 발명을 완성하였다.Therefore, the yeast Saccharomyces Saccharomyces , a representative ethanol producing strain cerevisiae ) to improve the ethanol production using glycerol, the present inventors have transformed the transformant and its transformants with improved bioethanol production capacity through overexpression of SPT3 and SPT15, TATA binding proteins derived from Saccharomyces cerevisiae The present invention relates to a method for producing ethanol, and more particularly, to improve ethanol production ability and resistance to osmotic pressure in transformants prepared to use glycerol as a fermentation source, yeast in Saccharomyces cerevisiae . An yeast transformant was developed by introducing an RNA polymerase factor such as an overexpression vector of SPT3 and SPT15, a TATA binding protein, a recombinant vector transduced using the glycerol, and introducing a glycerol uptake protein (Gup1). Yurim Building, Hongje 1-dong, Seodaemun-gu, Seoul, Korea The Korea Culture Center of Microorganisms (KCCM) was deposited with Accession No. KCCM11153P December 17, 2010. In addition, the present invention was completed by confirming that the yeast transformant efficiently uses glycerol as a carbon source to increase ethanol production.

이상 살펴본 바와 같이, 본 발명에서는 사카로마이세스 세레비지애 (Saccharomyces cerevisiae) 속 미생물 유래의 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통한 바이오 에탄올 생산능이 향상된 형질전환체 및 그 형질전환체를 이용한 에탄올 생산방법에 관한 것으로, 더욱 상세하게는 더욱 상세하게는 글리세롤을 발효원으로 이용하도록 제작되어진 형질전환체에서의 에탄올 생산능 및 삼투압에 대한 내성 증대를 위하여 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 효모 RNA 폴리머라제 인자, 예컨대 TATA 결합단백질인 SPT3와 SPT15의 과발현을 통하여 에탄올 생산능이 향상되어진 형질전환체와 또한 글리세롤 디히드로게나제 (glycerol dehydrogenase)와 디히드록시아세톤 키나아제 (dihydroxyacetone kinase) 유전자가 도입된 형질전환체에 글리세롤 업테이크 프로테인 (glycerol uptake protein)을 유전자 삽입한 재조합 벡터를 효모 균주에 도입하였다. 이후, 상기 효모균주에 비하여 에탄올 생산수율이 높아진 것을 확인하였다. 본 발명에 따라 글리세롤을 탄소원으로 이용하도록 조작되어진 균주에의 글리세롤 생산 유전자를 차단함으로써 제작되어진 효모 형질 전환체는 바이오디젤의 부산물로 생성이 되는 글리세롤을 이용하여 많은 양의 에탄올을 생산할 수 있어 매우 유용한 발명인 것으로 기대된다.As described above, in the present invention, Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) is a transformant having improved bioethanol production ability through overexpression of SPT3 and SPT15, which are microorganisms derived from the microorganisms of the genus Microorganism, and ethanol production method using the transformant, and more specifically, fermentation of glycerol. Overexpression of yeast RNA polymerase factors, such as SPT3 and SPT15, in the Saccharomyces cerevisiae , such as TATA-binding proteins, for increased ethanol production and osmotic resistance in transformants designed to be used as raw materials Glycerol uptake protein was transformed into transformants with improved ethanol production capacity and glycerol dehydrogenase and dihydroxyacetone kinase genes. Inserted recombinant vector was introduced into yeast strain . Then, it was confirmed that the ethanol production yield is higher than the yeast strain. Yeast transformants produced by blocking glycerol production genes in strains engineered to use glycerol as a carbon source according to the present invention can produce a large amount of ethanol using glycerol produced as a by-product of biodiesel, which is very useful. It is expected to be an invention.

도 1은 본 발명에서 아가로스 겔 전기영동을 수행하여 TATA 결합 단백질 SPT3와 SPT15의 유전자 확인을 위한 PCR 산물을 확인한 그림이고, Lane 1, 1kb DNA 마커; Lane 2, SPT3 이며, Lane 3, SPT15을 확인한 그림을 나타낸다.
도 2(A)는 본 발명에서 아가로스 겔 전기영동을 수행하여 글리세롤 디히드로게나제 유전자의 PCR 산물을 확인한 그림이고, Lane 1, 1kb DNA 마커; Lane 2, Gcy PCR 산물이며,
도 2(B)는 본 발명에서 아가로스 겔 전기영동을 수행하여 디히드록시아세톤 키나아제 유전자의 PCR 산물을 확인한 그림이고, Lane 1, 1kb DNA 마커; Lane 2, Dak PCR 산물이며,
도 2(C)는 본 발명에서 아가로스 겔 전기영동을 수행하여 글리세롤 업테이크 프로테인 유전자의 PCR 산물을 확인한 그림이고, Lane 1, 1kb DNA 마커; Lane 2, Gup PCR 산물을 나타낸다.
도 3a는 본 발명에서 제시된 TATA 결합 단백질 SPT3, SPT15가 글리세롤 업테이크 프로테인 유전자가 구축 재조합 벡터 pGup에 삽입된 재조합 벡터 pGupSpt3.15Cas의 재조합 과정을 나타낸 모식도이고,
도 3b는 본 발명에서 제시된 글리세롤 디히드로게나제 유전자와 디히드록시아세톤 키나아제 유전자가 양방향으로 삽입된 재조합 벡터 pGcyaDak의 재조합 과정을 나타낸 모식도이고,
도 4는 본 발명에서 제시된 TATA 결합단백질 SPT3,SPT15의 과발현 벡터에 pGcyaDak를 형질전환하여 glycerol을 기질로 하여 에탄올 생산량이 증대됨을 생산함을 확인한 그래프이다. 도 4에서 심벌은 ◆,YPH499 (pESC-TRP); ■, YPH499 (pGcyaDak, pGupCas);▲,YPH499 (pGcyaDak, pGupSpt3Cas);X,YPH499(pGcyaDak, pGupSpt3. 15 Cas)을 나타낸다.
1 is a diagram showing a PCR product for identifying genes of the TATA binding proteins SPT3 and SPT15 by performing agarose gel electrophoresis in the present invention, Lane 1, 1kb DNA marker; Lane 2, SPT3, shows the picture identifying Lane 3, SPT15.
Figure 2 (A) is a figure confirming the PCR product of the glycerol dehydrogenase gene by performing agarose gel electrophoresis in the present invention, Lane 1, 1kb DNA marker; Lane 2, product of Gcy PCR,
Figure 2 (B) is a figure confirming the PCR product of the dihydroxyacetone kinase gene by performing agarose gel electrophoresis in the present invention, Lane 1, 1kb DNA marker; Lane 2, product of Dak PCR,
Figure 2 (C) is a figure confirming the PCR product of the glycerol uptake protein gene by performing agarose gel electrophoresis in the present invention, Lane 1, 1kb DNA marker; Lane 2, Gup PCR product.
Figure 3a is a schematic diagram showing the recombination process of the recombinant vector pGupSpt3.15Cas TATA binding proteins SPT3, SPT15 is glycerol uptake protein gene inserted into the construction recombinant vector pGup presented in the present invention,
Figure 3b is a schematic diagram showing the recombination process of the recombinant vector pGcyaDak inserted in both directions the glycerol dehydrogenase gene and dihydroxyacetone kinase gene presented in the present invention,
4 is a graph confirming that ethanol production is increased by transforming pGcyaDak into an overexpression vector of the TATA binding proteins SPT3 and SPT15 presented in the present invention using glycerol as a substrate. In Figure 4 the symbols are ◆, YPH499 (pESC-TRP); YPH499 (p GcyaDak , pGupCas ); ▲, YPH499 (p GcyaDak , pGupSpt3Cas ); X, YPH499 (p GcyaDak , pGupSpt3.15 Cas ).

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<실시예 1> 효모의 TATA 결합 단백질 SPT3, SPT15 유전자의 형질전환<Example 1> Transformation of the yeast TATA binding protein SPT3, SPT15 gene

<실시예 1-1> 효모의 TATA 결합 단백질 SPT3, SPT15 유전자의 증폭Example 1-1 Amplification of TATA binding Proteins SPT3 and SPT15 Genes in Yeast

글리세롤을 기질로 이용한 에탄올 생산시에 저해 인자인 에탄올 내성 및 삼투압에 대한 내성의 증대를 위하여 TATA 결합 단백질 SPT3,SPT15 유전자를 클로닝하기 위하여 사카로마이시스 세레비지애의 지노믹디엔에이 (BY4741) 로부터 펩타이드 부분의 염기서열을 참고로 하여 SPT3의 클로닝을 위하여 Spe(5-actagtcccg ccgccaccaa ggagatgatg gacaagcata agta-3;서열번호 11), Spe( 5-actagtttac atgataattg gtttag-3;서열번호 12), SPT15는 Bgl (5-agatctcccg ccgccaccaa ggagatggcc gatgaggaac gttt-3;서열번호 13), Bgl(5-agatcttcac atttttctaa attcactta-3;서열번호 14) 으로 각각의 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. 이후 상기 합성된 프라이머를 이용하여 PCR을 수행하였다. 그 결과 각각 1.5kb, 0.7kb의 PCR 밴드를 확인할 수 있었고 도면 1에 각각 도시하였다.
Peptide portion from Saccharomyces cerevisiae genomic DNA (BY4741) to clone TATA binding proteins SPT3, SPT15 genes for increased ethanol resistance and osmotic resistance, which are inhibitors in ethanol production using glycerol as a substrate For cloning SPT3, Spe (5- actagtcccg ccgccaccaa ggagatgatg gacaagcata agta-3; SEQ ID NO: 11), Spe (5- actagtttac atgataattg gtttag-3; SEQ ID NO: 12), and SPT15 were identified as Bgl (5- Agatctcccg ccgccaccaa ggagatggcc gatgaggaac gttt-3; SEQ ID NO: 13) , Bgl (5- agatcttcac atttttctaa attcactta-3; SEQ ID NO: 14) was designed to synthesize the primers so that each recognition sequence is inserted. Then, PCR was performed using the synthesized primers. As a result, PCR bands of 1.5 kb and 0.7 kb, respectively, could be confirmed and are shown in FIG. 1.

<실시예 1-2> 효모의 TATA 결합 단백질 SPT3, SPT15 유전자의 클로닝Example 1-2 Cloning of TATA Binding Proteins SPT3 and SPT15 Genes in Yeast

상기 실시예 1에서 얻은 증폭산물을 0.8% 아가로스 겔 상에서 전기영동하였고 아가로스 겔 상의 DNA 절편은 Biospin gel extraction kit (Bioflux)를 사용하여 회수하였다. The amplification product obtained in Example 1 was electrophoresed on a 0.8% agarose gel and DNA fragments on the agarose gel were recovered using a Biospin gel extraction kit (Bioflux).

그 후, SPT3은 Spe Dak는 Bgl로 절단한 후 제한효소 Spe1, Bgl으로 절단한 후 글리세롤 업테이크 프로테인이 삽입되어진 pGup1 에 라이게이션(ligation) 시켜 대장균(E. coli) DH5a(인비트로겐(Invitrogen)에 형질전환을 하였다. 이어 형질 전환체로부터 라이게이션 (ligation) 된 재조합 플라스미드 DNA를 분리하였다. 상기 재조합 벡터를 각각pGupSpt3, pGupSpt3.15이라 명명하였으며 이를 3a에 도식화 하였다.Then, SPT3 was digested with Spe Dak with Bgl and then with restriction enzymes Spe1 and Bgl and then ligated to pGup1 into which the glycerol uptake protein was inserted.E. Coli DH5a (Invitrogen) The recombinant plasmid DNA ligated from the transformant was then isolated, and the recombinant vectors were named pGupSpt3 and pGupSpt3.15, respectively, and are shown in 3a.

또한 pGupSpt3.15을 유전자 삽입하기 위하여 BamH1 인식서열을 포함하도록 sense primer (5-ggatccatgt cagcattttaggtaaattccgtg-3;서열번호 15) 그리고 anti-sence primer (5-ggatccataatgtcgctgatcagcatcctg tct-3;서열번호 16)를 제작하여 효모 유전자 삽입 벡터 (yeast integration vector)인 YIP-5(ATCC)에 클로닝하여 이를 pGupSpt3.15Cas이라 명명하였으며 3a에 도식화하였으며 이를 사카로마이시스 세레비지애의 지노믹디엔에이에 유전자 삽입하였다. 재조합된 벡터 pGupSpt3.15Cas를 야생형의 균주(YPH499, Clontech Laboratories Inc.)에 클론테크 (clontech)사의 이스트메이커 이스트 트랜스포메이션 키트 (YEASTMAKER yeast transformation kit2) 에서 제공하는 실험방법에 따라 효모 숙주세포를 형질 전환시켰다. 이후, 트립토판 결핍 SD배지 (0.67% yeast nitrogen base, 2% glucose, 0.067% yeast nigrogen base w/o trp, 2% agar)을 이용하여 형질 전환체를 선별하였으며, 이를 사카로마이시스 세레비지애 YPH499 (pGcyaDak, pGupSpt3.Spt15Cas)라 명명하였다. In addition, a sense primer (5-ggatccatgt cagcattttaggtaaattccgtg-3; SEQ ID NO: 15) and an anti-sence primer (5-ggatccataatgtcgctgatcagcatcctg tct-3; SEQ ID NO: 16) were prepared to include a BamH 1 recognition sequence for gene insertion of pGupSpt3.15. It was cloned into a yeast gene insertion vector (Yeast integration vector) YIP-5 (ATCC) and named it pGupSpt3.15Cas and plotted on 3a and inserted into genomic DNA of Saccharomyces cerevisiae. Recombinant vector pGupSpt3.15Cas was transformed into yeast host cells according to the experimental method provided by Clontech's YEASTMAKER yeast transformation kit2 to wild type strain (YPH499, Clontech Laboratories Inc.). I was. Subsequently, the transformants were selected using tryptophan deficient SD medium (0.67% yeast nitrogen base, 2% glucose, 0.067% yeast nigrogen base w / o trp, 2% agar), which was then transformed into Saccharomyces cerevisiae YPH499. (pGcyaDak, pGupSpt3.Spt15Cas).

<실시예 2> 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제, 글리세롤 업테이크 프로테인 유전자의 형질전환Example 2 Transformation of Glycerol Dehydrogenase, Dihydroxy Acetone Kinase, Glycerol Uptake Protein Gene

<실시예 2-1> 효모의 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제, 글리세롤 업테이크 프로테인 유전자의 증폭Example 2-1 Amplification of Glycerol Dehydrogenase, Dihydroxy Acetone Kinase, and Glycerol Uptake Protein Genes in Yeast

글리세롤을 해당과정의 중간물질인 DHAP로 효율적으로 전환하기 위하여 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제 유전자를 클로닝하기 위하여 사카로마이시스 세레비지애의 지노믹디엔에이 (BY4741) 로부터 펩타이드 부분의 염기서열을 참고로 하여 Gcy의 클로닝을 위하여 BamH (5-ggatccatgcctgctactttacatgaSequencing of Peptides from Saccharomyces cerevisiae's Genomicdiene (BY4741) for Cloning the Glycerol Dehydrogenase and Dihydroxyacetone Kinase Genes for the Efficient Conversion of Glycerol to DHAP, an Intermediary in the Process BamH (5- ggatccatgcctgctactttacatga for cloning Gcy with reference to

ttct-3;서열번호 17), Sal( 5-gtcgacatacttgaatacttcgaaaggag-3;서열번호 18), Dak는 Spe (5-actagtatgtccgctaaatcgtttgaagtc-3;서열번호 19), Cla(5-atcgatatacaaggcgctttgaaccccctt-3;서열번호 20) 그리고 Gup1에는 EcoR(5-gaattcatgtcgctgatcagcatcctg-3;서열번호 21), Spe(5-actagtccagcattct-3; SEQ ID NO: 17), Sal (5- gtcgacatacttgaatacttcgaaaggag-3; SEQ ID NO: 18), Dak is Spe (5- actagtatgtccgctaaatcgtttgaagtc-3; SEQ ID NO: 19) , Cla (5- atcgatatacaaggcgctttgaaccccct-3; SEQ ID NO: 20) and Gup1 includes EcoR (5- gaattcatgtcgctgatcagcatcctg-3; SEQ ID NO: 21) and Spe (5- actagtccagca

ttttaggtaaattccgtg-3;서열번호 22)으로 각각의 인식서열이 삽입되도록 프라이머를 디자인하여 합성하였다. 이후 상기 합성된 프라이머를 이용하여 PCR을 수행하였다. 그 결과 각각 936bp, 1755bp 그리고 1683bp의 PCR 밴드를 확인할 수 있었고 도면 2에 각각 도시하였다.
ttttaggtaaattccgtg-3; SEQ ID NO: 22) was designed and synthesized primers to insert each recognition sequence. Then, PCR was performed using the synthesized primers. As a result, PCR bands of 936bp, 1755bp and 1683bp could be confirmed, respectively, and are shown in FIG. 2.

<실시예 2-2> 글리세롤 디히드로게나제, 디히드록시아세톤 키나아제, 글리세롤 업테이크 프로테인 유전자의 클로닝Example 2-2 Cloning of Glycerol Dehydrogenase, Dihydroxy Acetone Kinase, and Glycerol Uptake Protein Genes

상기 실시예 1에서 얻은 증폭산물을 0.8% 아가로스 겔 상에서 전기영동하였고 아가로스 겔 상의 DNA 절편은 Biospin gel extraction kit (Bioflux)를 사용하여 회수하였다. The amplification product obtained in Example 1 was electrophoresed on a 0.8% agarose gel and DNA fragments on the agarose gel were recovered using a Biospin gel extraction kit (Bioflux).

그 후, Gcy는 BamH, Sal, Dak는 Spe, Cla그리고 Gup1은 EcoR, Spe으로 절단한 후 효모-대장균 셔틀 벡터 (yeast-E. coli shuttle vector)인 pESC-trp (Clontech) 에 라이게이션 (ligation) 시켜 에스세리시아 콜라이 (대장균, E. coli) DH5a에 형질 전환을 하였다. 이어 형질 전환체로부터 라이게이션 (ligation) 된 재조합 플라스미드 DNA를 분리하였다. 상기 재조합 벡터를 각각pESC-Gcy, pESC-Dak, pESC-Gup이라 명명하였다. 그 후 pESC-Gcy를 벡터로 하여 Dak를 클로닝하여 에스세리시아 콜라이 DH5a(인비트로겐(Invitrogen)에 형질 전환을 하였다. 이어 형질 전환체로부터 라이게이션 된 재조합 플라스미드 DNA를 분리하였다. 상기 재조합 벡터를 pGcyaDak이라 명명하였고 도면 3b에 도시하였다. 또한 pESC-Gup1을 유전자 삽입하기 위하여 BamH1 인식서열을 포함하도록 sense primer (5-ggatccatgt cagcattttaggtaaattccgtg-3;서열번호 15) 그리고 anti-sence primer (5-ggatccataatgtcgctgatcagcatcctg tct-3;서열번호 16)를 제작하여 효모 유전자 삽입 벡터 (yeast integration vector)인 YIP-5에 클로닝하여 이를 사카로마이시스 세레비지애의 지노믹디엔에이에 유전자 삽입하였다.
After that, the BamH Gcy, Sal, Dak are Spe, and Cla Gup1 is EcoR, was cut with Spe yeast-in pESC-trp (Clontech) in E. coli shuttle vectors (yeast- E. coli shuttle vector) ligation (ligation E. coli ( E. coli ) DH5a was transformed. The ligation of recombinant plasmid DNA was then isolated from the transformants. The recombinant vectors were named pESC-Gcy, pESC-Dak, and pESC-Gup, respectively. Then, Dak was cloned using pESC-Gcy as a vector to transform Escherichia coli DH5a (Invitrogen). Then, the recombinant plasmid DNA ligated from the transformant was isolated. The recombinant vector was pGcyaDak. It is named as shown in Fig. 3b and also the sense primer (5-ggatccatgt cagcattttaggtaaattccgtg-3; SEQ ID NO: 15) and the anti-sence primer (5-ggatccataatgtcgctgatcagcatcctg tct-) to include the BamH 1 recognition sequence for gene insertion of pESC-Gup1. 3; SEQ ID NO: 16) was constructed and cloned into a yeast gene insertion vector (yeast integration vector) YIP-5 and inserted into the genomic DNA of Saccharomyces cerevisiae.

<< 실시예Example 3> 효모 형질  3> Yeast trait 전환체를Conversion 이용한 바이오 에탄올의 생산 Bioethanol Production

YPH499(pGcyaDak, pGupCas)와 YPH499(pGcyaDak, pGupSpt3.15Cas)를 갈락토오스로 발현 유도되는 SG배지에서 24시간 전배양 후 48시간 진탕 배양하여 2%의 글리세롤이 기질로 첨가된 발효배지에 600nm파장에서 흡광도를 측정했을 때 각각 1가 되도록 한다. 상기 발효배양액을 30℃, 100rpm에서 배양하며 일정한 시간별로 배양액을 채취하여 가스 크로마토그래피를 실시함으로 생산된 에탄올을 측정하였다. 상기 방법대로 실행결과 TATA 결합 단백질이 과발현되어진 균주에서의 에탄올 생산수율이 YPH499 (pGcyaDak, pGupCas)보다 높게 측정이 되었다. 이 결과를 도면 4에 도시하였다.YPH499 (pGcyaDak, pGupCas) and YPH499 (pGcyaDak, pGupSpt3.15Cas) were absorbed at 600 nm in fermentation broth supplemented with 2% glycerol as a substrate for 48 hours by preculture for 24 hours in SG medium induced with galactose. When is measured, let each be 1. The fermentation broth was incubated at 30 ° C. and 100 rpm, and the ethanol produced was measured by performing gas chromatography by taking a culture solution at a predetermined time. As a result of the above method, the yield of ethanol was higher than that of YPH499 (pGcyaDak, pGupCas). This result is shown in FIG.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11153PKCCM11153P 2010121720101217

<110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same <160> 22 <170> KopatentIn 1.71 <210> 1 <211> 336 <212> PRT <213> Saccharomyces cerevisiae <400> 1 Met Met Asp Lys His Lys Tyr Arg Val Glu Ile Gln Gln Met Met Phe 1 5 10 15 Val Ser Gly Glu Ile Asn Asp Pro Pro Val Glu Thr Thr Ser Leu Ile 20 25 30 Glu Asp Ile Val Arg Gly Gln Val Ile Glu Ile Leu Leu Gln Ser Asn 35 40 45 Lys Thr Ala His Leu Arg Gly Ser Arg Ser Ile Leu Pro Glu Asp Val 50 55 60 Ile Phe Leu Ile Arg His Asp Lys Ala Lys Val Asn Arg Leu Arg Thr 65 70 75 80 Tyr Leu Ser Trp Lys Asp Leu Arg Lys Asn Ala Lys Asp Gln Asp Ala 85 90 95 Ser Ala Gly Val Ala Ser Gly Thr Gly Asn Pro Gly Ala Gly Gly Glu 100 105 110 Asp Asp Leu Lys Lys Ala Gly Gly Gly Glu Lys Asp Glu Lys Asp Gly 115 120 125 Gly Asn Met Met Lys Val Lys Lys Ser Gln Ile Lys Leu Pro Trp Glu 130 135 140 Leu Gln Phe Met Phe Asn Glu His Pro Leu Glu Asn Asn Asp Asp Asn 145 150 155 160 Asp Asp Met Asp Glu Asp Glu Arg Glu Ala Asn Ile Val Thr Leu Lys 165 170 175 Arg Leu Lys Met Ala Asp Asp Arg Thr Arg Asn Met Thr Lys Glu Glu 180 185 190 Tyr Val His Trp Ser Asp Cys Arg Gln Ala Ser Phe Thr Phe Arg Lys 195 200 205 Asn Lys Arg Phe Lys Asp Trp Ser Gly Ile Ser Gln Leu Thr Glu Gly 210 215 220 Lys Pro His Asp Asp Val Ile Asp Ile Leu Gly Phe Leu Thr Phe Glu 225 230 235 240 Ile Val Cys Ser Leu Thr Glu Thr Ala Leu Lys Ile Lys Gln Arg Glu 245 250 255 Gln Val Leu Gln Thr Gln Lys Asp Lys Ser Gln Gln Ser Ser Gln Asp 260 265 270 Asn Thr Asn Phe Glu Phe Ala Ser Ser Thr Leu His Arg Lys Lys Arg 275 280 285 Leu Phe Asp Gly Pro Glu Asn Val Ile Asn Pro Leu Lys Pro Arg His 290 295 300 Ile Glu Glu Ala Trp Arg Val Leu Gln Thr Ile Asp Met Arg His Arg 305 310 315 320 Ala Leu Thr Asn Phe Lys Gly Gly Arg Leu Ser Ser Lys Pro Ile Ile 325 330 335 <210> 2 <211> 1014 <212> DNA <213> Saccharomyces cerevisiae <400> 2 atgatggaca agcataagta tcgtgtggag attcaacaga tgatgtttgt ctctggtgaa 60 attaacgacc cacccgtaga aaccacatca ctgatagaag atatagtgag gggtcaagtg 120 atagaaattc ttttacagtc aaacaaaacg gcgcatctta ggggaagtag gagcattctc 180 cctgaagacg tcattttctt gatcagacac gacaaggcca aagtcaatcg tttgagaaca 240 tatctgtcat ggaaggattt gcgtaaaaac gccaaggacc aagatgctag tgccggtgta 300 gcgagtggca ctggaaatcc tggggcaggt ggtgaagatg atttgaaaaa agcaggtggt 360 ggcgagaaag acgaaaaaga tggtggaaac atgatgaagg tcaagaaatc ccaaattaag 420 ctgccatggg aattgcagtt tatgttcaat gaacatcctt tagaaaataa tgacgacaat 480 gatgatatgg atgaggatga acgagaagct aatatagtca ctttgaaaag gctgaaaatg 540 gctgacgata gaacacgaaa catgactaaa gaggagtacg tgcattggtc cgattgtcga 600 caggcaagtt ttacatttag gaagaataaa aggttcaagg actggtctgg aatttcgcaa 660 ttaactgagg ggaaacccca tgatgatgtg attgatatac tggggtttct aacttttgag 720 attgtctgtt ctttgacgga aacagctctg aaaatcaaac aaagagaaca ggtattacag 780 actcaaaagg acaaatccca gcaatctagc caagataata ctaactttga atttgcatca 840 tccacattac atagaaagaa aagattattt gatggacctg aaaatgttat aaacccgctc 900 aaaccaaggc atatagagga agcctggaga gtactacaaa caattgacat gaggcatagg 960 gctttgacca actttaaagg tggtagactc agttctaaac caattatcat gtaa 1014 <210> 3 <211> 240 <212> PRT <213> Saccharomyces cerevisiae <400> 3 Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Asn Lys Ile 1 5 10 15 Val Phe Asp Pro Asn Thr Arg Gln Val Trp Glu Asn Gln Asn Arg Asp 20 25 30 Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu Glu Asp Ile Lys Arg 35 40 45 Ala Ala Pro Glu Ser Glu Lys Asp Thr Ser Ala Thr Ser Gly Ile Val 50 55 60 Pro Thr Leu Gln Asn Ile Val Ala Thr Val Thr Leu Gly Cys Arg Leu 65 70 75 80 Asp Leu Lys Thr Val Ala Leu His Ala Arg Asn Ala Glu Tyr Asn Pro 85 90 95 Lys Arg Phe Ala Ala Val Ile Met Arg Ile Arg Glu Pro Lys Thr Thr 100 105 110 Ala Leu Ile Phe Ala Ser Gly Lys Met Val Val Thr Gly Ala Lys Ser 115 120 125 Glu Asp Asp Ser Lys Leu Ala Ser Arg Lys Tyr Ala Arg Ile Ile Gln 130 135 140 Lys Ile Gly Phe Ala Ala Lys Phe Thr Asp Phe Lys Ile Gln Asn Ile 145 150 155 160 Val Gly Ser Cys Asp Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala 165 170 175 Phe Ser His Gly Thr Phe Ser Ser Tyr Glu Pro Glu Leu Phe Pro Gly 180 185 190 Leu Ile Tyr Arg Met Val Lys Pro Lys Ile Val Leu Leu Ile Phe Val 195 200 205 Ser Gly Lys Ile Val Leu Thr Gly Ala Lys Gln Arg Glu Glu Ile Tyr 210 215 220 Gln Ala Phe Glu Ala Ile Tyr Pro Val Leu Ser Glu Phe Arg Lys Met 225 230 235 240 <210> 4 <211> 723 <212> DNA <213> Saccharomyces cerevisiae <400> 4 atggccgatg aggaacgttt aaaggagttt aaagaggcaa acaagatagt gtttgatcca 60 aataccagac aagtatggga aaaccagaat cgagatggta caaaaccagc aactactttc 120 cagagtgaag aggacataaa aagagctgcc ccagaatctg aaaaagacac ctccgccaca 180 tcaggtattg ttccaacact acaaaacatt gtggcaactg tgactttggg gtgcaggtta 240 gatctgaaaa cagttgcgct acatgcccgt aatgcagaat ataaccccaa gcgttttgct 300 gctgtcatca tgcgtattag agagccaaaa actacagctt taatttttgc ctcagggaaa 360 atggttgtta ccggtgcaaa aagtgaggat gactcaaagc tggccagtag aaaatatgca 420 agaattatcc aaaaaatcgg gtttgctgct aaattcacag acttcaaaat acaaaatatt 480 gtcggttcgt gtgacgttaa attccctata cgtctagaag ggttagcatt cagtcatggt 540 actttctcct cctatgagcc agaattgttt cctggtttga tctatagaat ggtgaagccg 600 aaaattgtgt tgttaatttt tgtttcagga aagattgttc ttactggtgc aaagcaaagg 660 gaagaaattt accaagcttt tgaagctata taccctgtgc taagtgaatt tagaaaaatg 720 tga 723 <210> 5 <211> 312 <212> PRT <213> Saccharomyces cerevisiae <400> 5 Met Pro Ala Thr Leu His Asp Ser Thr Lys Ile Leu Ser Leu Asn Thr 1 5 10 15 Gly Ala Gln Ile Pro Gln Ile Gly Leu Gly Thr Trp Gln Ser Lys Glu 20 25 30 Asn Asp Ala Tyr Lys Ala Val Leu Thr Ala Leu Lys Asp Gly Tyr Arg 35 40 45 His Ile Asp Thr Ala Ala Ile Tyr Arg Asn Glu Asp Gln Val Gly Gln 50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Val Thr Thr 65 70 75 80 Lys Leu Trp Cys Thr Gln His His Glu Pro Glu Val Ala Leu Asp Gln 85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His 100 105 110 Trp Pro Ala Arg Leu Asp Pro Ala Tyr Ile Lys Asn Glu Asp Ile Leu 115 120 125 Ser Val Pro Thr Lys Lys Asp Gly Ser Arg Ala Val Asp Ile Thr Asn 130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Leu 165 170 175 Lys Asp Leu Leu Ala Ser Gln Gly Asn Lys Leu Thr Pro Ala Ala Asn 180 185 190 Gln Val Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Asn Phe 195 200 205 Cys Lys Ser Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Leu Gly Ser 210 215 220 Thr Asp Ala Pro Leu Leu Lys Glu Pro Val Ile Leu Glu Ile Ala Lys 225 230 235 240 Lys Asn Asn Val Gln Pro Gly His Val Val Ile Ser Trp His Val Gln 245 250 255 Arg Gly Tyr Val Val Leu Pro Lys Ser Val Asn Pro Asp Arg Ile Lys 260 265 270 Thr Asn Arg Lys Ile Phe Thr Leu Ser Thr Glu Asp Phe Glu Ala Ile 275 280 285 Asn Asn Ile Ser Lys Glu Lys Gly Glu Lys Arg Val Val His Pro Asn 290 295 300 Trp Ser Pro Phe Glu Val Phe Lys 305 310 <210> 6 <211> 939 <212> DNA <213> Saccharomyces cerevisiae <400> 6 atgcctgcta ctttacatga ttctacgaaa atcctttctc taaatactgg agcccaaatc 60 cctcaaatag gtttaggtac gtggcagtcg aaagagaacg atgcttataa ggctgtttta 120 accgctttga aagatggcta ccgacacatt gatactgctg ctatttaccg taatgaagac 180 caagtcggtc aagccatcaa ggattcaggt gttcctcggg aagaaatctt tgttactaca 240 aagttatggt gtacacaaca ccacgaacct gaagtagcgc tggatcaatc actaaagagg 300 ttaggattgg actacgtaga cttatatttg atgcattggc ctgccagatt agatccagcc 360 tacatcaaaa atgaagacat cttgagtgtg ccaacaaaga aggatggttc tcgtgcagtg 420 gatatcacca attggaattt catcaaaacc tgggaattaa tgcaggaact accaaagact 480 ggtaaaacta aggccgttgg agtctccaac ttttctataa ataacctgaa agatctatta 540 gcatctcaag gtaataagct tacgccagct gctaaccaag tcgaaataca tccattacta 600 cctcaagacg aattgattaa tttttgtaaa agtaaaggca ttgtggttga agcttattct 660 ccgttaggta gtaccgatgc tccactattg aaggaaccgg ttatccttga aattgcgaag 720 aaaaataacg ttcaacccgg acacgttgtt attagctggc acgtccaaag aggttatgtt 780 gtcttgccaa aatctgtgaa tcccgatcga atcaaaacga acaggaaaat atttactttg 840 tctactgagg actttgaagc tatcaataac atatcgaagg aaaagggcga aaaaagggtt 900 gtacatccaa attggtctcc tttcgaagta ttcaagtaa 939 <210> 7 <211> 584 <212> PRT <213> Saccharomyces cerevisiae <400> 7 Met Ser Ala Lys Ser Phe Glu Val Thr Asp Pro Val Asn Ser Ser Leu 1 5 10 15 Lys Gly Phe Ala Leu Ala Asn Pro Ser Ile Thr Leu Val Pro Glu Glu 20 25 30 Lys Ile Leu Phe Arg Lys Thr Asp Ser Asp Lys Ile Ala Leu Ile Ser 35 40 45 Gly Gly Gly Ser Gly His Glu Pro Thr His Ala Gly Phe Ile Gly Lys 50 55 60 Gly Met Leu Ser Gly Ala Val Val Gly Glu Ile Phe Ala Ser Pro Ser 65 70 75 80 Thr Lys Gln Ile Leu Asn Ala Ile Arg Leu Val Asn Glu Asn Ala Ser 85 90 95 Gly Val Leu Leu Ile Val Lys Asn Tyr Thr Gly Asp Val Leu His Phe 100 105 110 Gly Leu Ser Ala Glu Arg Ala Arg Ala Leu Gly Ile Asn Cys Arg Val 115 120 125 Ala Val Ile Gly Asp Asp Val Ala Val Gly Arg Glu Lys Gly Gly Met 130 135 140 Val Gly Arg Arg Ala Leu Ala Gly Thr Val Leu Val His Lys Ile Val 145 150 155 160 Gly Ala Phe Ala Glu Glu Tyr Ser Ser Lys Tyr Gly Leu Asp Gly Thr 165 170 175 Ala Lys Val Ala Lys Ile Ile Asn Asp Asn Leu Val Thr Ile Gly Ser 180 185 190 Ser Leu Asp His Cys Lys Val Pro Gly Arg Lys Phe Glu Ser Glu Leu 195 200 205 Asn Glu Lys Gln Met Glu Leu Gly Met Gly Ile His Asn Glu Pro Gly 210 215 220 Val Lys Val Leu Asp Pro Ile Pro Ser Thr Glu Asp Leu Ile Ser Lys 225 230 235 240 Tyr Met Leu Pro Lys Leu Leu Asp Pro Asn Asp Lys Asp Arg Ala Phe 245 250 255 Val Lys Phe Asp Glu Asp Asp Glu Val Val Leu Leu Val Asn Asn Leu 260 265 270 Gly Gly Val Ser Asn Phe Val Ile Ser Ser Ile Thr Ser Lys Thr Thr 275 280 285 Asp Phe Leu Lys Glu Asn Tyr Asn Ile Thr Pro Val Gln Thr Ile Ala 290 295 300 Gly Thr Leu Met Thr Ser Phe Asn Gly Asn Gly Phe Ser Ile Thr Leu 305 310 315 320 Leu Asn Ala Thr Lys Ala Thr Lys Ala Leu Gln Ser Asp Phe Glu Glu 325 330 335 Ile Lys Ser Val Leu Asp Leu Leu Asn Ala Phe Thr Asn Ala Pro Gly 340 345 350 Trp Pro Ile Ala Asp Phe Glu Lys Thr Ser Ala Pro Ser Val Asn Asp 355 360 365 Asp Leu Leu His Asn Glu Val Thr Ala Lys Ala Val Gly Thr Tyr Asp 370 375 380 Phe Asp Lys Phe Ala Glu Trp Met Lys Ser Gly Ala Glu Gln Val Ile 385 390 395 400 Lys Ser Glu Pro His Ile Thr Glu Leu Asp Asn Gln Val Gly Asp Gly 405 410 415 Asp Cys Gly Tyr Thr Leu Val Ala Gly Val Lys Gly Ile Thr Glu Asn 420 425 430 Leu Asp Lys Leu Ser Lys Asp Ser Leu Ser Gln Ala Val Ala Gln Ile 435 440 445 Ser Asp Phe Ile Glu Gly Ser Met Gly Gly Thr Ser Gly Gly Leu Tyr 450 455 460 Ser Ile Leu Leu Ser Gly Phe Ser His Gly Leu Ile Gln Val Cys Lys 465 470 475 480 Ser Lys Asp Glu Pro Val Thr Lys Glu Ile Val Ala Lys Ser Leu Gly 485 490 495 Ile Ala Leu Asp Thr Leu Tyr Lys Tyr Thr Lys Ala Arg Lys Gly Ser 500 505 510 Ser Thr Met Ile Asp Ala Leu Glu Pro Phe Val Lys Glu Phe Thr Ala 515 520 525 Ser Lys Asp Phe Asn Lys Ala Val Lys Ala Ala Glu Glu Gly Ala Lys 530 535 540 Ser Thr Ala Thr Phe Glu Ala Lys Phe Gly Arg Ala Ser Tyr Val Gly 545 550 555 560 Asp Ser Ser Gln Val Glu Asp Pro Gly Ala Val Gly Leu Cys Glu Phe 565 570 575 Leu Lys Gly Val Gln Ser Ala Leu 580 <210> 8 <211> 1755 <212> DNA <213> Saccharomyces cerevisiae <400> 8 atgtccgcta aatcgtttga agtcacagat ccagtcaatt caagtctcaa agggtttgcc 60 cttgctaacc cctccattac gctggtccct gaagaaaaaa ttctcttcag aaagaccgat 120 tccgacaaga tcgcattaat ttctggtggt ggtagtggac atgaacctac acacgccggt 180 ttcattggta agggtatgtt gagtggcgcc gtggttggcg aaatttttgc atccccttca 240 acaaaacaga ttttaaatgc aatccgttta gtcaatgaaa atgcgtctgg cgttttattg 300 attgtgaaga actacacagg tgatgttttg cattttggtc tgtccgctga gagagcaaga 360 gccttgggta ttaactgccg cgttgctgtc ataggtgatg atgttgcagt tggcagagaa 420 aagggtggta tggttggtag aagagcattg gcaggtaccg ttttggttca taagattgta 480 ggtgccttcg cagaagaata ttctagtaag tatggcttag acggtacagc taaagtggct 540 aaaattatca acgacaattt ggtgaccatt ggatcttctt tagaccattg taaagttcct 600 ggcaggaaat tcgaaagtga attaaacgaa aaacaaatgg aattgggtat gggtattcat 660 aacgaacctg gtgtgaaagt tttagaccct attccttcta ccgaagactt gatctccaag 720 tatatgctac caaaactatt ggatccaaac gataaggata gagcttttgt aaagtttgat 780 gaagatgatg aagttgtctt gttagttaac aatctcggcg gtgtttctaa ttttgttatt 840 agttctatca cttccaaaac tacggatttc ttaaaggaaa attacaacat aaccccggtt 900 caaacaattg ctggcacatt gatgacctcc ttcaatggta atgggttcag tatcacatta 960 ctaaacgcca ctaaggctac aaaggctttg caatctgatt ttgaggagat caaatcagta 1020 ctagacttgt tgaacgcatt tacgaacgca ccgggctggc caattgcaga ttttgaaaag 1080 acttctgccc catctgttaa cgatgacttg ttacataatg aagtaacagc aaaggccgtc 1140 ggtacctatg actttgacaa gtttgctgag tggatgaaga gtggtgctga acaagttatc 1200 aagagcgaac cgcacattac ggaactagac aatcaagttg gtgatggtga ttgtggttac 1260 actttagtgg caggagttaa aggcatcacc gaaaaccttg acaagctgtc gaaggactca 1320 ttatctcagg cggttgccca aatttcagat ttcattgaag gctcaatggg aggtacttct 1380 ggtggtttat attctattct tttgtcgggt ttttcacacg gattaattca ggtttgtaaa 1440 tcaaaggatg aacccgtcac taaggaaatt gtggctaagt cactcggaat tgcattggat 1500 actttataca aatatacaaa ggcaaggaag ggatcatcca ccatgattga tgctttagaa 1560 ccattcgtta aagaatttac tgcatctaag gatttcaata aggcggtaaa agctgcagag 1620 gaaggtgcta aatccactgc tacattcgag gccaaatttg gcagagcttc gtatgtcggc 1680 gattcatctc aagtagaaga tcctggtgca gtaggcctat gtgagttttt gaagggggtt 1740 caaagcgcct tgtaa 1755 <210> 9 <211> 560 <212> PRT <213> Saccharomyces cerevisiae <400> 9 Met Ser Leu Ile Ser Ile Leu Ser Pro Leu Ile Thr Ser Glu Gly Leu 1 5 10 15 Asp Ser Arg Ile Lys Pro Ser Pro Lys Lys Asp Ala Ser Thr Thr Thr 20 25 30 Lys Pro Ser Leu Trp Lys Thr Thr Glu Phe Lys Phe Tyr Tyr Ile Ala 35 40 45 Phe Leu Val Val Val Pro Leu Met Phe Tyr Ala Gly Leu Gln Ala Ser 50 55 60 Ser Pro Glu Asn Pro Asn Tyr Ala Arg Tyr Glu Arg Leu Leu Ser Gln 65 70 75 80 Gly Trp Leu Phe Gly Arg Lys Val Asp Asn Ser Asp Ser Gln Tyr Arg 85 90 95 Phe Phe Arg Asp Asn Phe Ala Leu Leu Ser Val Leu Met Leu Val His 100 105 110 Thr Ser Ile Lys Arg Ile Val Leu Tyr Ser Thr Asn Ile Thr Lys Leu 115 120 125 Arg Phe Asp Leu Ile Phe Gly Leu Ile Phe Leu Val Ala Ala His Gly 130 135 140 Val Asn Ser Ile Arg Ile Leu Ala His Met Leu Ile Leu Tyr Ala Ile 145 150 155 160 Ala His Val Leu Lys Asn Phe Arg Arg Ile Ala Thr Ile Ser Ile Trp 165 170 175 Ile Tyr Gly Ile Ser Thr Leu Phe Ile Asn Asp Asn Phe Arg Ala Tyr 180 185 190 Pro Phe Gly Asn Ile Cys Ser Phe Leu Ser Pro Leu Asp His Trp Tyr 195 200 205 Arg Gly Ile Ile Pro Arg Trp Asp Val Phe Phe Asn Phe Thr Leu Leu 210 215 220 Arg Val Leu Ser Tyr Asn Leu Asp Phe Leu Glu Arg Trp Glu Asn Leu 225 230 235 240 Gln Lys Lys Lys Ser Pro Ser Tyr Glu Ser Lys Glu Ala Lys Ser Ala 245 250 255 Ile Leu Leu Asn Glu Arg Ala Arg Leu Thr Ala Ala His Pro Ile Gln 260 265 270 Asp Tyr Ser Leu Met Asn Tyr Ile Ala Tyr Val Thr Tyr Thr Pro Leu 275 280 285 Phe Ile Ala Gly Pro Ile Ile Thr Phe Asn Asp Tyr Val Tyr Gln Ser 290 295 300 Lys His Thr Leu Pro Ser Ile Asn Phe Lys Phe Ile Phe Tyr Tyr Ala 305 310 315 320 Val Arg Phe Val Ile Ala Leu Leu Ser Met Glu Phe Ile Leu His Phe 325 330 335 Leu His Val Val Ala Ile Ser Lys Thr Lys Ala Trp Glu Asn Asp Thr 340 345 350 Pro Phe Gln Ile Ser Met Ile Gly Leu Phe Asn Leu Asn Ile Ile Trp 355 360 365 Leu Lys Leu Leu Ile Pro Trp Arg Leu Phe Arg Leu Trp Ala Leu Leu 370 375 380 Asp Gly Ile Asp Thr Pro Glu Asn Met Ile Arg Cys Val Asp Asn Asn 385 390 395 400 Tyr Ser Ser Leu Ala Phe Trp Arg Ala Trp His Arg Ser Tyr Asn Lys 405 410 415 Trp Val Val Arg Tyr Ile Tyr Ile Pro Leu Gly Gly Ser Lys Asn Arg 420 425 430 Val Leu Thr Ser Leu Ala Val Phe Ser Phe Val Ala Ile Trp His Asp 435 440 445 Ile Glu Leu Lys Leu Leu Leu Trp Gly Trp Leu Ile Val Leu Phe Leu 450 455 460 Leu Pro Glu Ile Phe Ala Thr Gln Ile Phe Ser His Tyr Thr Asp Ala 465 470 475 480 Val Trp Tyr Arg His Val Cys Ala Val Gly Ala Val Phe Asn Ile Trp 485 490 495 Val Met Met Ile Ala Asn Leu Phe Gly Phe Cys Leu Gly Ser Asp Gly 500 505 510 Thr Lys Lys Leu Leu Ser Asp Met Phe Cys Thr Val Ser Gly Phe Lys 515 520 525 Phe Val Ile Leu Ala Ser Val Ser Leu Phe Ile Ala Val Gln Ile Met 530 535 540 Phe Glu Ile Arg Glu Glu Glu Lys Arg His Gly Ile Tyr Leu Lys Cys 545 550 555 560 <210> 10 <211> 1683 <212> DNA <213> Saccharomyces cerevisiae <400> 10 atgtcgctga tcagcatcct gtctccccta attacttccg agggcttaga ttcaagaatc 60 aaaccttcac caaaaaagga tgcctctact accactaagc catcactatg gaaaactact 120 gagttcaaat tctactacat tgcatttctg gtcgtggttc ccttgatgtt ctatgctggg 180 ttacaagcta gttcgcccga aaatccaaac tatgcaagat acgaacgtct cctatctcaa 240 ggttggttat ttggcagaaa agtagacaat agtgattctc aatataggtt tttcagggac 300 aattttgcgc tattgtcagt tttaatgcta gtccacactt ctataaaacg cattgtactt 360 tattcaacaa atatcactaa attgaggttt gatctgatat ttggtttgat ctttttagtg 420 gccgctcatg gtgtcaattc gataagaatt ttagcccata tgctaatttt atatgccatc 480 gcccatgtac taaagaactt tagaagaata gccaccatca gcatttggat ttatggtatt 540 tctacgcttt ttattaacga caacttcaga gcatatccat ttggtaatat ttgctctttt 600 ttaagcccat tggaccattg gtatagaggt atcattccaa gatgggatgt ctttttcaat 660 tttactcttt tgagagtctt aagttacaac ttggacttct tagagaggtg ggagaattta 720 caaaagaaga aaagtccatc ctatgaatca aaagaagcta aatcagccat tttgctcaat 780 gaacgtgcta gattaactgc tgcacacccc atacaggact acagcttaat gaattatatt 840 gcatatgtta cttacacgcc acttttcatt gccggcccca ttataacatt caatgattat 900 gtttaccaat cgaaacatac cttgccatca ataaatttca aattcatttt ttactatgcg 960 gtgagattcg ttattgctct cttatctatg gagttcattt tacactttct ccacgttgtg 1020 gcaatctcaa aaaccaaagc gtgggaaaat gacacacctt tccagatttc catgattggc 1080 ttatttaatt tgaatattat ttggctaaaa ctactgattc cgtggaggct gtttaggctg 1140 tgggctttgc tagacggaat cgatacacct gaaaatatga tcaggtgtgt tgataacaat 1200 tacagttcac tagcattctg gagagcttgg catagaagct acaataagtg ggttgtccgt 1260 tacatatata ttcctctagg tggttcaaaa aatagagttt tgacatcact agcagtcttt 1320 tccttcgtag ctatatggca tgacatcgaa ctaaagttat tattatgggg ttggctaata 1380 gttttgttcc tcttaccaga aatttttgct acccaaattt tctctcatta taccgacgca 1440 gtctggtaca gacacgtttg cgctgtcggt gctgttttca acatatgggt tatgatgatc 1500 gctaatcttt ttggattctg cttgggctct gacggtacta aaaaattact aagcgatatg 1560 ttctgtaccg tatctggttt caaatttgta attttggcaa gcgttagttt attcatcgca 1620 gtacaaataa tgtttgaaat cagagaagaa gaaaagaggc acggaattta cctaaaatgc 1680 tga 1683 <210> 11 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 actagtcccg ccgccaccaa ggagatgatg gacaagcata agta 44 <210> 12 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 actagtttac atgataattg gtttag 26 <210> 13 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agatctcccg ccgccaccaa ggagatggcc gatgaggaac gttt 44 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agatcttcac atttttctaa attcactta 29 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggatccatgt cagcatttta ggtaaattcc gtg 33 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ggatccataa tgtcgctgat cagcatcctg tct 33 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ggatccatgc ctgctacttt acatgattct 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtcgacatac ttgaatactt cgaaaggag 29 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 actagtatgt ccgctaaatc gtttgaagtc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atcgatatac aaggcgcttt gaaccccctt 30 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gaattcatgt cgctgatcag catcctg 27 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 actagtccag cattttaggt aaattccgtg 30 <110> KOREAN UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Recombinant yeast by overexpression of SPT3 and SPT15 for          improving productivity of bioethanol and Method for producing          ethanol using the same <160> 22 <170> Kopatentin 1.71 <210> 1 <211> 336 <212> PRT <213> Saccharomyces cerevisiae <400> 1 Met Met Asp Lys His Lys Tyr Arg Val Glu Ile Gln Gln Met Met Phe   1 5 10 15 Val Ser Gly Glu Ile Asn Asp Pro Pro Val Glu Thr Thr Ser Leu Ile              20 25 30 Glu Asp Ile Val Arg Gly Gln Val Ile Glu Ile Leu Leu Gln Ser Asn          35 40 45 Lys Thr Ala His Leu Arg Gly Ser Arg Ser Ile Leu Pro Glu Asp Val      50 55 60 Ile Phe Leu Ile Arg His Asp Lys Ala Lys Val Asn Arg Leu Arg Thr  65 70 75 80 Tyr Leu Ser Trp Lys Asp Leu Arg Lys Asn Ala Lys Asp Gln Asp Ala                  85 90 95 Ser Ala Gly Val Ala Ser Gly Thr Gly Asn Pro Gly Ala Gly Gly Glu             100 105 110 Asp Asp Leu Lys Lys Ala Gly Gly Gly Glu Lys Asp Glu Lys Asp Gly         115 120 125 Gly Asn Met Met Lys Val Lys Lys Ser Gln Ile Lys Leu Pro Trp Glu     130 135 140 Leu Gln Phe Met Phe Asn Glu His Pro Leu Glu Asn Asn Asp Asp Asn 145 150 155 160 Asp Asp Met Asp Glu Asp Glu Arg Glu Ala Asn Ile Val Thr Leu Lys                 165 170 175 Arg Leu Lys Met Ala Asp Asp Arg Thr Arg Asn Met Thr Lys Glu Glu             180 185 190 Tyr Val His Trp Ser Asp Cys Arg Gln Ala Ser Phe Thr Phe Arg Lys         195 200 205 Asn Lys Arg Phe Lys Asp Trp Ser Gly Ile Ser Gln Leu Thr Glu Gly     210 215 220 Lys Pro His Asp Asp Val Ile Asp Ile Leu Gly Phe Leu Thr Phe Glu 225 230 235 240 Ile Val Cys Ser Leu Thr Glu Thr Ala Leu Lys Ile Lys Gln Arg Glu                 245 250 255 Gln Val Leu Gln Thr Gln Lys Asp Lys Ser Gln Gln Ser Ser Gln Asp             260 265 270 Asn Thr Asn Phe Glu Phe Ala Ser Ser Thr Leu His Arg Lys Lys Arg         275 280 285 Leu Phe Asp Gly Pro Glu Asn Val Ile Asn Pro Leu Lys Pro Arg His     290 295 300 Ile Glu Glu Ala Trp Arg Val Leu Gln Thr Ile Asp Met Arg His Arg 305 310 315 320 Ala Leu Thr Asn Phe Lys Gly Gly Arg Leu Ser Ser Lys Pro Ile Ile                 325 330 335 <210> 2 <211> 1014 <212> DNA <213> Saccharomyces cerevisiae <400> 2 atgatggaca agcataagta tcgtgtggag attcaacaga tgatgtttgt ctctggtgaa 60 attaacgacc cacccgtaga aaccacatca ctgatagaag atatagtgag gggtcaagtg 120 atagaaattc ttttacagtc aaacaaaacg gcgcatctta ggggaagtag gagcattctc 180 cctgaagacg tcattttctt gatcagacac gacaaggcca aagtcaatcg tttgagaaca 240 tatctgtcat ggaaggattt gcgtaaaaac gccaaggacc aagatgctag tgccggtgta 300 gcgagtggca ctggaaatcc tggggcaggt ggtgaagatg atttgaaaaa agcaggtggt 360 ggcgagaaag acgaaaaaga tggtggaaac atgatgaagg tcaagaaatc ccaaattaag 420 ctgccatggg aattgcagtt tatgttcaat gaacatcctt tagaaaataa tgacgacaat 480 gatgatatgg atgaggatga acgagaagct aatatagtca ctttgaaaag gctgaaaatg 540 gctgacgata gaacacgaaa catgactaaa gaggagtacg tgcattggtc cgattgtcga 600 caggcaagtt ttacatttag gaagaataaa aggttcaagg actggtctgg aatttcgcaa 660 ttaactgagg ggaaacccca tgatgatgtg attgatatac tggggtttct aacttttgag 720 attgtctgtt ctttgacgga aacagctctg aaaatcaaac aaagagaaca ggtattacag 780 actcaaaagg acaaatccca gcaatctagc caagataata ctaactttga atttgcatca 840 tccacattac atagaaagaa aagattattt gatggacctg aaaatgttat aaacccgctc 900 aaaccaaggc atatagagga agcctggaga gtactacaaa caattgacat gaggcatagg 960 gctttgacca actttaaagg tggtagactc agttctaaac caattatcat gtaa 1014 <210> 3 <211> 240 <212> PRT <213> Saccharomyces cerevisiae <400> 3 Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Asn Lys Ile   1 5 10 15 Val Phe Asp Pro Asn Thr Arg Gln Val Trp Glu Asn Gln Asn Arg Asp              20 25 30 Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu Glu Asp Ile Lys Arg          35 40 45 Ala Ala Pro Glu Ser Glu Lys Asp Thr Ser Ala Thr Ser Gly Ile Val      50 55 60 Pro Thr Leu Gln Asn Ile Val Ala Thr Val Thr Leu Gly Cys Arg Leu  65 70 75 80 Asp Leu Lys Thr Val Ala Leu His Ala Arg Asn Ala Glu Tyr Asn Pro                  85 90 95 Lys Arg Phe Ala Ala Val Ile Met Arg Ile Arg Glu Pro Lys Thr Thr             100 105 110 Ala Leu Ile Phe Ala Ser Gly Lys Met Val Val Thr Gly Ala Lys Ser         115 120 125 Glu Asp Asp Ser Lys Leu Ala Ser Arg Lys Tyr Ala Arg Ile Ile Gln     130 135 140 Lys Ile Gly Phe Ala Ala Lys Phe Thr Asp Phe Lys Ile Gln Asn Ile 145 150 155 160 Val Gly Ser Cys Asp Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala                 165 170 175 Phe Ser His Gly Thr Phe Ser Ser Tyr Glu Pro Glu Leu Phe Pro Gly             180 185 190 Leu Ile Tyr Arg Met Val Lys Pro Lys Ile Val Leu Leu Ile Phe Val         195 200 205 Ser Gly Lys Ile Val Leu Thr Gly Ala Lys Gln Arg Glu Glu Ile Tyr     210 215 220 Gln Ala Phe Glu Ala Ile Tyr Pro Val Leu Ser Glu Phe Arg Lys Met 225 230 235 240 <210> 4 <211> 723 <212> DNA <213> Saccharomyces cerevisiae <400> 4 atggccgatg aggaacgttt aaaggagttt aaagaggcaa acaagatagt gtttgatcca 60 aataccagac aagtatggga aaaccagaat cgagatggta caaaaccagc aactactttc 120 cagagtgaag aggacataaa aagagctgcc ccagaatctg aaaaagacac ctccgccaca 180 tcaggtattg ttccaacact acaaaacatt gtggcaactg tgactttggg gtgcaggtta 240 gatctgaaaa cagttgcgct acatgcccgt aatgcagaat ataaccccaa gcgttttgct 300 gctgtcatca tgcgtattag agagccaaaa actacagctt taatttttgc ctcagggaaa 360 atggttgtta ccggtgcaaa aagtgaggat gactcaaagc tggccagtag aaaatatgca 420 agaattatcc aaaaaatcgg gtttgctgct aaattcacag acttcaaaat acaaaatatt 480 gtcggttcgt gtgacgttaa attccctata cgtctagaag ggttagcatt cagtcatggt 540 actttctcct cctatgagcc agaattgttt cctggtttga tctatagaat ggtgaagccg 600 aaaattgtgt tgttaatttt tgtttcagga aagattgttc ttactggtgc aaagcaaagg 660 gaagaaattt accaagcttt tgaagctata taccctgtgc taagtgaatt tagaaaaatg 720 tga 723 <210> 5 <211> 312 <212> PRT <213> Saccharomyces cerevisiae <400> 5 Met Pro Ala Thr Leu His Asp Ser Thr Lys Ile Leu Ser Leu Asn Thr   1 5 10 15 Gly Ala Gln Ile Pro Gln Ile Gly Leu Gly Thr Trp Gln Ser Lys Glu              20 25 30 Asn Asp Ala Tyr Lys Ala Val Leu Thr Ala Leu Lys Asp Gly Tyr Arg          35 40 45 His Ile Asp Thr Ala Ala Ile Tyr Arg Asn Glu Asp Gln Val Gly Gln      50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Val Thr Thr  65 70 75 80 Lys Leu Trp Cys Thr Gln His His Glu Pro Glu Val Ala Leu Asp Gln                  85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His             100 105 110 Trp Pro Ala Arg Leu Asp Pro Ala Tyr Ile Lys Asn Glu Asp Ile Leu         115 120 125 Ser Val Pro Thr Lys Lys Asp Gly Ser Arg Ala Val Asp Ile Thr Asn     130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Leu                 165 170 175 Lys Asp Leu Leu Ala Ser Gln Gly Asn Lys Leu Thr Pro Ala Ala Asn             180 185 190 Gln Val Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Asn Phe         195 200 205 Cys Lys Ser Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Leu Gly Ser     210 215 220 Thr Asp Ala Pro Leu Leu Lys Glu Pro Val Ile Leu Glu Ile Ala Lys 225 230 235 240 Lys Asn Asn Val Gln Pro Gly His Val Val Ile Ser Trp His Val Gln                 245 250 255 Arg Gly Tyr Val Val Leu Pro Lys Ser Val Asn Pro Asp Arg Ile Lys             260 265 270 Thr Asn Arg Lys Ile Phe Thr Leu Ser Thr Glu Asp Phe Glu Ala Ile         275 280 285 Asn Asn Ile Ser Lys Glu Lys Gly Glu Lys Arg Val Val His Pro Asn     290 295 300 Trp Ser Pro Phe Glu Val Phe Lys 305 310 <210> 6 <211> 939 <212> DNA <213> Saccharomyces cerevisiae <400> 6 atgcctgcta ctttacatga ttctacgaaa atcctttctc taaatactgg agcccaaatc 60 cctcaaatag gtttaggtac gtggcagtcg aaagagaacg atgcttataa ggctgtttta 120 accgctttga aagatggcta ccgacacatt gatactgctg ctatttaccg taatgaagac 180 caagtcggtc aagccatcaa ggattcaggt gttcctcggg aagaaatctt tgttactaca 240 aagttatggt gtacacaaca ccacgaacct gaagtagcgc tggatcaatc actaaagagg 300 ttaggattgg actacgtaga cttatatttg atgcattggc ctgccagatt agatccagcc 360 tacatcaaaa atgaagacat cttgagtgtg ccaacaaaga aggatggttc tcgtgcagtg 420 gatatcacca attggaattt catcaaaacc tgggaattaa tgcaggaact accaaagact 480 ggtaaaacta aggccgttgg agtctccaac ttttctataa ataacctgaa agatctatta 540 gcatctcaag gtaataagct tacgccagct gctaaccaag tcgaaataca tccattacta 600 cctcaagacg aattgattaa tttttgtaaa agtaaaggca ttgtggttga agcttattct 660 ccgttaggta gtaccgatgc tccactattg aaggaaccgg ttatccttga aattgcgaag 720 aaaaataacg ttcaacccgg acacgttgtt attagctggc acgtccaaag aggttatgtt 780 gtcttgccaa aatctgtgaa tcccgatcga atcaaaacga acaggaaaat atttactttg 840 tctactgagg actttgaagc tatcaataac atatcgaagg aaaagggcga aaaaagggtt 900 gtacatccaa attggtctcc tttcgaagta ttcaagtaa 939 <210> 7 <211> 584 <212> PRT <213> Saccharomyces cerevisiae <400> 7 Met Ser Ala Lys Ser Phe Glu Val Thr Asp Pro Val Asn Ser Ser Leu   1 5 10 15 Lys Gly Phe Ala Leu Ala Asn Pro Ser Ile Thr Leu Val Pro Glu Glu              20 25 30 Lys Ile Leu Phe Arg Lys Thr Asp Ser Asp Lys Ile Ala Leu Ile Ser          35 40 45 Gly Gly Gly Ser Gly His Glu Pro Thr His Ala Gly Phe Ile Gly Lys      50 55 60 Gly Met Leu Ser Gly Ala Val Val Gly Glu Ile Phe Ala Ser Ser Ser  65 70 75 80 Thr Lys Gln Ile Leu Asn Ale Ile Arg Leu Val Asn Glu Asn Ala Ser                  85 90 95 Gly Val Leu Leu Ile Val Lys Asn Tyr Thr Gly Asp Val Leu His Phe             100 105 110 Gly Leu Ser Ala Glu Arg Ala Arg Ala Leu Gly Ile Asn Cys Arg Val         115 120 125 Ala Val Ile Gly Asp Asp Val Ala Val Gly Arg Glu Lys Gly Gly Met     130 135 140 Val Gly Arg Arg Ala Leu Ala Gly Thr Val Leu Val His Lys Ile Val 145 150 155 160 Gly Ala Phe Ala Glu Glu Tyr Ser Ser Lys Tyr Gly Leu Asp Gly Thr                 165 170 175 Ala Lys Val Ala Lys Ile Ile Asn Asp Asn Leu Val Thr Ile Gly Ser             180 185 190 Ser Leu Asp His Cys Lys Val Pro Gly Arg Lys Phe Glu Ser Glu Leu         195 200 205 Asn Glu Lys Gln Met Glu Leu Gly Met Gly Ile His Asn Glu Pro Gly     210 215 220 Val Lys Val Leu Asp Pro Ile Pro Ser Thr Glu Asp Leu Ile Ser Lys 225 230 235 240 Tyr Met Leu Pro Lys Leu Leu Asp Pro Asn Asp Lys Asp Arg Ala Phe                 245 250 255 Val Lys Phe Asp Glu Asp Asp Glu Val Val Leu Leu Val Asn Asn Leu             260 265 270 Gly Gly Val Ser Asn Phe Val Ile Ser Ser Ile Thr Ser Lys Thr Thr         275 280 285 Asp Phe Leu Lys Glu Asn Tyr Asn Ile Thr Pro Val Gln Thr Ile Ala     290 295 300 Gly Thr Leu Met Thr Ser Phe Asn Gly Asn Gly Phe Ser Ile Thr Leu 305 310 315 320 Leu Asn Ala Thr Lys Ala Thr Lys Ala Leu Gln Ser Asp Phe Glu Glu                 325 330 335 Ile Lys Ser Val Leu Asp Leu Leu Asn Ala Phe Thr Asn Ala Pro Gly             340 345 350 Trp Pro Ile Ala Asp Phe Glu Lys Thr Ser Ala Pro Ser Val Asn Asp         355 360 365 Asp Leu Leu His Asn Glu Val Thr Ala Lys Ala Val Gly Thr Tyr Asp     370 375 380 Phe Asp Lys Phe Ala Glu Trp Met Lys Ser Gly Ala Glu Gln Val Ile 385 390 395 400 Lys Ser Glu Pro His Ile Thr Glu Leu Asp Asn Gln Val Gly Asp Gly                 405 410 415 Asp Cys Gly Tyr Thr Leu Val Ala Gly Val Lys Gly Ile Thr Glu Asn             420 425 430 Leu Asp Lys Leu Ser Lys Asp Ser Leu Ser Gln Ala Val Ala Gln Ile         435 440 445 Ser Asp Phe Ile Glu Gly Ser Met Gly Gly Thr Ser Gly Gly Leu Tyr     450 455 460 Ser Ile Leu Leu Ser Gly Phe Ser His Gly Leu Ile Gln Val Cys Lys 465 470 475 480 Ser Lys Asp Glu Pro Val Thr Lys Glu Ile Val Ala Lys Ser Leu Gly                 485 490 495 Ile Ala Leu Asp Thr Leu Tyr Lys Tyr Thr Lys Ala Arg Lys Gly Ser             500 505 510 Ser Thr Met Ile Asp Ala Leu Glu Pro Phe Val Lys Glu Phe Thr Ala         515 520 525 Ser Lys Asp Phe Asn Lys Ala Val Lys Ala Ala Glu Glu Gly Ala Lys     530 535 540 Ser Thr Ala Thr Phe Glu Ala Lys Phe Gly Arg Ala Ser Tyr Val Gly 545 550 555 560 Asp Ser Ser Gln Val Glu Asp Pro Gly Ala Val Gly Leu Cys Glu Phe                 565 570 575 Leu Lys Gly Val Gln Ser Ala Leu             580 <210> 8 <211> 1755 <212> DNA <213> Saccharomyces cerevisiae <400> 8 atgtccgcta aatcgtttga agtcacagat ccagtcaatt caagtctcaa agggtttgcc 60 cttgctaacc cctccattac gctggtccct gaagaaaaaa ttctcttcag aaagaccgat 120 tccgacaaga tcgcattaat ttctggtggt ggtagtggac atgaacctac acacgccggt 180 ttcattggta agggtatgtt gagtggcgcc gtggttggcg aaatttttgc atccccttca 240 acaaaacaga ttttaaatgc aatccgttta gtcaatgaaa atgcgtctgg cgttttattg 300 attgtgaaga actacacagg tgatgttttg cattttggtc tgtccgctga gagagcaaga 360 gccttgggta ttaactgccg cgttgctgtc ataggtgatg atgttgcagt tggcagagaa 420 aagggtggta tggttggtag aagagcattg gcaggtaccg ttttggttca taagattgta 480 ggtgccttcg cagaagaata ttctagtaag tatggcttag acggtacagc taaagtggct 540 aaaattatca acgacaattt ggtgaccatt ggatcttctt tagaccattg taaagttcct 600 ggcaggaaat tcgaaagtga attaaacgaa aaacaaatgg aattgggtat gggtattcat 660 aacgaacctg gtgtgaaagt tttagaccct attccttcta ccgaagactt gatctccaag 720 tatatgctac caaaactatt ggatccaaac gataaggata gagcttttgt aaagtttgat 780 gaagatgatg aagttgtctt gttagttaac aatctcggcg gtgtttctaa ttttgttatt 840 agttctatca cttccaaaac tacggatttc ttaaaggaaa attacaacat aaccccggtt 900 caaacaattg ctggcacatt gatgacctcc ttcaatggta atgggttcag tatcacatta 960 ctaaacgcca ctaaggctac aaaggctttg caatctgatt ttgaggagat caaatcagta 1020 ctagacttgt tgaacgcatt tacgaacgca ccgggctggc caattgcaga ttttgaaaag 1080 acttctgccc catctgttaa cgatgacttg ttacataatg aagtaacagc aaaggccgtc 1140 ggtacctatg actttgacaa gtttgctgag tggatgaaga gtggtgctga acaagttatc 1200 aagagcgaac cgcacattac ggaactagac aatcaagttg gtgatggtga ttgtggttac 1260 actttagtgg caggagttaa aggcatcacc gaaaaccttg acaagctgtc gaaggactca 1320 ttatctcagg cggttgccca aatttcagat ttcattgaag gctcaatggg aggtacttct 1380 ggtggtttat attctattct tttgtcgggt ttttcacacg gattaattca ggtttgtaaa 1440 tcaaaggatg aacccgtcac taaggaaatt gtggctaagt cactcggaat tgcattggat 1500 actttataca aatatacaaa ggcaaggaag ggatcatcca ccatgattga tgctttagaa 1560 ccattcgtta aagaatttac tgcatctaag gatttcaata aggcggtaaa agctgcagag 1620 gaaggtgcta aatccactgc tacattcgag gccaaatttg gcagagcttc gtatgtcggc 1680 gattcatctc aagtagaaga tcctggtgca gtaggcctat gtgagttttt gaagggggtt 1740 caaagcgcct tgtaa 1755 <210> 9 <211> 560 <212> PRT <213> Saccharomyces cerevisiae <400> 9 Met Ser Leu Ile Ser Ile Leu Ser Pro Leu Ile Thr Ser Glu Gly Leu   1 5 10 15 Asp Ser Arg Ile Lys Pro Ser Pro Lys Lys Asp Ala Ser Thr Thr Thr              20 25 30 Lys Pro Ser Leu Trp Lys Thr Thr Glu Phe Lys Phe Tyr Tyr Ile Ala          35 40 45 Phe Leu Val Val Val Pro Leu Met Phe Tyr Ala Gly Leu Gln Ala Ser      50 55 60 Ser Pro Glu Asn Pro Asn Tyr Ala Arg Tyr Glu Arg Leu Leu Ser Gln  65 70 75 80 Gly Trp Leu Phe Gly Arg Lys Val Asp Asn Ser Asp Ser Gln Tyr Arg                  85 90 95 Phe Phe Arg Asp Asn Phe Ala Leu Leu Ser Val Leu Met Leu Val His             100 105 110 Thr Ser Ile Lys Arg Ile Val Leu Tyr Ser Thr Asn Ile Thr Lys Leu         115 120 125 Arg Phe Asp Leu Ile Phe Gly Leu Ile Phe Leu Val Ala Ala His Gly     130 135 140 Val Asn Ser Ile Arg Ile Leu Ala His Met Leu Ile Leu Tyr Ala Ile 145 150 155 160 Ala His Val Leu Lys Asn Phe Arg Arg Ile Ala Thr Ile Ser Ile Trp                 165 170 175 Ile Tyr Gly Ile Ser Thr Leu Phe Ile Asn Asp Asn Phe Arg Ala Tyr             180 185 190 Pro Phe Gly Asn Ile Cys Ser Phe Leu Ser Pro Leu Asp His Trp Tyr         195 200 205 Arg Gly Ile Ile Pro Arg Trp Asp Val Phe Phe Asn Phe Thr Leu Leu     210 215 220 Arg Val Leu Ser Tyr Asn Leu Asp Phe Leu Glu Arg Trp Glu Asn Leu 225 230 235 240 Gln Lys Lys Lys Ser Ser Ser Tyr Glu Ser Lys Glu Ala Lys Ser Ala                 245 250 255 Ile Leu Leu Asn Glu Arg Ala Arg Leu Thr Ala Ala His Pro Ile Gln             260 265 270 Asp Tyr Ser Leu Met Asn Tyr Ile Ala Tyr Val Thr Tyr Thr Pro Leu         275 280 285 Phe Ile Ala Gly Pro Ile Ile Thr Phe Asn Asp Tyr Val Tyr Gln Ser     290 295 300 Lys His Thr Leu Pro Ser Ile Asn Phe Lys Phe Ile Phe Tyr Tyr Ala 305 310 315 320 Val Arg Phe Val Ile Ala Leu Leu Ser Met Glu Phe Ile Leu His Phe                 325 330 335 Leu His Val Val Ala Ile Ser Lys Thr Lys Ala Trp Glu Asn Asp Thr             340 345 350 Pro Phe Gln Ile Ser Met Ile Gly Leu Phe Asn Leu Asn Ile Ile Trp         355 360 365 Leu Lys Leu Leu Ile Pro Trp Arg Leu Phe Arg Leu Trp Ala Leu Leu     370 375 380 Asp Gly Ile Asp Thr Pro Glu Asn Met Ile Arg Cys Val Asp Asn Asn 385 390 395 400 Tyr Ser Ser Leu Ala Phe Trp Arg Ala Trp His Arg Ser Tyr Asn Lys                 405 410 415 Trp Val Val Arg Tyr Ile Tyr Ile Pro Leu Gly Gly Ser Lys Asn Arg             420 425 430 Val Leu Thr Ser Leu Ala Val Phe Ser Phe Val Ala Ile Trp His Asp         435 440 445 Ile Glu Leu Lys Leu Leu Leu Trp Gly Trp Leu Ile Val Leu Phe Leu     450 455 460 Leu Pro Glu Ile Phe Ala Thr Gln Ile Phe Ser His Tyr Thr Asp Ala 465 470 475 480 Val Trp Tyr Arg His Val Cys Ala Val Gly Ala Val Phe Asn Ile Trp                 485 490 495 Val Met Met Ile Ala Asn Leu Phe Gly Phe Cys Leu Gly Ser Asp Gly             500 505 510 Thr Lys Lys Leu Leu Ser Asp Met Phe Cys Thr Val Ser Gly Phe Lys         515 520 525 Phe Val Ile Leu Ala Val Val Ser Leu Phe Ile Ala Val Gln Ile Met     530 535 540 Phe Glu Ile Arg Glu Glu Glu Lys Arg His Gly Ile Tyr Leu Lys Cys 545 550 555 560 <210> 10 <211> 1683 <212> DNA <213> Saccharomyces cerevisiae <400> 10 atgtcgctga tcagcatcct gtctccccta attacttccg agggcttaga ttcaagaatc 60 aaaccttcac caaaaaagga tgcctctact accactaagc catcactatg gaaaactact 120 gagttcaaat tctactacat tgcatttctg gtcgtggttc ccttgatgtt ctatgctggg 180 ttacaagcta gttcgcccga aaatccaaac tatgcaagat acgaacgtct cctatctcaa 240 ggttggttat ttggcagaaa agtagacaat agtgattctc aatataggtt tttcagggac 300 aattttgcgc tattgtcagt tttaatgcta gtccacactt ctataaaacg cattgtactt 360 tattcaacaa atatcactaa attgaggttt gatctgatat ttggtttgat ctttttagtg 420 gccgctcatg gtgtcaattc gataagaatt ttagcccata tgctaatttt atatgccatc 480 gcccatgtac taaagaactt tagaagaata gccaccatca gcatttggat ttatggtatt 540 tctacgcttt ttattaacga caacttcaga gcatatccat ttggtaatat ttgctctttt 600 ttaagcccat tggaccattg gtatagaggt atcattccaa gatgggatgt ctttttcaat 660 tttactcttt tgagagtctt aagttacaac ttggacttct tagagaggtg ggagaattta 720 caaaagaaga aaagtccatc ctatgaatca aaagaagcta aatcagccat tttgctcaat 780 gaacgtgcta gattaactgc tgcacacccc atacaggact acagcttaat gaattatatt 840 gcatatgtta cttacacgcc acttttcatt gccggcccca ttataacatt caatgattat 900 gtttaccaat cgaaacatac cttgccatca ataaatttca aattcatttt ttactatgcg 960 gtgagattcg ttattgctct cttatctatg gagttcattt tacactttct ccacgttgtg 1020 gcaatctcaa aaaccaaagc gtgggaaaat gacacacctt tccagatttc catgattggc 1080 ttatttaatt tgaatattat ttggctaaaa ctactgattc cgtggaggct gtttaggctg 1140 tgggctttgc tagacggaat cgatacacct gaaaatatga tcaggtgtgt tgataacaat 1200 tacagttcac tagcattctg gagagcttgg catagaagct acaataagtg ggttgtccgt 1260 tacatatata ttcctctagg tggttcaaaa aatagagttt tgacatcact agcagtcttt 1320 tccttcgtag ctatatggca tgacatcgaa ctaaagttat tattatgggg ttggctaata 1380 gttttgttcc tcttaccaga aatttttgct acccaaattt tctctcatta taccgacgca 1440 gtctggtaca gacacgtttg cgctgtcggt gctgttttca acatatgggt tatgatgatc 1500 gctaatcttt ttggattctg cttgggctct gacggtacta aaaaattact aagcgatatg 1560 ttctgtaccg tatctggttt caaatttgta attttggcaa gcgttagttt attcatcgca 1620 gtacaaataa tgtttgaaat cagagaagaa gaaaagaggc acggaattta cctaaaatgc 1680 tga 1683 <210> 11 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 actagtcccg ccgccaccaa ggagatgatg gacaagcata agta 44 <210> 12 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 actagtttac atgataattg gtttag 26 <210> 13 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 agatctcccg ccgccaccaa ggagatggcc gatgaggaac gttt 44 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 agatcttcac atttttctaa attcactta 29 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggatccatgt cagcatttta ggtaaattcc gtg 33 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ggatccataa tgtcgctgat cagcatcctg tct 33 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ggatccatgc ctgctacttt acatgattct 30 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtcgacatac ttgaatactt cgaaaggag 29 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 actagtatgt ccgctaaatc gtttgaagtc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 atcgatatac aaggcgcttt gaaccccctt 30 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gaattcatgt cgctgatcag catcctg 27 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 actagtccag cattttaggt aaattccgtg 30

Claims (14)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 글리세롤 디하이드로게나아제를 코딩하는 유전자, 디히드록시아세톤 키나아제를 코딩하는 유전자 및 글리세롤 업테이크 프로테인 유전자를 코딩하는 유전자를 함유하고, 글리세롤로부터 에탄올 생성능을 가지는 효모에 SPT3(Suppressot of Ty 3)를 코딩하는 유전자 및 SPT15(Suppressot of Ty 15)를 코딩하는 유전자를 도입시킨 재조합 효모 사카로마이세스 세레비지애 YPH499([pGcyaDak, pGupSpt3.15Cas, KCCM 1153).
Encoding SPT3 (Suppressot of Ty 3) to yeast containing a gene encoding a glycerol dehydrogenase, a gene encoding a dihydroxyacetone kinase and a gene encoding a glycerol uptake protein gene, and having ethanol production from glycerol Recombinant yeast Saccharomyces cerevisiae YPH499 (pGcyaDak, pGupSpt3.15Cas, KCCM 1153) into which a gene encoding the above gene and a gene encoding SPT15 (Suppressot of Ty 15) were introduced.
삭제delete 삭제delete 삭제delete 제9항의 재조합 효모를 글리세롤을 탄소원으로 하여 배양하여 에탄올을 생산하는 단계 및 상기 생산된 에탄올을 수득하는 단계를 포함하는 에탄올의 제조방법.
A method for producing ethanol comprising culturing the recombinant yeast of claim 9 using glycerol as a carbon source to produce ethanol and obtaining the produced ethanol.
삭제delete
KR1020110003476A 2010-04-19 2011-01-13 Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same KR101259956B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110003476A KR101259956B1 (en) 2011-01-13 2011-01-13 Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same
US13/641,946 US8772000B2 (en) 2010-04-19 2011-04-15 Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain
PCT/KR2011/002712 WO2011132890A2 (en) 2010-04-19 2011-04-15 Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110003476A KR101259956B1 (en) 2011-01-13 2011-01-13 Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same

Publications (2)

Publication Number Publication Date
KR20120082138A KR20120082138A (en) 2012-07-23
KR101259956B1 true KR101259956B1 (en) 2013-05-02

Family

ID=46714024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110003476A KR101259956B1 (en) 2010-04-19 2011-01-13 Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same

Country Status (1)

Country Link
KR (1) KR101259956B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974802B1 (en) 2017-11-23 2019-05-03 고려대학교 산학협력단 A gene responsible for rendering tolerance to microorganisms against abiotic stress and use therof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605872B1 (en) * 2012-11-26 2016-03-23 이화여자대학교 산학협력단 Acetic Acid-Tolerant Yeast Strains
KR20160131238A (en) 2015-05-06 2016-11-16 한양대학교 산학협력단 Novel strain having C4 and C6 organic acid producing capacity, and method for producing bio-fuel using the strain

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bioresource Technology, Vol.101, pp.4157-4161(2010.02.09.)*
GenBank: AJ585597.1
GenBank: CAE52114.1
Letters in Applied Microbiology, Vol.49, pp.14-19(2009.04.17)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974802B1 (en) 2017-11-23 2019-05-03 고려대학교 산학협력단 A gene responsible for rendering tolerance to microorganisms against abiotic stress and use therof

Also Published As

Publication number Publication date
KR20120082138A (en) 2012-07-23

Similar Documents

Publication Publication Date Title
Williams et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae
KR20180077008A (en) A Novel Isopropylmalate Synthase Variant and a Method of Producing L-Leucine Using the Same
KR101996767B1 (en) cAMP receptor protein variant and method for producing L-amino acid using the same
CN108456666B (en) 3-sterone-delta1Dehydrogenase and coding gene and application thereof
WO2012172822A1 (en) Recombinant microorganism, and method for producing alanine using said recombinant microorganism
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
CN112789353A (en) Recombinant acid-resistant yeast inhibiting ethanol production and method for preparing lactic acid using same
WO2022228506A1 (en) Glu/leu/phe/val dehydrogenase mutant and application thereof in preparation of l-phosphinothricin
KR101259956B1 (en) Recombinant yeast by overexpression of SPT3 and SPT15 for improving productivity of bioethanol and Method for producing ethanol using the same
KR101260452B1 (en) Transformant comprising gene coding ws/dgat and producing method of fatty acid ethyl esters using the same
CN107287222A (en) A kind of histidine kinase gene Hisk2301 purposes
MX2013014536A (en) Recombinant yeast expressing agt1.
US8772000B2 (en) Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain
KR101102460B1 (en) A recombinant vector, and a transformant using glycerol as a fermentation source with improved productivity of bio-ethanol, and a method of producing ethanol using the same
KR102277907B1 (en) Microorganism having increased α-ketoglutarate decarboxylase activity and method for producing 1,4-butanediol using same
KR20110116438A (en) Recombinant yeast by interruption of glycerol production for improving productivity of bio-ethanol and method for producing ethanol using the same
EP3489361B1 (en) Microorganism having activity of acyltransferase and use thereof
EP1231266B1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
CN112062822B (en) Carbon catabolism regulatory protein CcpA mutant I42A
CN108949796A (en) It is a kind of for the recombinant bacterium of synthesizing glutathion and the synthetic method of glutathione
CN112062821B (en) Carbon catabolism regulatory protein CcpA mutant K31A
JP3549551B2 (en) S. DNA compound encoding riboflavin synthetase activity of cerevisiae and recombinant DNA expression vector
CN112920959B (en) Method for increasing yield of L-menthol in saccharomycetes
EP4257689A1 (en) Novel promoter variant for constitutive expression and use thereof
WO2000008170A1 (en) Gene participating in the production of homo-glutamic acid and utilization thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 6