KR101256112B1 - An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same - Google Patents

An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same Download PDF

Info

Publication number
KR101256112B1
KR101256112B1 KR1020100013496A KR20100013496A KR101256112B1 KR 101256112 B1 KR101256112 B1 KR 101256112B1 KR 1020100013496 A KR1020100013496 A KR 1020100013496A KR 20100013496 A KR20100013496 A KR 20100013496A KR 101256112 B1 KR101256112 B1 KR 101256112B1
Authority
KR
South Korea
Prior art keywords
leu
gly
val
glu
asp
Prior art date
Application number
KR1020100013496A
Other languages
Korean (ko)
Other versions
KR20110093443A (en
Inventor
김영완
지 위더스 스테판
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020100013496A priority Critical patent/KR101256112B1/en
Publication of KR20110093443A publication Critical patent/KR20110093443A/en
Application granted granted Critical
Publication of KR101256112B1 publication Critical patent/KR101256112B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/16Enzymes or microbial cells immobilised on or in a biological cell
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01177Alpha-D-xyloside xylohydrolase (3.2.1.177)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 알파-자일로시데이즈의 양자공여체 촉매제 변이 효소 및 그 효소의 제조방법 및 그 효소의 응용에 관한 발명이다.The present invention relates to a quantum donor catalyst mutant enzyme of alpha-xylosidase, a method for preparing the enzyme, and an application of the enzyme.

Description

알파-자일로시데이즈의 양자공여/수용체 촉매기 변이 효소 및 이를 이용한 고효율 당전이 방법{An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same}An alpha-Xylosidase mutants modified at their proton-donor / acceptor catalyst and high efficiency transglycosylation with the same}

본 발명은 알파-자일로시데이즈의 양자공여/수용체 촉매기 변이 효소 및 그 효소의 제조방법 및 그 효소의 응용에 관한 발명이다.The present invention relates to a quantum donor / receptor catalytically mutant enzyme of alpha-xyloidase, a method for preparing the enzyme, and an application of the enzyme.

생체 내에서 다양한 생리학적 반응을 매개하는 기능을 수행하는 탄수화물은 질병 예방 및 치료로서 인식되고 있다. 이러한 탄수화물은 지금까지 유기합성을 통해 이루어졌으나, 반응조건상의 장점과 기질특이성 등의 장점 때문에 효소를 이용하여 올리고당을 합성하는 방법이 최근 많은 주목을 받고 있다. 효소를 이용한 올리고당 합성기술은 탄수화물 분해효소가 지니는 당전이 활성을 이용하거나 뉴클레오타이드 당을 기질로 사용하는 당전이효소(glycosyltransferase)를 이용하는 방법이 있다. Carbohydrates that perform a variety of physiological responses in vivo are recognized as disease prevention and treatment. Such carbohydrates have been made through organic synthesis so far, but the method of synthesizing oligosaccharides using enzymes has recently attracted a lot of attention due to advantages of reaction conditions and substrate specificities. The oligosaccharide synthesis technique using an enzyme is a method using a glycotransferase having a carbohydrate degrading enzyme or a glycosyltransferase using a nucleotide sugar as a substrate.

일반적으로 당전이 효소는, 생체 내에 있어서 당단백질, 당지질 등의 당쇄(糖鎖)의 생합성에 관여하는 효소이다. 그 반응 생성물인 당단백질이나 당지질 등의 당쇄는, 분화나 발생에 있어서의 세포 간 및 세포-세포외 매트릭스 사이의 시그널 전달이나 복합당질의 택(tack)으로서 기능하는 중요한 분자인 것 등이 밝혀져 있다.In general, sugar transfer enzymes are enzymes involved in the biosynthesis of sugar chains such as glycoproteins and glycolipids in a living body. Glycoproteins such as glycoproteins and glycolipids, which are reaction products, have been found to be important molecules that function as signal tacks between cells and extracellular matrices in differentiation and development, or as a tack of complex sugars. .

탄수화물 분해효소(glycosidase) 중 존속성 탄수화물 분해효소(retaining glycosidase)는 카르복실기를 가지는 두 개의 아미노산 잔기를 각각 친핵성 촉매기(nucleophile catalyst)와 양자공여/수용체 촉매기 (proton-donor/acceptor catalyst)로 사용하여 당쇄 가수분해 반응을 촉매한다. 상기 존속성 탄수화물 분해효소들은 각 효소의 친핵성 촉매기를 이용하여 기질 내 당쇄결합을 분해하고, 친핵성 촉매기와 기질의 일부가 원래 기질과 반대의 아노머 (anomer)결합을 통해 공유결합된 당-효소 중간체를 생성한다. 이 후, 양자공여/수용체 촉매기의 작용에 의해 당-효소 중간체에 있는 당을 물로 전이하는 가수분해반응 또는 물 이외의 다른 당 수용체의 수산기로 전이하는 당전이 반응을 통해 반응산물의 아노머가 원래 기질의 것과 같아지면서 반응이 완료된다 (Acc Chem Res, 2000, 33(1):11-18). Among the carbohydrate degrading enzymes, the retaining glycosidase uses two amino acid residues having carboxyl groups as nucleophile catalysts and proton-donor / acceptor catalysts, respectively. To catalyze the sugar chain hydrolysis reaction. The persistent carbohydrate degrading enzymes decompose sugar chains in the substrate using nucleophilic catalysts of the respective enzymes, and the nucleophilic catalyst and the sugar-enzyme in which a part of the substrate is covalently bonded through anomer bond opposite to the original substrate. Generate intermediates. Subsequently, the anomeric product of the reaction product is reacted by a hydrolysis reaction that transfers the sugar in the sugar-enzyme intermediate into water by the action of a proton donor / receptor catalyst or a sugar transfer reaction that transfers to the hydroxyl group of a sugar receptor other than water. The reaction is complete with that of the substrate (Acc Chem Res, 2000, 33 (1): 11-18).

그러나 상기 존속성 탄수화물 분해효소를 이용한 당전이반응의 경우, 생성된 당전이산물이 다시 효소에 의해 가수분해되므로 시간적으로 반응을 조절하여야하며 얻어지는 당전이 산물의 수율 또한 일반적으로 낮다. 또한 당 수용체가 가지는 여러 수산기로 당전이가 가능하며, 생성된 당전이산물이 다시 당수용체로 사용될 수 있어 한 개 이상의 당전이 산물이 생산되므로 원하는 물질의 분리 및 정제 공정이 추가로 요구되므로 생산경비가 증가하는 문제점이 있다. 이러한 문제점을 해결하기 위하여 유전자조작기술을 이용한 단백질공학기술이 적용된 바 있다. However, in the case of the sugar transfer reaction using the persistent carbohydrate degrading enzyme, since the generated sugar transition product is hydrolyzed by the enzyme again, the reaction must be controlled in time and the yield of the obtained sugar transfer product is also generally low. In addition, it is possible to transfer sugar to various hydroxyl groups of the sugar receptor, and the generated sugar transition products can be used as sugar receptors again, so that one or more sugar transition products are produced. There is a problem that increases. In order to solve this problem, protein engineering technology using genetic engineering technology has been applied.

첫 번째 예로 지속성 탄수화물 분해효소의 친핵성 촉매기를 비활성 아미노산잔기로 변이시키면 당-효소 중간체를 형성할 수 없어 가수분해활성을 나타내지 못한다. 그러나 원래 기질과 반대의 위치이성질체 형태의 불소당(fluoride sugar)를 기질로 사용하여 당-효소 중간체의 유사체를 제공하면, 효소에 남아있는 양자공여체 촉매기의 반응에 의해 당전이 반응은 성공적으로 진행된다. 이때 상기 친핵성 촉매기가 변이된 탄수화물 분해효소 변이체들은 가수분해활성을 상실하였으므로 당전이산물을 가수분해하지 못하고 반응액 내에 산물을 축적한다. 이와 같이 지속성 탄수화물 분해효소의 친핵성 촉매기를 특정위치변이법(site-directed mutagenesis)로 변이시키고, 원래 기질과 반대의 위치이성질체 형태의 불소당를 당공여체로 사용하여 당전이반응만을 수행하는 가공효소를 글라이코신다아제(glycosynthase)라고 명명한다 (J Am Chem Soc 1998, 120:5583-5584). 아그로박테리움(Agrobacterium sp.)에서 유래한 베타-글라이코시다아제의 친핵성 촉매기인 358번째 글루타메이트 잔기(Glu358)를 알라닌(alanine)으로 변형시킨 글라이코신다아제(glycosynthase)가 최초로 보고된 이후, 다양한 효소들에 동일한 전략이 적용된 바 있다 (Curr Opin Chem Biol. 2006, 10(5):509-519). 그러나 기존의 글라이코신다아제들은 대부분이 베타-글라이코시다아제에서 유래하여 베타-당쇄만을 합성하는 효소들이며, 알파-당쇄를 합성할 수 있는 알파-글라이코시다아제의 경우는 Schizosaccharomyces pombe 알파-글라이코시다아제의 친핵성 촉매기를 변이시킨 효소가 유일한 예이다 (Biosci Biotechnol Biochem. 2002, 66(4):928-933). 그러나 상기 알파-글라이코시다아제는 알파-아노머 불소당에 비해 합성이 어렵고 안정성이 떨어지는 베타-아노머 불소당을 당공여체로 사용해야 하는 어려움을 지닌다. As a first example, when the nucleophilic catalyst of the persistent carbohydrate degrading enzyme is inactivated to the inactive amino acid residue, it cannot form a sugar-enzyme intermediate and thus exhibit no hydrolytic activity. However, when analogs of sugar-enzyme intermediates are provided using fluoride sugars in the form of regioisomers opposite to the original substrate, the sugar transfer reaction proceeds successfully by the reaction of the proton donor catalyst remaining in the enzyme. do. At this time, the carbohydrate degrading enzyme variants in which the nucleophilic catalyst is mutated have lost hydrolytic activity and thus do not hydrolyze sugar transition products but accumulate products in the reaction solution. In this way, the nucleophilic catalyst of the persistent carbohydrate degrading enzyme is transformed by site-directed mutagenesis, and a processing enzyme that performs only a sugar transfer reaction by using a fluorine sugar in the form of a positional isomer opposite to the original substrate as a sugar donor It is named glycosynthase (J Am Chem Soc 1998, 120: 5583-5584). Since the first report of glycosyndase that transformed the 358th glutamate residue (Glu358), a nucleophilic catalyst of beta-glycosidase derived from Agrobacterium sp., Into alanine, The same strategy has been applied to various enzymes (Curr Opin Chem Biol. 2006, 10 (5): 509-519). However, most existing glycosidases are enzymes that synthesize beta-sugar chains, mostly derived from beta-glycosidase. In the case of alpha-glycosidase that can synthesize alpha-sugar chain, Schizosaccharomyces pombe alpha-gl Enzymes that mutated the nucleophilic catalyst of lycosidase are the only example (Biosci Biotechnol Biochem. 2002, 66 (4): 928-933). However, the alpha-glycosidase has a difficulty in using beta-anomeric fluorine sugar, which is difficult to synthesize and less stable than alpha-anomeric fluorine sugar, as a sugar donor.

두 번째 방법으로는 지시적 진화(directed evolution)을 통해 친핵성 및 양자공여/수용체 촉매기를 보유하지만 가수분해활성은 현저히 줄어들고 당전이 활성은 유지 혹은 향상된 돌연변이체를 개발함으로써 당전이 산물의 수율을 증대한 연구가 보고된 바 있다 (J Biol Chem. 2005, 280(44):37088-37097). 그러나 이 경우 역시 당전이 산물에 대한 가수분해 활성을 완전히 제거하진 못하였으며, 알파-글리코시데이즈에 대한 적용예가 보고된 바 없다.The second method involves nucleophilic and quantum donor / receptor catalysis through directed evolution, but significantly reduces hydrolytic activity and maintains or improves translocation activity, thereby increasing the yield of sugar transfer products. A study has been reported (J Biol Chem. 2005, 280 (44): 37088-37097). However, this case also did not completely remove the hydrolytic activity of the sugar transition products, there has been no report on the application of alpha-glycosidase.

알파-자일로시다아제는 반응기질의 알파-당쇄결합(a-glycosidic linkage)를 분해하여 알파-아노머(alpha-anomer)를 가지는 산물을 생산하는 상기 존속성 탄수화물 분해효소에 속한다. 따라서 알파-자일로시다아제가 가지는 상기 당전이반응 활성을 이용하여 다양한 당전이산물의 생산이 보고된 바 있다(FEBS J. 2007, 274(23):6074-6084). 그러나 상기 존속성 탄수화물 분해효소를 이용한 당전이반응의 단점을 극복하지 못하고 낮은 수율로 두 개 이상의 부산물을 생성하는 문제점을 가진다.Alpha-xylosidase belongs to the surviving carbohydrate degrading enzyme which breaks down the reactive a-glycosidic linkage to produce a product having an alpha-anomer. Therefore, the production of various glycotransferases has been reported by using the sugar-transferase activity of alpha-xylosidase (FEBS J. 2007, 274 (23): 6074-6084). However, it does not overcome the disadvantages of the sugar transfer reaction using the persistent carbohydrate degrading enzyme and has a problem of generating two or more by-products in low yield.

본 발명은 상기 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 알파-자일로시다아제의 양자공여/수용체 촉매기를 돌연변이시키고, 고수율로 당전이 반응을 수행하는 알파-자일로시다아제 변이효소를 제공하는 것이다.The present invention solves the above problems, and the object of the present invention was devised by the necessity of the above, it is an object of the present invention mutating the alpha-xylidase quantum donor / receptor catalyst group, alpha-xyl to perform the sugar transfer reaction in high yield It is to provide a rosidase mutase.

본 발명의 다른 목적은 상기 알파-자일로시다아제 변이효소 생산방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing alpha-xylosidase mutase.

본 발명의 또 다른 목적은 알파-자일로실 플로라이드(a-xylosyl fluoride)와 포도당, 만노오스(mannose), 및 이들의 2-수산기(hydroxyl group)가 다른 반응기로 치환된 유사체를 비환원성 말단에 가지는 올리고당 및 배당체들을 포함하는 기질에 상기 알파-자일로시다아제 변이효소를 반응시켜 자일로스가 전이된 당전이 산물을 제조하는 방법을 제공하는 것이다. Another object of the present invention is to amplify non-reducing ends of analogues in which a-xylosyl fluoride and glucose, mannose, and their 2-hydroxyl groups are replaced by other reactors. The eggplant is to provide a method for preparing a sugar transfer product in which xylose is transferred by reacting the alpha-xylosidase mutase to a substrate including oligosaccharide and glycosides.

상기의 목적을 달성하기 위하여 본 발명은 천연 알파-자일로시데이즈의 양자공여/수용체 촉매기를 아스파테이트 이외의 다른 아미노산 잔기로 돌연변이시킨 알파-자일로시데이즈 돌연변이 효소 폴리펩타이드를 제공한다.In order to achieve the above object, the present invention provides an alpha-xylosidase mutant enzyme polypeptide mutated with a natural alpha-xyloidase quantum donor / receptor catalyst group with an amino acid residue other than aspartate.

본 발명의 명세서에 기재된 "폴리펩티드"라는 용어는 본 발명에 따른 폴리펩티드의 전체 길이를 지칭한다. 바람직한 구체예로서, 용어 "폴리펩티드"는 분리된 폴리펩티드 및 재조합 방법에 의해, 예컨대 샘플로부터 분리하고 정제하는 것에 의해, 라이브러리를 스크리닝하는 것에 의해 및 통상의 방법에 의한 단백질 합성에 의해 제조된 폴리펩티드를 포함하며, 상술한 방법은 모두 당해 분야의 업자에게 공지되어 있다. 바람직하게는, 전체 폴리펩티드 또는 그의 일부는 메리필드(Merrifield) 수법과 같은 통상의 합성법에 의해 합성될 수 있다. The term "polypeptide" described in the specification of the present invention refers to the entire length of the polypeptide according to the present invention. In a preferred embodiment, the term “polypeptide” includes polypeptides produced by isolated polypeptides and recombinant methods, such as by separating and purifying from a sample, by screening libraries and by protein synthesis by conventional methods. All of the above methods are known to those skilled in the art. Preferably, the entire polypeptide, or a portion thereof, can be synthesized by conventional synthetic methods, such as the Merrifield technique.

본 발명의 천연 알파-자일로시데이즈 폴리펩티드 서열은 서열번호 1 또는 2에 기재된 아미노산 서열을 가지는 폴리펩티드를 지칭한다.The native alpha-xyloxidase polypeptide sequence of the present invention refers to a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1 or 2.

본 발명의 명세서에 기재된 폴리펩티드의 " 천연 알파-자일로시데이즈 또는 알파-자일로시데이즈 돌연변이 효소의 기능적 변이체"는 서열 번호 1 또는 2 및/또는 서열번호 3 또는 4에 따른 아미노산 서열을 갖는 폴리펩티드에 대하여 서열 상동성, 특히 약 70%, 바람직하게는 약 80%, 특히 약 90%, 특히 약 95%, 가장 바람직하게는 약 98%의 서열동일성을 갖는 폴리펩티드를 지칭한다. 이러한 기능적 변이체는 예컨대 사람 이외의 생물에서 기인한, 바람직하게는 비-인간 포유류, 예컨대 마우스, 래트, 원숭이 및 돼지로부터 기인한 본 발명에 따른 폴리펩티드에 대하여 상동인 폴리펩티드이다. 기능적 변이체의 다른 예는 상이한 개체, 한 생물의 상이한 기관 또는 상이한 발달 단계에 있는 유전자의 상이한 대립유전자에 의해 코딩되는 폴리펩티드이다. 기능적 변이체는 바람직하게는 또한 천연 산출 또는 합성 돌연변이, 특히 이들 서열에 의해 암호화되는 펩티드의 활성을 현저히 변화시키는 돌연변이를 포함한다. 또한, 이러한 변이체는 바람직하게는 암호화하는 유전자의 상이한 접합으로부터 생길 수도 있다.A “functional variant of a native alpha-xyloxidase or alpha-xyloxidase mutant enzyme” of a polypeptide described herein is a polypeptide having an amino acid sequence according to SEQ ID NO: 1 or 2 and / or SEQ ID NO: 3 or 4. Refers to a polypeptide having sequence homology with respect to, in particular, about 70%, preferably about 80%, particularly about 90%, especially about 95%, most preferably about 98%. Such functional variants are polypeptides which are homologous to the polypeptides according to the invention, for example, originating in organisms other than humans, preferably from non-human mammals such as mice, rats, monkeys and pigs. Another example of a functional variant is a polypeptide encoded by different alleles of genes in different individuals, different organs of one organism or at different stages of development. Functional variants preferably also include naturally occurring or synthetic mutations, especially those which significantly alter the activity of peptides encoded by these sequences. Such variants may also result from different conjugation of genes that encode, preferably.

"기능적 변이체"는 본 발명에 따른 상응하는 폴리펩티드와 동일한 생물학적 작용을 갖는 폴리펩티드를 지칭한다. 이러한 생물학적 작용은 기능적 에세이법으로 분석될 수 있다. 후보 폴리펩티드가 본 발명에 따른 폴리펩티드의 기능적 변이체인지 여부를 검사하기 위하여, 후보 폴리펩티드는 해당분야의 당업자에게 일반적으로 공지된 기능적 에세이법으로 분석할 수 있으며, 이러한 에세이법은 본 발명에 따른 상응하는 폴리펩티드의 생물학적 기능을 분석하는데 적합하다. "Functional variant" refers to a polypeptide having the same biological activity as the corresponding polypeptide according to the invention. This biological action can be analyzed by functional assays. To examine whether a candidate polypeptide is a functional variant of a polypeptide according to the present invention, the candidate polypeptide can be analyzed by functional assays generally known to those skilled in the art, which assays can be performed by the corresponding polypeptides according to the present invention. Suitable for analyzing the biological function of

또한, 용어 "기능적 변이체"는 후보 기능적 변이체 폴리펩티드가 % 서열 동일성 수준에 대한 기능적 변이체의 기준을 충족하는 한 돌연변이된 유전자로부터 또는 차등적으로 접합된 유전자로부터 발현된 폴리펩티드를 포함한다. 이러한 발현 분석은 해당분야의 당업자에게 일반적으로 공지된 방법에 의해 실시될 수 있다.The term “functional variant” also includes polypeptides expressed from mutated or differentially conjugated genes so long as the candidate functional variant polypeptides meet the criteria for functional variants for% sequence identity level. Such expression analysis can be carried out by methods generally known to those skilled in the art.

폴리펩티드의 "기능적 변이체"는 이들이 본 발명에 따른 상응하는 폴리펩티드와 실질적으로 동일한 생물학적 기능을 갖는 한, 약 7 내지 약 1000개 아미노산, 바람직하게는 10개 이상의 아미노산, 더욱 바람직하게는 20개 이상, 가장 바람직하게는 50개 이상, 예컨대 100개 이상, 예컨대 200개 이상, 예컨대 300개 이상, 예컨대 400개 이상, 예컨대 500개 이상, 예컨대 600개 이상의 아미노산 길이를 갖는 본 발명에 따른 폴리펩티드의 일부일 수 있다. 이들이 본 발명에 따른 상응하는 폴리펩티드와 실질적으로 동일한 생물학적 기능을 갖는 한, 약 1 내지 30, 바람직하게는 약 1 내지 15, 특히 약 1 내지 5개 아미노산 범위의 본 발명에 따른 폴리펩티드의 결실체도 또한 포함된다. 예컨대, 첫 번째 아미노산인 메티오닌은 폴리펩티드의 기능을 현저히 변경시키지 않고도 존재하지 않을 수 있다. 또한, 변역 후 변형, 예컨대 지질 앵커 또는 포스포릴 기는 변이체에 존재하거나 존재하지 않을 수 있다."Functional variants" of polypeptides range from about 7 to about 1000 amino acids, preferably 10 or more amino acids, more preferably 20 or more, most so long as they have substantially the same biological function as the corresponding polypeptide according to the invention. Preferably at least 50, such as at least 100, such as at least 200, such as at least 300, such as at least 400, such as at least 500, such as at least 600 amino acids, may be part of a polypeptide according to the invention. Also included are deletions of polypeptides according to the invention in the range of about 1 to 30, preferably about 1 to 15, especially about 1 to 5 amino acids, so long as they have substantially the same biological function as the corresponding polypeptides according to the invention. do. For example, the first amino acid methionine may not be present without significantly altering the function of the polypeptide. In addition, post-translational modifications such as lipid anchor or phosphoryl groups may or may not be present in the variant.

"서열 동일성"은 폴리펩티드를 예컨대 BLASTP 2.0.1에 의해 결정할 경우 및 핵산을 예컨대 BLASTN 2.014에 의해 결정하는 경우(이때, 필터를 설치하고 BLOSUM은 62임; Altschul et al., 1997, Nucleic Acids Res., 25: 3389-3402)에서 2개 서열의 동일 정도(% 동일성)를 지칭한다."Sequence identity" refers to a polypeptide as determined by BLASTP 2.0.1 and a nucleic acid as determined by BLASTN 2.014 (where a filter is installed and BLOSUM is 62; Altschul et al., 1997, Nucleic Acids Res. , 25: 3389-3402), to the degree of identity (% identity) of the two sequences.

또한 본 발명은 본 발명의 알파-자일로시데이즈 돌연변이 효소를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the alpha-xylosidase mutant enzyme of the present invention.

본 발명의 명세서에 기재된 '알파-자일로시데이즈 돌연변이 효소를 코딩하는 유전자'는 서열 5 또는 6에 따른 유전자 및/또는 그의 변이체를 지칭한다. As used herein, the 'gene encoding alpha-xylosidase mutant enzyme' refers to the gene according to SEQ ID NO: 5 or 6 and / or variants thereof.

용어 "코딩하는 유전자"는 본 발명에 따른 분리가능한 생활성 폴리펩티드를 암호화하는 DNA 서열 또는 그의 전구체에 관한 것이다. 폴리펩티드는 예컨대 본 발명의 당전이 활성과 같은 생물학적 기능이 실질적으로 유지되는 한 코딩 서열의 전체 길이 또는 그의 일부의 서열에 의해 암호화될 수 있다.The term “coding gene” relates to a DNA sequence or a precursor thereof that encodes a separable bioactive polypeptide according to the invention. A polypeptide may be encoded by a sequence of the entire length or portion thereof, as long as the biological function, such as for example the sugar transfer activity of the present invention, is substantially maintained.

상기 기재된 유전자의 서열에서 예컨대 유전자 암호의 축퇴로 인하여 적은 변화가 존재할 수 있거나 또는 번역되지 않은 서열이 암호화된 폴리펩티드의 활성에 큰 영향을 주지 않고도 핵산의 5' 및/또는 3' 말단에 부착될 수 있다는 것은 공지되어 있다. 따라서 본 발명은 소위 천연 산출 핵산 및 상기 기재된 핵산의 인공적으로 생성된 "변이체"도 포함한다.In the sequences of genes described above, for example, due to the degeneracy of the genetic code, there may be little change or an untranslated sequence may be attached to the 5 'and / or 3' ends of the nucleic acid without significantly affecting the activity of the encoded polypeptide. It is known that there is. The present invention therefore also encompasses so-called naturally occurring nucleic acids and artificially generated "variants" of the nucleic acids described above.

바람직하게는, 본 발명에 따른 유전자는 DNA 또는 RNA, 바람직하게는 DNA, 특히 이중쇄 DNA 이다. 특히 본 발명에 따른 유전자는 RNA 분자, 바람직하게는 단일쇄 또는 이중쇄 RNA 분자일 수 있다. 핵산의 서열은 1 이상의 인트론 및/또는 1개의 폴리A 서열을 더 포함할 수 있다.Preferably, the gene according to the invention is DNA or RNA, preferably DNA, in particular double stranded DNA. In particular the gene according to the invention may be an RNA molecule, preferably a single or double chain RNA molecule. The sequence of nucleic acids may further comprise one or more introns and / or one polyA sequence.

본 발명에 따른 유전자는 당해 분야의 당업자에게 일반적으로 공지된 방법에 의해 제조할 수 있으며 이하에 기재되어 있다.The genes according to the invention can be prepared by methods generally known to those skilled in the art and are described below.

유전자의 "변이체"는 바람직하게는 80%, 특히 90%, 가장 바람직하게는 95%의 서열 동일성을 갖는 다른 종으로부터 얻은 상동체일 수 있다.The “variant” of a gene may be a homologue obtained from another species having sequence identity of preferably 80%, in particular 90%, most preferably 95%.

유전자의 "변이체"는 본 발명에 따른 상응하는 폴리펩티드와 유사한 활성을 갖는 한 약 8개 이상의 뉴클레오티드 길이, 바람직하게는 약 16개 이상의 뉴클레오티드 길이, 특히 약 21개 이상의 뉴클레오티드 길이, 보다 바람직하게는 약 30개 이상의 뉴클레오티드 길이, 더욱 바람직하게는 약 40개 이상의 뉴클레오티드 길이, 가장 바람직하게는 약 50개 이상의 뉴클레오티드 길이를 갖는 본 발명에 따른 유전자의 일부일 수 있다. 이러한 활성은 상기에 기재한 기능적 에세이법을 이용하여 분석될 수 있다.A “variant” of a gene is at least about 8 nucleotides in length, preferably at least about 16 nucleotides in length, in particular at least about 21 nucleotides in length, more preferably about 30, as long as it has similar activity as the corresponding polypeptide according to the invention. It may be part of a gene according to the invention having at least about nucleotides in length, more preferably at least about 40 nucleotides in length and most preferably at least about 50 nucleotides in length. Such activity can be assayed using the functional assays described above.

본 발명의 바람직한 구체예로서, 유전자는 본 발명에 따른 유전자와 상보적인 서열을 갖는 유전자 또는 그의 변이체를 포함할 수 있다. 바람직하게는 상기 유전자는 본 발명에 따른 유전자의 비-기능적 돌연변이성 변이체, 또는 그의 변이체를 포함한다.As a preferred embodiment of the invention, the gene may comprise a gene having a sequence complementary to the gene according to the invention or a variant thereof. Preferably said gene comprises non-functional mutagenic variants of the genes according to the invention, or variants thereof.

본 발명에서 '알파-자일로시데이즈의 양자공여/수용체 촉매기'란 알파-자일로시데이즈의 아미노산 잔기들 중 효소가 당쇄를 가수분해할 때 요구되는 양자의 공급과 수용의 기능을 수행하는 아미노산 잔기를 의미한다.In the present invention, the 'proton donor / receptor catalyst of alpha-xyloidase' refers to a function of supplying and receiving protons required when an enzyme hydrolyzes sugar chains among amino acid residues of alpha-xyloidase. Amino acid residues.

본 발명의 일 구체예에 있어서 상기 아스파테이트 이외의 다른 아미노산 잔기는 알라닌, 세린, 또는 글라이신인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the amino acid residue other than the aspartate is preferably alanine, serine, or glycine, but is not limited thereto.

본 발명의 일 구체예에 있어서, 상기 알파-자일로시데이즈의 양자공여/수용체 촉매기 촉매 아미노산잔기는 아스파테이트인 것이 바람직하고, 상기 알파-자일로시데이즈가 가지는 PVHWGGDC 아미노산 서열 내 아스파테이트인 것이 더욱 바람직하고, 가장 바람직하게는 서열번호 1에서 482번째 아스파테이트 또는 서열번호 2에서 481번째 아스파테이트이나 이에 한정되지 아니한다.In one embodiment of the present invention, it is preferable that the quantum donor / receptor catalyst amino acid residue of the alpha-xylosidase is aspartate, and the aspartate in the PVHWGGDC amino acid sequence of the alpha-xylosidase. More preferably, most preferably, the 482th aspartate in SEQ ID NO: 1 or the 481th aspartate in SEQ ID NO: 2 is not limited thereto.

본 발명의 일 구체예에 있어서, 상기 돌연변이 효소는 가수분해활성이 1/10 내지 1/1000,000 배 감소된 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the mutant enzyme is preferably reduced by 1/10 to 1 / 1000,000 times hydrolysis activity, but is not limited thereto.

본 발명의 일 구체예인 표4의 내용에 변이체 활성이 1/10000배 감소함을 나타내었다. 또한 pNP xyloside에 대한 활성은 상실하였음을 동시에 보여주고 있다.The contents of Table 4, which is one embodiment of the present invention, showed a 1 / 10000-fold decrease in variant activity. It also shows that pNP xyloside activity was lost.

또한 본 발명은 알파-자일로시데이즈의 양자공여/수용체 촉매기를 특정위치변이법, 무작위변이법, 또는 천연적인 미생물 유전체의 변이 중에서 선택된 방법을 통해 아스파테이트 이외의 다른 아미노산 잔기로 돌연변이된 본 발명의 알파-자일로시데이즈 돌연변이 효소의 제조 방법을 제공한다.In addition, the present invention is a mutated alpha-xyloidase quantum donor / receptor catalyst group in the amino acid residues other than aspartate through a method selected from specific positional variation, random variation, or variation of the natural microbial genome It provides a method for the production of alpha-xylosides mutant enzyme.

본 발명의 일 구체예에 있어서, 상기 알파-자일로시데이즈 돌연변이 효소는 재조합 미생물을 이용하여 생산되는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the alpha-xylosidase mutant enzyme is preferably produced using a recombinant microorganism, but is not limited thereto.

또한 본 발명은 본 발명의 알파-자일로시데이즈 돌연변이 효소를 당전이 반응 촉매제를 사용하고, 바람직하게는 알파-자일로실 플로라이드를 당공여체로 사용하는 당전이 방법을 제공한다.The present invention also provides a sugar transfer method using the alpha-xylosidase mutant enzyme of the present invention using a sugar transfer reaction catalyst, and preferably the alpha-xylyl fluoride as a sugar donor.

본 발명의 일 구체예에 있어서, 상기 방법은 당수용체를 더욱 포함하는 것이 바람직하고, 상기 당수용체는 포도당, 만노오스(mannose), 및 이들의 2-수산기(hydroxyl group)가 다른 반응기로 치환된 유사체를 비환원성 말단에 가지는 올리고당 및 배당체들인 것이 바람직하며, 4-니트로페닐 베타 글루코사이드, 4-니트로페닐 베타 만노코사이드, 4-니트로페닐 2-데옥시 2-아지도-베타 글루코사이드, 4-니트로페닐 베타 셀로바이오사이드, 및 4-니트로페닐 2-데옥시 2-플로로-베타 셀로바이오사이드로 구성된 군으로부터 선택된 화합물인 것이 더욱 바람직하나 이에 한정되지 아니한다.In one embodiment of the invention, the method preferably further comprises a sugar receptor, the sugar receptor is glucose, mannose, and analogs in which their 2-hydroxyl group is substituted by another reactor Are oligosaccharides and glycosides having non-reducing ends, 4-nitrophenyl beta glucoside, 4-nitrophenyl beta mannocoside, 4-nitrophenyl 2-deoxy 2-azido-beta glucoside, 4-nitrophenyl More preferably, it is a compound selected from the group consisting of beta cellobioside, and 4-nitrophenyl 2-deoxy 2-fluoro-beta cellobioside.

본 발명의 일 구체예에 있어서, 상기 알파-자일로시데이즈 돌연변이 효소는 담체에 고정화되거나 세포 표면에 발현시킨 후 얻어지는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the alpha-xyloidase mutant enzyme is preferably obtained after immobilized on a carrier or expressed on the cell surface, but is not limited thereto.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

알파-Alpha- 자일로시다아제Xylosidase 변이체Mutant 생산 production

알파-자일로시다아제를 클로닝하고 유전자 내로(예를 들어, 알파-자일로시다아제 유전자) 치환, 결실 또는 삽입을 도입하는 많은 방법이 당업계 잘 알려져 있다.일반적으로 유전자의 클로닝 및 상기 유전자 내로 돌연변이를 도입(무작위 및/부위 특이적)하는 표준 과정이 본 발명의 알파-자일로시다아제 변이체를 얻기 위해 사용될 수 있다. 적합한 기술의 추가적 설명을 위해 본원의 실시예 1 및 (Sambrook et al.(1989)Molecular cloning:A laboratory manual, Cold Spring Harbor lab.,Cold Spring Harbor, NY;Ausubel, F.M. et al.,(eds.) "Current protocols in Molecular Biology". John Wiley 및 Sons, 1995;Harwood, C.R.,및 Cutting, S.M.(eds.) "Molecular Biological Methods for Bacillus". John Wiley 및 Sons, 1990), 및 WO 96/34946를 참조.Many methods are known in the art for cloning alpha-xylosidase and introducing substitutions, deletions or insertions into genes (eg, alpha-xylosidase genes). Standard procedures for introducing (randomized and / or site specific) mutations can be used to obtain alpha-xylosidase variants of the invention. For further explanation of suitable techniques, see Example 1 herein and Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, FM et al., (Eds. ) "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, CR, and Cutting, SM (eds.) "Molecular Biological Methods for Bacillus". John Wiley and Sons, 1990), and WO 96/34946 Reference.

발현 벡터Expression vector

본 발명의 효소를 코딩하는 DNA 구조를 포함하는 재조합 발현 벡터는 용이하게 재조합 DNA 과정에 놓일 수 있는 임의의 벡터일 수 있다.벡터의 선택은 종종 도입되는 숙주 세포에 의존적일 것이다. 따라서, 벡터는 자발적으로 복제하는 벡터일 수 있는데, 즉 벡터는 염색체 외 실재로서 존재하고, 그것의 복제는 예를 들어 플라스미드와 같은 염색체의 복제에 독립적이다.택일적으로, 벡터는 숙주세포 내로 도입되어 부분적 또는 전체적으로 숙주세포 게놈 내로 통합되어 통합된 염색체와 함께 복제되는 것일 수도 있다.벡터는 바람직하게는 본 발명의 효소를 코딩하는 DNA 서열이 DNA의 전사에 필요한 추가적 분절에 작동적으로 연결된 발현 벡터이다. 일반적으로, 발현 벡터는 플라스미드 또는 바이러스 DNA로부터 유도되거나, 양쪽 모두의 요소를 함유할 수 있다. 용어, "작동적으로 연결된"은 분절이 그것의 의도된 목적, 예를 들어 프로모터에서 전사가 개시되어 효소를 코딩하는 DNA 서열에서 속행하는 것과 같은 목적에 맞게 작용하도록 배열된 것을 가리킨다.Recombinant expression vectors comprising DNA structures encoding enzymes of the invention can be any vector that can readily be placed in a recombinant DNA process. The choice of vector will often depend on the host cell being introduced. Thus, the vector may be a spontaneously replicating vector, ie the vector is present as an extrachromosomal entity, the replication of which is independent of the replication of a chromosome such as, for example, a plasmid. Alternatively, the vector is introduced into a host cell. May be partially or wholly integrated into the host cell genome and replicated with the integrated chromosome. The vector is preferably an expression vector in which the DNA sequence encoding the enzyme of the invention is operably linked to additional segments required for transcription of the DNA. to be. In general, expression vectors may be derived from plasmid or viral DNA, or contain both elements. The term “operably linked” refers to a segment that is arranged to function for its intended purpose, such as for example, where transcription is initiated in a promoter and continued in a DNA sequence encoding an enzyme.

프로모터는 선택의 숙주 세포 내에서 전사적 활성을 보이는 임의의 DNA 서열일 수 있고 숙주 세포에 상동 또는 비상동인 단백질을 코딩하는 유전자로부터 유도될 수 있다.세균의 숙주 세포 내 사용을 위하여 적합한 프로모터의 예는 Bacillus licheniformis 말토제닉 아밀라제 유전자, Bacillus subtilis 알파-아밀라제 유전자, Bacillus amyloliquefaciens 알파-아밀라제 유전자, Bacillus subtilis 알카리 프로테아제 유전자, 또는 Bacillus pumilus xylosidase 유전자 유래 프로모터, 또는 파지 Lambda PR 또는 PL 프로모터, 파지 T7 프로모터 또는 E. coli lac, trp 또는 tac 프로모터를 포함한다. 본 발명의 효소를 코딩하는 DNA 서열은 또한, 필요하다면, 적당한 터미네이터에 작동적으로 연결될 수 있다.The promoter may be any DNA sequence that exhibits transcriptional activity in the host cell of choice and may be derived from a gene encoding a protein that is homologous or nonhomologous to the host cell. Examples of promoters suitable for use in a host cell of bacteria are Bacillus licheniformis maltogenic amylase gene, Bacillus subtilis alpha-amylase gene, Bacillus amyloliquefaciens alpha-amylase gene, Bacillus subtilis alkaline protease gene, or Bacillus pumilus xylosidase gene, or phage Lambda PR or PL promoter, phage T7. Includes lac, trp or tac promoters. DNA sequences encoding the enzymes of the invention can also be operably linked to suitable terminators, if desired.

본 발명의 재조합 벡터는 또한 벡터가 문제의 숙주 세포 내에서 복제하는 것을 가능하게 하는 DNA 서열을 포함할 수 있다.벡터는 또한 선택가능한 마커를 포함할 수 있는데, 예를 들어 숙주 세포 내 결점을 보완하는 유전자 산물, 또는 예를 들어,카나마이신, 클로람페니콜, 에리트로마이신, 테트라사이클린, 스펙티노마이신 등과 같은 항생제에 대한 내성, 또는 중금속 이나 제초제에 대한 내성을 코딩하는 유전자이다.Recombinant vectors of the invention may also include DNA sequences that allow the vector to replicate in the host cell in question. The vector may also include selectable markers, for example to compensate for defects in the host cell. A gene product or a gene encoding resistance to antibiotics such as kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycin, or the like, or resistance to heavy metals or herbicides.

본 발명의 효소를 숙주 세포의 분비 경로속으로 유도하기 위해, 분비 신호 서열(또한 리더 서열, 프리프로 서열 또는 프리 서열로서 알려짐)이 재조합 벡터 내에 제공될 수 있다. 분비 신호 서열은 올바른 판독 플레임 내의 효소를 코딩하는 DNA서열로 연결된다. 분비 신호 서열은 보통 효소를 코딩하는 DNA 서열에서 5'에 위치된다. 분비 신호 서열은 정상적으로 효소와 관련된 것 일 수 있고 또는 다른 분비 단백질을 코딩하는 유전자로부터 올 수 있다.To direct the enzyme of the invention into the secretory pathway of the host cell, secretory signal sequences (also known as leader sequences, prepro sequences or free sequences) can be provided in the recombinant vector. The secretory signal sequence is linked to the DNA sequence encoding the enzyme in the correct read frame. The secretory signal sequence is usually located 5 'in the DNA sequence encoding the enzyme. The secretory signal sequence may be normally associated with an enzyme or may come from a gene encoding another secreted protein.

본 효소, 프로모터 및 선택적으로 터미네이터 및/또는 분비 신호 서열, 각각에 대하여 코딩하는 DNA 서열을 리게이션거나, 적당한 PCR 증폭 계획에 의해 이들 서열을 모으고, 복제 또는 통합에 필요한 정보를 함유하는 적당한 벡터 속으로 그Containing the present enzymes, promoters and optionally terminator and / or secretory signal sequences, the DNA sequences encoding for each, or collecting these sequences by appropriate PCR amplification schemes and containing the information necessary for replication or integration As that

들을 삽입하는데 사용되는 과정은 당업계 숙련자에 잘 알려져 있다(예를 들어, Sambrook et al., 상기 인용 문헌 참조)Procedures used to insert them are well known to those skilled in the art (see, eg, Sambrook et al., Cited above).

숙주 세포Host cell

숙주 세포 속으로 도입된 본 효소를 코딩하는 DNA 서열은 문제의 숙주에 상동 또는 비상동일 수 있다. 만약 숙주세포에 상동이면, 즉 숙주 세포에 의하여 천연적으로 생산되면, 그것은 일반적으로 그것의 천연적 환경보다는 다른 프로모터 서열이나 만약 적용가능하다면 다른 분비 신호 서열 및/또는 터미테이터 서열에 작동가능하게 연결될 것이다. 용어 "상동성"은 문제의 숙주 생체에 본래의 효소를 코딩하는 DNA 서열을 포함하는 것이 의도된다. 용어 "비상동"은 천연적으로 숙주 세포에 의해 발현되지 않은 DNA 서열을 포함하는 것이 의도된다. 따라서, DNA 서열은 다른 생체 유래일 수 있고, 또는 그것은 합성 서열일 수 있다.DNA sequences encoding the present enzymes introduced into host cells may be homologous or nonhomologous to the host in question. If homologous to a host cell, ie produced naturally by the host cell, it will generally be operably linked to other promoter sequences or, if applicable, to other secretory signal sequences and / or terminator sequences rather than to its natural environment. will be. The term "homologous" is intended to include DNA sequences encoding native enzymes in the host organism in question. The term “nonhomologous” is intended to include DNA sequences that are not naturally expressed by the host cell. Thus, the DNA sequence may be of other biological origin, or it may be a synthetic sequence.

본 발명의 DNA 구조 또는 재조합 벡터가 도입되는 숙주 세포는 본 효소를 생산할 수 있는 임의의 세포일 수 있고 세균,효모, 균류 및 식물을 포함하는 고등 진핵 세포를 포함한다.The host cell into which the DNA structure or recombinant vector of the present invention is introduced may be any cell capable of producing the enzyme and includes higher eukaryotic cells, including bacteria, yeasts, fungi and plants.

배양에서, 본 발명의 효소를 생산할 수 있는 미생물 숙주 세포의 예는, 균주 Corynebacterium glutamicum과 같은 균주,B. subtilis, B. licheniformis, B. lentus, B.brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B.megaterium 또는 B. thuringiensis와 같은 Bacillus, 또는 S. lividans 또는 S. murinus와 같은 Streptomyces, 또는 Escherichia coli와 같은 그램-음성 세균이다.In culture, examples of microbial host cells capable of producing the enzymes of the invention include strains such as strain Corynebacterium glutamicum, B. subtilis, B. licheniformis, B. lentus, B.brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or Streptomyces such as S. lividans or S. murinus, or Gram-negative bacteria such as Escherichia coli.

세균의 형질전환은 원형질체 형질전환, 전기 천공법, 접합에 의해, 또는 원래 알려진 방식으로 반응능 세포를 사용하여 수행할 수 있다(참고, Sambrook et al., 상기 문헌).Bacterial transformation can be performed by protoplast transformation, electroporation, conjugation, or using reactive cells in a manner known in the art (see Sambrook et al., Supra).

E. coli와 같은 세균 속에서 효소를 발현시킬 때, 효소는 전형적으로 불용성 과립으로서(봉입체로 알려짐) 세포질 내에 보유되거나, 세균 분비 서열에 의해 원형질막주위 공간으로 유도될 수 있다. 전자의 경우에, 세포는 용해되어 과립이 회수되고 변성된 다음 효소는 변성제의 희석에 의하여 리폴딩된다. 후자의 경우, 효소는 예를 들어 초음파 처리 또는 삼투압 쇼크에 의해 세포를 파괴하여 원형질막주위 공간의 함유물을 방출하고 효소를 회수하여 원형질막주위 공간으로부터 회수될 수 있다.When expressing enzymes in bacteria such as E. coli, enzymes are typically retained in the cytoplasm as insoluble granules (known as inclusion bodies) or can be induced into the periplasmic space by bacterial secretion sequences. In the former case, the cells are lysed so that the granules are recovered and denatured and the enzyme is then refolded by dilution of the denaturant. In the latter case, the enzymes can be recovered from the periplasmic space by destroying the cells, for example by sonication or osmotic shock, to release the contents of the periplasmic space and recover the enzyme.

Bacillus 또는 Streptomyces 균주와 같은 그램-양성 세균 내에서 효소를 발현시킬 때, 효소는 세포질 내에 보유될 수 있거나, 세균의 분비 서열에 의해 세포외 배지로 유도될 수 있다. 후자의 경우에, 효소는 아래 기술되는 바와 같이 배지로부터 회수될 수 있다.When expressing enzymes in Gram-positive bacteria, such as Bacillus or Streptomyces strains, the enzymes can be retained in the cytoplasm or induced into extracellular medium by the secretory sequence of the bacteria. In the latter case, the enzyme can be recovered from the medium as described below.

알파-Alpha- 자일로시다아제를Xylosidase 생산하는 방법 How to produce

본 발명은 본 발명에 따르는 분리된 효소를 생산하는 방법을 제공하는데, 효소를 코딩하는 DNA 서열을 이용하여 형질전환된 적합한 숙주 세포는 효소의 생성을 가능케하는 조건하에서 배양되고 결과의 효소는 세포내에 생산된다. The present invention provides a method for producing an isolated enzyme according to the present invention wherein a suitable host cell transformed with a DNA sequence encoding the enzyme is incubated under conditions allowing the production of the enzyme and the resulting enzyme is intracellular. Produced.

효소를 코딩하는 DNA 서열을 포함하는 발현 벡터가 비상동 숙주 세포 속으로 형질전환될 때, 본 발명의 효소의 비상동 재조합체 생산을 가능케 할 수 있다. 이로써 상동성 불순물이 부존재하는 것을 특징으로 하는 고도로 정제된 알파-자일로시다아제를 제작할 수 있다.When an expression vector comprising a DNA sequence encoding an enzyme is transformed into a nonhomologous host cell, it may enable the production of nonhomologous recombinants of the enzymes of the invention. This allows the production of highly purified alpha-xylosidases characterized by the absence of homologous impurities.

형질전환된 숙주 세포를 배양하는데 사용되는 배지는 문제의 숙주 세포를 성장시키는데 적합한 임의의 전통적 배지일 수 있다. 발현된 알파-자일로시다아제 및 변이효소는 세포질 내에 존재하며, 원심분리 또는 여과를 통해 배지에서 세포를 분리하고, lysozyme 또는 초음파 파쇄를 통해 조효소 액을 얻어낸 후, 황산 암모늄과 같은 염에 의하여 배지의 단백질 성분을 침전시키는 것을 포함하는 주지의 과정에 이어서, 이온 교환 크로마토그래피, 친화성 크로마토그래피 등과 같은 크로마토그래피 과정에 의해 그것으로부터 회수될 수 있다.The medium used to culture the transformed host cell may be any conventional medium suitable for growing the host cell in question. The expressed alpha-xylosidase and mutagenase are present in the cytoplasm, the cells are separated from the medium by centrifugation or filtration, the coenzyme solution is obtained through lysozyme or ultrasonic disruption, and then the medium is added to a medium by a salt such as ammonium sulfate. Following a well-known process involving precipitating the protein component of, it may be recovered from it by a chromatography process such as ion exchange chromatography, affinity chromatography, or the like.

일반 분자생물학 방법General Molecular Biology Methods

본 발명의 명세서에서 달리 언급하지 않는다면 DNA 조작 및 형질전환은 분자 생물학의 표준 방법을 사용하여 수행된다(Sambrook et al.(1989) Molecular cloning : A laboratory manual, Cold Spring Harborlab., Cold Spring Harbor, N Y ; A usubel, F.M. et a1.(eds.) "Current protocols in Molecular Biology". JohnWiley and Sons, 1995; Harwood, C. R., and Cutting,S. M. (eds.)"Molecular Biological Methods for Bacillus". JohnWiley and Sons, 1990).DNA manipulations and transformations are performed using standard methods of molecular biology unless otherwise stated in the present specification (Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harborlab., Cold Spring Harbor, NY A usubel, FM et a1. (Eds.) "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, CR, and Cutting, SM (eds.) "Molecular Biological Methods for Bacillus". John Wiley and Sons, 1990).

DNADNA 조작을 위한 효소 Enzyme for Manipulation

본 발명의 명세서에서 달리 언급하지 않는다면 DNA 조작을 위한 모든 효소, 예를 들어 제한 엔도뉴클레아제, 리가아제 등은 Fermentas에서, DNA polymerase는 Roche로부터 얻는다. DNA 조작을 위한 효소는 공급자의 설명서에 따라서 사용된다.Unless stated otherwise in the context of the present invention all enzymes for DNA manipulation, such as restriction endonucleases, ligase and the like, are obtained from Fermentas and DNA polymerase from Roche. Enzymes for DNA manipulation are used according to the supplier's instructions.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본원 발명자는 지속성 탄수화물 분해효소에 속한 알파-자일로시다아제의 양자공여/수용체 촉매기가 변이된 가공효소가 가수분해활성을 현저하게 저하되지만, 좋은 이탈기인 불소를 가지는 알파-자일로실 플로라이드를 당공여체로 사용하면, 상기 변이 효소들이 성공적으로 당전이 반응을 수행하여 포도당, 말토오스 및 이들의 2-수산기(hydroxyl group)이 다른 반응기로 치환된 유사체를 비환원성 말단에 가지는 올리고당 및 배당체들을 당수용체로 사용하여, 자일로스 한 분자를 당수용체의 비환원성 말단 6-수산기 위치에 알파-당쇄결합으로 위치선택적, 입체특이적으로 당전이시킴을 발견하였다. 특히 상기 효소반응을 통해 생성된 당전이산물의 비환원성 말단은 6-수산기를 가지지 않는 자일로스이어서 이차 당전이반응의 당수용체로 사용되지 않고, 반응액 내 유일한 당전이 산물로 축적되어 해당 당전이 산물을 용이하게 고순도로 제조할 수 있다는 것을 발견하여 본원 발명을 완성하였다.The inventors of the present invention have shown that a protease in which the quantum donor / receptor catalyst group of the alpha-xylosidase belonging to the persistent carbohydrate degrading enzyme significantly degrades the hydrolytic activity, but the alpha-xylyl fluoride having fluorine which is a good leaving group When used as a sugar donor, the mutant enzymes have successfully undergone sugar transfer reactions, and thus oligosaccharides and glycosides having analogs at the non-reducing end with glucose, maltose and their 2-hydroxyl groups substituted with other reactors It was found that one molecule of xylose was regioselectively and stereospecifically translocated by alpha-sugar chain linkage to the non-reducing terminal 6-hydroxyl position of the sugar receptor. In particular, the non-reducing end of the sugar transition product produced through the enzymatic reaction is xylose having no 6-hydroxyl group, so it is not used as a sugar receptor for the secondary sugar transfer reaction, and the only sugar transition in the reaction solution is accumulated as a product so that the sugar transition The present invention has been completed by the discovery that the product can be easily produced in high purity.

이상 살펴본 바와 같이, 본원 발명은 지속성 탄수화물 분해효소에 속하는 알파-자일로시데이즈의 양자공여/수용체 촉매기에 대한 변이를 통해 가수분해 활성은 제거되었으나 당전이 활성을 유지하는 변이효소를 이용하여 포도당, 만노오스 및 이들의 2-수산기(hydroxyl group)이 다른 반응기로 치환된 유사체를 비환원성 말단에 가지는 올리고당 및 배당체들의 비환원성 말단 6-수산기 위치에 자일로스 한 분자를 알파-당쇄결합을 통해 전이시킴으로써 당전이산물을 고수율로 생산할 수 있다. As described above, the present invention is a glucose, by using a mutase that maintains the sugar transfer activity, but the hydrolysis activity is removed through a mutation on the proton / receptor catalyst group of alpha-xylosidase belonging to the persistent carbohydrate degrading enzyme Oligosaccharides having analogs substituted at the non-reducing end with mannose and their 2-hydroxyl groups substituted by other reactors and sugars by transferring axylose molecules via alpha-sugar chain bonds to the non-reducing terminal 6-hydroxyl positions of glycosides The transition product can be produced in high yield.

도 1은 지속성 탄수화물 분해효소에 속하는 알파-자일로시데이즈의 양자공여/수용체 촉매기인 aspartate를 alanine으로 변이시킨 후, 알파-자일로실 플로라이드를 당공여체로 포도당 비환원성 말단에 가지는 당 또는 배당체를 당수용체로 이용하면 일어나는 당전이 반응을 보여주는 모식도이다.
도 2는 E. coli K-12 알파-자일로시데이즈 유전자를 증폭한 PCR 산물의 전기영동 사진이다.
도 3은 E. coli K-12 알파-자일로시데이즈 유전자를 포함하는 pETYicI6xH의 제한효소 지도를 나타낸다.
도 4는 대장균에서 생산된 재조합 E. coli K-12 알파-자일로시데이즈를 Ni-NTA chromatography를 통해 정제하는 과정 중 얻어지는 시료을 보여주는 SDS-PAGE 사진이다.
도 5는 pH에 따른 E. coli K-12 알파-자일로시데이즈의 활성 변화를 보여주는 그림이다.
도 6은 온도에 따른 E. coli K-12 알파-자일로시데이즈의 활성 변화를 보여주는 그림이다.
도 7은 E. coli K-12 알파-자일로시데이즈의 양자공여/수용체 촉매기인 aspartate를 alanine으로 변이시킨 변이체 유전자를 포함하는 pETYici-D482A6xH 제한효소 지도를 나타낸다.
도 8은 알파-자일로실 플로라이드와 4-니트로페닐 베타 글루코사이드를 기질로 하여 E. coli K-12 알파-자일로시데이즈 변이체를 이용한 당전이 반응 산물을 분석한 Thin layer chromatography 사진이다.
도 9는 E. coli K-12 알파-자일로시데이즈의 양자공여/수용체 촉매기인 ASp482를 임의의 아미노산 잔기로 치환한 변이체 라이브러리에서 선발한 변이체 조효소액을 이용하여 알파-자일로실 플로라이드와 4-니트로페닐 베타 글루코사이드를 기질로 하여 당전이 반응 후, 반응산물에 대한 thin layer chromatography 이후 자외선하에서 4-니트로페닐을 가지는 화합물을 분석한 결과 사진이다.
도 10은 Bacillus halodurans C-125의 양자공여/수용체 촉매기인 ASp481를 알리닌으로 치환한 변이체 효소를 이용하여 알파-자일로실 플로라이드와 4-니트로페닐 베타 글루코사이드를 기질로 하여 당전이 반응을 수행한 반응액을 분석한 질량 분석 스펙트럼과 산물의 구조식을 나타낸 그림이다.
1 is a sugar or glycoside having alpha-xylyl fluoride as a sugar donor at a glucose non-reducing end after mutating aspartate, a proton / receptor catalyst of alpha-xylosidase belonging to a persistent carbohydrate degrading enzyme, to alanine This is a schematic diagram showing the sugar transition reaction occurs when using as a sugar receptor.
Figure 2 is an electrophoresis picture of the PCR product amplified E. coli K-12 alpha-xyloidase gene.
Figure 3 shows a restriction map of pETYicI6xH comprising the E. coli K-12 alpha-xyloxidase gene.
4 is a SDS-PAGE photograph showing a sample obtained during the purification of the recombinant E. coli K-12 alpha-xylosidase produced in E. coli by Ni-NTA chromatography.
Figure 5 is a diagram showing the change in activity of E. coli K-12 alpha-xylosidase with pH.
Figure 6 is a diagram showing the change in activity of E. coli K-12 alpha-xyloxidase with temperature.
Figure 7 shows a map of the pETYici-D482A6xH restriction enzyme containing a mutant gene in which aspartate, a quantum donor / receptor catalyst of E. coli K-12 alpha-xyloxidase, is mutated to alanine.
FIG. 8 is a thin layer chromatography photograph of a sugar transfer reaction product using E. coli K-12 alpha-xylosidase variant using alpha-xylyl fluoride and 4-nitrophenyl beta glucoside as a substrate.
FIG. 9 shows alpha-xylyl fluoride using mutant coenzyme solution selected from a mutant coenzyme solution substituted with an amino acid residue of ASp482, a proton donor / receptor catalyst of E. coli K-12 alpha-xylosidase. The result of analyzing the compound having 4-nitrophenyl under ultraviolet light after thin layer chromatography of the reaction product after the sugar transfer reaction using 4-nitrophenyl beta glucoside as a substrate.
10 is a sugar transfer reaction using alpha-xylyl fluoride and 4-nitrophenyl beta glucoside as substrates using a mutant enzyme substituted with alanine for ASp481, a quantum donor / receptor catalyst of Bacillus halodurans C-125. Figure shows the mass spectrometry of the reaction solution and the structural formula of the product.

이하 비한정적인 실시예를 통하여 본 발명을 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 목적으로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.Hereinafter, the present invention will be described through non-limiting examples. However, the following examples are described for the purpose of illustrating the present invention and the scope of the present invention is not to be construed as limited by the following examples.

실시예Example 1: E.  1: E. colicoli K-12 유래 알파- Alpha from K-12 자일로시다아제Xylosidase 유전자( gene( yicIyicI ) ) 클로닝Cloning 및 알파-자일로시다아제( And alpha-xylosidase ( YicIYicI ) 생산) production

1-1 E. coli 알파-자일로시다아제 유전자 증폭1-1 E. coli Alpha-Xylosidase Gene Amplification

E. coli K-12를 LB 배지 (1% tryptone, 0.5% yeast extract, 0.5% NaCl) 50ml에 접종하여 37℃에서 배양하고 원심분리하여 균체를 회수하고 염색체 DNA를 분리하였다(Dubnau, D. and R. D. Abenson, 1971, J. Mol. Biol., 56, 209-221). 즉, 회수된 균체에 라이소자임을 처리하여 원형질체 세포로 만든 다음 SDS(sodium dodecyl sulfate)를 넣어 세포를 완전히 파괴한 후 전체 반응액에 대해 농도가 1몰이 되도록 소디움 클로라이드를 첨가하여 단백질을 침전시켰다. 이것을 원심분리하여 상등액만을 취하고, 페놀:클로로포름:아이소아밀알콜의 혼합액(각 용액의 부피의 비 = 25:24:1)을 상등액과 동일한 부피로 첨가하여 액 중의 단백질 등 불순물을 제거하였다. 이 과정을 수회 반복하였다. 두 배 부피의 99%의 에탄올을 첨가하여 침전시키고, 이것을 유리막대로 감아서 분리하여 1/10xSSC 완충용액(3M 소디움 클로라이드, 0.3M 소디움 시트레이트)에 녹였다. E. coli K-12 was inoculated in 50 ml of LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl), incubated at 37 ° C and centrifuged to recover the cells and isolated chromosomal DNA (Dubnau, D. and RD Abenson, 1971, J. Mol. Biol., 56, 209-221). In other words, the recovered cells were treated with lysozyme to form protoplast cells, and then SDS (sodium dodecyl sulfate) was added to completely destroy the cells. Sodium chloride was added to the total reaction solution to precipitate the protein. After centrifugation, only the supernatant was taken, and a mixture of phenol: chloroform: isoamyl alcohol (ratio of the volume of each solution = 25: 24: 1) was added in the same volume as the supernatant to remove impurities such as protein in the solution. This process was repeated several times. A double volume of 99% ethanol was added to precipitate, which was wound up with a glass rod to separate and dissolved in 1 / 10xSSC buffer (3M sodium chloride, 0.3M sodium citrate).

상기 E. coli 알파-자일로시다아제(이하 YicI)을 암호화하는 유전자는 하기 표 1의 프라이머를 이용하여, 하기 표 2의 방법으로 PCR을 수행하여 YicI 유전자를 분리하였다.The gene encoding the E. coli alpha-xylosidase (hereinafter referred to as YicI) was isolated from the YicI gene by PCR by the method of Table 2 using the primers of Table 1 below.

상기 YicI 유전자를 분리하기 위하여 정방향 프라이머 YicITOP (5'-CAG AAC TAA GGA ACG CAT ATG AAA ATT AGC-3' 서열번호 7) 및 역방향 프라이머 YicIEND (5'-ATC AAG CTC GAG CAA CGT AAT TGT CAG CGC-3', 서열번호 8)를 각각 제작하였으며, 상기 프라이머는 하기 표 1과 같다.Forward primer YicITOP (5'-CAG AAC TAA GGA ACG CAT ATG AAA ATT AGC-3 'SEQ ID NO: 7) and reverse primer YicIEND (5'-ATC AAG CTC GAG CAA CGT AAT TGT CAG CGC-) to isolate the YicI gene. 3 ', SEQ ID NO: 8) were produced, respectively, and the primers are shown in Table 1 below.

서열order 서열번호SEQ ID NO: 정방향 프라이머 YicITOPForward primer YicITOP 5'-CAG AAC TAA GGA ACG CAT ATG AAA ATT AGC-3'5'-CAG AAC TAA GGA ACG CAT ATG AAA ATT AGC-3 ' 77 역방향 프라이머 YicIENDReverse primer YicIEND 5'-ATC AAG CTC GAG CAA CGT AAT TGT CAG CGC-3'5'-ATC AAG CTC GAG CAA CGT AAT TGT CAG CGC-3 ' 88

E. coli K-12 균주 염색체 DNA에 대해 상기 정방향 프라이머 및 역방향 프라이머를 이용하여 중합효소 연쇄반응(PCR)을 실시하여 PCR 산물을 획득하였으며, 전기영동을 통하여 상기 PCR 산물의 크기가 2.2 kb임을 확인하였다 (도 2). 상기 PCR의 조건은 하기 표 2에 기재된 바와 같다.PCR product was obtained by PCR using E. coli K-12 strain chromosomal DNA using the forward and reverse primers. PCR products were obtained by electrophoresis, and the size of the PCR product was 2.2 kb. (FIG. 2). The conditions of the PCR are as described in Table 2 below.

단계(STEP)STEP 온도Temperature 반응시간Reaction time First(1st) denaturationFirst (1st) denaturation 95 ℃95 ℃ 5 min5 min Second(2st) denaturationSecond (2st) denaturation 95 ℃95 1 min1 min AnnealingAnnealing 55 ℃55 ° C 30 sec30 sec ExtensionExtension 72 ℃72 ℃ 1min 30sec1min 30sec CycleCycle go to denaturationgo to denaturation 33 cycles33 cycles Final extensionFinal extension 72 ℃72 ℃ 7 min7 min

1-2. E. coli 알파-자일로시다아제 유전자 클로닝1-2. Cloning of E. coli alpha-xylosidase gene

형질전환을 위하여, 5 ml LB 액체 배지에 숙주 세포인 E. coli MC1016(New England Biolab(NEB, USA)를 접종하여 37℃에서 12시간 배양하고, 배양액 1.0 ml을 새로운 LB 액체 배지 50 ml에 접종하여 600 nm에서 흡광도가 0.5가 될 때까지 배양하였다. For transformation, 5 ml LB liquid medium was inoculated with host cell E. coli MC1016 (New England Biolab (NEB, USA), incubated for 12 hours at 37 ° C, and 1.0 ml of the culture was inoculated in 50 ml of fresh LB liquid medium. Incubated at 600 nm until the absorbance became 0.5.

상기 흡광도를 확인한 배양액 1.5 ml를 4℃에서 7000 x g의 조건으로 5분간 원심분리하여 균체를 회수한 뒤, 0.75 ml의 형질전환용액I(50 mM CaCl2)으로 현탁하고 얼음 속에서 30분간 방치하였다. 이후 4℃에서 6000 x g의 조건으로 2분간 원심분리하여 균체를 회수하고, 회수된 균체를 0.15 ml의 형질전환용액II(100 mM CaCl2)로 현탁하여 얼음 속에서 30분간 방치하였다. The cells were recovered by centrifuging 1.5 ml of the culture medium for which the absorbance was confirmed at 4 ° C. under 7000 × g for 5 minutes, and then suspended with 0.75 ml of transformation solution I (50 mM CaCl 2 ) and left for 30 minutes in ice. . Thereafter, the cells were recovered by centrifugation at 4 ° C. under 6000 × g for 2 minutes, and the recovered cells were suspended in 0.15 ml of Transfection Solution II (100 mM CaCl 2 ) and left in ice for 30 minutes.

상기 실시예 1-1에서 증폭한 YicI 유전자를 37℃에서 6시간 동안 제한효소 NdeI과 XhoI로 처리하고, 이를 동일한 제한 효소로 처리한 pET-29b 발현벡터(Novagen, 독일)와 라이게이션한 용액을 상기 형질전환용 E. coli MC1061(New England Biolab, 미국) 0.2 ml과 혼합하고, 1시간 방치한 후 42℃에서 2분간 열 충격을 주었다. 상기 열 충격을 준 혼합액에 0.8 ml의 LB 액체 배지를 혼합한 후, 37℃에서 1시간 배양시켰다. 상기 1시간 동안 배양한 배양액을 카나마이신(최종농도 20μg/ml)을 함유한 LB 한천 배지에 평판 도말하여 내성을 보이는 균주를 1차 선별하였다. A solution obtained by treating the YicI gene amplified in Example 1-1 with restriction enzymes NdeI and XhoI at 37 ° C. for 6 hours and then ligating with a pET-29b expression vector (Novagen, Germany) treated with the same restriction enzyme 0.2 ml of the transformed E. coli MC1061 (New England Biolab, USA) was mixed and left for 1 hour, followed by heat shock at 42 ° C. for 2 minutes. 0.8 ml of LB liquid medium was mixed with the thermal shock mixture, followed by incubation at 37 ° C for 1 hour. The culture medium cultured for 1 hour was plated on LB agar medium containing kanamycin (final concentration 20 μg / ml), and strains showing resistance were first selected.

1차 선별된 균주를 카나마이신이 포함된 LB 액체 배지 5 ml에 접종하여 37℃에서 12시간 배양하고, 원심분리하여 균체를 수득하였다. 플라스미드 분리키트(Qiagen, USA)로 회수된 균체로부터 플라스미드를 분리하고 상기와 동일한 NdeI과 XhoI제한 효소를 이용하여 상기와 동일한 조건에서 절단하여, 약 2.2 kb의 크기의 YicI 유전자가 포함되어 있음을 확인하였다.The first selected strains were inoculated in 5 ml of LB liquid medium containing kanamycin, incubated at 37 ° C. for 12 hours, and centrifuged to obtain cells. The plasmid was separated from the cells recovered by the plasmid separation kit (Qiagen, USA) and cleaved under the same conditions using the same NdeI and XhoI restriction enzymes as above to confirm that the YicI gene of about 2.2 kb was included. It was.

상기 라이게이션을 통하여 하여 pETYicI6xH를 제조하였으며, 제조한 재조합 벡터 pETYicI6xH의 벡터의 개열지도를 도 3에 나타내었다. 상기 pETYicI6xH 벡터는 E. coli 알파-자일로시다아제(YicI) 유전자를 포함하며, 상기 알파-자일로시다아제 유전자의 3' 말단에 8개의 부가적인 아미노산 잔기(Leu-Glu-6His)를 포함하고 있다.PETYicI6xH was prepared through the ligation, and a cleavage map of the vector of the prepared recombinant vector pETYicI6xH is shown in FIG. 3. The pETYicI6xH vector comprises an E. coli alpha-xylosidase (YicI) gene and contains eight additional amino acid residues (Leu-Glu-6His) at the 3 'end of the alpha-xylosidase gene. have.

1-3 형질전환체의 배양 및 YicI의 생산1-3 Culture of Transformants and Production of YicI

상기에서 제조한 pETYicI6xH 벡터를 E. coli BL21(DE3)에 상기 실시예 1-2와 동일한 방법으로 형질전환시킨 후 카나마이신 내성여부를 확인하여 상기 벡터가 형질전환된 균주 즉, 형질전환체를 선별하였다 선별한 형질전환체는 카나마이신이 함유된 LB 액체 배지 2.5 L에 접종하고 37℃에서 배양하여 600 nm에서 흡광도가 0.6이 될 때 IPTG를 최종농도 0.5 mM로 첨가하여 37℃에서 5시간 배양하였다. The pETYicI6xH vector prepared above was transformed into E. coli BL21 (DE3) in the same manner as in Example 1-2, and then kanamycin resistance was checked to select the strain transformed with the vector, that is, a transformant. Selected transformants were inoculated in 2.5 L of LB liquid medium containing kanamycin and incubated at 37 ° C., when the absorbance was 0.6 at 600 nm, IPTG was added to a final concentration of 0.5 mM and incubated at 37 ° C. for 5 hours.

1-4. 효소 정제1-4. Enzyme purification

상기에서 선별한 형질전환주를 배양한 후, 4℃에서 7,000 x g의 조건으로 30분간 원심분리하여 균체를 회수하였다. 상기 회수된 균체를 300 mM NaCl과 10 mM 이미다졸이 함유된 50 mM Tris-HCl 완충용액(pH 7.5)으로 현탁한 후, 상기 현탁한 균체를 초음파 분쇄하였다. 상기 초음파 분쇄를 수행한 배양액을 10,000 x g의 조건으로 30분간 원심분리하여 상등액을 취하고, 상기 수득된 상등액은 Ni-NTA 친화 크로마토그래피에 주입하여, 정제하였다.After culturing the transformants selected above, the cells were recovered by centrifugation for 30 minutes under conditions of 7,000 x g at 4 ℃. The recovered cells were suspended in 50 mM Tris-HCl buffer (pH 7.5) containing 300 mM NaCl and 10 mM imidazole, and the suspended cells were ultrasonically ground. The supernatant was collected by centrifugation for 30 minutes under conditions of 10,000 x g, and the obtained supernatant was purified by injection into Ni-NTA affinity chromatography.

재조합 벡터 pETYicI6xH로 형질전환시킨 E. coli BL21(DE3)에서 생산된 YicI의 정제단계별 시료의 전기영동 사진을 도 4에 나타내었다. 상기 도 4의 M은 사이즈 마커이고, 레인 1은 형질전환체를 초음파 분쇄하여 수득한 상등액이고, 레인 2는 상기 초음파 분쇄 후 수득한 상득액의 시료를 Ni-NTA 친화 크로마토그래피로 정제한 YicI 효소이다. 4 shows electrophoresis images of samples for each purification step of YicI produced in E. coli BL21 (DE3) transformed with recombinant vector pETYicI6xH. 4, M is a size marker, lane 1 is a supernatant obtained by ultrasonic grinding of a transformant, and lane 2 is a YicI enzyme obtained by purifying a sample of the supernatant obtained after the ultrasonic grinding by Ni-NTA affinity chromatography. to be.

도 4에 나타낸 바와 같이, 상기 YicI 효소(레인 2)는 Ni-NTA 친화 크로마토그래피 과정을 통하여 효율적으로 정제된 것을 확인할 수 있으며, SDS-PAGE상에서 상기 알파-자일로시다아제의 크기는 약 88 Da의 분자량을 나타내어 상기 YicI의 아미노산 서열로부터 유추된 이론적 분자량과 유사한 값을 나타내었다.As shown in Figure 4, it can be seen that the YicI enzyme (lane 2) was efficiently purified through the Ni-NTA affinity chromatography process, the size of the alpha- xylosidase on SDS-PAGE is about 88 Da The molecular weight of was shown to be similar to the theoretical molecular weight inferred from the amino acid sequence of YicI.

실시예Example 2: E.  2: E. colicoli K-12 유래 알파- Alpha from K-12 자일로시다아제Xylosidase ( ( YicIYicI )의 특성) Characteristics

2-1 효소 역가2-1 Enzyme Titer

50 mM sodium phosphate (pH 7.0) 완충용액에 용해된 5 mM 파라나이트로페닐 알파-자일로사이드 용액 450 μl를 37℃에서 5분간 예열하고, 효소 50 μl를 넣고 10분간 반응시킨다. 1M sodium bicarbonate 용액 500 μl를 넣어 반응을 중지시킨 후, 405 nm 에서 흡광도를 측정하여 생성된 나이트로 페놀의 양을 측정한다. 효소를 넣지 않은 반응은 대조군으로 사용한다. 1 unit은 특정 반응조건하에서 1분 동안 나이트로 페놀 1μmol 을 형성하는데 필요한 효소의 양을 말한다. 450 μl of 5 mM paranitrophenyl alpha-xyloxide solution dissolved in 50 mM sodium phosphate (pH 7.0) buffer was preheated at 37 ° C. for 5 minutes, and 50 μl of enzyme was added for 10 minutes. 500 μl of 1M sodium bicarbonate solution was added to stop the reaction, and then the absorbance was measured at 405 nm to determine the amount of nitrophenol produced. The reaction without enzyme is used as a control. One unit is the amount of enzyme required to form 1 μmol nitrophenol for 1 minute under specific reaction conditions.

2-2 pH 특성2-2 pH Characteristics

본원 발명의 YicI의 최적 반응 pH를 결정하기 위해, 다양한 pH 범위의 완충액(pH 4, 5, 6 sodium acetate buffer; pH 6, 7, 8 sodium phosphate buffer; pH 8, 9 sodium borate buffer) 각각에 파라나이트로페닐 알파-자일로사이드를 첨가하여 5 mM 파라나이트로페닐 알파-자일로사이드 기질 용액을 제조하고, 실시예 1-4의 정제된 YicI 효소액을 이용하여 실시예 2-1의 방법으로 효소역가를 측정하고 최고 흡광도 값을 기준으로 상대적 활성을 측정하였다.In order to determine the optimal reaction pH of the YicI of the present invention, each of various pH range buffers (pH 4, 5, 6 sodium acetate buffer; pH 6, 7, 8 sodium phosphate buffer; pH 8, 9 sodium borate buffer) Nitrophenyl alpha-xyloxide was added to prepare a 5 mM paranitrophenyl alpha-xyloxide substrate solution, and the enzyme was purified by the method of Example 2-1 using the purified YicI enzyme solution of Example 1-4. Titer was measured and relative activity was determined based on the highest absorbance values.

도 5는 상기 YicI 효소의 pH에 따른 효소활성을 나타낸 것으로, pH 6.5에서 최적의 역가를 가지며 pH 5.0 내지 7.5에서 50 % 이상의 역가를 유지하였다.Figure 5 shows the enzyme activity according to the pH of the YicI enzyme, having an optimum titer at pH 6.5 and maintained a titer of 50% or more at pH 5.0 to 7.5.

2-3. 온도 특성2-3. Temperature characteristics

본원 발명의 E. coli 유래 알파-자일로시다아제의 최적 반응 온도를 결정하기 위해, 50 mM 소디움 포스페이트 완충액 (pH 7.0)를 이용하여 5 mM 파라나이트로페닐 알파-자일로사이드 기질 용액을 제조하고, 20 내지 60℃의 다양한 온도범위로 기질 용액을 가열시킨 후, 실시예 2-1의 방법에 따라 효소활성을 측정한 후, 흡광도를 측정하여 상대적 효소활성을 측정하였다.To determine the optimal reaction temperature of the E. coli-derived alpha-xylosidase of the present invention, a 5 mM paranitrophenyl alpha-xyloxide substrate solution was prepared using 50 mM sodium phosphate buffer (pH 7.0) and After heating the substrate solution in various temperature ranges from 20 to 60 ° C., the enzyme activity was measured according to the method of Example 2-1, and then the absorbance was measured to determine relative enzyme activity.

도 6은 YicI 효소의 온도에 따른 효소활성을 나타낸 것으로, 50℃에서 최적의 역가를 가지며 40 내지 65℃에서 약 50% 이상의 역가를 유지하였다.Figure 6 shows the enzyme activity according to the temperature of the YicI enzyme, having an optimum titer at 50 ℃ and maintained a titer of about 50% or more at 40 to 65 ℃.

실시예 3: E. coli 유래 알파-자일로시다아제 변이효소의 제조 및 생산Example 3: Preparation and Production of E. coli Derived Alpha-Xylosidase Mutase

3-1. YicI 양자공여체 돌연변이체 (YicI-D482A) 제작3-1. Construction of YicI Quantum Donor Mutant (YicI-D482A)

상기 YicI 효소의 양자공여체 촉매기인 Asp482를 알라닌으로 치환하기 위해 YicID482A-F (서열번호 9)를 제작하였으며, 상기 프라이머는 하기 표 3과 같다.YicID482A-F (SEQ ID NO: 9) was prepared to replace Asp482, a quantum donor catalyst group of the YicI enzyme, with alanine, and the primers are shown in Table 3 below.

서열order 서열번호SEQ ID NO: YicID482A-FYicID482A-F 5-GTA CAC TGG GGT GGC GCG TGT TAC GC TAA CTA C-35-GTA CAC TGG GGT GGC GCG TGT TAC GC TAA CTA C-3 99

상기 실시예 1-2의 재조합 벡터 pETYicI6xH에 대해 상기 YicID482A-F를 정방향 프라이머로, 재조합 벡터에 결합하는 T7 terminator 프라이머 (5-TATGCTAGTTATTGCTCAG-3; 서열번호 10)역방향 프라이머를 이용하여 중합효소 연쇄반응을 실시하여 PCR 산물(YicID482A-rear)을 획득하였다. 또한 상기 재조합 벡터 pETYicI6xH에 대해 상기 T7 promoter 프라이머 (5-TAATACGACTCACTATAGGG-3; 서열번호 11)를 정방향 프라이머로, 상기 YicID482A-rear을 역방향 프라이머를 이용하여 중합효소 연쇄반응을 실시하여 본 발명이 제공하는 알파-자일로시데이즈 변이효소, 즉 YicI 효소의 양자공여체 촉매기가 Alanine으로 치환된 YicI-D482A를 암호화하는 유전자를 함유하는 PCR 산물을 획득하였으며, 전기영동을 통하여 상기 PCR 산물의 크기가 약 2.2 kb임을 확인하였다. 상기 두 PCR의 조건은 상기 표 2에 기재된 바와 같다.For the recombinant vector pETYicI6xH of Example 1-2, the polymerase chain reaction was carried out using a reverse primer, Y7ID482A-F as a forward primer, and a T7 terminator primer (5-TATGCTAGTTATTGCTCAG-3; SEQ ID NO: 10) which binds to the recombinant vector. PCR product (YicID482A-rear) was obtained. In addition, to the recombinant vector pETYicI6xH, the T7 promoter primer (5-TAATACGACTCACTATAGGG-3; SEQ ID NO: 11) is used as a forward primer and the YicID482A-rear is subjected to a polymerase chain reaction using a reverse primer to provide an alpha provided by the present invention. A PCR product containing a gene encoding a YylI-D482A substituted with Alanine, a quantum donor catalyst of the YicI enzyme, ie, a YylI mutant enzyme, was obtained, and the size of the PCR product was about 2.2 kb. Confirmed. The conditions of the two PCRs are as described in Table 2 above.

상기 YicI-D482A를 암호화하는 유전자를 함유하는 PCR 산물을 NdeI과 XhoI으로 절단한 후, 상기 실시예 1-2에서와 같이 pET29b에 라이게이션하여 재조합 벡터 pETYicI-D482A6xH를 제조하였으며, 상기 실시예 1-3 및 1-4에 따라 형질전환체 제조, 및 YicI-D482A를 생산하였다. 상기 재조합 벡터 pETYicI-D482A6xH의 벡터의 개열지도를 도 7에 나타내었다. 상기 pETYicI-D482A6xH 벡터는 상기 YicI 효소의 양자공여체 촉매기가 alanine으로 치환된 알파-자일로시다아제 변이효소와 효소의 C-말단에 8개의 부가적인 아미노산 잔기(Leu-Glu-6xHis)를 포함하는 유전자를 가지고 있다.The PCR product containing the gene encoding YicI-D482A was digested with NdeI and XhoI, and then ligated to pET29b as in Example 1-2 to prepare a recombinant vector pETYicI-D482A6xH, and Example 1-. Transformants were prepared according to 3 and 1-4, and YicI-D482A was produced. A cleavage map of the vector of the recombinant vector pETYicI-D482A6xH is shown in FIG. 7. The pETYicI-D482A6xH vector is a gene comprising alpha-xylosidase mutase in which the quantum donor catalyst of the YicI enzyme is substituted with alanine and eight additional amino acid residues (Leu-Glu-6xHis) at the C-terminus of the enzyme. Have

3-2. 3-2. YicIYicI 양자공여체 돌연변이체 ( Proton Donor Mutant ( YicIYicI -- D482AD482A ) 생산) production

상기 제조한 pETYicI-D482A6xH 벡터를 상기 실시예 1-3의 방법으로 형질전환 후, 실시예 1-4의 방법에 따라 정제하였다.The prepared pETYicI-D482A6xH vector was transformed by the method of Example 1-3, and then purified according to the method of Example 1-4.

실시예Example 4. E.  4. E. colicoli 유래 알파- Origin Alpha 자일로시다아제Xylosidase 변이효소 ( Mutant enzyme ( YicIYicI -- D482AD482A )의 가수분해 활성 측정Measurement of hydrolysis activity

YicI-D482A의 가수분해활성을 측정하기 위해 1 mM 4-나이트로페닐 알파-자일로스와 알파-자일로실 플로라이드에 대한 효소 활성을 측정하였다. 4-나이트로페닐 알파-자일로스를 기질로 하여서는 상기 실시예 2-1에 따라 각 기질 농도당 반응속도를 측정하였다. 알파-자일로실 플로라이드의 경우 기질을 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후 상기 실시예 2-1에 따라 반응시키면서, 효소반응에 의해 유리되는 불소의 양을 불소이온 측정기(Orion 96-09 combination fluoride ion electrode)를 이용하여 측정하여 효소 반응속도를 측정하였다. 상기 방법에 따라 얻어진 반응속도를 YicI 효소의 반응속도와 상대적으로 비교하여 하기 표 4에 정리하였다.Enzyme activity against 1 mM 4-nitrophenyl alpha-xylose and alpha-xylyl fluoride was measured to determine the hydrolytic activity of YicI-D482A. Using 4-nitrophenyl alpha-xyl as a substrate, the reaction rate for each substrate concentration was measured according to Example 2-1. In the case of alpha-xylyl fluoride, the substrate is dissolved in 50 mM sodium phosphate (pH 7.0) buffer and reacted according to Example 2-1. 96-09 combination fluoride ion electrode) was used to measure the enzyme reaction rate. The reaction rate obtained according to the above method is summarized in Table 4 below in comparison with the reaction rate of the YicI enzyme.

YicIYicI YicI-D482AYicI-D482A 4-나이트로페닐 알파-자일로스4-nitrophenyl alpha-xylose 100100 00 알파-자일로실 플로라이드Alpha-Xylosil Floride 100100 3.7 x 10-2 3.7 x 10 -2

상기 표 4에 나타낸 바와 같이, 4-나이트로페닐 알파-자일로스는 전혀 분해하지 못하였으나, 알파-자일로실 플로라이드를 기질로 하여서는 wild type YicI 효소에 비해 3.7 x 10-4 배의 낮은 가수분해 활성을 나타내었다.As shown in Table 4, 4-nitrophenyl alpha-xyl was not degraded at all, but the alpha-xylyl fluoride was used as a substrate, 3.7 × 10 −4 times lower valence compared to wild type YicI enzyme. Degradation activity was shown.

실시예Example 5: 알파- 5: alpha 자일로실Xylosyl 플로라이드와Floridwa 4- 4- 나이트로페닐Nitrophenyl -베타--beta- 글루코사이드를Glucosides 이용한  Used YicIYicI -- D482AD482A 를 이용한 당전이 반응Transfer reaction using

5-1. 알파-5-1. Alpha- 자일로실Xylosyl 플로라이드와Floridwa 4- 4- 나이트로페닐Nitrophenyl -베타-글루코사이드(4-nitrophenyl-β-D--Beta-glucoside (4-nitrophenyl-β-D- glucosideglucoside )를 이용한 ) 당전이A former transition 반응 산물 생성 Reaction product generation

당전이 반응을 수행하기 위해 0.2 mmole 알파-자일로실 플로라이드와 0.125 mmole의 4-나이트로페닐-베타-글루코사이드를 5 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후, 상기 실시예 3-2에서 정제한 YicI-D482A를 넣고 37℃에서 반응을 진행하였고, 박막크로마토그래피(thin layer chromatography)방법을 통해 반응액을 분석하였다. 상기 반응의 TLC 결과를 도8에 나타내었다. 도 8에서 알 수 있듯이 당 수용체로 사용된 4-나이트로페닐-베타-글루코사이드가 모두 소비되었으며, 단 한 개의 당전이 산물만이 생성됨을 확인할 수 있다. To carry out the sugar transfer reaction, 0.2 mmole alpha-xylyl fluoride and 0.125 mmole of 4-nitrophenyl-beta-glucoside were dissolved in 5 mL of 50 mM sodium phosphate (pH 7.0) buffer, followed by the above example. YicI-D482A purified in 3-2 was added thereto and the reaction proceeded at 37 ° C., and the reaction solution was analyzed by thin layer chromatography. TLC results of the reaction are shown in FIG. 8. As can be seen in FIG. 8, all of 4-nitrophenyl-beta-glucoside used as sugar receptors were consumed, and only one sugar transition product was produced.

5-2. 알파-5-2. Alpha- 자일로실Xylosyl 플로라이드와Floridwa 4- 4- 나이트로페닐Nitrophenyl -베타-만노사이드(4--Beta-mannoside (4- nitrophenylnitrophenyl -β-D--D-D- mannosidemannoside )를 이용한 ) 당전이A former transition 반응산물Reaction products 생성 produce

당전이 반응을 수행하기 위해 0.07 mmole 알파-자일로실 플로라이드와 0.05 mmole의 4-나이트로페닐-베타-글루코사이드를 3 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후, 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하여 반응산물이 형성됨을 확인하였다. In order to carry out the sugar transfer reaction, 0.07 mmole alpha-xylyl fluoride and 0.05 mmole of 4-nitrophenyl-beta-glucoside were dissolved in 3 mL of 50 mM sodium phosphate (pH 7.0) buffer, followed by the above example. The reaction was carried out in the same manner as in 5-1 and analyzed by TLC to confirm that a reaction product was formed.

5-3. 알파-5-3. Alpha- 자일로실Xylosyl 플로라이드와Floridwa 4- 4- 나이트로페닐Nitrophenyl -2--2- 데옥시Deoxy -2--2- 아자이도Azaido -베타-글루코사이드(4-Beta-glucoside (4- nitrophenylnitrophenyl 2- 2- deoxydeoxy -2--2- azidoazido -β-D--D-D- glucosideglucoside )를 이용한 ) 당전이A former transition 반응 reaction

당전이 반응을 수행하기 위해 0.12 mmole 알파-자일로실 플로라이드와 0.06 mmole의 4-나이트로페닐-2-데옥시-2-아자이도-베타-글루코사이드를 3 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후, 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하였다. 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하여 반응산물이 형성됨을 확인하였다. To carry out the sugar transfer reaction, 0.12 mmole alpha-xylyl fluoride and 0.06 mmole of 4-nitrophenyl-2-deoxy-2-azido-beta-glucoside were added to 3 mL of 50 mM sodium phosphate (pH 7.0). ) After dissolving in buffer, the reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC. The reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC to confirm that a reaction product was formed.

5-4. 알파-5-4. Alpha- 자일로실Xylosyl 플로라이드와Floridwa 4- 4- 나이트로페닐Nitrophenyl -베타-셀로바이오사이드(4-Beta-cellobioside (4- nitrophenylnitrophenyl -β-D-cellobioside)를 이용한 -β-D-cellobioside) 당전이A former transition 반응 reaction

당전이 반응을 수행하기 위해 0.27 mmole 알파-자일로실 플로라이드와 0.12 mmole의 4-나이트로페닐-베타-셀로바이오사이드를 5 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후, 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하였다. 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하여 반응산물이 형성됨을 확인하였다. To perform the sugar transfer reaction, 0.27 mmole alpha-xylyl fluoride and 0.12 mmole of 4-nitrophenyl-beta-cellobioside were dissolved in 5 mL of 50 mM sodium phosphate (pH 7.0) buffer. The reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC. The reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC to confirm that a reaction product was formed.

5-5. 알파-5-5. Alpha- 자일로실Xylosyl 플로라이드와Floridwa 2,4- 2,4- 다이나이트로페닐Dynatrophenyl -2--2- 데옥시Deoxy -2--2- 플로로Floro -베타-셀로바이오사이드(2,4-Beta-cellobiosides (2,4- dinitrophenyldinitrophenyl 2- 2- deoxydeoxy -2--2- fluorofluoro -β-D--D-D- cellobiosidecellobioside )를 이용한 ) 당전이A former transition 반응 reaction

당전이 반응을 수행하기 위해 8.68 μmole 알파-자일로실 플로라이드와 8.68 μmole의 2,4-다이나이트로페닐-2-데옥시-2-플로로-베타-셀로바이오사이드를 5 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 후, 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하였다. 상기 실시예 5-1에서와 같은 방법으로 반응을 진행하고 TLC로 분석하여 반응산물이 형성됨을 확인하였다. To perform the sugar transfer reaction, 5 mL of 50 mM of 8.68 μmole alpha-xylyl fluoride and 8.68 μmole of 2,4-dytrophenyl-2-deoxy-2-fluoro-beta-cellobioside were added. After dissolving in sodium phosphate (pH 7.0) buffer, the reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC. The reaction was carried out in the same manner as in Example 5-1 and analyzed by TLC to confirm that a reaction product was formed.

실시예Example 6:  6: 당전이A former transition 반응산물Reaction products 정제  refine

상기 실시예 5-1에서 5-5의 반응액을 C18 SEP PAK cartridge (Waters)에 주입한 후, 물로 세척하여 비 아릴성 당을 제거하고, 에탄올로 당전이 산물을 용출하였다. 용출된 반응산물액을 감압농축기로 에탄올을 제거하였다. 잔존물을 2 mL의 피리딘과 동량의 무수 아세트산을 첨가하여 모든 수산기를 아세틸화 시킨 후, 용매를 제거하고 실리카 겔 크로마토그래피를 통해 당전이 산물을 분석하였다. 다시 감압농축을 통해 용매를 완전히 제거한 후 얻어진 당전이 산물의 무게를 이용하여 반응에 사용된 당 수용체 대비 당전이 산물 생산 수율을 계산하였다. 생성된 산물의 당전이 수율을 하기 표 5에 나타내었다. In Example 5-1, the reaction solution of 5-5 was injected into a C18 SEP PAK cartridge (Waters), washed with water to remove non-aryl sugars, and the sugar transition product was eluted with ethanol. Ethanol was removed from the eluted reaction product solution under a reduced pressure concentrator. The residue was added with 2 mL of pyridine and the same amount of acetic anhydride to acetylate all hydroxyl groups, then the solvent was removed and the sugar transfer product was analyzed by silica gel chromatography. After the solvent was completely removed through concentration under reduced pressure, the yield of sugar transfer product was calculated based on the weight of the sugar transfer product. The sugar transfer yield of the resulting product is shown in Table 5 below.

실시예Example 당 공여체Party donor 당 수용체Sugar receptor 수율 (%)Yield (%) 5-15-1 알파-자일로실 플로라이드Alpha-Xylosil Floride 4-니트로페닐 베타 글루코사이드4-nitrophenyl beta glucoside 9696 5-25-2 4-니트로페닐 베타 만노코사이드4-nitrophenyl beta mannoside 9393 5-35-3 4-니트로페닐 2-데옥시 2-아지도-베타 글루코사이드4-nitrophenyl 2-deoxy 2-azido-beta glucoside 8888 5-45-4 4-니트로페닐 베타 셀로바이오사이드4-nitrophenyl beta cellobioside 8080 5-55-5 4-니트로페닐 2-데옥시 2-플로로-베타 셀로바이오사이드4-nitrophenyl 2-deoxy 2-fluoro-beta cellobioside 9090

실시예Example 7:  7: 당전이A former transition 산물의 구조분석 Product structure analysis

상기 실시예 6에서 정제한 반응산물을 메탄올에 녹이고, acetic anhydride를 이용하여 모든 수산기를 아세틸화 한 후, 감압농축을 통해 용매를 제거하였다. 잔존물을 Silica gel chromatography를 통해 아세틸화된 당전이 산물만을 분리하고, 당전이 산물을 클로로포름 (CDCl3)에 녹인 후 엔엠알(400 MHz using a Bruker AV-400 spectrometer) 분석을 통해 구조를 결정하였다. The reaction product purified in Example 6 was dissolved in methanol, and all hydroxyl groups were acetylated using acetic anhydride, and then the solvent was removed by concentration under reduced pressure. The residue was separated only by acetylated sugar transfer product by Silica gel chromatography, the sugar transfer product was dissolved in chloroform (CDCl3), and then the structure was determined by NMR (400 MHz using a Bruker AV-400 spectrometer) analysis.

7-1. 4-Nitrophenyl[(2,3,4- tri -O- acetyl -α-D- xylopyranosyl )-(1→6)-O- 2,3,4-tri-O-acetyl-β-D- glucopyranoside . (상기 실시예 5-1 반응산물 ) 7 -1. 4-Nitrophenyl [(2,3,4- tri -O- acetyl -α-D- xylopyranosyl) - (1 → 6) -O- 2,3,4-tri-O-acetyl-β-D- glucopyranoside. ( Example 5-1 reaction product )

1H NMR (δppm, CDCl3, 400MHz): 8.30 (m,2H), 7.12 (m, 2H) (C6H4NO2); 5.47 (t, 1H, J3' ,4' 10.0 Hz, H-3), 5.31 (t, 1H, J3 ,4 8.8 Hz, H-3), 5.26 (t, 1H, J2,3 9.2Hz, H-2), 5.17 (d, 1H, J1 ,2 7.6 Hz, H-1), 5.00 (t, 1H, J4 ,5 10.0 Hz, H-4), 4.97 (d, 1H, J1' ,2' 3.2 Hz, H-1'), 4.88 (dt, 1H, J4' ,5'a = J4' ,5'b 6.0 Hz, H-4'), 4.78 (dd, 1H, J2' ,3' 10.0 Hz, H-2'), 3.97(m, 1H, H-5), 3.78(dd, 1H, J5 ,6a 8.0 Hz, & J6a ,6b 10.4 Hz, H-6a), 3.64(dd, 1H, J5'a ,5'b 10.8 Hz, H-5'a), 3.45(dd, 1H, J4' ,5'b 6.0 Hz, H-5'b), 3.43 (dd, 1H, J5 ,6b 2.4 Hz, H-6b); 2.08-1.73 (6s, 18H, CH3CO).13CNMR(δppm, CDCl3, 100 MHz): 170.16, 170.06, 170.03, 169.70, 169.40, 169.19 (CH3CO); 161.24, 143.32, 126.22 (2C), 116.50 (2C) (C6H4NO2); 98.14, 95.69, 73.36, 72.41, 70.97, 70.95, 68.99, 68.85, 68.72, 66.22, 58.41(sugar ring); 20.81, 20.74, 20.64, 20.61, 20.56, 20.52, 20.16 (CH3CO). EISMS: Calcd for C35H43NO22+Na+:852.7. Found:852.7.1 H NMR (δ ppm, CDCl 3 , 400 MHz): 8.30 (m, 2H), 7.12 (m, 2H) (C 6 H 4 NO 2 ); 5.47 (t, 1H, J 3 ' , 4' 10.0 Hz, H-3), 5.31 (t, 1H, J 3 , 4 8.8 Hz, H-3), 5.26 (t, 1H, J2,3 9.2 Hz, H-2), 5.17 (d, 1H, J 1 , 2 7.6 Hz, H-1), 5.00 (t, 1H, J 4 , 5 10.0 Hz, H-4), 4.97 (d, 1H, J 1 ′ , 2 ' 3.2 Hz, H-1'), 4.88 (dt, 1H, J 4 ' , 5'a = J 4' , 5'b 6.0 Hz, H-4 '), 4.78 (dd, 1H, J 2 ' , 3' 10.0 Hz, H-2 '), 3.97 (m, 1H, H-5), 3.78 (dd, 1H, J 5 , 6a 8.0 Hz, & J 6a , 6b 10.4 Hz, H-6a), 3.64 (dd, 1H, J 5'a , 5'b 10.8 Hz, H-5'a), 3.45 (dd, 1H, J 4 ' , 5'b 6.0 Hz, H-5'b), 3.43 (dd , 1H, J 5 , 6b 2.4 Hz, H-6b); 2.08-1.73 (6s, 18H, CH 3 CO). 13 CNMR (δ ppm, CDCl 3 , 100 MHz): 170.16, 170.06, 170.03, 169.70, 169.40, 169.19 (CH 3 CO); 161.24, 143.32, 126.22 (2C), 116.50 (2C) (C 6 H 4 NO 2 ); 98.14, 95.69, 73.36, 72.41, 70.97, 70.95, 68.99, 68.85, 68.72, 66.22, 58.41 (sugar ring); 20.81, 20.74, 20.64, 20.61, 20.56, 20.52, 20.16 (CH 3 CO). EISMS: Calcd for C 35 H 43 NO 22 + Na + : 852.7. Found: 852.7.

7-2 4-7-2 4- NitrophenylNitrophenyl [(2,3,4- [(2,3,4- tritri -- OO -- acetylacetyl -α-D--α-D- xylopyranosylxylopyranosyl )-(1→6)-)-(1 → 6)- OO -2,3,4--2,3,4- tritri -- OO -- acetylacetyl -β-D- mannopyranoside.(상기 -β-D-mannopyranoside. 실시예Example 5-2  5-2 반응산물Reaction products ))

1H NMR (CDCl3, 400 MHz): d 8.32 (m, 2 H, Ar-H), 7.16 (m, 2 H, Ar-H), 5.71 (dd, 1 H, J2 ,3 2.0 Hz, H-3), 5.52 (t, 1H, J3' ,4' 10.0 Hz, H-3'), 5.35 (d, 1H, J1 ,2 0.8 Hz, H-1), 5.20 (t, 1H, J3 ,4 9.0 Hz, H-4), 5.17 (dd, 1H, H-3), 5.02 (d, 1H, J1' ,2' 3.6 Hz, H-1'), 4.90 (ddd, 1H, H-4'), 4.81 (dd, 1H, J2' ,3' 10.4 Hz, H-2'), 3.96 (m, 1H, H-5), 3.91 (dd, 1H, J5 ,6a 8.4 Hz, H-6a), 3.68 (dd, 1H, J4' ,5'a 5.6 Hz & J5'a,5'b 10.8 Hz, H-5'a), 3.51 (t, 1H,J4' ,5'b = J5'a ,5'b 10.8 Hz, H-5'b), 3.46 (dd, 1H, J5 ,6b 1.2 Hz, J6a ,6b 10.0 Hz, H-6), 2.25 (s, 3H, CH 3CO), 2.11 (s, 3H, CH 3CO), 2.10 (s,3H,CH 3CO), 2.09 (s, 3H, CH 3CO), 2.03 (s, 3H, CH 3CO), 1.74 (s, 3H, CH 3CO). 13CNMR (CDCl3, 100MHz): d 170.42, 170.39, 170.23, 170.06, 169.95, 169.89 (CH3 CO); 161.36, 143.48, 126.43 (2C), 116.63 (2C) (Ar-C); 96.29 (C-1), 95.84 (C-1'), 74.13 (C-5), 71.28 (C-2'), 70.85 (C-3), 69.16, 69.13 (C-3' & 4'), 68.69 (C-2), 66.68 (C-6), 66.24 (C-4), 58.70 (C-5'); 21.00, 20.97 (2C), 20.87, 20.73, 20.37 (CH3CO). EISMS: Calcd for C35H43NO22+Na+:852.7. Found:852.7. 1 H NMR (CDCl 3 , 400 MHz): d 8.32 (m, 2H, Ar-H), 7.16 (m, 2H, Ar-H), 5.71 (dd, 1H, J 2 , 3 2.0 Hz, H-3), 5.52 (t, 1H, J 3 ' , 4' 10.0 Hz, H-3 '), 5.35 (d, 1H, J 1 , 2 0.8 Hz, H-1), 5.20 (t, 1H, J 3 , 4 9.0 Hz, H-4), 5.17 (dd, 1H, H-3), 5.02 (d, 1H, J 1 ′ , 2 ′ 3.6 Hz, H-1 ′), 4.90 (ddd, 1H, H-4 '), 4.81 (dd, 1H, J 2' , 3 '10.4 Hz, H-2'), 3.96 (m, 1H, H-5), 3.91 (dd, 1H, J 5 , 6a 8.4 Hz , H-6a), 3.68 (dd, 1H, J 4 ' , 5'a 5.6 Hz & J 5'a, 5'b 10.8 Hz, H-5'a), 3.51 (t, 1H, J 4' , 5'b = J 5'a , 5'b 10.8 Hz, H-5'b), 3.46 (dd, 1H, J 5 , 6b 1.2 Hz, J 6a , 6b 10.0 Hz, H-6), 2.25 (s , 3H, C H 3 CO), 2.11 (s, 3H, C H 3 CO), 2.10 (s, 3H, C H 3 CO), 2.09 (s, 3H, C H 3 CO), 2.03 (s, 3H , C H 3 CO), 1.74 (s, 3H, C H 3 CO). 13 CNMR (CDCl 3 , 100 MHz): d 170.42, 170.39, 170.23, 170.06, 169.95, 169.89 (CH 3 C O); 161.36, 143.48, 126.43 (2C), 116.63 (2C) (Ar-C); 96.29 (C-1), 95.84 (C-1 '), 74.13 (C-5), 71.28 (C-2'), 70.85 (C-3), 69.16, 69.13 (C-3 '&4'), 68.69 (C-2), 66.68 (C-6), 66.24 (C-4), 58.70 (C-5 '); 21.00, 20.97 (2C), 20.87, 20.73, 20.37 ( C H 3 CO). EISMS: Calcd for C 35 H 43 NO 22 + Na + : 852.7. Found: 852.7.

7-3 4-7-3 4- NitrophenylNitrophenyl [(2,3,4- [(2,3,4- tritri -- OO -- acetylacetyl -α-D--α-D- xylopyranosylxylopyranosyl )-(1→6)-2-)-(1 → 6) -2- deoxydeoxy -2--2- azidoazido -- OO -3,4--3,4- didi -- OO -acetyl-β-D- -acetyl-β-D- glucopyranosideglucopyranoside (상기  (remind 실시예Example 5-3  5-3 반응산물Reaction products ))

1H NMR (δppm, CDCl3, 400 MHz):d 8.35 (m, 2 H, Ar-H), 7.21 (m, 2 H, Ar-H), 5.51 (t, 1 H, J2' ,3' = J3',4' 10.0 Hz, H-3'), 5.13 (dd, 1H, J2 ,3 9.6 Hz, J3 ,4 10.0 Hz, H-3), 5.06 (d, 1H, J1 ,2 8.4 Hz, H-1), 5.01 (d, 1H, J1' ,2' 3.2 Hz, H-1'), 4.95 (t, 1H, J4 ,5 9.6 Hz, H-4), 4.90 (dd, 1H, H-4'), 4.80 (dd, 1H, H-2'), 3.96 (m, 1H, H-5), 3.83 (dd, 1H, J2 ,3 10.0 Hz, H-2), 3.80 (dd, 1H, J5 ,6a 8.0 Hz, J6a ,6b 10.4 Hz, H-6a), 3.69 (dd, 1H, J5'a ,5'b 10.4 Hz, H-5'a), 3.47 (t, 2H, J5 ,6b 10.4 Hz, J4' ,5'b 10.4 Hz, H-6b & H-5'b), 2.12 (s, 3H, CH 3CO), 2.09 (s+s, 6H, CH 3CO), 2.07 (s, 3H, CH 3CO), 1.77 (s, 3H, CH 3CO). 13C NMR (CDCl3, 100MHz): d 170.43, 170.28, 169.98 (2 C), 169.83 (CH3 CO); 161.25, 143.78, 126.56 (2C), 116.94 (2C) (Ar-C); 99.81 (C-1), 95.90 (C-1'), 73.62 (C-5), 72.32 (C-3), 71.21 (C-2'), 69.19, 69.12, 68.95 (C-3', 4' & 4), 66.40 (C-6), 63.73 (C-2), 58.68 (C-5'); 20.99, 20.91, 20.86 (2C), 20.44 (CH3CO). 1 H NMR (δ ppm, CDCl 3 , 400 MHz): d 8.35 (m, 2H, Ar-H), 7.21 (m, 2H, Ar-H), 5.51 (t, 1H, J 2 ′ , 3 ' = J 3', 4 '10.0 Hz, H-3'), 5.13 (dd, 1H, J 2 , 3 9.6 Hz, J 3 , 4 10.0 Hz, H-3), 5.06 (d, 1H, J 1 , 2 8.4 Hz, H-1), 5.01 (d, 1H, J 1 ' , 2' 3.2 Hz, H-1 '), 4.95 (t, 1H, J 4 , 5 9.6 Hz, H-4), 4.90 (dd, 1H, H-4 '), 4.80 (dd, 1H, H-2'), 3.96 (m, 1H, H-5), 3.83 (dd, 1H, J 2 , 3 10.0 Hz, H-2 ), 3.80 (dd, 1H, J 5 , 6a 8.0 Hz, J 6a , 6b 10.4 Hz, H-6a), 3.69 (dd, 1H, J 5'a , 5'b 10.4 Hz, H-5'a) , 3.47 (t, 2H, J 5 , 6b 10.4 Hz, J 4 ' , 5'b 10.4 Hz, H-6b &H-5'b), 2.12 (s, 3H, C H 3 CO), 2.09 (s + s, 6H, C H 3 CO), 2.07 (s, 3H, C H 3 CO), 1.77 (s, 3H, C H 3 CO). 13 C NMR (CDCl 3 , 100 MHz): d 170.43, 170.28, 169.98 (2 C), 169.83 (CH 3 C O); 161.25, 143.78, 126.56 (2C), 116.94 (2C) (Ar-C); 99.81 (C-1), 95.90 (C-1 '), 73.62 (C-5), 72.32 (C-3), 71.21 (C-2'), 69.19, 69.12, 68.95 (C-3 ', 4'& 4), 66.40 (C-6), 63.73 (C-2), 58.68 (C-5 ′); 20.99, 20.91, 20.86 (2C), 20.44 ( C H 3 CO).

7-4 4-7-4 4- NitrophenylNitrophenyl [(2,3,4- [(2,3,4- tritri -O--O- acetylacetyl -α-D--α-D- xylopyranosylxylopyranosyl )-(1→6)-O-2,3,4-)-(1 → 6) -O-2,3,4- tritri -O--O- acetylacetyl -β-D-glucopyranosyl-(1→4)-O-2,3,6--β-D-glucopyranosyl- (1 → 4) -O-2,3,6- tritri -O--O- acetylacetyl -β-D--D-D- glucopyranosideglucopyranoside (상기  (remind 실시예Example 5-4  5-4 반응산물Reaction products ))

1H NMR (δppm, CDCl3, 400MHz): 8.18 (m, 2H), 7.01 (m, 2H) (C6 H 4NO2); 5.43 (t, 1H, J3 ",4" 9.6 Hz, H-3"), 5.29 (t, 1H, J3' ,4' 9.2 Hz, H-4'), 5.17 (d, 1H, J1 ,2 7.6 Hz, H-1), 5.14 (m, 2H, H-2 & H-3'), 5.03 (d, 1H, J1 ",2" 4.0 Hz, H-1"), 4.98 (m, 2H, H-4"& H-3), 4.86 (dd, 1H, J2' ,3' 9.6 Hz, H-2'), 4.78 (dd, 1H, J2",3" 10.4 Hz, H-2"), 4.57 (d, 1H, J1' ,2' 7.6 Hz, H-1'), 4.52 (dd, 1H, J5 ,6a 2.0 Hz & J6a ,6b 12.0 Hz, H-6a), 4.11 (dd, 1H, J5 ,6b 6.0 Hz, H-6b),3.93~3.82 (m, 3H, H-5, H-5' & H-5"), 3.74 ~ 3.58 (m, 4H, H-4, H-5", H-6'a & H-6'b), 2.10 ~ 1.97 (8s, 27H, CH 3CO).13CNMR (d ppm, CDCl3, 100MHz): 170.25, 170.16 (2C), 169.93, 169.89, 169.52, 169.40 (2C), 169.09 (CH3 CO); 161.13, 143.24, 125.78 (2C), 116.55 (2C) (C 6H4NO2); 99.97, 97.80, 96.22, 77.20, 75.25, 73.17, 73.11, 72.71, 72.33, 71.68, 71.12, 70.93 (2C), 69.27, 69.03, 68.93, 67.29 (sugar ring); 20.79, 20.73, 20.69 (2C), 20.65 (2C), 20.57, 20.52 (2C) (CH3CO). 1 H NMR (δ ppm, CDCl 3 , 400 MHz): 8.18 (m, 2H), 7.01 (m, 2H) (C 6 H 4 NO 2 ); 5.43 (t, 1H, J 3 ", 4" 9.6 Hz, H-3 "), 5.29 (t, 1H, J 3 ' , 4' 9.2 Hz, H-4 '), 5.17 (d, 1H, J 1 , 2 7.6 Hz, H-1), 5.14 (m, 2H, H-2 & H-3 '), 5.03 (d, 1H, J 1 ", 2" 4.0 Hz, H-1 "), 4.98 (m , 2H, H-4 "& H-3), 4.86 (dd, 1H, J 2 ' , 3' 9.6 Hz, H-2 '), 4.78 (dd, 1H, J 2", 3 " 10.4 Hz, H -2 "), 4.57 (d, 1H, J 1 ' , 2' 7.6 Hz, H-1 '), 4.52 (dd, 1H, J 5 , 6a 2.0 Hz & J 6a , 6b 12.0 Hz, H-6a) , 4.11 (dd, 1H, J 5 , 6b 6.0 Hz, H-6b), 3.93 to 3.82 (m, 3H, H-5, H-5 '& H-5 "), 3.74 to 3.58 (m, 4H, H-4, H-5 ", H-6'a &H-6'b), 2.10-1.97 (8s, 27H, C H 3 CO). 13 CNMR (d ppm, CDCl 3 , 100 MHz): 170.25, 170.16 (2C), 169.93, 169.89, 169.52, 169.40 (2C), 169.09 (CH 3 C O); 161.13, 143.24, 125.78 (2C), 116.55 (2C) ( C 6 H 4 NO 2 ); 99.97, 97.80, 96.22, 77.20, 75.25, 73.17, 73.11, 72.71, 72.33, 71.68, 71.12, 70.93 (2C), 69.27, 69.03, 68.93, 67.29 (sugar ring); 20.79, 20.73, 20.69 (2C), 20.65 (2C), 20.57, 20.52 (2C) ( C H 3 CO).

7-5 2,4-7-5 2,4- DinitrophenylDinitrophenyl [(2,3,4- [(2,3,4- tritri -O--O- acetylacetyl -α-D--α-D- xylopyranosylxylopyranosyl )-(1→6)-O-2,3,4-)-(1 → 6) -O-2,3,4- tritri -O--O- acetylacetyl -β-D-glucopyranosyl-(1→4)-2--β-D-glucopyranosyl- (1 → 4) -2- deoxydeoxy -2--2- fluorofluoro -O-3,6--O-3,6- didi -O--O- acetylacetyl -β-D--D-D- glucopyranosideglucopyranoside (상기  (remind 실시예Example 5-5  5-5 반응산물Reaction products ))

1H NMR (δppm, 600 MHz, CDCl3):2.01, 2.04, 2.05, 2.06, 2.07, 2.08, 2.10, 2.17 (s, 24 H, 8 CH3CO); 3.56 (dd, 1 H, J5 ,6 2.7,J6'a ,6'b 11.1 Hz, H6'), 3.69 (ddd, 1 H, J5' ,6' 2.4, J5' ,6' 5.4, J4' ,5' 10.2 Hz, H5), 3.74 (dd, 1 H, J5' ,6' 5.5, J6'a ,6'b 10.8 Hz, H6'), 3.77 (dd, 1 H, J4 ",5" 6.0, J5 "a,5"b 11.1 Hz, H5"), 3.86 (dd, 1 H, J4 ",5" 6.0, J5 "a,5"b 10.2 Hz, H5"), 3.95 (ddd, 1 H, J5 ,6 2.4, J5 ,6 5.4, J4 ,5 9.6 Hz, H5), 4.03 (t, 1 H, J3 ,4 = J4 ,5 9.6 Hz, H4), 4.12 (dd, 1 H, J5 ,6 4.8, J6a ,6b 12.6 Hz, H6), 4.59 (dd, 1 H, J5 ,6 2.1, J6a ,6b 12.3 Hz, H6), 4.62 (d, 1 H, J1' ,2' 7.8 Hz, H1'), 4.69 (dt, 1 H, J2 ,F 49.2, J1 ,2 = J2 ,3 7.5 Hz, H2), 4.82 (dd, 1 H, J1 ",2" 3.6, J2 ",3" 10.2 Hz, H2"), 4.89 (dd, 1 H, J1' ,2' 7.8, J2' ,3' 9.6 Hz, H2'), 5.00 (t, 1 H, J3' ,4' = J4' ,5' 10.2 Hz, H4'), 5.00 (sixt, 1 H, J4 ",5" = J4 ",5" 6.3, J3 ",4" 9.9 Hz, H4"), 5.07 (d, 1 H, J1 ",2" 3.0 Hz, H1"), 5.20 (t, 1 H, J2' ,3' = J3' ,4' 9.6 Hz, H3'), 5.44 (t, 1 H, J2 ,3 = J3 ,4 9.6 Hz, H3), 5.46 (dd, 1 H, J1 ,2 7.8, J1 ,F 2.4 Hz, H1), 5.48 (t, 1 H, J2 ",3" = J3 ",4" 9.9 Hz, H3"), 7.39 (d, 1 H, J 9.6 Hz, DNP), 8.44 (dd, 1H, J 2.4, J 9.0 Hz, DNP), 8.75 (d, 1H, J 3.0 Hz, DNP). 13CNMR (150MHz, CDCl3): 20.78, 20.86, 20.89, 20.95, 21.11,(8 CH3CO); 59.09, 61.60, (C6, C6'); 67.15 (C5"), 69.09, 69.21, 69.38, 71.14, 71.90, 72.91, 73.47, 73.52, (C4, C5, C2', C3', C4', C5', C2", C3", C4"); 71.58 (C3, J3,F 20.9 Hz), 88.62 (C2, J2 ,F 191 Hz), 96.39 (C1"),98.11 (C1, J1 ,F 25.8 Hz), 99.97 (C1'), 117.69, 121.86, 128.87, 140.21, 142.25, 153.61 (DNP); 169.29, 169.49, 169.67, 170.16, 170.24, 170.43 (8 CH3CO) 1 H NMR (δ ppm, 600 MHz, CDCl 3 ): 2.01, 2.04, 2.05, 2.06, 2.07, 2.08, 2.10, 2.17 (s, 24H, 8 CH 3 CO); 3.56 (dd, 1 H, J 5 , 6 2.7, J 6'a , 6'b 11.1 Hz, H6 '), 3.69 (ddd, 1 H, J 5' , 6 ' 2.4, J 5' , 6 ' 5.4 , J 4 ' , 5' 10.2 Hz, H5), 3.74 (dd, 1 H, J 5 ' , 6' 5.5, J 6'a , 6'b 10.8 Hz, H6 '), 3.77 (dd, 1 H, J 4 ", 5" 6.0, J 5 "a, 5" b 11.1 Hz, H5 "), 3.86 (dd, 1 H, J 4 ", 5 " 6.0, J 5 " a, 5 "b 10.2 Hz, H5 "), 3.95 (ddd, 1 H, J 5 , 6 2.4, J 5 , 6 5.4, J 4 , 5 9.6 Hz, H5), 4.03 (t, 1 H, J 3 , 4 = J 4 , 5 9.6 Hz , H4), 4.12 (dd, 1H, J 5 , 6 4.8, J 6a , 6b 12.6 Hz, H6), 4.59 (dd, 1H, J 5 , 6 2.1, J 6a , 6b 12.3 Hz, H6), 4.62 (d, 1 H, J 1 ' , 2' 7.8 Hz, H1 '), 4.69 (dt, 1 H, J 2 , F 49.2, J 1 , 2 = J 2 , 3 7.5 Hz, H2), 4.82 ( dd, 1 H, J 1 ", 2" 3.6, J 2 ", 3" 10.2 Hz, H2 "), 4.89 (dd, 1 H, J 1 ' , 2' 7.8, J 2 ' , 3' 9.6 Hz, H2 '), 5.00 (t, 1 H, J 3' , 4 ' = J 4' , 5 '10.2 Hz, H4'), 5.00 (sixt, 1 H, J 4 ", 5" = J 4 ", 5 " 6.3, J 3 ", 4 " 9.9 Hz, H4"), 5.07 (d, 1 H, J 1 ", 2" 3.0 Hz, H1 "), 5.20 (t, 1 H, J 2 ' , 3' = J 3 ' , 4' 9.6 Hz, H3 '), 5.44 (t, 1 H, J 2 , 3 = J 3 , 4 9.6 Hz, H3), 5.46 (dd, 1 H, J 1 , 2 7.8, J 1 , F 2.4 Hz, H1), 5.48 (t, 1H, J 2 ", 3" = J 3 ", 4" 9.9 Hz, H3 "), 7.39 (d, 1 H, J 9.6 Hz, DNP), 8.44 (dd, 1H, J 2.4, J 9.0 Hz, DNP), 8.75 (d, 1H, J 3.0 Hz, DNP). 13 CNMR (150 MHz, CDCl 3 ): 20.78, 20.86, 20.89, 20.95, 21.11, (8 CH 3 CO); 59.09, 61.60, (C6, C6 '); 67.15 (C5 "), 69.09, 69.21, 69.38, 71.14, 71.90, 72.91, 73.47, 73.52, (C4, C5, C2 ', C3', C4 ', C5', C2", C3 ", C4"); 71.58 (C3, J 3, F 20.9 Hz), 88.62 (C2, J 2 , F 191 Hz), 96.39 (C1 "), 98.11 (C1, J 1 , F 25.8 Hz), 99.97 (C1 '), 117.69, 121.86, 128.87, 140.21, 142.25, 153.61 (DNP); 169.29, 169.49, 169.67, 170.16, 170.24, 170.43 (8 CH3CO)

실시예Example 8:  8: YicIYicI 양자공여/수용체  Quantum donor / receptor 촉매기의Catalytic 무작위 돌연변이 Random mutation

8-1. 8-1. YicIYicI 양자공여체 돌연변이체 라이브러리( Quantum donor mutant library ( YicIYicI -- D482XD482X ) 제작Production

상기 YicI 효소의 양자공여체 촉매기인 Asp482를 임의의 아미노산으로 치환하기 YicID482X-F (5-GTA CAC TGG GGT GGC NNN TGT TAC GC TAA CTA C-3, N은 임의의 염기서열, 서열번호 12)를 제작하였으며, 상기 프라이머는 하기 표 6과 같다.Substituting Asp482, a quantum donor catalyst of the YicI enzyme, with an arbitrary amino acid, yields YicID482X-F (5-GTA CAC TGG GGT GGC NNN TGT TAC GC TAA CTA C-3, N is any nucleotide sequence, SEQ ID NO: 12). The primers are shown in Table 6 below.

서열order 서열번호SEQ ID NO: YicID482X-FYicID482X-F 5-GTA CAC TGG GGT GGC NNN TGT TAC GC TAA CTA C-35-GTA CAC TGG GGT GGC NNN TGT TAC GC TAA CTA C-3 1212

상기 실시예 1-2의 재조합 벡터 pETYicI6xH에 대해 상기 YicID482X-F를 정방향 프라이머로 사용하여 상기 실시예 3-1의 방법으로 YicI 효소의 양자공여/수용체 촉매기가 임의의 아미노산으로 치환된 YicI 돌연변이체들 (YicI-D482X, X는 임의의 아미노산을 의미함)의 유전자들을 획득하였다. 상기 PCR의 조건은 상기 표 2에 기재된 바와 같다.YicI mutants in which the quantum donor / receptor catalyst of the YicI enzyme is substituted with any amino acid by the method of Example 3-1 using the YicID482X-F as a forward primer to the recombinant vector pETYicI6xH of Examples 1-2 (YicI-D482X, X means any amino acid). The conditions of the PCR are as described in Table 2 above.

상기 YicI-D482X를 암호화하는 유전자들을 함유하는 PCR 산물을 상기 실시예 3-1과 동일한 방법으로 재조합 벡터 라이브러리인 pETYicI-D482X6xH를 제조하였으며, 상기 실시예 1-2에 따라 형질전환체를 제조하였다. The PCR product containing the genes encoding the YicI-D482X was prepared as a recombinant vector library pETYicI-D482X6xH in the same manner as in Example 3-1, and a transformant was prepared according to Example 1-2.

8-2. 8-2. 당전이A former transition 활성을 가지는  Active YicIYicI 양자 공여/수용체의 선발 Selection of quantum donors / receptors

상기 제조한 pETYicI-D482X6xH 벡터 라이브러리를 상기 실시예 1-2의 방법으로 형질전환 후, 형질전화체 98개를 각각 20 μg/mL 가나마이신이 들어있는 0.2 mL LB 배지에 접종하였다. 상기 실시예 1-3의 방법으로 YicI 변이체들을 생산한 후, lysozyme을 최종농도 1 mg/mL가 되도록 첨가하여 세포를 파괴하여 조효소액을 제조하였다. 각 조효소액을 0.1 mL의 50 mM sodium phosphate (pH 7.0) 완충용액에 녹인 0.2 mmole 알파-자일로실 플로라이드와 0.1 mmole의 4-나이트로페닐-베타-글루코사이드 기질 용액과 1:1로 섞은 후, 37℃에서 12시간 반응을 진행하였고, 박막크로마토그래피(thin layer chromatography)방법을 통해 반응액을 분석하였다. 그림 9은 98개 조효소액 중 18개의 결과를 보여주는 TLC 데이터이다. 당전이 활성을 보이는 16개의 시료로부터 QUAGEN 플라스미드 분리 키드를 사용하여 YicI 변이효소를 암호화하는 유전자를 함유한 플라스미드 벡터를 분리하고, 염기서열을 결정하였다. 그 결과 형질전환체 A4, A7, C3, C6, C10, E10, E12, F1은 YicI의 양자 공여/수용체 촉매기인 아스파테이트가 알라닌으로, 형질전환체 C9, E2, E3, G1, H1은 세린으로, 형질전환체 E4, F6, F8은 글리신으로 치환되었음을 확인하였다. 상기 18개 돌연변이체가 가지는 돌연변이 아미노산을 표 7에 정리하였다. After transforming the prepared pETYicI-D482X6xH vector library by the method of Example 1-2, 98 transformants were inoculated in 0.2 mL LB medium containing 20 μg / mL kanamycin, respectively. After producing YicI variants by the method of Example 1-3, lysozyme was added to a final concentration of 1 mg / mL to destroy cells to prepare a crude enzyme solution. Each crude enzyme solution was mixed 1: 1 with 0.2 mmole alpha-xylyl fluoride and 0.1 mmole of 4-nitrophenyl-beta-glucoside substrate solution dissolved in 0.1 mL of 50 mM sodium phosphate (pH 7.0) buffer. The reaction was carried out at 37 ° C. for 12 hours, and the reaction solution was analyzed by thin layer chromatography. Figure 9 shows TLC data showing 18 of the 98 crude enzyme solutions. The QUAGEN plasmid separation kit was used to isolate the plasmid vector containing the gene encoding the YicI mutase from 16 samples exhibiting sugar transfer activity, and the nucleotide sequence was determined. As a result, transformants A4, A7, C3, C6, C10, E10, E12, and F1 were aspartate, YicI's quantum donor / receptor catalyst, alanine, and transformants C9, E2, E3, G1, H1 were serine. , Transformants E4, F6, F8 was confirmed to be substituted with glycine. The mutant amino acids of the 18 mutants are summarized in Table 7.

돌연변이효소Mutant enzyme A4A4 A5A5 A7A7 C3C3 C6C6 C9C9 C10C10 D2D2 E2E2 E3E3 E4E4 E10E10 E12E12 F1F1 F6F6 F8F8 G1G1 H4H4 양자 공여/수용체 촉매기 위치 아미노산 잔기Proton donor / receptor catalyst site amino acid residues AA DD AA AA AA SS AA DD SS SS GG AA AA AA GG GG SS SS

상기 표 7에 나타낸 바와 같이 YicI 양자 공여/수용체 촉매기인 482번째 아스파테이드 잔기가 알라닌, 또는 세린, 또는 글리신으로 돌연변이된 효소들은 알파-자일로실 플로라이드를 당공여체로 사용하여 당전이 산물을 합성함을 알 수 있다.As shown in Table 7, the enzymes mutated to alanine, serine, or glycine at the 482th aspartate residue, which is a YicI proton donor / receptor catalyst, used a glycosylated product using alpha-xylyl fluoride as a sugar donor. It can be seen that the synthesis.

실시예Example 9:  9: BacillusBacillus haloduranshalodurans 알파- Alpha- 자일로시데이즈Xilocity days 변이체의Mutant 제조 및  Manufacturing and 당전이A former transition 활성 검출 Activity detection

9-1. Bacillus halodurans 알파-자일로시데이즈 변이체 (BHaX-D481A) 제작9-1. Construction of Bacillus halodurans alpha-xyloxides variant (BHaX-D481A)

B. halodurans C-125를 상기 실시예 1-1의 방법으로 배양 후, 염색체 DNA를 분리하였다. 상기 B. halodurans 알파-자일로시다아제(이하 BHaX)를 암호화하는 유전자를 분리하기 위해 정방향 프라이머 BHaXTOP (5'-TAG GGA ACA ACA TAT GAA ATT TTC AGA TGG-3' 서열번호 13) 및 역방향 프라이머 BHaXEND (5'-AAC CCT CGA GGA CGC CTA GGT GGA CAA CCA-3', 서열번호 14)를 각각 제작하였으며, 상기 표 2의 방법으로 PCR을 수행하여 BHaX 유전자를 분리하였다. 상기 프라이머 서열은 하기 표 8과 같다. After culturing B. halodurans C-125 by the method of Example 1-1, chromosomal DNA was isolated. Forward primer BHaXTOP (5'-TAG GGA ACA ACA TAT GAA ATT TTC AGA TGG-3 'SEQ ID NO: 13) and reverse primer BHaXEND to isolate genes encoding the B. halodurans alpha-xyllosidase (hereinafter referred to as BHaX) (5′-AAC CCT CGA GGA CGC CTA GGT GGA CAA CCA-3 ′, SEQ ID NO: 14) were prepared, respectively, and PCR was performed by the method of Table 2 to isolate the BHaX gene. The primer sequence is shown in Table 8 below.

서열order 서열번호SEQ ID NO: 정방향 프라이머
BHaXTOP
Forward primer
BHaXTOP
5'-TAGGGAACAACATATGAAATTTTCAGATGG-3'5'-TAGGGAACAACATATGAAATTTTCAGATGG-3 ' 1313
역방향 프라이머
BHaXEND
Reverse primer
BHaXEND
5'-AACCCTCGAGGACGCCTAGGTGGACAACCA-3'5'-AACCCTCGAGGACGCCTAGGTGGACAACCA-3 ' 1414

B. halodurans C-125 균주 염색체 DNA에 대해 상기 정방향 프라이머 및 역방향 프라이머를 이용하여 상기 실시예 1에서와 같이 PCR을 실시하여 PCR 산물을 획득하였다. PCR products were obtained by B. halodurans C-125 strain chromosomal DNA using the forward primer and the reverse primer as in Example 1 above.

상기 BHaX 효소의 양자공여/수용체 촉매기인 Asp481를 알라닌으로 치환하기 위해 BHaXD481A-F (5'-CCTGTTCACTGGGGTGGAGCTTGTGCCGCAACT-3' 서열번호 15)를 제작하였으며, 상기 프라이머는 하기 표 9과 같다. BHaXD481A-F (5'-CCTGTTCACTGGGGTGGAGCTTGTGCCGCAACT-3 'SEQ ID NO: 15) was prepared to replace Asp481, a quantum donor / receptor catalyst, of the BHaX enzyme with alanine, and the primers are shown in Table 9 below.

서열order 서열번호SEQ ID NO: 정방향 프라이머 BHaXD481A-FForward Primer BHaXD481A-F 5'-CCTGTTCACTGGGGTGGAGCTTGTGCCGCAACT-3'5'-CCTGTTCACTGGGGTGGAGCTTGTGCCGCAACT-3 ' 1515

상기 실시예 3-1에서 YicID482A-F 프라이머를 BHaXD481A-F로 대체하고 상기 실시예 3-1과 동일한 방법으로 BHaX의 양자 공여/수용체인 아스파테이트가 알라닌으로 치환된 변이효소를 암호화하는 유전자를 포함한 pETBHaXD481A6xH를 제작하였다. In Example 3-1, the YicID482A-F primer was replaced with BHaXD481A-F, and in the same manner as in Example 3-1, a gene encoding a mutant in which aspartate, a quantum donor / receptor of BHaX, was substituted with alanine pETBHaXD481A6xH was produced.

9-2. BHaX-D481A의 생산 및 당전이 반응9-2. Production and Transfer of BHaX-D481A

상기 제조한 pETBHaXD481A6xH 벡터를 상기 실시예 1-3의 방법으로 형질전환 후, 실시예 1-4의 방법에 따라 정제하였다. 정제된 BHaXD481A를 이용하여 상기 실시예 5-1에서와 같이 당전이 반응을 수행하였으며, 반응산물을 PE-Sciex API 300 triple quadrupole mass spectrometer (Sciex, 캐나다)를 이용하여 분석하였고, 그림 10은 반응산물의 스펙트럼이다. 분석결과 상기 실시예 5-1에서 YicI-D482A에 의해 합성된 당전이 산물과 동일한 분자량 (분자량 = 433)을 가지는 산물이 소디움 염 (M + Na+, 분자량 = 433 + 23), 포타슘 염 (M + K+, 분자량 = 433 + 39), 및 이량체의 소디움 염 (2M + Na+, 분자량 = 433 x 2 + 23) 형태로 검출되었다. 따라서 BHaX의 양자 공여/수용체 촉매기에 대한 돌연변이를 통해 BHaXD481A 변이효소 역시 상기 YicI-D482A와 동일한 당전이 활성을 가짐을 확인하였다. The prepared pETBHaXD481A6xH vector was transformed by the method of Example 1-3, and then purified according to the method of Example 1-4. The sugar transfer reaction was carried out using purified BHaXD481A as in Example 5-1, and the reaction product was analyzed using a PE-Sciex API 300 triple quadrupole mass spectrometer (Sciex, Canada). Is the spectrum. As a result of analysis, the product having the same molecular weight (molecular weight = 433) as the sugar transfer product synthesized by YicI-D482A in Example 5-1 is a sodium salt (M + Na + , molecular weight = 433 + 23), potassium salt (M + K + , molecular weight = 433 + 39), and a dimeric sodium salt (2M + Na + , molecular weight = 433 x 2 + 23). Therefore, it was confirmed that BHaXD481A mutase also had the same glycotransfer activity as YicI-D482A through mutation of the BHaX quantum donor / receptor catalyst.

<110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 772 <212> PRT <213> YicI <400> 1 Met Lys Ile Ser Asp Gly Asn Trp Leu Ile Gln Pro Gly Leu Asn Leu 1 5 10 15 Ile His Pro Leu Gln Val Phe Glu Val Glu Gln Gln Asp Asn Glu Met 20 25 30 Val Val Tyr Ala Ala Pro Arg Asp Val Arg Glu Arg Thr Trp Gln Leu 35 40 45 Asp Thr Pro Leu Phe Thr Leu Arg Phe Phe Ser Pro Gln Glu Gly Ile 50 55 60 Val Gly Val Arg Ile Glu His Phe Gln Gly Ala Leu Asn Asn Gly Pro 65 70 75 80 His Tyr Pro Leu Asn Ile Leu Gln Asp Val Lys Val Thr Ile Glu Asn 85 90 95 Thr Glu Arg Tyr Ala Glu Phe Lys Ser Gly Asn Leu Ser Ala Arg Val 100 105 110 Ser Lys Gly Glu Phe Trp Ser Leu Asp Phe Leu Arg Asn Gly Glu Arg 115 120 125 Ile Thr Gly Ser Gln Val Lys Asn Asn Gly Tyr Val Gln Asp Thr Asn 130 135 140 Asn Gln Arg Asn Tyr Met Phe Glu Arg Leu Asp Leu Gly Val Gly Glu 145 150 155 160 Thr Val Tyr Gly Leu Gly Glu Arg Phe Thr Ala Leu Val Arg Asn Gly 165 170 175 Gln Thr Val Glu Thr Trp Asn Arg Asp Gly Gly Thr Ser Thr Glu Gln 180 185 190 Ala Tyr Lys Asn Ile Pro Phe Tyr Met Thr Asn Arg Gly Tyr Gly Val 195 200 205 Leu Val Asn His Pro Gln Cys Val Ser Phe Glu Val Gly Ser Glu Lys 210 215 220 Val Ser Lys Val Gln Phe Ser Val Glu Ser Glu Tyr Leu Glu Tyr Phe 225 230 235 240 Val Ile Asp Gly Pro Thr Pro Lys Ala Val Leu Asp Arg Tyr Thr Arg 245 250 255 Phe Thr Gly Arg Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp 260 265 270 Leu Thr Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Asn Ser 275 280 285 Phe Ile Asp Gly Met Ala Glu Arg Asn Leu Pro Leu His Val Phe His 290 295 300 Phe Asp Cys Phe Trp Met Lys Ala Phe Gln Trp Cys Asp Phe Glu Trp 305 310 315 320 Asp Pro Leu Thr Phe Pro Asp Pro Glu Gly Met Ile Arg Arg Leu Lys 325 330 335 Ala Lys Gly Leu Lys Ile Cys Val Trp Ile Asn Pro Tyr Ile Gly Gln 340 345 350 Lys Ser Pro Val Phe Lys Glu Leu Gln Glu Lys Gly Tyr Leu Leu Lys 355 360 365 Arg Pro Asp Gly Ser Leu Trp Gln Trp Asp Lys Trp Gln Pro Gly Leu 370 375 380 Ala Ile Tyr Asp Phe Thr Asn Pro Asp Ala Cys Lys Trp Tyr Ala Asp 385 390 395 400 Lys Leu Lys Gly Leu Val Ala Met Gly Val Asp Cys Phe Lys Thr Asp 405 410 415 Phe Gly Glu Arg Ile Pro Thr Asp Val Gln Trp Phe Asp Gly Ser Asp 420 425 430 Pro Gln Lys Met His Asn His Tyr Ala Tyr Ile Tyr Asn Glu Leu Val 435 440 445 Trp Asn Val Leu Lys Asp Thr Val Gly Glu Glu Glu Ala Val Leu Phe 450 455 460 Ala Arg Ser Ala Ser Val Gly Ala Gln Lys Phe Pro Val His Trp Gly 465 470 475 480 Gly Asp Cys Tyr Ala Asn Tyr Glu Ser Met Ala Glu Ser Leu Arg Gly 485 490 495 Gly Leu Ser Ile Gly Leu Ser Gly Phe Gly Phe Trp Ser His Asp Ile 500 505 510 Gly Gly Phe Glu Asn Thr Ala Pro Ala His Val Tyr Lys Arg Trp Cys 515 520 525 Ala Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Ser Lys Ser 530 535 540 Tyr Arg Val Pro Trp Ala Tyr Asp Asp Glu Ser Cys Asp Val Val Arg 545 550 555 560 Phe Phe Thr Gln Leu Lys Cys Arg Met Met Pro Tyr Leu Tyr Arg Glu 565 570 575 Ala Ala Arg Ala Asn Ala Arg Gly Thr Pro Met Met Arg Ala Met Met 580 585 590 Met Glu Phe Pro Asp Asp Pro Ala Cys Asp Tyr Leu Asp Arg Gln Tyr 595 600 605 Met Leu Gly Asp Asn Val Met Val Ala Pro Val Phe Thr Glu Ala Gly 610 615 620 Asp Val Gln Phe Tyr Leu Pro Glu Gly Arg Trp Thr His Leu Trp His 625 630 635 640 Asn Asp Glu Leu Asp Gly Ser Arg Trp His Lys Gln Gln His Gly Phe 645 650 655 Leu Ser Leu Pro Val Tyr Val Arg Asp Asn Thr Leu Leu Ala Leu Gly 660 665 670 Asn Asn Asp Gln Arg Pro Asp Tyr Val Trp His Glu Gly Thr Ala Phe 675 680 685 His Leu Phe Asn Leu Gln Asp Gly His Glu Ala Val Cys Glu Val Pro 690 695 700 Ala Ala Asp Gly Ser Val Ile Phe Thr Leu Lys Ala Ala Arg Thr Gly 705 710 715 720 Asn Thr Ile Thr Val Thr Gly Ala Gly Glu Ala Lys Asn Trp Thr Leu 725 730 735 Cys Leu Arg Asn Val Val Lys Val Asn Gly Leu Gln Asp Gly Ser Gln 740 745 750 Ala Glu Ser Glu Gln Gly Leu Val Val Lys Pro Gln Gly Asn Ala Leu 755 760 765 Thr Ile Thr Leu 770 <210> 2 <211> 773 <212> PRT <213> BHaX <400> 2 Met Lys Phe Ser Asp Gly Gln Trp Leu Thr Arg Gln Glu Tyr Thr Ile 1 5 10 15 Ile Gly Ala Val Gln Val His Glu Ile Ile Gln Gly Glu Ala Ser Met 20 25 30 Thr Val Leu Ala Ser Pro Lys Pro Ile Val Asp Arg Tyr Gly Gln Leu 35 40 45 Asp Thr Pro Leu Leu Glu Ile Thr Phe Ser Ala Pro Arg Arg Glu Met 50 55 60 Ile Arg Val Gln Ile Asp His His Lys Gly Gly Arg Lys Arg Gly Pro 65 70 75 80 Val Phe Thr Thr Lys His Asp His Lys His Gln Ala Ser Phe Thr Glu 85 90 95 Thr Glu Thr Thr Ala Ile Leu Thr Ser Gly Asp Leu Ser Val Thr Val 100 105 110 His Lys Glu Gly Asp Trp Leu Ile Thr Phe Ser Tyr Gln Gly Lys Thr 115 120 125 Ile Thr Ser Ser Gly Ser Lys Ser Ile Ala His Ile Leu Ala Gln Asp 130 135 140 Gly Lys Ala Tyr Met Arg Glu Gln Leu Ser Leu Gln Pro Asp Glu Met 145 150 155 160 Ile Tyr Ala Leu Gly Glu Arg Phe Thr Pro Leu Ile Arg Asn Gly Gln 165 170 175 Val Val Asp Ile Trp Asn Lys Asp Gly Gly Thr Asn Thr Glu Gln Ser 180 185 190 Tyr Lys Asn Val Pro Phe Tyr Leu Ser Asn Lys Gly Tyr Gly Val Phe 195 200 205 Val Asn His Pro Glu Trp Val Ser Phe Glu Val Gly Ser Glu Ser Val 210 215 220 Ser Lys Ser Gln Phe Ser Val Glu Gly His Arg Leu Asp Tyr Tyr Val 225 230 235 240 Met Ala Gly Pro Ser Met Lys Lys Val Ile Glu Ala Tyr Thr Asp Leu 245 250 255 Thr Gly Lys Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp Leu 260 265 270 Ser Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Thr Gln Phe 275 280 285 Ile Asp Gly Met Asn Glu Arg Asp Leu Pro Val His Val Phe His Phe 290 295 300 Asp Cys Phe Trp Met Lys Glu Phe Glu Trp Cys Asn Phe Glu Trp Tyr 305 310 315 320 Arg Arg Val Phe Pro Glu Pro Glu Lys Met Leu Gln Arg Leu Lys Glu 325 330 335 Lys Gly Leu Lys Leu Ser Val Trp Ile Asn Pro Tyr Ile Ala Gln Arg 340 345 350 Ser Pro Leu Phe Gln Glu Ala Ala Ala Asn Gly Tyr Leu Leu Lys Lys 355 360 365 Glu Asn Gly Asp Val Trp Gln Trp Asp Leu Trp Gln Pro Gly Met Gly 370 375 380 Val Val Asp Phe Thr Asn Pro Asp Ala Arg Ile Trp Tyr Gln Asp His 385 390 395 400 Leu Arg Arg Leu Leu Glu Met Gly Val Asp Cys Phe Lys Thr Asp Phe 405 410 415 Gly Glu Arg Ile Pro Thr Asp Val Val Tyr His Asp Gly Ser Asp Pro 420 425 430 Glu Lys Met His Asn Tyr Tyr Thr Phe Leu Tyr Asn Gln Thr Val Phe 435 440 445 Asp Val Leu Lys Gln Val Lys Gly Asn His Glu Ala Val Leu Phe Ala 450 455 460 Arg Ser Ala Thr Ala Gly Ser Gln Gln Phe Pro Val His Trp Gly Gly 465 470 475 480 Asp Cys Ala Ala Thr Tyr Ser Ser Met Ala Glu Ser Leu Arg Gly Gly 485 490 495 Leu Ser Leu Gly Met Ser Gly Phe Gly Tyr Trp Ser His Asp Ile Gly 500 505 510 Gly Phe Glu Ser Gln Ser Thr Ala Asp Leu Tyr Lys Arg Trp Thr Ala 515 520 525 Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Asn Lys Ser Tyr 530 535 540 Arg Val Pro Trp Val Tyr Asp Glu Glu Ala Thr Asp Val Leu Arg Gln 545 550 555 560 Phe Thr Lys Trp Lys Cys Arg Leu Met Pro Tyr Leu Tyr Ala Lys Ala 565 570 575 Cys Glu Ala Arg Thr Thr Gly Leu Pro Leu Met Arg Ala Met Val Leu 580 585 590 Glu Phe Gln Asp Asp Pro Thr Cys Ala Phe Leu Asp Arg Gln Tyr Met 595 600 605 Leu Gly Asp Gln Leu Leu Val Ala Pro Ile Phe Asn Glu Glu Gly Leu 610 615 620 Ala His Tyr Tyr Val Pro Asp Gly Arg Trp Thr Asn Leu Leu Thr Gly 625 630 635 640 Lys Thr Val Glu Gly Gly Ser Trp Lys Lys Glu His His Asp His Leu 645 650 655 Ser Ile Pro Leu Leu Val Arg Pro Asn Ser Ile Val Pro Ile Gly Ser 660 665 670 Val Asp Asp Arg Pro Asp Tyr Asp Tyr Thr Asp Asn Val Ala Phe His 675 680 685 Val Phe Ala Leu Glu Asn Tyr Ala Thr Thr Ser Ile Tyr Thr Val Glu 690 695 700 Gly Glu Glu Ala Leu Thr Leu Ser Ala Thr Arg Ser Thr Thr Thr Val 705 710 715 720 Thr Phe Asp Ile Ser Asp Gly Ser Lys Pro Trp Thr Val His Leu His 725 730 735 Asp Val Thr Glu Val Ser Ser Val Glu Gly Ala Asp Phe Glu Ile Ser 740 745 750 Asp Gly Ser Val Ile Leu His Pro Ile Leu Asp Val Lys Gln Val Val 755 760 765 Val His Leu Gly Val 770 <210> 3 <211> 772 <212> PRT <213> Artificial Sequence <220> <223> YicI-D482A <400> 3 Met Lys Ile Ser Asp Gly Asn Trp Leu Ile Gln Pro Gly Leu Asn Leu 1 5 10 15 Ile His Pro Leu Gln Val Phe Glu Val Glu Gln Gln Asp Asn Glu Met 20 25 30 Val Val Tyr Ala Ala Pro Arg Asp Val Arg Glu Arg Thr Trp Gln Leu 35 40 45 Asp Thr Pro Leu Phe Thr Leu Arg Phe Phe Ser Pro Gln Glu Gly Ile 50 55 60 Val Gly Val Arg Ile Glu His Phe Gln Gly Ala Leu Asn Asn Gly Pro 65 70 75 80 His Tyr Pro Leu Asn Ile Leu Gln Asp Val Lys Val Thr Ile Glu Asn 85 90 95 Thr Glu Arg Tyr Ala Glu Phe Lys Ser Gly Asn Leu Ser Ala Arg Val 100 105 110 Ser Lys Gly Glu Phe Trp Ser Leu Asp Phe Leu Arg Asn Gly Glu Arg 115 120 125 Ile Thr Gly Ser Gln Val Lys Asn Asn Gly Tyr Val Gln Asp Thr Asn 130 135 140 Asn Gln Arg Asn Tyr Met Phe Glu Arg Leu Asp Leu Gly Val Gly Glu 145 150 155 160 Thr Val Tyr Gly Leu Gly Glu Arg Phe Thr Ala Leu Val Arg Asn Gly 165 170 175 Gln Thr Val Glu Thr Trp Asn Arg Asp Gly Gly Thr Ser Thr Glu Gln 180 185 190 Ala Tyr Lys Asn Ile Pro Phe Tyr Met Thr Asn Arg Gly Tyr Gly Val 195 200 205 Leu Val Asn His Pro Gln Cys Val Ser Phe Glu Val Gly Ser Glu Lys 210 215 220 Val Ser Lys Val Gln Phe Ser Val Glu Ser Glu Tyr Leu Glu Tyr Phe 225 230 235 240 Val Ile Asp Gly Pro Thr Pro Lys Ala Val Leu Asp Arg Tyr Thr Arg 245 250 255 Phe Thr Gly Arg Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp 260 265 270 Leu Thr Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Asn Ser 275 280 285 Phe Ile Asp Gly Met Ala Glu Arg Asn Leu Pro Leu His Val Phe His 290 295 300 Phe Asp Cys Phe Trp Met Lys Ala Phe Gln Trp Cys Asp Phe Glu Trp 305 310 315 320 Asp Pro Leu Thr Phe Pro Asp Pro Glu Gly Met Ile Arg Arg Leu Lys 325 330 335 Ala Lys Gly Leu Lys Ile Cys Val Trp Ile Asn Pro Tyr Ile Gly Gln 340 345 350 Lys Ser Pro Val Phe Lys Glu Leu Gln Glu Lys Gly Tyr Leu Leu Lys 355 360 365 Arg Pro Asp Gly Ser Leu Trp Gln Trp Asp Lys Trp Gln Pro Gly Leu 370 375 380 Ala Ile Tyr Asp Phe Thr Asn Pro Asp Ala Cys Lys Trp Tyr Ala Asp 385 390 395 400 Lys Leu Lys Gly Leu Val Ala Met Gly Val Asp Cys Phe Lys Thr Asp 405 410 415 Phe Gly Glu Arg Ile Pro Thr Asp Val Gln Trp Phe Asp Gly Ser Asp 420 425 430 Pro Gln Lys Met His Asn His Tyr Ala Tyr Ile Tyr Asn Glu Leu Val 435 440 445 Trp Asn Val Leu Lys Asp Thr Val Gly Glu Glu Glu Ala Val Leu Phe 450 455 460 Ala Arg Ser Ala Ser Val Gly Ala Gln Lys Phe Pro Val His Trp Gly 465 470 475 480 Gly Ala Cys Tyr Ala Asn Tyr Glu Ser Met Ala Glu Ser Leu Arg Gly 485 490 495 Gly Leu Ser Ile Gly Leu Ser Gly Phe Gly Phe Trp Ser His Asp Ile 500 505 510 Gly Gly Phe Glu Asn Thr Ala Pro Ala His Val Tyr Lys Arg Trp Cys 515 520 525 Ala Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Ser Lys Ser 530 535 540 Tyr Arg Val Pro Trp Ala Tyr Asp Asp Glu Ser Cys Asp Val Val Arg 545 550 555 560 Phe Phe Thr Gln Leu Lys Cys Arg Met Met Pro Tyr Leu Tyr Arg Glu 565 570 575 Ala Ala Arg Ala Asn Ala Arg Gly Thr Pro Met Met Arg Ala Met Met 580 585 590 Met Glu Phe Pro Asp Asp Pro Ala Cys Asp Tyr Leu Asp Arg Gln Tyr 595 600 605 Met Leu Gly Asp Asn Val Met Val Ala Pro Val Phe Thr Glu Ala Gly 610 615 620 Asp Val Gln Phe Tyr Leu Pro Glu Gly Arg Trp Thr His Leu Trp His 625 630 635 640 Asn Asp Glu Leu Asp Gly Ser Arg Trp His Lys Gln Gln His Gly Phe 645 650 655 Leu Ser Leu Pro Val Tyr Val Arg Asp Asn Thr Leu Leu Ala Leu Gly 660 665 670 Asn Asn Asp Gln Arg Pro Asp Tyr Val Trp His Glu Gly Thr Ala Phe 675 680 685 His Leu Phe Asn Leu Gln Asp Gly His Glu Ala Val Cys Glu Val Pro 690 695 700 Ala Ala Asp Gly Ser Val Ile Phe Thr Leu Lys Ala Ala Arg Thr Gly 705 710 715 720 Asn Thr Ile Thr Val Thr Gly Ala Gly Glu Ala Lys Asn Trp Thr Leu 725 730 735 Cys Leu Arg Asn Val Val Lys Val Asn Gly Leu Gln Asp Gly Ser Gln 740 745 750 Ala Glu Ser Glu Gln Gly Leu Val Val Lys Pro Gln Gly Asn Ala Leu 755 760 765 Thr Ile Thr Leu 770 <210> 4 <211> 773 <212> PRT <213> Artificial Sequence <220> <223> BHaX-D481A <400> 4 Met Lys Phe Ser Asp Gly Gln Trp Leu Thr Arg Gln Glu Tyr Thr Ile 1 5 10 15 Ile Gly Ala Val Gln Val His Glu Ile Ile Gln Gly Glu Ala Ser Met 20 25 30 Thr Val Leu Ala Ser Pro Lys Pro Ile Val Asp Arg Tyr Gly Gln Leu 35 40 45 Asp Thr Pro Leu Leu Glu Ile Thr Phe Ser Ala Pro Arg Arg Glu Met 50 55 60 Ile Arg Val Gln Ile Asp His His Lys Gly Gly Arg Lys Arg Gly Pro 65 70 75 80 Val Phe Thr Thr Lys His Asp His Lys His Gln Ala Ser Phe Thr Glu 85 90 95 Thr Glu Thr Thr Ala Ile Leu Thr Ser Gly Asp Leu Ser Val Thr Val 100 105 110 His Lys Glu Gly Asp Trp Leu Ile Thr Phe Ser Tyr Gln Gly Lys Thr 115 120 125 Ile Thr Ser Ser Gly Ser Lys Ser Ile Ala His Ile Leu Ala Gln Asp 130 135 140 Gly Lys Ala Tyr Met Arg Glu Gln Leu Ser Leu Gln Pro Asp Glu Met 145 150 155 160 Ile Tyr Ala Leu Gly Glu Arg Phe Thr Pro Leu Ile Arg Asn Gly Gln 165 170 175 Val Val Asp Ile Trp Asn Lys Asp Gly Gly Thr Asn Thr Glu Gln Ser 180 185 190 Tyr Lys Asn Val Pro Phe Tyr Leu Ser Asn Lys Gly Tyr Gly Val Phe 195 200 205 Val Asn His Pro Glu Trp Val Ser Phe Glu Val Gly Ser Glu Ser Val 210 215 220 Ser Lys Ser Gln Phe Ser Val Glu Gly His Arg Leu Asp Tyr Tyr Val 225 230 235 240 Met Ala Gly Pro Ser Met Lys Lys Val Ile Glu Ala Tyr Thr Asp Leu 245 250 255 Thr Gly Lys Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp Leu 260 265 270 Ser Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Thr Gln Phe 275 280 285 Ile Asp Gly Met Asn Glu Arg Asp Leu Pro Val His Val Phe His Phe 290 295 300 Asp Cys Phe Trp Met Lys Glu Phe Glu Trp Cys Asn Phe Glu Trp Tyr 305 310 315 320 Arg Arg Val Phe Pro Glu Pro Glu Lys Met Leu Gln Arg Leu Lys Glu 325 330 335 Lys Gly Leu Lys Leu Ser Val Trp Ile Asn Pro Tyr Ile Ala Gln Arg 340 345 350 Ser Pro Leu Phe Gln Glu Ala Ala Ala Asn Gly Tyr Leu Leu Lys Lys 355 360 365 Glu Asn Gly Asp Val Trp Gln Trp Asp Leu Trp Gln Pro Gly Met Gly 370 375 380 Val Val Asp Phe Thr Asn Pro Asp Ala Arg Ile Trp Tyr Gln Asp His 385 390 395 400 Leu Arg Arg Leu Leu Glu Met Gly Val Asp Cys Phe Lys Thr Asp Phe 405 410 415 Gly Glu Arg Ile Pro Thr Asp Val Val Tyr His Asp Gly Ser Asp Pro 420 425 430 Glu Lys Met His Asn Tyr Tyr Thr Phe Leu Tyr Asn Gln Thr Val Phe 435 440 445 Asp Val Leu Lys Gln Val Lys Gly Asn His Glu Ala Val Leu Phe Ala 450 455 460 Arg Ser Ala Thr Ala Gly Ser Gln Gln Phe Pro Val His Trp Gly Gly 465 470 475 480 Ala Cys Ala Ala Thr Tyr Ser Ser Met Ala Glu Ser Leu Arg Gly Gly 485 490 495 Leu Ser Leu Gly Met Ser Gly Phe Gly Tyr Trp Ser His Asp Ile Gly 500 505 510 Gly Phe Glu Ser Gln Ser Thr Ala Asp Leu Tyr Lys Arg Trp Thr Ala 515 520 525 Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Asn Lys Ser Tyr 530 535 540 Arg Val Pro Trp Val Tyr Asp Glu Glu Ala Thr Asp Val Leu Arg Gln 545 550 555 560 Phe Thr Lys Trp Lys Cys Arg Leu Met Pro Tyr Leu Tyr Ala Lys Ala 565 570 575 Cys Glu Ala Arg Thr Thr Gly Leu Pro Leu Met Arg Ala Met Val Leu 580 585 590 Glu Phe Gln Asp Asp Pro Thr Cys Ala Phe Leu Asp Arg Gln Tyr Met 595 600 605 Leu Gly Asp Gln Leu Leu Val Ala Pro Ile Phe Asn Glu Glu Gly Leu 610 615 620 Ala His Tyr Tyr Val Pro Asp Gly Arg Trp Thr Asn Leu Leu Thr Gly 625 630 635 640 Lys Thr Val Glu Gly Gly Ser Trp Lys Lys Glu His His Asp His Leu 645 650 655 Ser Ile Pro Leu Leu Val Arg Pro Asn Ser Ile Val Pro Ile Gly Ser 660 665 670 Val Asp Asp Arg Pro Asp Tyr Asp Tyr Thr Asp Asn Val Ala Phe His 675 680 685 Val Phe Ala Leu Glu Asn Tyr Ala Thr Thr Ser Ile Tyr Thr Val Glu 690 695 700 Gly Glu Glu Ala Leu Thr Leu Ser Ala Thr Arg Ser Thr Thr Thr Val 705 710 715 720 Thr Phe Asp Ile Ser Asp Gly Ser Lys Pro Trp Thr Val His Leu His 725 730 735 Asp Val Thr Glu Val Ser Ser Val Glu Gly Ala Asp Phe Glu Ile Ser 740 745 750 Asp Gly Ser Val Ile Leu His Pro Ile Leu Asp Val Lys Gln Val Val 755 760 765 Val His Leu Gly Val 770 <210> 5 <211> 2319 <212> DNA <213> Artificial Sequence <220> <223> YicI-D482A <400> 5 atgaaaatta gcgatggaaa ctggttgatt caacctggcc tcaatttgat tcacccgctt 60 caggtgttcg aggttgaaca gcaggataat gaaatggtgg tctatgctgc cccccgtgat 120 gtgcgtgaac gtacctggca gcttgatacg cctttattta cgttgcgctt tttctcccca 180 caggaaggta ttgtcggtgt gcggattgag cattttcagg gggcgctgaa taacggtcct 240 cattatccgc tcaatatttt gcaggacgtg aaggtcacaa tcgaaaacac agaacgttat 300 gctgagttta aaagtggcaa cttaagcgcg cgtgtcagca aaggtgagtt ctggtcactg 360 gattttctgc gcaacggcga acgtattacc ggtagtcagg tgaaaaataa tggctacgtg 420 caggacacga ataatcaacg caattatatg tttgagcggc ttgatcttgg cgttggcgaa 480 acagtttacg gtctgggaga gcgctttact gccctggtgc gcaatggcca gacggtagag 540 acctggaacc gggacggcgg cacaagtact gaacaggcgt ataaaaatat cccgttctac 600 atgactaacc gtggttatgg ggtactggtc aatcatcccc agtgtgtctc ttttgaagtg 660 ggatcggaga aagtctccaa agtgcagttc agcgttgaga gtgaatatct cgaatacttt 720 gttatcgacg gcccgacgcc gaaagcggta cttgatcgtt atacccgctt tactggtcgt 780 ccggcgctgc cgcccgcgtg gtccttcggc ctgtggctaa ccacttcatt taccaccaac 840 tacgacgaag cgacggtaaa cagctttatc gatggtatgg cggaacgcaa tctgccgctg 900 catgttttcc actttgactg tttctggatg aaagccttcc agtggtgcga ttttgagtgg 960 gacccgctga ctttccctga cccggaaggg atgatccgcc gcctgaaagc gaaaggactg 1020 aaaatctgcg tctggattaa cccctatatc ggtcaaaaat cccccgtctt taaagagtta 1080 caagagaaag gctatttact caaacgcccg gacggttcgc tatggcagtg ggataaatgg 1140 cagccaggtc tggcgattta tgactttacc aatccggatg cctgcaaatg gtacgccgac 1200 aaactgaaag gtctggtcgc gatgggcgtt gattgcttta agaccgactt tggcgaacgt 1260 atcccaactg atgttcagtg gtttgacggt tccgatccgc agaaaatgca taaccattat 1320 gcgtacatct acaacgaact ggtgtggaac gtgctcaagg acaccgttgg tgaggaagaa 1380 gctgtcttgt ttgcccgctc ggcctccgtc ggtgcgcaga aattcccggt acactggggt 1440 ggcgcgtgtt acgctaacta cgaatcaatg gcggaaagcc tgcgcggtgg tttgtctatt 1500 ggcctttcag gttttggctt ctggagccac gatatcggcg gctttgaaaa taccgctccg 1560 gcgcacgttt acaaacgctg gtgcgcgttt ggtttgctct ccagccatag ccgtttacac 1620 ggtagcaaat cttatcgtgt gccgtgggcc tacgatgatg agtcctgtga tgtggtgcgc 1680 ttcttcacgc aactgaaatg ccgcatgatg ccgtatctgt atcgtgaagc tgcgcgtgcg 1740 aacgcgcggg gtacgccgat gatgcgggcc atgatgatgg agttcccgga cgatccggct 1800 tgtgattacc ttgaccgtca atacatgtta ggcgacaacg tgatggttgc gccggtgttc 1860 actgaagcgg gcgatgtgca gttctacctg ccggaaggtc gctggacaca cctgtggcac 1920 aacgatgaac tcgacggtag tcgctggcat aaacagcagc acggcttcct gagtctgccc 1980 gtttatgtgc gtgataacac tctactggcg ctgggcaaca acgatcaacg tcccgattac 2040 gtgtggcacg aaggcacggc attccacctc ttcaatctgc aagacgggca tgaagccgtc 2100 tgtgaagtgc ccgctgctga cggatcggtg atctttactt taaaagcagc acgtactggc 2160 aacacgatta ctgtgactgg tgcgggcgag gcgaagaact ggacactgtg cctgcgcaat 2220 gttgtgaaag taaatggtct gcaagacggt tcgcaggctg aaagtgagca ggggctggtg 2280 gtgaagcctc aagggaatgc gctgacaatt acgttgtaa 2319 <210> 6 <211> 2322 <212> DNA <213> Artificial Sequence <220> <223> BHaX-D481A <400> 6 atgaaatttt cagatggtca gtggctgaca cgacaagagt atacaattat aggagcggtt 60 caagttcatg agatcataca aggggaagca tccatgacgg ttctagcctc gccgaaaccg 120 attgtggatc ggtatggaca gcttgatacc ccgttactgg agatcacttt ttccgcccct 180 aggcgagaga tgatccgcgt gcaaatcgat catcataaag gagggagaaa acgaggtccg 240 gtttttacta ccaaacatga tcacaagcat caagcaagtt ttacagaaac ggagacgacg 300 gcaatcctca caagtggcga cctatccgtc accgtccata aagaaggtga ttggctcatt 360 accttttcct atcaaggaaa aacgatcaca tcgagtggtt caaaaagcat cgcccacatt 420 ctcgctcagg acggaaaggc ttatatgcgt gagcagctta gtctccagcc agatgaaatg 480 atttatgctt taggcgaacg gtttacacct ttgattcgaa acggtcaagt cgtcgacatt 540 tggaataaag atggcggtac gaacacggag caatcgtata aaaatgttcc cttttatctt 600 tctaacaaag ggtacggcgt gttcgtgaac catccggagt gggtgtcgtt cgaagtagga 660 tctgaaagtg tgtcgaagtc tcagtttagc gtcgaaggtc atcgccttga ttactatgtg 720 atggctgggc cgtcgatgaa aaaagtcatt gaagcctaca ccgatttaac gggaaaacca 780 gcattgccgc cggcctggtc gttcggtctt tggctgtcca catcgtttac aacgaactat 840 gatgaagcga ctgtcaccca atttattgat gggatgaatg aacgcgactt gcctgttcac 900 gtgtttcatt ttgattgctt ctggatgaag gaatttgaat ggtgtaattt tgaatggtat 960 cggcgggtat ttccagagcc agaaaaaatg ctacagcgct taaaagaaaa aggcttgaag 1020 ctatctgtct ggatcaaccc ttatattgcg caacgctctc cgctgtttca agaagcggct 1080 gcaaatggat acttactgaa aaaagaaaac ggtgatgtat ggcaatggga tttatggcaa 1140 ccagggatgg gcgtggttga ctttacgaac cctgacgctc ggatttggta tcaggaccac 1200 cttcgcaggc ttctagaaat gggcgttgat tgttttaaaa ccgatttcgg tgaacggata 1260 ccgaccgatg tcgtgtatca cgatggctct gacccagaaa aaatgcataa ttactacacg 1320 ttcctctata atcaaacggt gtttgacgtc ttgaaacaag taaagggtaa tcatgaagcc 1380 gtcttatttg ctcgatcggc cacggctggc agtcaacaat tccctgttca ctggggtgga 1440 gcttgtgccg caacttactc gtctatggcg gaaagcttac gagggggatt atctctcggt 1500 atgtctggtt ttggctactg gagtcacgac attggcggct ttgaaagcca atccactgct 1560 gacctttata agcgctggac cgcctttggt ttattatcga gccatagtcg tctgcatgga 1620 aataaatcgt atcgagtccc gtgggtttat gatgaggaag ccaccgatgt tcttcgtcag 1680 tttacaaaat ggaaatgtcg cctcatgcca tacctttatg cgaaagcatg tgaagcaaga 1740 acgaccgggc tcccactcat gcgtgcgatg gtgttagaat tccaagacga tccgacgtgt 1800 gcgtttttag atcgccaata catgctcggg gatcagttgc ttgtggctcc gatcttcaat 1860 gaagaagggc tcgctcatta ctacgttcct gatggtcgtt ggacaaatct cttaacaggc 1920 aaaactgtgg aaggtggtag ctggaagaaa gagcatcacg accatctgag catcccttta 1980 ctcgttcgcc caaattcgat cgttccgatc ggctcggtgg atgaccgtcc agactatgac 2040 tatacagaca atgtggcatt ccacgtgttt gcccttgaaa attacgcgac aacatccatc 2100 tatacagtag agggagagga agcactcact ttatctgcga ctcgctccac cactacagtc 2160 acatttgata tatctgatgg aagcaagcct tggaccgtac atttacacga tgtcacagag 2220 gtgtctagcg ttgagggagc tgactttgaa attagcgatg gctctgtcat cctccaccct 2280 atccttgatg tgaaacaggt ggttgtccac ctaggcgtct aa 2322 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cagaactaag gaacgcatat gaaaattagc 30 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 atcaagctcg agcaacgtaa ttgtcagcgc 30 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gtacactggg gtggcgcgtg ttacgctaac tac 33 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tatgctagtt attgctcag 19 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 taatacgact cactataggg 20 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtacactggg gtggcnnntg ttacgctaac tac 33 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 tagggaacaa catatgaaat tttcagatgg 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aaccctcgag gacgcctagg tggacaacca 30 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cctgttcact ggggtggagc ttgtgccgca act 33 <110> KOREAN UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> An alpha-Xylosidase mutants modified at their          proton-donor / acceptor catalyst and high efficiency          transglycosylation with the same <160> 15 <170> Kopatentin 1.71 <210> 1 <211> 772 <212> PRT <213> YicI <400> 1 Met Lys Ile Ser Asp Gly Asn Trp Leu Ile Gln Pro Gly Leu Asn Leu   1 5 10 15 Ile His Pro Leu Gln Val Phe Glu Val Glu Gln Gln Asp Asn Glu Met              20 25 30 Val Val Tyr Ala Ala Pro Arg Asp Val Arg Glu Arg Thr Trp Gln Leu          35 40 45 Asp Thr Pro Leu Phe Thr Leu Arg Phe Phe Ser Pro Gln Glu Gly Ile      50 55 60 Val Gly Val Arg Ile Glu His Phe Gln Gly Ala Leu Asn Asn Gly Pro  65 70 75 80 His Tyr Pro Leu Asn Ile Leu Gln Asp Val Lys Val Thr Ile Glu Asn                  85 90 95 Thr Glu Arg Tyr Ala Glu Phe Lys Ser Gly Asn Leu Ser Ala Arg Val             100 105 110 Ser Lys Gly Glu Phe Trp Ser Leu Asp Phe Leu Arg Asn Gly Glu Arg         115 120 125 Ile Thr Gly Ser Gln Val Lys Asn Asn Gly Tyr Val Gln Asp Thr Asn     130 135 140 Asn Gln Arg Asn Tyr Met Phe Glu Arg Leu Asp Leu Gly Val Gly Glu 145 150 155 160 Thr Val Tyr Gly Leu Gly Glu Arg Phe Thr Ala Leu Val Arg Asn Gly                 165 170 175 Gln Thr Val Glu Thr Trp Asn Arg Asp Gly Gly Thr Ser Thr Glu Gln             180 185 190 Ala Tyr Lys Asn Ile Pro Phe Tyr Met Thr Asn Arg Gly Tyr Gly Val         195 200 205 Leu Val Asn His Pro Gln Cys Val Ser Phe Glu Val Gly Ser Glu Lys     210 215 220 Val Ser Lys Val Gln Phe Ser Val Glu Ser Glu Tyr Leu Glu Tyr Phe 225 230 235 240 Val Ile Asp Gly Pro Thr Pro Lys Ala Val Leu Asp Arg Tyr Thr Arg                 245 250 255 Phe Thr Gly Arg Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp             260 265 270 Leu Thr Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Asn Ser         275 280 285 Phe Ile Asp Gly Met Ala Glu Arg Asn Leu Pro Leu His Val Phe His     290 295 300 Phe Asp Cys Phe Trp Met Lys Ala Phe Gln Trp Cys Asp Phe Glu Trp 305 310 315 320 Asp Pro Leu Thr Phe Pro Asp Pro Glu Gly Met Ile Arg Arg Leu Lys                 325 330 335 Ala Lys Gly Leu Lys Ile Cys Val Trp Ile Asn Pro Tyr Ile Gly Gln             340 345 350 Lys Ser Pro Val Phe Lys Glu Leu Gln Glu Lys Gly Tyr Leu Leu Lys         355 360 365 Arg Pro Asp Gly Ser Leu Trp Gln Trp Asp Lys Trp Gln Pro Gly Leu     370 375 380 Ala Ile Tyr Asp Phe Thr Asn Pro Asp Ala Cys Lys Trp Tyr Ala Asp 385 390 395 400 Lys Leu Lys Gly Leu Val Ala Met Gly Val Asp Cys Phe Lys Thr Asp                 405 410 415 Phe Gly Glu Arg Ile Pro Thr Asp Val Gln Trp Phe Asp Gly Ser Asp             420 425 430 Pro Gln Lys Met His Asn His Tyr Ala Tyr Ile Tyr Asn Glu Leu Val         435 440 445 Trp Asn Val Leu Lys Asp Thr Val Gly Glu Glu Glu Ala Val Leu Phe     450 455 460 Ala Arg Ser Ala Ser Val Gly Ala Gln Lys Phe Pro Val His Trp Gly 465 470 475 480 Gly Asp Cys Tyr Ala Asn Tyr Glu Ser Met Ala Glu Ser Leu Arg Gly                 485 490 495 Gly Leu Ser Ile Gly Leu Ser Gly Phe Gly Phe Trp Ser His Asp Ile             500 505 510 Gly Gly Phe Glu Asn Thr Ala Pro Ala His Val Tyr Lys Arg Trp Cys         515 520 525 Ala Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Ser Lys Ser     530 535 540 Tyr Arg Val Pro Trp Ala Tyr Asp Asp Glu Ser Cys Asp Val Val Arg 545 550 555 560 Phe Phe Thr Gln Leu Lys Cys Arg Met Met Pro Tyr Leu Tyr Arg Glu                 565 570 575 Ala Ala Arg Ala Asn Ala Arg Gly Thr Pro Met Met Arg Ala Met Met             580 585 590 Met Glu Phe Pro Asp Asp Pro Ala Cys Asp Tyr Leu Asp Arg Gln Tyr         595 600 605 Met Leu Gly Asp Asn Val Met Val Ala Pro Val Phe Thr Glu Ala Gly     610 615 620 Asp Val Gln Phe Tyr Leu Pro Glu Gly Arg Trp Thr His Leu Trp His 625 630 635 640 Asn Asp Glu Leu Asp Gly Ser Arg Trp His Lys Gln Gln His Gly Phe                 645 650 655 Leu Ser Leu Pro Val Tyr Val Arg Asp Asn Thr Leu Leu Ala Leu Gly             660 665 670 Asn Asn Asp Gln Arg Pro Asp Tyr Val Trp His Glu Gly Thr Ala Phe         675 680 685 His Leu Phe Asn Leu Gln Asp Gly His Glu Ala Val Cys Glu Val Pro     690 695 700 Ala Ala Asp Gly Ser Val Ile Phe Thr Leu Lys Ala Ala Arg Thr Gly 705 710 715 720 Asn Thr Ile Thr Val Thr Gly Ala Gly Glu Ala Lys Asn Trp Thr Leu                 725 730 735 Cys Leu Arg Asn Val Val Lys Val Asn Gly Leu Gln Asp Gly Ser Gln             740 745 750 Ala Glu Ser Glu Gln Gly Leu Val Val Lys Pro Gln Gly Asn Ala Leu         755 760 765 Thr Ile Thr Leu     770 <210> 2 <211> 773 <212> PRT <213> BHaX <400> 2 Met Lys Phe Ser Asp Gly Gln Trp Leu Thr Arg Gln Glu Tyr Thr Ile   1 5 10 15 Ile Gly Ala Val Gln Val His Glu Ile Ile Gln Gly Glu Ala Ser Met              20 25 30 Thr Val Leu Ala Ser Pro Lys Pro Ile Val Asp Arg Tyr Gly Gln Leu          35 40 45 Asp Thr Pro Leu Leu Glu Ile Thr Phe Ser Ala Pro Arg Arg Glu Met      50 55 60 Ile Arg Val Gln Ile Asp His His Lys Gly Gly Arg Lys Arg Gly Pro  65 70 75 80 Val Phe Thr Thr Lys His Asp His Lys His Gln Ala Ser Phe Thr Glu                  85 90 95 Thr Glu Thr Thr Ala Ile Leu Thr Ser Gly Asp Leu Ser Val Thr Val             100 105 110 His Lys Glu Gly Asp Trp Leu Ile Thr Phe Ser Tyr Gln Gly Lys Thr         115 120 125 Ile Thr Ser Ser Gly Ser Lys Ser Ile Ala His Ile Leu Ala Gln Asp     130 135 140 Gly Lys Ala Tyr Met Arg Glu Gln Leu Ser Leu Gln Pro Asp Glu Met 145 150 155 160 Ile Tyr Ala Leu Gly Glu Arg Phe Thr Pro Leu Ile Arg Asn Gly Gln                 165 170 175 Val Val Asp Ile Trp Asn Lys Asp Gly Gly Thr Asn Thr Glu Gln Ser             180 185 190 Tyr Lys Asn Val Pro Phe Tyr Leu Ser Asn Lys Gly Tyr Gly Val Phe         195 200 205 Val Asn His Pro Glu Trp Val Ser Phe Glu Val Gly Ser Glu Ser Val     210 215 220 Ser Lys Ser Gln Phe Ser Val Glu Gly His Arg Leu Asp Tyr Tyr Val 225 230 235 240 Met Ala Gly Pro Ser Met Lys Lys Val Ile Glu Ala Tyr Thr Asp Leu                 245 250 255 Thr Gly Lys Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp Leu             260 265 270 Ser Thr Ser Phe Thr Thr As As Tyr Asp Glu Ala Thr Val Thr Gln Phe         275 280 285 Ile Asp Gly Met Asn Glu Arg Asp Leu Pro Val His Val Phe His Phe     290 295 300 Asp Cys Phe Trp Met Lys Glu Phe Glu Trp Cys Asn Phe Glu Trp Tyr 305 310 315 320 Arg Arg Val Phe Pro Glu Pro Glu Lys Met Leu Gln Arg Leu Lys Glu                 325 330 335 Lys Gly Leu Lys Leu Ser Val Trp Ile Asn Pro Tyr Ile Ala Gln Arg             340 345 350 Ser Pro Leu Phe Gln Glu Ala Ala Ala Asn Gly Tyr Leu Leu Lys Lys         355 360 365 Glu Asn Gly Asp Val Trp Gln Trp Asp Leu Trp Gln Pro Gly Met Gly     370 375 380 Val Val Asp Phe Thr Asn Pro Asp Ala Arg Ile Trp Tyr Gln Asp His 385 390 395 400 Leu Arg Arg Leu Leu Glu Met Gly Val Asp Cys Phe Lys Thr Asp Phe                 405 410 415 Gly Glu Arg Ile Pro Thr Asp Val Val Tyr His Asp Gly Ser Asp Pro             420 425 430 Glu Lys Met His Asn Tyr Tyr Thr Phe Leu Tyr Asn Gln Thr Val Phe         435 440 445 Asp Val Leu Lys Gln Val Lys Gly Asn His Glu Ala Val Leu Phe Ala     450 455 460 Arg Ser Ala Thr Ala Gly Ser Gln Gln Phe Pro Val His Trp Gly Gly 465 470 475 480 Asp Cys Ala Ala Thr Tyr Ser Ser Met Ala Glu Ser Leu Arg Gly Gly                 485 490 495 Leu Ser Leu Gly Met Ser Gly Phe Gly Tyr Trp Ser His Asp Ile Gly             500 505 510 Gly Phe Glu Ser Gln Ser Thr Ala Asp Leu Tyr Lys Arg Trp Thr Ala         515 520 525 Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Asn Lys Ser Tyr     530 535 540 Arg Val Pro Trp Val Tyr Asp Glu Glu Ala Thr Asp Val Leu Arg Gln 545 550 555 560 Phe Thr Lys Trp Lys Cys Arg Leu Met Pro Tyr Leu Tyr Ala Lys Ala                 565 570 575 Cys Glu Ala Arg Thr Thr Gly Leu Pro Leu Met Arg Ala Met Val Leu             580 585 590 Glu Phe Gln Asp Asp Pro Thr Cys Ala Phe Leu Asp Arg Gln Tyr Met         595 600 605 Leu Gly Asp Gln Leu Leu Val Ala Pro Ile Phe Asn Glu Glu Gly Leu     610 615 620 Ala His Tyr Tyr Val Pro Asp Gly Arg Trp Thr Asn Leu Leu Thr Gly 625 630 635 640 Lys Thr Val Glu Gly Gly Ser Trp Lys Lys Glu His His Asp His Leu                 645 650 655 Ser Ile Pro Leu Leu Val Arg Pro Asn Ser Ile Val Pro Ile Gly Ser             660 665 670 Val Asp Asp Arg Pro Asp Tyr Asp Tyr Thr Asp Asn Val Ala Phe His         675 680 685 Val Phe Ala Leu Glu Asn Tyr Ala Thr Thr Ser Ile Tyr Thr Val Glu     690 695 700 Gly Glu Glu Ala Leu Thr Leu Ser Ala Thr Arg Ser Thr Thr Thr Val 705 710 715 720 Thr Phe Asp Ile Ser Asp Gly Ser Lys Pro Trp Thr Val His Leu His                 725 730 735 Asp Val Thr Glu Val Ser Ser Val Glu Gly Ala Asp Phe Glu Ile Ser             740 745 750 Asp Gly Ser Val Ile Leu His Pro Ile Leu Asp Val Lys Gln Val Val         755 760 765 Val His Leu Gly Val     770 <210> 3 <211> 772 <212> PRT <213> Artificial Sequence <220> <223> YicI-D482A <400> 3 Met Lys Ile Ser Asp Gly Asn Trp Leu Ile Gln Pro Gly Leu Asn Leu   1 5 10 15 Ile His Pro Leu Gln Val Phe Glu Val Glu Gln Gln Asp Asn Glu Met              20 25 30 Val Val Tyr Ala Ala Pro Arg Asp Val Arg Glu Arg Thr Trp Gln Leu          35 40 45 Asp Thr Pro Leu Phe Thr Leu Arg Phe Phe Ser Pro Gln Glu Gly Ile      50 55 60 Val Gly Val Arg Ile Glu His Phe Gln Gly Ala Leu Asn Asn Gly Pro  65 70 75 80 His Tyr Pro Leu Asn Ile Leu Gln Asp Val Lys Val Thr Ile Glu Asn                  85 90 95 Thr Glu Arg Tyr Ala Glu Phe Lys Ser Gly Asn Leu Ser Ala Arg Val             100 105 110 Ser Lys Gly Glu Phe Trp Ser Leu Asp Phe Leu Arg Asn Gly Glu Arg         115 120 125 Ile Thr Gly Ser Gln Val Lys Asn Asn Gly Tyr Val Gln Asp Thr Asn     130 135 140 Asn Gln Arg Asn Tyr Met Phe Glu Arg Leu Asp Leu Gly Val Gly Glu 145 150 155 160 Thr Val Tyr Gly Leu Gly Glu Arg Phe Thr Ala Leu Val Arg Asn Gly                 165 170 175 Gln Thr Val Glu Thr Trp Asn Arg Asp Gly Gly Thr Ser Thr Glu Gln             180 185 190 Ala Tyr Lys Asn Ile Pro Phe Tyr Met Thr Asn Arg Gly Tyr Gly Val         195 200 205 Leu Val Asn His Pro Gln Cys Val Ser Phe Glu Val Gly Ser Glu Lys     210 215 220 Val Ser Lys Val Gln Phe Ser Val Glu Ser Glu Tyr Leu Glu Tyr Phe 225 230 235 240 Val Ile Asp Gly Pro Thr Pro Lys Ala Val Leu Asp Arg Tyr Thr Arg                 245 250 255 Phe Thr Gly Arg Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp             260 265 270 Leu Thr Thr Ser Phe Thr Thr Asn Tyr Asp Glu Ala Thr Val Asn Ser         275 280 285 Phe Ile Asp Gly Met Ala Glu Arg Asn Leu Pro Leu His Val Phe His     290 295 300 Phe Asp Cys Phe Trp Met Lys Ala Phe Gln Trp Cys Asp Phe Glu Trp 305 310 315 320 Asp Pro Leu Thr Phe Pro Asp Pro Glu Gly Met Ile Arg Arg Leu Lys                 325 330 335 Ala Lys Gly Leu Lys Ile Cys Val Trp Ile Asn Pro Tyr Ile Gly Gln             340 345 350 Lys Ser Pro Val Phe Lys Glu Leu Gln Glu Lys Gly Tyr Leu Leu Lys         355 360 365 Arg Pro Asp Gly Ser Leu Trp Gln Trp Asp Lys Trp Gln Pro Gly Leu     370 375 380 Ala Ile Tyr Asp Phe Thr Asn Pro Asp Ala Cys Lys Trp Tyr Ala Asp 385 390 395 400 Lys Leu Lys Gly Leu Val Ala Met Gly Val Asp Cys Phe Lys Thr Asp                 405 410 415 Phe Gly Glu Arg Ile Pro Thr Asp Val Gln Trp Phe Asp Gly Ser Asp             420 425 430 Pro Gln Lys Met His Asn His Tyr Ala Tyr Ile Tyr Asn Glu Leu Val         435 440 445 Trp Asn Val Leu Lys Asp Thr Val Gly Glu Glu Glu Ala Val Leu Phe     450 455 460 Ala Arg Ser Ala Ser Val Gly Ala Gln Lys Phe Pro Val His Trp Gly 465 470 475 480 Gly Ala Cys Tyr Ala Asn Tyr Glu Ser Met Ala Glu Ser Leu Arg Gly                 485 490 495 Gly Leu Ser Ile Gly Leu Ser Gly Phe Gly Phe Trp Ser His Asp Ile             500 505 510 Gly Gly Phe Glu Asn Thr Ala Pro Ala His Val Tyr Lys Arg Trp Cys         515 520 525 Ala Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Ser Lys Ser     530 535 540 Tyr Arg Val Pro Trp Ala Tyr Asp Asp Glu Ser Cys Asp Val Val Arg 545 550 555 560 Phe Phe Thr Gln Leu Lys Cys Arg Met Met Pro Tyr Leu Tyr Arg Glu                 565 570 575 Ala Ala Arg Ala Asn Ala Arg Gly Thr Pro Met Met Arg Ala Met Met             580 585 590 Met Glu Phe Pro Asp Asp Pro Ala Cys Asp Tyr Leu Asp Arg Gln Tyr         595 600 605 Met Leu Gly Asp Asn Val Met Val Ala Pro Val Phe Thr Glu Ala Gly     610 615 620 Asp Val Gln Phe Tyr Leu Pro Glu Gly Arg Trp Thr His Leu Trp His 625 630 635 640 Asn Asp Glu Leu Asp Gly Ser Arg Trp His Lys Gln Gln His Gly Phe                 645 650 655 Leu Ser Leu Pro Val Tyr Val Arg Asp Asn Thr Leu Leu Ala Leu Gly             660 665 670 Asn Asn Asp Gln Arg Pro Asp Tyr Val Trp His Glu Gly Thr Ala Phe         675 680 685 His Leu Phe Asn Leu Gln Asp Gly His Glu Ala Val Cys Glu Val Pro     690 695 700 Ala Ala Asp Gly Ser Val Ile Phe Thr Leu Lys Ala Ala Arg Thr Gly 705 710 715 720 Asn Thr Ile Thr Val Thr Gly Ala Gly Glu Ala Lys Asn Trp Thr Leu                 725 730 735 Cys Leu Arg Asn Val Val Lys Val Asn Gly Leu Gln Asp Gly Ser Gln             740 745 750 Ala Glu Ser Glu Gln Gly Leu Val Val Lys Pro Gln Gly Asn Ala Leu         755 760 765 Thr Ile Thr Leu     770 <210> 4 <211> 773 <212> PRT <213> Artificial Sequence <220> <223> BHaX-D481A <400> 4 Met Lys Phe Ser Asp Gly Gln Trp Leu Thr Arg Gln Glu Tyr Thr Ile   1 5 10 15 Ile Gly Ala Val Gln Val His Glu Ile Ile Gln Gly Glu Ala Ser Met              20 25 30 Thr Val Leu Ala Ser Pro Lys Pro Ile Val Asp Arg Tyr Gly Gln Leu          35 40 45 Asp Thr Pro Leu Leu Glu Ile Thr Phe Ser Ala Pro Arg Arg Glu Met      50 55 60 Ile Arg Val Gln Ile Asp His His Lys Gly Gly Arg Lys Arg Gly Pro  65 70 75 80 Val Phe Thr Thr Lys His Asp His Lys His Gln Ala Ser Phe Thr Glu                  85 90 95 Thr Glu Thr Thr Ala Ile Leu Thr Ser Gly Asp Leu Ser Val Thr Val             100 105 110 His Lys Glu Gly Asp Trp Leu Ile Thr Phe Ser Tyr Gln Gly Lys Thr         115 120 125 Ile Thr Ser Ser Gly Ser Lys Ser Ile Ala His Ile Leu Ala Gln Asp     130 135 140 Gly Lys Ala Tyr Met Arg Glu Gln Leu Ser Leu Gln Pro Asp Glu Met 145 150 155 160 Ile Tyr Ala Leu Gly Glu Arg Phe Thr Pro Leu Ile Arg Asn Gly Gln                 165 170 175 Val Val Asp Ile Trp Asn Lys Asp Gly Gly Thr Asn Thr Glu Gln Ser             180 185 190 Tyr Lys Asn Val Pro Phe Tyr Leu Ser Asn Lys Gly Tyr Gly Val Phe         195 200 205 Val Asn His Pro Glu Trp Val Ser Phe Glu Val Gly Ser Glu Ser Val     210 215 220 Ser Lys Ser Gln Phe Ser Val Glu Gly His Arg Leu Asp Tyr Tyr Val 225 230 235 240 Met Ala Gly Pro Ser Met Lys Lys Val Ile Glu Ala Tyr Thr Asp Leu                 245 250 255 Thr Gly Lys Pro Ala Leu Pro Pro Ala Trp Ser Phe Gly Leu Trp Leu             260 265 270 Ser Thr Ser Phe Thr Thr As As Tyr Asp Glu Ala Thr Val Thr Gln Phe         275 280 285 Ile Asp Gly Met Asn Glu Arg Asp Leu Pro Val His Val Phe His Phe     290 295 300 Asp Cys Phe Trp Met Lys Glu Phe Glu Trp Cys Asn Phe Glu Trp Tyr 305 310 315 320 Arg Arg Val Phe Pro Glu Pro Glu Lys Met Leu Gln Arg Leu Lys Glu                 325 330 335 Lys Gly Leu Lys Leu Ser Val Trp Ile Asn Pro Tyr Ile Ala Gln Arg             340 345 350 Ser Pro Leu Phe Gln Glu Ala Ala Ala Asn Gly Tyr Leu Leu Lys Lys         355 360 365 Glu Asn Gly Asp Val Trp Gln Trp Asp Leu Trp Gln Pro Gly Met Gly     370 375 380 Val Val Asp Phe Thr Asn Pro Asp Ala Arg Ile Trp Tyr Gln Asp His 385 390 395 400 Leu Arg Arg Leu Leu Glu Met Gly Val Asp Cys Phe Lys Thr Asp Phe                 405 410 415 Gly Glu Arg Ile Pro Thr Asp Val Val Tyr His Asp Gly Ser Asp Pro             420 425 430 Glu Lys Met His Asn Tyr Tyr Thr Phe Leu Tyr Asn Gln Thr Val Phe         435 440 445 Asp Val Leu Lys Gln Val Lys Gly Asn His Glu Ala Val Leu Phe Ala     450 455 460 Arg Ser Ala Thr Ala Gly Ser Gln Gln Phe Pro Val His Trp Gly Gly 465 470 475 480 Ala Cys Ala Ala Thr Tyr Ser Ser Met Ala Glu Ser Leu Arg Gly Gly                 485 490 495 Leu Ser Leu Gly Met Ser Gly Phe Gly Tyr Trp Ser His Asp Ile Gly             500 505 510 Gly Phe Glu Ser Gln Ser Thr Ala Asp Leu Tyr Lys Arg Trp Thr Ala         515 520 525 Phe Gly Leu Leu Ser Ser His Ser Arg Leu His Gly Asn Lys Ser Tyr     530 535 540 Arg Val Pro Trp Val Tyr Asp Glu Glu Ala Thr Asp Val Leu Arg Gln 545 550 555 560 Phe Thr Lys Trp Lys Cys Arg Leu Met Pro Tyr Leu Tyr Ala Lys Ala                 565 570 575 Cys Glu Ala Arg Thr Thr Gly Leu Pro Leu Met Arg Ala Met Val Leu             580 585 590 Glu Phe Gln Asp Asp Pro Thr Cys Ala Phe Leu Asp Arg Gln Tyr Met         595 600 605 Leu Gly Asp Gln Leu Leu Val Ala Pro Ile Phe Asn Glu Glu Gly Leu     610 615 620 Ala His Tyr Tyr Val Pro Asp Gly Arg Trp Thr Asn Leu Leu Thr Gly 625 630 635 640 Lys Thr Val Glu Gly Gly Ser Trp Lys Lys Glu His His Asp His Leu                 645 650 655 Ser Ile Pro Leu Leu Val Arg Pro Asn Ser Ile Val Pro Ile Gly Ser             660 665 670 Val Asp Asp Arg Pro Asp Tyr Asp Tyr Thr Asp Asn Val Ala Phe His         675 680 685 Val Phe Ala Leu Glu Asn Tyr Ala Thr Thr Ser Ile Tyr Thr Val Glu     690 695 700 Gly Glu Glu Ala Leu Thr Leu Ser Ala Thr Arg Ser Thr Thr Thr Val 705 710 715 720 Thr Phe Asp Ile Ser Asp Gly Ser Lys Pro Trp Thr Val His Leu His                 725 730 735 Asp Val Thr Glu Val Ser Ser Val Glu Gly Ala Asp Phe Glu Ile Ser             740 745 750 Asp Gly Ser Val Ile Leu His Pro Ile Leu Asp Val Lys Gln Val Val         755 760 765 Val His Leu Gly Val     770 <210> 5 <211> 2319 <212> DNA <213> Artificial Sequence <220> <223> YicI-D482A <400> 5 atgaaaatta gcgatggaaa ctggttgatt caacctggcc tcaatttgat tcacccgctt 60 caggtgttcg aggttgaaca gcaggataat gaaatggtgg tctatgctgc cccccgtgat 120 gtgcgtgaac gtacctggca gcttgatacg cctttattta cgttgcgctt tttctcccca 180 caggaaggta ttgtcggtgt gcggattgag cattttcagg gggcgctgaa taacggtcct 240 cattatccgc tcaatatttt gcaggacgtg aaggtcacaa tcgaaaacac agaacgttat 300 gctgagttta aaagtggcaa cttaagcgcg cgtgtcagca aaggtgagtt ctggtcactg 360 gattttctgc gcaacggcga acgtattacc ggtagtcagg tgaaaaataa tggctacgtg 420 caggacacga ataatcaacg caattatatg tttgagcggc ttgatcttgg cgttggcgaa 480 acagtttacg gtctgggaga gcgctttact gccctggtgc gcaatggcca gacggtagag 540 acctggaacc gggacggcgg cacaagtact gaacaggcgt ataaaaatat cccgttctac 600 atgactaacc gtggttatgg ggtactggtc aatcatcccc agtgtgtctc ttttgaagtg 660 ggatcggaga aagtctccaa agtgcagttc agcgttgaga gtgaatatct cgaatacttt 720 gttatcgacg gcccgacgcc gaaagcggta cttgatcgtt atacccgctt tactggtcgt 780 ccggcgctgc cgcccgcgtg gtccttcggc ctgtggctaa ccacttcatt taccaccaac 840 tacgacgaag cgacggtaaa cagctttatc gatggtatgg cggaacgcaa tctgccgctg 900 catgttttcc actttgactg tttctggatg aaagccttcc agtggtgcga ttttgagtgg 960 gacccgctga ctttccctga cccggaaggg atgatccgcc gcctgaaagc gaaaggactg 1020 aaaatctgcg tctggattaa cccctatatc ggtcaaaaat cccccgtctt taaagagtta 1080 caagagaaag gctatttact caaacgcccg gacggttcgc tatggcagtg ggataaatgg 1140 cagccaggtc tggcgattta tgactttacc aatccggatg cctgcaaatg gtacgccgac 1200 aaactgaaag gtctggtcgc gatgggcgtt gattgcttta agaccgactt tggcgaacgt 1260 atcccaactg atgttcagtg gtttgacggt tccgatccgc agaaaatgca taaccattat 1320 gcgtacatct acaacgaact ggtgtggaac gtgctcaagg acaccgttgg tgaggaagaa 1380 gctgtcttgt ttgcccgctc ggcctccgtc ggtgcgcaga aattcccggt acactggggt 1440 ggcgcgtgtt acgctaacta cgaatcaatg gcggaaagcc tgcgcggtgg tttgtctatt 1500 ggcctttcag gttttggctt ctggagccac gatatcggcg gctttgaaaa taccgctccg 1560 gcgcacgttt acaaacgctg gtgcgcgttt ggtttgctct ccagccatag ccgtttacac 1620 ggtagcaaat cttatcgtgt gccgtgggcc tacgatgatg agtcctgtga tgtggtgcgc 1680 ttcttcacgc aactgaaatg ccgcatgatg ccgtatctgt atcgtgaagc tgcgcgtgcg 1740 aacgcgcggg gtacgccgat gatgcgggcc atgatgatgg agttcccgga cgatccggct 1800 tgtgattacc ttgaccgtca atacatgtta ggcgacaacg tgatggttgc gccggtgttc 1860 actgaagcgg gcgatgtgca gttctacctg ccggaaggtc gctggacaca cctgtggcac 1920 aacgatgaac tcgacggtag tcgctggcat aaacagcagc acggcttcct gagtctgccc 1980 gtttatgtgc gtgataacac tctactggcg ctgggcaaca acgatcaacg tcccgattac 2040 gtgtggcacg aaggcacggc attccacctc ttcaatctgc aagacgggca tgaagccgtc 2100 tgtgaagtgc ccgctgctga cggatcggtg atctttactt taaaagcagc acgtactggc 2160 aacacgatta ctgtgactgg tgcgggcgag gcgaagaact ggacactgtg cctgcgcaat 2220 gttgtgaaag taaatggtct gcaagacggt tcgcaggctg aaagtgagca ggggctggtg 2280 gtgaagcctc aagggaatgc gctgacaatt acgttgtaa 2319 <210> 6 <211> 2322 <212> DNA <213> Artificial Sequence <220> <223> BHaX-D481A <400> 6 atgaaatttt cagatggtca gtggctgaca cgacaagagt atacaattat aggagcggtt 60 caagttcatg agatcataca aggggaagca tccatgacgg ttctagcctc gccgaaaccg 120 attgtggatc ggtatggaca gcttgatacc ccgttactgg agatcacttt ttccgcccct 180 aggcgagaga tgatccgcgt gcaaatcgat catcataaag gagggagaaa acgaggtccg 240 gtttttacta ccaaacatga tcacaagcat caagcaagtt ttacagaaac ggagacgacg 300 gcaatcctca caagtggcga cctatccgtc accgtccata aagaaggtga ttggctcatt 360 accttttcct atcaaggaaa aacgatcaca tcgagtggtt caaaaagcat cgcccacatt 420 ctcgctcagg acggaaaggc ttatatgcgt gagcagctta gtctccagcc agatgaaatg 480 atttatgctt taggcgaacg gtttacacct ttgattcgaa acggtcaagt cgtcgacatt 540 tggaataaag atggcggtac gaacacggag caatcgtata aaaatgttcc cttttatctt 600 tctaacaaag ggtacggcgt gttcgtgaac catccggagt gggtgtcgtt cgaagtagga 660 tctgaaagtg tgtcgaagtc tcagtttagc gtcgaaggtc atcgccttga ttactatgtg 720 atggctgggc cgtcgatgaa aaaagtcatt gaagcctaca ccgatttaac gggaaaacca 780 gcattgccgc cggcctggtc gttcggtctt tggctgtcca catcgtttac aacgaactat 840 gatgaagcga ctgtcaccca atttattgat gggatgaatg aacgcgactt gcctgttcac 900 gtgtttcatt ttgattgctt ctggatgaag gaatttgaat ggtgtaattt tgaatggtat 960 cggcgggtat ttccagagcc agaaaaaatg ctacagcgct taaaagaaaa aggcttgaag 1020 ctatctgtct ggatcaaccc ttatattgcg caacgctctc cgctgtttca agaagcggct 1080 gcaaatggat acttactgaa aaaagaaaac ggtgatgtat ggcaatggga tttatggcaa 1140 ccagggatgg gcgtggttga ctttacgaac cctgacgctc ggatttggta tcaggaccac 1200 cttcgcaggc ttctagaaat gggcgttgat tgttttaaaa ccgatttcgg tgaacggata 1260 ccgaccgatg tcgtgtatca cgatggctct gacccagaaa aaatgcataa ttactacacg 1320 ttcctctata atcaaacggt gtttgacgtc ttgaaacaag taaagggtaa tcatgaagcc 1380 gtcttatttg ctcgatcggc cacggctggc agtcaacaat tccctgttca ctggggtgga 1440 gcttgtgccg caacttactc gtctatggcg gaaagcttac gagggggatt atctctcggt 1500 atgtctggtt ttggctactg gagtcacgac attggcggct ttgaaagcca atccactgct 1560 gacctttata agcgctggac cgcctttggt ttattatcga gccatagtcg tctgcatgga 1620 aataaatcgt atcgagtccc gtgggtttat gatgaggaag ccaccgatgt tcttcgtcag 1680 tttacaaaat ggaaatgtcg cctcatgcca tacctttatg cgaaagcatg tgaagcaaga 1740 acgaccgggc tcccactcat gcgtgcgatg gtgttagaat tccaagacga tccgacgtgt 1800 gcgtttttag atcgccaata catgctcggg gatcagttgc ttgtggctcc gatcttcaat 1860 gaagaagggc tcgctcatta ctacgttcct gatggtcgtt ggacaaatct cttaacaggc 1920 aaaactgtgg aaggtggtag ctggaagaaa gagcatcacg accatctgag catcccttta 1980 ctcgttcgcc caaattcgat cgttccgatc ggctcggtgg atgaccgtcc agactatgac 2040 tatacagaca atgtggcatt ccacgtgttt gcccttgaaa attacgcgac aacatccatc 2100 tatacagtag agggagagga agcactcact ttatctgcga ctcgctccac cactacagtc 2160 acatttgata tatctgatgg aagcaagcct tggaccgtac atttacacga tgtcacagag 2220 gtgtctagcg ttgagggagc tgactttgaa attagcgatg gctctgtcat cctccaccct 2280 atccttgatg tgaaacaggt ggttgtccac ctaggcgtct aa 2322 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cagaactaag gaacgcatat gaaaattagc 30 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 atcaagctcg agcaacgtaa ttgtcagcgc 30 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gtacactggg gtggcgcgtg ttacgctaac tac 33 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tatgctagtt attgctcag 19 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 taatacgact cactataggg 20 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtacactggg gtggcnnntg ttacgctaac tac 33 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 tagggaacaa catatgaaat tttcagatgg 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aaccctcgag gacgcctagg tggacaacca 30 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cctgttcact ggggtggagc ttgtgccgca act 33

Claims (17)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1의 482번째의 아미노산 잔기를 아스파테이트에서 알라닌으로 돌연변이시켜, 가수분해활성은 제거되고 알파-자일로실 플로라이드 기질에 대한 당전이 활성이 유지된 알파-자일로시데이즈 돌연변이효소를 당전이 반응 촉매제로 사용하고, 당공여체를 포함하는 당전이 방법.The 482th amino acid residue of SEQ ID NO: 1 was mutated from aspartate to alanine to remove alpha-xyloxidase mutagenase, which was hydrolyzed and retained glycosylated activity against the alpha-xylyl fluoride substrate. The sugar transfer method used as this reaction catalyst and containing a sugar donor. 제 12항에 있어서, 상기 당공여체는 알파-자일로실 플로라이드인 것을 특징으로 하는 당전이 방법.The method of claim 12, wherein the sugar donor is alpha-xyloxy fluoride. 제 12항에 있어서, 상기 방법은 당수용체로 포도당, 만노오스(mannose), 4-니트로페닐 베타 글루코사이드, 4-니트로페닐 베타 만노코사이드, 4-니트로페닐 2-데옥시 2-아지도-베타 글루코사이드, 4-니트로페닐 베타 셀로바이오사이드, 및 4-니트로페닐 2-데옥시 2-플로로-베타 셀로바이오사이드로 구성된 군으로부터 선택된 화합물을 더욱 포함하는 것을 특징으로 하는 당전이 방법.13. The method of claim 12, wherein the method comprises glucose, mannose, 4-nitrophenyl beta glucoside, 4-nitrophenyl beta mannokoside, 4-nitrophenyl 2-deoxy 2-azido-beta glucoside as sugar acceptors. , 4-nitrophenyl beta cellobioside, and 4-nitrophenyl 2-deoxy 2-fluoro-beta cellobioside further comprises a compound selected from the group consisting of. 삭제delete 삭제delete 제 12항에 있어서, 상기 알파-자일로시데이즈 돌연변이 효소는 담체에 고정화되거나 세포 표면에 발현시킨 후 얻어지는 것을 특징으로 하는 당전이 방법.13. The method of claim 12, wherein said alpha-xyloxidase mutant enzyme is obtained after immobilization on a carrier or expression on a cell surface.
KR1020100013496A 2010-02-12 2010-02-12 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same KR101256112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100013496A KR101256112B1 (en) 2010-02-12 2010-02-12 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100013496A KR101256112B1 (en) 2010-02-12 2010-02-12 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020110119750A Division KR101277196B1 (en) 2011-11-16 2011-11-16 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR1020110119751A Division KR101274976B1 (en) 2011-11-16 2011-11-16 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR1020110119749A Division KR20110128167A (en) 2011-11-16 2011-11-16 An alpha-xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same

Publications (2)

Publication Number Publication Date
KR20110093443A KR20110093443A (en) 2011-08-18
KR101256112B1 true KR101256112B1 (en) 2013-04-23

Family

ID=44930140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100013496A KR101256112B1 (en) 2010-02-12 2010-02-12 An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same

Country Status (1)

Country Link
KR (1) KR101256112B1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GenBank Accession No. AE000443 (2000.12.01.) *
GenBank Accession No. AE000443 (2000.12.01.)*
Protein Expression and Purification. 2004. Vol. 37, Issue 1, pp. 170-179 *
Protein Expression and Purification. 2004. Vol. 37, Issue 1, pp. 170-179*

Also Published As

Publication number Publication date
KR20110093443A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
KR101339443B1 (en) Ketose 3-epimerase, process for production thereof, and use thereof
US7615365B2 (en) α(1,6)-linked glucose oligosaccharide hydrolyzing enzyme polynucleotides and polypeptides and methods of use thereof
KR101480422B1 (en) A production method of tagatose from fructose by combinatorial enzyme reactions and composition for production of tagatose
JP6165872B2 (en) Monosaccharide production method
KR102011718B1 (en) Novel β-glucosidase for producing glucose and laminarioligosaccharides from macroalgae
KR100395445B1 (en) Recombinant thermostable enzyme which forms non-reducing saccharide from reducing amylaceous saccharide
WO1995034642A1 (en) Novel transferase and amylase, process for producing the enzymes,use thereof, and gene coding for the same
JP4784224B2 (en) Glycosyl transfer method and glycosyltransferase
KR101274976B1 (en) An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR101256112B1 (en) An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR20170101578A (en) New Poly(Pi)n-dependent glucokinase and method for preparing glucose 6-phosphate using thereby
EP2765194B1 (en) Complex type sugar chain hydrolase
KR101277196B1 (en) An alpha-Xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR101706451B1 (en) Maltotrios-Producing Amylase derived from Microbulbifer sp. and the Process for Producing Maltotrios therewith
US20180265852A1 (en) Compositions and Methods Comprising the Use of Exiguobacterium Acetylicum and Bacillus Coagluans Alpha-Glucanotransferase Enzymes
KR20110128167A (en) An alpha-xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR102300386B1 (en) Use of alpha-L-fucosidase having dual enzymatic activity for cleaving alpha- and beta-1,4-glycosidic linkages
JP4317966B2 (en) Recombinant vector containing α-glucosidase gene, transformant and method for producing α-glucosidase using the same
CN112779235B (en) Method for synthesizing various flavonoid glycosides by biological catalysis
KR102312806B1 (en) Amylases having resistance to starch decomposition activity derived from Bifidobacterium genus and uses thereof
US7572604B2 (en) Modified carbohydrate processing enzyme
KR102082395B1 (en) Method for Preparing Dihydroxybenzene Glucosides Using Immobilized Enzyme
KR20170117860A (en) Method for the production of tagatoase by fructose epimerase from Dictyoglomus turgidum and composition therefor
KR100367154B1 (en) Amylase with Acabose Resolution, Genes That Encode It, Microorganisms That Produce It, and Its Uses
US20040038367A1 (en) Novel xyloglucan oligosaccharide-degrading enzyme, polynucleotide encoding the enzyme, and method of preparing the enzyme

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 6