KR101255453B1 - A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation - Google Patents
A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation Download PDFInfo
- Publication number
- KR101255453B1 KR101255453B1 KR1020100139824A KR20100139824A KR101255453B1 KR 101255453 B1 KR101255453 B1 KR 101255453B1 KR 1020100139824 A KR1020100139824 A KR 1020100139824A KR 20100139824 A KR20100139824 A KR 20100139824A KR 101255453 B1 KR101255453 B1 KR 101255453B1
- Authority
- KR
- South Korea
- Prior art keywords
- diisocyanate
- glycol
- elastic yarn
- molecular weight
- polyurethaneurea
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/70—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/72—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyureas
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
Abstract
본 발명은 폴리우레탄우레아의 제조방법에 관한 것으로, 보다 상세하게는 800 ~ 1300 돌턴의 낮은 수평균분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 갖는 글리콜을 질량비 2:1 ~ 7:1로 혼합 한 후, 디이소시아네이트를 사용하여 예비중합체를 제조하고, 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사해 우수한 파워를 가지는 폴리우레탄우레아 탄성사를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a polyurethane urea, more specifically, a glycol having a low number average molecular weight of 800 ~ 1300 Dalton and a glycol having a number average molecular weight of 1600 ~ 2000 Dalton mass ratio 2: 1 ~ 7: 1 After mixing, the prepolymer was prepared using diisocyanate, and a chain extender was added to the prepolymer to obtain a polyurethaneurea polymer, followed by stirring and spinning the obtained polyurethaneurea spinning stock solution. It relates to a method for producing a polyurethane urea elastic yarn having a.
Description
본 발명은 폴리우레탄우레아의 제조방법에 관한 것으로, 보다 상세하게는 800 ~ 1300 돌턴의 낮은 수평균분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 갖는 글리콜을 질량비 2:1 ~ 7:1로 혼합 후, 디이소시아네이트를 사용하여 예비중합체를 제조하고, 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사해 우수한 파워를 가지는 폴리우레탄우레아 탄성사를 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing a polyurethane urea, more specifically, a glycol having a low number average molecular weight of 800 ~ 1300 Dalton and a glycol having a number average molecular weight of 1600 ~ 2000 Dalton mass ratio 2: 1 ~ 7: 1 After mixing, the prepolymer was prepared using diisocyanate, and a chain extender was added to the prepolymer to obtain a polyurethaneurea polymer. After stirring, the polyurethaneurea spinning stock solution obtained by stirring was aged to give excellent power. Eggplant relates to a method for producing a polyurethaneurea elastic yarn.
폴리우레탄우레아는 일반적으로 고분자량의 디올 화합물인 폴리올과 과량의 디이소시아네이트 화합물을 반응시켜 폴리올의 양 말단에 이소시아네이트기를 가지는 예비중합체(prepolymer)를 얻는 1차 중합반응물과, 상기 예비중합체를 적절한 용매에 용해시킨 후 그 용액에 디아민계 또는 디올계 사슬 연장제를 첨가하고 모노알코올 또는 모노아민 등과 같은 사슬종결제 등을 반응시키는 단계를 거쳐 폴리우레탄우레아 섬유의 방사액을 만든 후, 건식 및 습식 방사에 의해 폴리우레탄우레아 탄성 섬유를 얻는다.Polyurethane urea is a primary polymerization reaction product which generally reacts a polyol which is a high molecular weight diol compound with an excess diisocyanate compound to obtain a prepolymer having an isocyanate group at both ends of the polyol, and the prepolymer in an appropriate solvent. After dissolving, a diamine-based or diol-based chain extender is added to the solution, and a chain terminator such as monoalcohol or monoamine is reacted to form a spinning solution of polyurethaneurea fibers, and then subjected to dry and wet spinning. The polyurethaneurea elastic fiber is obtained by this.
폴리우레탄우레아 탄성섬유는 우수한 탄성 및 탄성회복력을 갖는 고유의 특성 때문에 다양한 용도로 사용되고 있고, 그 용도 범위가 확대됨에 따라 기존의 섬유에 새로운 부가적인 특성이 계속하여 요구되고 있다. Polyurethane urea elastic fibers are used in various applications because of their inherent properties with excellent elasticity and elastic recovery ability, and as the range of applications thereof is expanded, new additional properties are continuously required for existing fibers.
일반적으로 폴리우레탄우레아 탄성섬유는 상대사(나일론, 면, 실크, 울 등)와의 편직 후 실시되는 후가공에서 높은 열에 의해 열적 취화가 발생하며, 이는 원단의 파워가 저하되는 등의 문제를 유발시키게 된다. 이러한 문제를 해결하기 위해 높은 파워를 가진 폴리우레탄우레아 탄성섬유에 대한 수요가 증가하고 있고, 특히 세 데니아(denier)의 탄성사를 사용하여 교·편직 시 직물을 경량화하면서도 파워를 향상시키고자 하는 수요가 점차 증가하고 있다. In general, polyurethane urea elastic fibers are thermally embrittled by high heat in the post-processing after knitting with the other company (nylon, cotton, silk, wool, etc.), which causes problems such as lowering the power of the fabric. . In order to solve these problems, the demand for high power polyurethane urea elastic fibers is increasing, and in particular, the demand to improve the power while reducing the weight of fabric during knitting and knitting using denier elastic yarn It is increasing.
상기 문제에 대응하여, 폴리우레탄계 탄성 섬유의 파위를 개선하기 위한 노력이 지속적으로 이루어져 왔다. 그간 탄성사 제조업체에서 가장 보편적으로 사용해온 방법은 탄성사 제조용 중합물 제조시에 캡핑비(capping ratio)를 높여서 파워를 향상시키는 것이다. 그러나 상기와 같은 방법으로 파워를 향상시키는 경우에는 원사의 신도가 저하되는 단점이 있고, 중합물의 겔 형성에 따른 급격한 점도의 상승, 용해성 저하 등의 문제가 발생하여 공정관리가 용이하지 못한 한계가 있다. 즉, 아직까지는 원사 신도를 확보하고 안정적인 중합물을 유지하면서 폴리우레탄계 탄성 섬유의 파워 향상이 가능한 방법이 정립되지 않은 상태이다.In response to the above problem, efforts have been made to improve the breaking of polyurethane-based elastic fibers. The most common method used by elastic yarn manufacturers has been to increase the power by increasing the capping ratio in the production of polymers for elastic yarn production. However, when the power is improved in the above manner, the elongation of the yarn is lowered, and there is a limit in that the process management is not easy due to a sudden increase in viscosity and a decrease in solubility due to the formation of the polymer gel. . That is, there is no way to establish a method for improving the power of the polyurethane-based elastic fiber while securing yarn elongation and maintaining a stable polymer.
본 발명은 상기된 문제점을 해결하기 위하여 발명된 것으로서, 본 발명은 800 ~ 1300 돌턴의 낮은 수평균분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 갖는 글리콜을 질량비 2:1 ~ 7:1로 혼합 후, 디이소시아네이트를 사용하여 예비중합체를 제조하고, 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사해 우수한 파워를 가지는 폴리우레탄우레아 탄성사를 제조하는 방법을 제공함에 그 목적이 있다.The present invention has been invented to solve the above problems, the present invention is a glycol having a low number average molecular weight of 800 ~ 1300 Dalton and glycol having a number average molecular weight of 1600 ~ 2000 Dalton mass ratio 2: 1 ~ 7: 1 After mixing, the prepolymer was prepared using diisocyanate, and a chain extender was added to the prepolymer to obtain a polyurethaneurea polymer. After stirring, the polyurethaneurea spinning stock solution obtained by stirring was aged to give excellent power. The purpose is to provide a method for producing a polyurethane urea elastic yarn.
본 발명에 의한 우수한 파워를 가지는 폴리우레탄우레아 탄성사의 제조 방법은 800 ~ 1300 돌턴의 낮은 수평균 분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 갖는 글리콜을 질량비 2:1 ~ 7:1로 혼합한 후, 디이소시아네이트를 사용하여 예비중합체를 제조하고, 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사하는 것을 특징으로 한다.
According to the present invention, a method for producing a polyurethane urea elastic yarn having excellent power may include glycol having a low number average molecular weight of 800 to 1300 Dalton and glycol having a number average molecular weight of 1600 to 2000 Dalton in a mass ratio of 2: 1 to 7: 1. After mixing, a prepolymer is prepared using diisocyanate, and a chain extender is added to the prepolymer to obtain a polyurethane urea polymer, and then the polyurethane urea spinning stock solution obtained by stirring is aged to spin. do.
본 발명의 다른 바람직한 특징에 의하면, 디이소시아네이트는 4,4’-디페닐메탄디이소시아네이트, 1,5’-나프탈렌디이소시아네이트, 1,4’-페닐렌디이소시아네이트, 헥사메틸렌 디이소시아네이트, 1,4’-시클로헥산디이소시아네이트, 4,4’-디시클로헥실메탄디이소시아네이트, 또는 이소포론디이소시아네이트로 이루어진 군에서 선택된 1종 또는 2종이상을 사용한다.
According to another preferred feature of the invention, the diisocyanate is 4,4'-diphenylmethane diisocyanate, 1,5'-naphthalene diisocyanate, 1,4'-phenylene diisocyanate, hexamethylene diisocyanate, 1,4 ' One or more selected from the group consisting of -cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, or isophorone diisocyanate is used.
본 발명의 다른 바람직한 특징에 의하면, 예비중합체에 사용된 폴리올은 폴리(테트라메틸렌에테르)글리콜, 폴리프로필렌글리콜, 폴리카보네이트디올, 알킬렌옥사이드와 락톤모노머의 혼합물과 폴리(테트라메틸렌에테르)글리콜의 공중합체, 또는, 3-메틸-테트라히드로푸란과 테트라히드로푸란의 공중합체로 이루어진 군에서 선택된 1종 또는 2종 이상이다.
According to another preferred feature of the invention, the polyols used in the prepolymer are poly (tetramethylene ether) glycol, polypropylene glycol, polycarbonate diol, a mixture of alkylene oxide and lactone monomer and poly (tetramethylene ether) glycol. One or two or more selected from a group consisting of copolymers or copolymers of 3-methyl-tetrahydrofuran and tetrahydrofuran.
본 발명의 다른 바람직한 특징에 의하면, 사슬연장제는 에틸렌디아민, 1,2-디아미노프로판, 1,3-디아미노프로판, 1,4-디아미노부탄, 2,3-디아미노부탄, 1,5-디아미노펜탄, 1,6-헥사메틸렌디아민 및 1,4-씨클로헥산디아민으로 구성된 군에서 선택되는 1종 또는 2종 이상이다.According to another preferred feature of the invention, the chain extender is ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 2,3-diaminobutane, 1, It is 1 type, or 2 or more types chosen from the group which consists of 5-diaminopentane, 1, 6- hexamethylenediamine, and 1, 4- cyclohexanediamine.
본 발명은 우수한 파워 및 신도를 가진 폴리우레탄우레아 탄성사를 제조함으로서, 상기 폴리우레탄우레아 탄성사를 사용하여 교·편직한 직물의 고파워화를 가능하게 한다. 또한 원사의 모듈러스 향상으로 인하여 원단의 경량화가 가능하게 된다.
The present invention is to produce a polyurethane urea elastic yarn having excellent power and elongation, by using the polyurethane urea elastic yarn enables high power of the interwoven, knitted fabric. In addition, due to the improved modulus of the yarn, it is possible to reduce the weight of the fabric.
이하, 본 발명의 폴리우레탄우레아 탄성사를 제조하는 방법에 대하여 보다 상세하게 설명한다. 본 발명의 탄성사 제조 시 사용되는 폴리우레탄우레아는 디이소시아네이트와 폴리올을 반응시켜 예비중합체를 제조하고, 이를 유기 용매에 용해한 후 디아민 및 모노아민과 반응시킴으로써 제조된다. Hereinafter, the method of manufacturing the polyurethaneurea elastic yarn of this invention is demonstrated in detail. Polyurethane urea used in the preparation of the elastic yarn of the present invention is prepared by reacting a diisocyanate with a polyol to prepare a prepolymer, dissolving it in an organic solvent and then reacting with a diamine and a monoamine.
본 발명에 사용되는 폴리우레탄우레아 탄성사의 제조에 사용되는 디이소시아네이트의 구체적인 예로는 4,4’-디페닐메탄디이소시아네이트, 1,5'-나프탈렌디이소시아네이트, 1,4'-페닐렌디이소시아네이트, 헥사메틸렌 디이소시아네이트, 1,4'-시클로헥산디이소시아네이트, 4,4'-디시클로헥실 메탄디이소시아네이트, 이소포론디이소시아네이트 등이 있으며 이들을 단독 또는 혼합하여 사용한다.Specific examples of the diisocyanate used in the production of the polyurethaneurea elastic yarn used in the present invention include 4,4'-diphenylmethane diisocyanate, 1,5'-naphthalene diisocyanate, 1,4'-phenylenedi isocyanate, hexa Methylene diisocyanate, 1,4'-cyclohexanediisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate and the like, and these are used alone or in combination.
또한 본 발명에 사용되는 폴리올은 폴리(테트라메틸렌에테르)글리콜, 폴리프로필렌 글리콜, 폴리카보네이트디올, 알킬렌옥사이드와 락톤모노머의 혼합물과 폴리(테트라메틸렌에테르)글리콜의 공중합체, 3-메틸-테트라히드로푸란과 테트라히드로푸란의 공중합체 등에서 1종 또는 이들의 2종 이상의 혼합물로 예시할 수 있으나 반드시 이들로 제한되는 것은 아니다. 본 발명에서 사용하는 글리콜은 분자량 800 ~ 1300 돌턴의 수평균분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 갖는 글리콜이다.In addition, the polyol used in the present invention is poly (tetramethylene ether) glycol, polypropylene glycol, polycarbonate diol, copolymer of a mixture of alkylene oxide and lactone monomer and poly (tetramethylene ether) glycol, 3-methyl- tetrahydro In the copolymer of furan and tetrahydrofuran, etc., it can be illustrated as 1 type, or 2 or more types thereof, but it is not necessarily limited to these. The glycols used in the present invention are glycols having a number average molecular weight of 800 to 1300 Daltons and glycols having a number average molecular weight of 1600 to 2000 Daltons.
본 발명에서는 800 ~ 1300 돌턴의 낮은 수평균분자량을 가지는 글리콜과 1600 ~ 2000 돌턴의 수평균분자량을 가지는 글리콜을 질량비 2:1 내지 7:1로 혼합하여 사용함으로써 종래보다 원사내 하드세그먼트의 양을 늘렸으며, 원사내 소프트세그먼트의 길이가 짧아짐에 따라 하드세그먼트의 반복단위도 증가하여 캡핑비를 증가한 효과와 같이 파워가 높은 탄성 섬유를 얻게 되는 것이다. 분자량이 800 돌턴 이하인 것을 사용할 시, 하드세그먼트의 지나친 증가로 인해 외부의 응력이 가해질 경우 부서지기 쉬우며 용해성이 저하되어 공정적용이 불가능하다. 그리고 신도 또한 크게 저하되는 문제점이 있다. 분자량이 2000 돌턴을 초과하는 경우에는 파워 향상 효과를 기대하기가 어렵다. In the present invention, by using a glycol having a low number average molecular weight of 800 ~ 1300 Dalton and glycol having a number average molecular weight of 1600 ~ 2000 Dalton in a mass ratio of 2: 1 to 7: 1 by using the amount of hard segment in the yarn than conventional As the length of the soft segment in the yarn is shortened, the repeating unit of the hard segment also increases to obtain a high-power elastic fiber, such as an effect of increasing the capping ratio. When using a molecular weight of 800 Daltons or less, when an external stress is applied due to excessive increase of hard segments, it is easy to be broken and its solubility is lowered, making it impossible to apply the process. And elongation also has a problem that is greatly reduced. When the molecular weight exceeds 2000 Daltons, it is difficult to expect a power improvement effect.
질량비가 2:1 이하면 원사 파워 향상이 미비해지는 문제가 있고, 질량비가 7:1초과하면 원사의 파워는 향상되나, 신도 400% 이상을 발현하기 어렵게 되는 문제가 있다.When the mass ratio is 2: 1 or less, there is a problem that the yarn power improvement is insufficient. When the mass ratio is 7: 1, the yarn power is improved, but there is a problem that it becomes difficult to express the elongation of 400% or more.
사슬연장제로는 디아민류가 사용되며, 그 예로는 에틸렌디아민, 1, 2-디아미노프로판, 1, 3-디아미노프로판, 1,4-디아미노부탄, 2,3-디아미노부탄, 1,5-디아미노펜탄, 1, 6-헥사메틸렌디아민 및 1,4-씨클로헥산디아민 등의 1종 또는 이들의 2종 이상의 혼합물을 예시할 수 있다. Diamines are used as the chain extender, and examples thereof include ethylenediamine, 1, 2-diaminopropane, 1, 3-diaminopropane, 1,4-diaminobutane, 2,3-diaminobutane, 1, One kind or a mixture of two or more kinds thereof, such as 5-diaminopentane, 1, 6-hexamethylenediamine and 1,4-cyclohexanediamine, can be exemplified.
폴리우레탄우레아의 사슬종지제로는 1 관능기를 갖는 아민, 예를 들어 디에틸아민, 모노에탄올아민, 디메틸아민 등이 사용될 수 있다.As the chain terminator of the polyurethane urea, an amine having a monofunctional group, for example, diethylamine, monoethanolamine, dimethylamine and the like can be used.
또한, 본 발명에서는 자외선, 대기 스모그 및 스판덱스 가공에 수반되는 열처리 과정 등에 의한 폴리우레탄우레아의 변색과 물성 저하를 방지하기 위해, 방사원액에 입체장애 페놀계 화합물, 벤조퓨란-온계 화합물, 세미카바자이드계 화합물, 벤조 트리아졸계 화합물, 중합체성 3급 아민 안정제 등을 적절히 조합하여 첨가할 수 있다.In addition, in the present invention, in order to prevent discoloration of the polyurethane urea and deterioration of physical properties due to ultraviolet rays, atmospheric smog, and heat treatment associated with spandex processing, a steric hindrance phenol compound, a benzofuran-one compound, and a semicarbazide Type compound, a benzo triazole type compound, a polymeric tertiary amine stabilizer, etc. can be added combining them suitably.
나아가, 본 발명의 폴리우레탄우레아 탄성사는 상기 성분 외에도 이산화티탄, 마그네슘 스테아레이트 등과 같은 첨가제를 포함할 수 있다. Furthermore, the polyurethaneurea elastic yarn of the present invention may include additives such as titanium dioxide, magnesium stearate, and the like in addition to the above components.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명의 우수성을 상세하게 설명하고자 하나, 이러한 실시예들은 단지 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 제한하는 것으로 해석되어서는 안 된다.
Hereinafter, the present invention will be described in detail with reference to specific examples and comparative examples, but these examples are merely to illustrate the present invention and should not be construed as limiting the scope of the present invention.
후술하는 실시예 및 비교예에서 언급한 폴리머의 NCO% 및 폴리우레탄우레아 탄성사의 물성, 원단의 파워는 아래와 같이 측정하였다.
NCO% of the polymers mentioned in Examples and Comparative Examples to be described later, physical properties of the polyurethane urea elastic yarn, and the power of the fabric were measured as follows.
* * NCONCO % 측정법 % Measurement
NCO%=[100*2*NCO화학식량*(캡핑비-1)]/{(디이소시아네이트분자량*캡핑비)+폴리올 분자량}NCO% = [100 * 2 * NCO chemical formula * (capping ratio-1)] / {(diisocyanate molecular weight * capping ratio) + polyol molecular weight}
상기 식에서 캡핑비는 디이소시아네이트 몰비/폴리올 몰비이다.
Where the capping ratio is the diisocyanate molar ratio / polyol molar ratio.
* 원사의 * Of yarn 데니아Denia
시료길이 90cm*10가닥의 무게를 측정하여 아래 식에 따라 데니아를 계산한다.Measure the weight of 90cm * 10 strands of sample length and calculate Denia according to the following formula.
Denier = 시료 10가닥의 무게g/9m * 9000m/1g
Denier = weight of 10 strands of sample g / 9m * 9000m / 1g
* 원사의 강신도 * Elongation of yarn
자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료길이 10cm, 인장속도 100cm/min로 하여 측정한다. 이 때 파단 시의 강력과 신도값이 측정되며, 원사 200% 신장 시 원사에 걸리는 하중(200% 모듈러스)도 측정된다.
Measurement is made at a sample length of 10 cm and a tensile speed of 100 cm / min using an automatic power measuring device (MEL, Textechno). In this case, the strength and elongation at break are measured, and the load (200% modulus) applied to the yarn at 200% elongation is also measured.
* 원사의 파워 * The power of yarn
자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료길이 10cm*20가닥, 인장속도 100cm/min로 300% 5회 반복 신장하여 측정한다.
Using an automatic elongation measuring device (MEL machine, Textechno Co., Ltd.), the sample is measured by repeating 300% 5 times with a sample length of 10cm * 20 strands and a tensile speed of 100cm / min.
* 원사의 내열성* Heat resistance of yarn
자동강신도 측정장치를 이용하여 0-300% 사이에서의 신장을 5회 반복한 후, 5회째 신장 시 200%에서의 응력(P1)과 열처리 후의 응력(P2)을 측정하여 아래의 식에 따라 원사의 내열성으로 나타낸다. After repeating the elongation between 0-300% five times by using the automatic strength measuring device, measure the stress (P1) at 200% and the stress (P2) after heat treatment at the fifth elongation. It is represented by the heat resistance of.
원사의 열처리는, 원사를 대기에 노출된 상태로 100% 신장하여 190℃에서 1분간 건열 처리하였다가 실온으로 냉각한 후, 이완된 상태로 100℃에서 30분간 습열 처리한 뒤 실온에서 건조한다. The heat treatment of the yarn is 100% elongated while being exposed to the air, followed by dry heat treatment at 190 ° C. for 1 minute, cooling to room temperature, followed by wet heat treatment at 100 ° C. for 30 minutes in a relaxed state, and drying at room temperature.
내열성(%) = P2/P1 X 100
Heat Resistance (%) = P2 / P1 X 100
* 원단의 파워 * Power of fabric
탄성사와 나이론 원사를 사용하여 금용 사(社)의 직경 32인치, 28게이지, 96 피더(feeder)의 규격을 갖는 환편기를 이용해 환편물을 제작하였다. 이 환편물은 나이론 원사 70데니어, 상기에 의해 제조된 탄성사 40 데니어를 사용하여 편직하였고, 탄성사의 함량은 전체 편물 중량 대비 8% 이다.
Using the elastic yarn and nylon yarn, a circular knitting machine using a circular knitting machine having a diameter of 32 inches, a 28 gauge, and a 96 feeder was used. The circular knitted fabric was knitted using nylon yarn 70 denier, the elastic yarn 40 denier prepared above, the content of the elastic yarn is 8% of the total knitted weight.
교·편직 된 나이론/폴리우레탄우레아 탄성사로 만든 환편 원단을 프리세팅(Pre-setting)→염색→파이널세팅(Final-setting) 처리한 후, 자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료 폭 2.5 cm * 시료 길이 20cm, 인장속도 100cm/min로 100% 5회 반복 신장하여 측정한다.After pre-setting → dyeing → final-setting of circular knitting fabric made of cross-woven knitted nylon / polyurethane urea elastic yarn, using automatic elongation measuring device (MEL machine, Textechno) Sample width 2.5 cm * Sample length 20cm, tensile rate 100cm / min to measure 100% 5 times repeated elongation.
캡핑비(CR) 1.70, 폴리올은 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜과 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜을 질량비 4:1로 혼합하였고, 4,4'-디페닐메탄디이소시아네이트를 사용하여 조제하였다. 사슬연장제로는 에틸렌디아민과 1,2-디아미노 프로판을 80몰%와 20몰% 비율로, 사슬종결제로는 디에틸아민을 사용하였다. 사슬연장제와 사슬종결제의 비율은 12.5:1로 하였고, 사용된 아민은 총 농도 7몰%로 조제되었으며, 용매로는 디메틸아세트아마이드를 사용하였다. 상기 중합물의 고형분 대비 첨가제로서 에틸렌비스(옥시에틸렌)비스-(3-(5-t-부틸-4-히드록시-m-토일)-프로피오네이트) 1.5중량%, 5,7-디-t-부틸-3-(3,4-디메틸페닐)-3H-벤조퓨란-2-온 0.5중량%, 1,1,1', 1'-테트라메틸-4,4'-(메틸렌-디-p-페닐렌)디세미카바지드 1중량%, 폴리(N,N-디에틸-2-아미노에틸 메타크릴레이트) 1중량%, 이산화티탄 0.1중량%를 첨가 혼합하여 폴리우레탄우레아 방사원액을 얻었다. Capping ratio (CR) 1.70, polyol was mixed with a poly (tetramethylene ether) glycol having a molecular weight of 1000 and a poly (tetramethylene ether) glycol having a molecular weight of 1800 in a mass ratio of 4: 1, 4,4'-diphenylmethanedi Prepared using isocyanate. Ethylenediamine and 1,2-diamino propane were used as the chain extender at a ratio of 80 mol% and 20 mol%, and diethylamine was used as the chain terminator. The ratio of the chain extender to the chain terminator was 12.5: 1, and the amine used was prepared at a total concentration of 7 mol%, and dimethylacetamide was used as the solvent. Ethylenebis (oxyethylene) bis- (3- (5- t -butyl-4-hydroxy- m -toyl) -propionate) 1.5% by weight, 5,7-di- t as an additive relative to the solid content of the polymer -Butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one 0.5% by weight, 1,1,1 ', 1'-tetramethyl-4,4'-(methylene-di- p 1 weight% of -phenylene) dicicacarbide, 1 weight% of poly (N, N-diethyl-2-aminoethyl methacrylate), and 0.1 weight% of titanium dioxide were added and mixed to obtain a polyurethaneurea spinning stock solution.
즉, 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜 1000.0g과 분자량 1800을 갖는 폴리(테트라메틸렌에테르)글리콜 250.0g을 4,4'-디페닐메탄디이소시아네이트 531.8g과 질소가스기류 중에서 90℃, 180분간 교반하면서 반응시켜 양말단에 이소시아네이트를 지닌 폴리우레탄우레아 를 제조하였다. 예비중합체(prepolymer)를 실온까지 냉각시킨 후, 디메틸아세트아마이드 3108.4g을 가하여 폴리우레탄우레아 예비중합체(prepolymer) 용액을 얻었다. 이어서 에틸렌디아민 42.5g, 1,2-디아노프로판 13.1g(0.15몰), 디에틸아민 5.2g을 디메틸아세트아마이드 807.0g에 용해하고 10℃ 이하에서 상기 예비중합체(prepolymer) 용액에 첨가하여 폴리우레탄우레아 용액을 얻었다. Namely, 100 ° C. of poly (tetramethylene ether) glycol having a molecular weight of 1000 and 250.0 g of poly (tetramethylene ether) glycol having a molecular weight of 1800 were prepared at 90 ° C. in 531.8 g of 4,4′-diphenylmethane diisocyanate and nitrogen gas streams. The reaction was stirred for 180 minutes to prepare polyurethaneurea having isocyanate at the sock end. After cooling the prepolymer to room temperature, 3108.4 g of dimethylacetamide was added to obtain a polyurethaneurea prepolymer solution. Then, 42.5 g of ethylenediamine, 13.1 g (0.15 mole) of 1,2-diopropane and 5.2 g of diethylamine were dissolved in 807.0 g of dimethylacetamide and added to the prepolymer solution at 10 ° C. or lower to the polyurethane. A urea solution was obtained.
위와 같이 수득한 방사 원액을 건식 방사 (방사 온도: 260oC)에 의해 900m/min 속도로 방사하여 40 데니아 3 필라멘트의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1에 나타내었다.The spinning stock solution obtained as described above was spun at a speed of 900 m / min by dry spinning (spinning temperature: 260 ° C.) to prepare a polyurethane urea elastic yarn of 40 denia 3 filaments, and the physical properties thereof are shown in Table 1 below.
캡핑비(CR) 1.70, 폴리올은 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜과 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜을 질량비 5:1로 혼합하였고, 4,4'-디페닐메탄디이소시아네이트를 사용하여 조제하였다. 사슬연장제로는 에틸렌디아민과 1,2-디아미노 프로판을 80몰%와 20몰% 비율로, 사슬종결제로는 디에틸아민을 사용하였다. 사슬연장제와 사슬종결제의 비율은 12.5:1로 하였고, 사용된 아민은 총 농도 7몰%로 조제되었으며, 용매로는 디메틸아세트아마이드를 사용하였다. 상기 중합물의 고형분 대비 첨가제로서 에틸렌비스(옥시에틸렌)비스-(3-(5-t-부틸-4-히드록시-m-토일)-프로피오네이트) 1.5중량%, 5,7-디-t-부틸-3-(3,4-디메틸페닐)-3H-벤조퓨란-2-온 0.5중량%, 1,1,1', 1'-테트라메틸-4,4'-(메틸렌-디-p-페닐렌)디세미카바지드 1중량%, 폴리(N,N-디에틸-2-아미노에틸 메타크릴레이트) 1중량%, 이산화티탄 0.1중량%를 첨가 혼합하여 폴리우레탄우레아 방사원액을 얻었다. Capping ratio (CR) 1.70, polyol was mixed with poly (tetramethylene ether) glycol having a molecular weight of 1000 and poly (tetramethylene ether) glycol having a molecular weight of 1800 in a mass ratio of 5: 1, 4,4'-diphenylmethanedi Prepared using isocyanate. Ethylenediamine and 1,2-diamino propane were used as the chain extender at a ratio of 80 mol% and 20 mol%, and diethylamine was used as the chain terminator. The ratio of the chain extender to the chain terminator was 12.5: 1, and the amine used was prepared at a total concentration of 7 mol%, and dimethylacetamide was used as the solvent. Ethylenebis (oxyethylene) bis- (3- (5- t -butyl-4-hydroxy- m -toyl) -propionate) 1.5% by weight, 5,7-di- t as an additive relative to the solid content of the polymer -Butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one 0.5% by weight, 1,1,1 ', 1'-tetramethyl-4,4'-(methylene-di- p 1 weight% of -phenylene) dicicacarbide, 1 weight% of poly (N, N-diethyl-2-aminoethyl methacrylate), and 0.1 weight% of titanium dioxide were added and mixed to obtain a polyurethaneurea spinning stock solution.
즉, 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜 1041.7g과 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜 208.3g을 4,4'-디페닐메탄디이소시아네이트 531.8g과 질소가스기류 중에서 90℃, 180분간 교반하면서 반응시켜 양말단에 이소시아네이트를 지닌 폴리우레탄우레아 를 제조하였다. 예비중합체(prepolymer)를 실온까지 냉각시킨 후, 디메틸아세트아마이드 3108.4g을 가하여 폴리우레탄우레아 예비중합체(prepolymer) 용액을 얻었다. 이어서 에틸렌디아민 42.5g, 1,2-디아노프로판 13.1g(0.15몰), 디에틸아민 5.2g을 디메틸아세트아마이드 807.0g에 용해하고 10℃ 이하에서 상기 예비중합체(prepolymer) 용액에 첨가하여 폴리우레탄우레아 용액을 얻었다. Namely, 1041.7 g of poly (tetramethylene ether) glycol having a molecular weight of 1000 and 208.3 g of poly (tetramethylene ether) glycol having a molecular weight of 1800 were used at 90 ° C in 53,4 g of 4,4'-diphenylmethane diisocyanate and nitrogen gas groups. The reaction was stirred for 180 minutes to prepare polyurethaneurea having isocyanate at the sock end. After cooling the prepolymer to room temperature, 3108.4 g of dimethylacetamide was added to obtain a polyurethaneurea prepolymer solution. Then, 42.5 g of ethylenediamine, 13.1 g (0.15 mole) of 1,2-diopropane and 5.2 g of diethylamine were dissolved in 807.0 g of dimethylacetamide and added to the prepolymer solution at 10 ° C. or lower to the polyurethane. A urea solution was obtained.
수득한 방사 원액은 900m/min의 속도로 방사하여 40 데니아 3 필라멘트의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다.The obtained spinning stock solution was spun at a speed of 900 m / min to prepare a polyurethane urea elastic yarn of 40 denier 3 filaments, and the physical properties are shown in Table 1 and 2.
< 비교예 1> <Comparative Example 1>
캡핑비(CR) 1.70, 폴리올은 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜을 사용하였고, 4,4'-디페닐메탄디이소시아네이트를 사용하여 조제하였다. 사슬연장제로는 에틸렌디아민과 1,2-디아미노 프로판을 80몰%와 20몰% 비율로, 사슬종결제로는 디에틸아민을 사용하였다. 사슬연장제와 사슬종결제의 비율은 12.5:1로 하였고, 사용된 아민은 총 농도 7몰%로 조제되었으며, 용매로는 디메틸아세트아마이드를 사용하였다. 상기 중합물의 고형분 대비 첨가제로서 에틸렌비스(옥시에틸렌)비스-(3-(5-t-부틸-4-히드록시-m-토일)-프로피오네이트) 1.5중량%, 5,7-디-t-부틸-3-(3,4-디메틸페닐)-3H-벤조퓨란-2-온 0.5중량%, 1,1,1', 1'-테트라메틸-4,4'-(메틸렌-디-p-페닐렌)디세미카바지드 1중량%, 폴리(N,N-디에틸-2-아미노에틸 메타크릴레이트) 1중량%, 이산화티탄 0.1중량%를 첨가 혼합하여 폴리우레탄우레아 방사원액을 얻었다. A capping ratio (CR) of 1.70 and a polyol were prepared using poly (tetramethylene ether) glycol having a molecular weight of 1800 and prepared using 4,4'-diphenylmethane diisocyanate. Ethylenediamine and 1,2-diamino propane were used as the chain extender at a ratio of 80 mol% and 20 mol%, and diethylamine was used as the chain terminator. The ratio of the chain extender to the chain terminator was 12.5: 1, and the amine used was prepared at a total concentration of 7 mol%, and dimethylacetamide was used as the solvent. Ethylenebis (oxyethylene) bis- (3- (5- t -butyl-4-hydroxy- m -toyl) -propionate) 1.5% by weight, 5,7-di- t as an additive relative to the solid content of the polymer -Butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one 0.5% by weight, 1,1,1 ', 1'-tetramethyl-4,4'-(methylene-di- p 1 weight% of -phenylene) dicicacarbide, 1 weight% of poly (N, N-diethyl-2-aminoethyl methacrylate), and 0.1 weight% of titanium dioxide were added and mixed to obtain a polyurethaneurea spinning stock solution.
즉, 4,4'-디페닐메탄디이소시아네이트 319.1g과 분자량 1800을 가지는 폴리(테트라메틸렌에테르) 글리콜 1350.0g을, 질소가스기류 중에서 90℃, 180분간 교반하면서 반응시켜 양말단에 이소시아네이트를 지닌 폴리우레탄우레아 를 제조하였다. 예비중합체(prepolymer)를 실온까지 냉각시킨 후, 디메틸아세트아마이드 3624.2g을 가하여 폴리우레탄우레아 예비중합체(prepolymer) 용액을 얻었다. 이어서 에틸렌디아민 25.5g, 1,2-디아노프로판 7.9g, 디에틸아민 3.1g을 디메틸아세트아마이드 484.2g에 용해하고 10℃ 이하에서 상기 예비중합체(prepolymer) 용액에 첨가하여 폴리우레탄우레아 용액을 얻었다. 실시예 1과 동일하다. 수득한 방사 원액은 900m/min의 속도로 방사하여 40 데니아 3 필라멘트의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다. That is, 319.1 g of 4,4'-diphenylmethane diisocyanate and 1350.0 g of poly (tetramethylene ether) glycol having a molecular weight of 1800 are reacted with stirring at 90 ° C. for 180 minutes in a nitrogen gas stream to carry poly with isocyanate at the end of the sock. Urethane urea was prepared. After cooling the prepolymer to room temperature, 3624.2 g of dimethylacetamide was added to obtain a polyurethaneurea prepolymer solution. Subsequently, 25.5 g of ethylenediamine, 7.9 g of 1,2-diopropane and 3.1 g of diethylamine were dissolved in 484.2 g of dimethylacetamide and added to the prepolymer solution at 10 ° C. or lower to obtain a polyurethaneurea solution. . Same as Example 1. The obtained spinning stock solution was spun at a speed of 900 m / min to prepare a polyurethane urea elastic yarn of 40 denier 3 filaments, and the physical properties are shown in Table 1 and 2.
수득한 방사 원액은 900m/min의 속도로 방사하여 40 데니아 3 필라멘트의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1에 나타내었다.
The obtained spinning stock solution was spun at a speed of 900 m / min to prepare a polyurethane urea elastic yarn of 40 denier 3 filaments, the physical properties are shown in Table 1 to evaluate the properties.
< 비교예 2> ≪ Comparative Example 2 &
캡핑비(CR) 1.70, 폴리올은 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜과 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜을 질량비 2:1로 혼합하였고, 4,4'-디페닐메탄디이소시아네이트를 사용하여 조제하였다. 사슬연장제로는 에틸렌디아민과 1,2-디아미노 프로판을 80몰%와 20몰% 비율로, 사슬종결제로는 디에틸아민을 사용하였다. 사슬연장제와 사슬종결제의 비율은 12.5:1로 하였고, 사용된 아민은 총 농도 7몰%로 조제되었으며, 용매로는 디메틸아세트아마이드를 사용하였다. 상기 중합물의 고형분 대비 첨가제로서 에틸렌비스(옥시에틸렌)비스-(3-(5-t-부틸-4-히드록시-m-토일)-프로피오네이트) 1.5중량%, 5,7-디-t-부틸-3-(3,4-디메틸페닐)-3H-벤조퓨란-2-온 0.5중량%, 1,1,1', 1'-테트라메틸-4,4'-(메틸렌-디-p-페닐렌)디세미카바지드 1중량%, 폴리(N,N-디에틸-2-아미노에틸 메타크릴레이트) 1중량%, 이산화티탄 0.1중량%를 첨가 혼합하여 폴리우레탄우레아 방사원액을 얻었다. Capping ratio (CR) 1.70, polyol was mixed poly (tetramethylene ether) glycol having a molecular weight of 1000 and poly (tetramethylene ether) glycol having a molecular weight of 1800 in a mass ratio of 2: 1, 4,4'-diphenylmethanedi Prepared using isocyanate. Ethylenediamine and 1,2-diamino propane were used as the chain extender at a ratio of 80 mol% and 20 mol%, and diethylamine was used as the chain terminator. The ratio of the chain extender to the chain terminator was 12.5: 1, and the amine used was prepared at a total concentration of 7 mol%, and dimethylacetamide was used as the solvent. Ethylenebis (oxyethylene) bis- (3- (5- t -butyl-4-hydroxy- m -toyl) -propionate) 1.5% by weight, 5,7-di- t as an additive relative to the solid content of the polymer -Butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one 0.5% by weight, 1,1,1 ', 1'-tetramethyl-4,4'-(methylene-di- p 1 weight% of -phenylene) dicicacarbide, 1 weight% of poly (N, N-diethyl-2-aminoethyl methacrylate), and 0.1 weight% of titanium dioxide were added and mixed to obtain a polyurethaneurea spinning stock solution.
즉, 분자량 1000을 갖는 폴리(테트라메틸렌에테르) 글리콜 833.3g과 분자량 1800을 갖는 폴리(테트라메틸렌에테르) 글리콜 416.7g을 4,4'-디페닐메탄디이소시아네이트 531.8g과 질소가스기류 중에서 90℃, 180분간 교반하면서 반응시켜 양말단에 이소시아네이트를 지닌 폴리우레탄우레아 를 제조하였다. 예비중합체(prepolymer)를 실온까지 냉각시킨 후, 디메틸아세트아마이드 3108.4g을 가하여 폴리우레탄우레아 예비중합체(prepolymer) 용액을 얻었다. 이어서 에틸렌디아민 42.5g, 1,2-디아노프로판 13.1g, 디에틸아민 5.2g을 디메틸아세트아마이드 807.0g에 용해하고 10℃ 이하에서 상기 예비중합체(prepolymer) 용액에 첨가하여 폴리우레탄우레아 용액을 얻었다. 수득한 방사 원액은 900m/min의 속도로 방사하여 40 데니아 3 필라멘트의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다.Namely, 833.3 g of poly (tetramethylene ether) glycol having a molecular weight of 1000 and 416.7 g of poly (tetramethylene ether) glycol having a molecular weight of 1800 were prepared at 90 ° C. in 531.8 g of 4,4′-diphenylmethane diisocyanate and nitrogen gas streams. The reaction was stirred for 180 minutes to prepare polyurethaneurea having isocyanate at the sock end. After cooling the prepolymer to room temperature, 3108.4 g of dimethylacetamide was added to obtain a polyurethaneurea prepolymer solution. Subsequently, 42.5 g of ethylenediamine, 13.1 g of 1,2-diopropane and 5.2 g of diethylamine were dissolved in 807.0 g of dimethylacetamide and added to the prepolymer solution at 10 ° C. or lower to obtain a polyurethaneurea solution. . The obtained spinning stock solution was spun at a speed of 900 m / min to prepare a polyurethane urea elastic yarn of 40 denier 3 filaments, and the physical properties are shown in Table 1 and 2.
상기 [표1]과 같이 분자량 1000을 가지는 폴리(테트라메틸렌에테르) 글리콜과 분자량 1800을 가지는 폴리(테트라메틸렌에테르) 글리콜을 혼합 사용하고, 4,4'-디페닐메탄이소시아네이트를 혼합하여 제조된 폴리우레탄우레아 탄성사는 우수한 파워를 나타냄을 확인할 수 있었으며, 신도는 400% 이상 유지됨을 확인하였다.
Poly (tetramethylene ether) glycol having a molecular weight of 1000 and a poly (tetramethylene ether) glycol having a molecular weight of 1800 as a mixture of 4,4'-diphenylmethane isocyanate It was confirmed that the urethane urea elastic yarn exhibited excellent power, and the elongation was maintained at 400% or more.
하기[표2]는 원단 평가법에 의해 환편물을 제조하여 후가공한 원단의 가공 조건 및 파워를 나타낸 것이다.The following [Table 2] shows the processing conditions and power of the fabric fabricated by post-processing the circular knitted fabric.
상기 [표2]와 같이 나일론 환편물 제조 시 실시예 2로 제작된 원단은 190℃에서 프리세팅하여도 비교예 2로 제작된 원단 대비 원단 파워가 우수함을 확인하였다.As shown in Table 2, the fabric produced in Example 2 when the nylon circular knitted fabric was prepared was confirmed to have superior fabric power compared to the fabric produced in Comparative Example 2 even when pre-set at 190 ° C.
Claims (4)
상기 예비중합체는 800 ~ 1300 돌턴의 낮은 수평균분자량을 갖는 글리콜과 1600 ~ 2000 돌턴의 높은 수평균분자량을 갖는 글리콜을 질량비 2:1 ~ 7:1로 혼합하여 제조하는 것을 특징으로 하는 우수한 파워를 가지는 폴리우레탄우레아 탄성사의 제조 방법.Prepolymers are prepared by using polyols and diisocyanates having different number average molecular weights, and a chain extender is added to the prepolymers to obtain a polyurethaneurea polymer. In the manufacturing method of the polyurethane urea elastic yarn which consists of:
The prepolymer is prepared by mixing a glycol having a low number average molecular weight of 800 ~ 1300 Dalton and a glycol having a high number average molecular weight of 1600 ~ 2000 Dalton in a mass ratio of 2: 1 to 7: 1. The manufacturing method of the polyurethane urea elastic yarn which has.
The chain extender of claim 1 wherein the chain extender is ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 2,3-diaminobutane, 1,5-di A method for producing a polyurethaneurea elastic yarn having excellent power, characterized in that one or two or more selected from the group consisting of aminopentane, 1,6-hexamethylenediamine and 1,4-cyclochlorodiamine.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100139824A KR101255453B1 (en) | 2010-12-31 | 2010-12-31 | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation |
PCT/KR2011/010313 WO2012091491A2 (en) | 2010-12-31 | 2011-12-29 | Method for manufacturing polyurethane urea elastic yarn having high power and elongation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100139824A KR101255453B1 (en) | 2010-12-31 | 2010-12-31 | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120090121A KR20120090121A (en) | 2012-08-17 |
KR101255453B1 true KR101255453B1 (en) | 2013-04-17 |
Family
ID=46383752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100139824A KR101255453B1 (en) | 2010-12-31 | 2010-12-31 | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101255453B1 (en) |
WO (1) | WO2012091491A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113774522B (en) * | 2021-10-15 | 2023-05-23 | 华峰化学股份有限公司 | Polyurethane elastic fiber with high elongation and high strength and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970010729B1 (en) * | 1994-12-30 | 1997-06-30 | 제일합섬 주식회사 | Manufacturing process of polyurethane elastic fiber having excellent light and heat-resistant properties |
KR100226239B1 (en) | 1994-03-04 | 1999-10-15 | 요시다 다까시 | Durable polyurethane fiber and method for the manufacture thereof |
KR100484576B1 (en) | 1999-08-19 | 2005-04-20 | 아사히 가세이 가부시키가이샤 | Polyether polyurethane |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950013484B1 (en) * | 1993-09-15 | 1995-11-08 | 제일합섬주식회사 | Method for the preparation of the elastic fiber having heat and chlorine resistane |
KR0131833B1 (en) * | 1995-07-11 | 1998-04-16 | 박홍기 | Manufacturing method of ployurethane |
KR101338768B1 (en) * | 2006-12-28 | 2013-12-06 | 주식회사 효성 | Manufacturing method of a polyurethane elastic fiber with improved heat setting property |
-
2010
- 2010-12-31 KR KR1020100139824A patent/KR101255453B1/en active IP Right Grant
-
2011
- 2011-12-29 WO PCT/KR2011/010313 patent/WO2012091491A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100226239B1 (en) | 1994-03-04 | 1999-10-15 | 요시다 다까시 | Durable polyurethane fiber and method for the manufacture thereof |
KR970010729B1 (en) * | 1994-12-30 | 1997-06-30 | 제일합섬 주식회사 | Manufacturing process of polyurethane elastic fiber having excellent light and heat-resistant properties |
KR100484576B1 (en) | 1999-08-19 | 2005-04-20 | 아사히 가세이 가부시키가이샤 | Polyether polyurethane |
Also Published As
Publication number | Publication date |
---|---|
WO2012091491A3 (en) | 2012-11-01 |
KR20120090121A (en) | 2012-08-17 |
WO2012091491A2 (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100942359B1 (en) | Method for preparing polyurethaneurea elastic fiber with improved heat settability | |
KR20090106288A (en) | Polyurethaneurea elastic fiber with enhanced elongation and coalescence and Preparation method thereof | |
KR101148583B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation | |
KR101157335B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power | |
KR101148302B1 (en) | Manufacturing method of polyurethaneurea elastic fiber by high speed spinning method | |
KR101426208B1 (en) | Polyurethaneurea elastic fiber with high uniformity and excellent heat settable property | |
KR20140098325A (en) | Method for preparing polyurethaneurea elastic fiber | |
KR101167377B1 (en) | Process for Preparing polyurethaneurea elastic fiber with improved heat settable properties | |
KR101941317B1 (en) | Polyurethaneurea elastic fiber with low temperature workability | |
KR101312843B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and good recovery | |
KR101255453B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation | |
KR101086744B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber with Excellent Heat Settable Property at Low Temperature | |
KR101157327B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and Heat-resistance and fiber using it | |
KR101180508B1 (en) | Polyurethane composition for high tenacity spandex fiber, and spandex fiber prepared using the polyurethane composition | |
KR101578156B1 (en) | Polyurethanurea elastic fiber having an excellent indexes of evenness and power and method of manufacturing the same | |
KR101253420B1 (en) | Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it | |
KR20140094357A (en) | Polyurethanurea elastic yarn having improved power and elastic recovery and method for preparing the same | |
KR101238557B1 (en) | Manufacturing method of polyurethaneurea elastic fiber by high speed spinning method | |
KR101010151B1 (en) | Elastic fiber having good stable viscosity and dye fastness property and process of producing the same | |
KR101675280B1 (en) | Polyurethanurea elastic fiber and method of manufacturing the same | |
KR101247850B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber by high speed spinning method | |
KR20150043906A (en) | Polyurethanurea elastic fiber having a high resilience and method of manufacturing the same | |
KR101439736B1 (en) | Process Spandex composition having improved productivity | |
WO2013103159A1 (en) | Method for manufacturing elastic yarn having high power and high power elastic yarn manufactured using same | |
KR101183433B1 (en) | A Process for Preparing Polyurethaneurea Elastic Fiber with Improved Strength and elongation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160316 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180312 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190312 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200311 Year of fee payment: 8 |