KR101253420B1 - Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it - Google Patents

Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it Download PDF

Info

Publication number
KR101253420B1
KR101253420B1 KR1020100121719A KR20100121719A KR101253420B1 KR 101253420 B1 KR101253420 B1 KR 101253420B1 KR 1020100121719 A KR1020100121719 A KR 1020100121719A KR 20100121719 A KR20100121719 A KR 20100121719A KR 101253420 B1 KR101253420 B1 KR 101253420B1
Authority
KR
South Korea
Prior art keywords
diisocyanate
yarn
elastic yarn
power
polyurethane urea
Prior art date
Application number
KR1020100121719A
Other languages
Korean (ko)
Other versions
KR20120060293A (en
Inventor
이재명
김태헌
강연수
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020100121719A priority Critical patent/KR101253420B1/en
Publication of KR20120060293A publication Critical patent/KR20120060293A/en
Application granted granted Critical
Publication of KR101253420B1 publication Critical patent/KR101253420B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 폴리우레탄우레아 탄성사의 제조방법에 관한 것으로, 1) 약 600 내지 1300 돌턴의 수평균분자량을 갖는 에테르계 글리콜과 디이소시아네이트를 사용하여 예비중합체를 제조하고, 2) 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사하는 것을 특징으로 하는 고파워 탄성사의 제조 방법에 관한 것이다. 상기 방법으로 제조한 폴리우레탄우레아 탄성사는 원사의 파워가 높으며, 상기 탄성사를 사용한 교편직물은 우수한 파워를 발현한다.The present invention relates to a method for preparing a polyurethane urea elastic yarn, 1) to prepare a prepolymer using an ether glycol and diisocyanate having a number average molecular weight of about 600 to 1300 Dalton, 2) a chain extender in the prepolymer After the addition to obtain a polyurethane urea polymerized product, the present invention relates to a method for producing a high-power elastic yarn, characterized in that by aging and spinning the obtained polyurethaneurea spinning stock solution. Polyurethane urea elastic yarn prepared by the above method has a high power of yarn, the interwoven fabric using the elastic yarn expresses excellent power.

Description

우수한 파워를 가진 탄성사의 제조 방법 및 이를 이용하여 제조된 고파워 탄성사{Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it}Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it

본 발명은 폴리우레탄우레아의 제조방법 및 그를 이용하여 제조된 탄성사에 관한 것으로, 보다 상세하게는 약 600 내지 1300 돌턴의 낮은 수평균분자량을 갖는 ether계 글리콜과, 디이소시아네이트를 사용하여 예비중합체를 제조하고, 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사하는 것을 특징으로 하는 폴리우레탄우레아 및 그를 이용하여 제조된 고파워 탄성사에 관한 것이다.The present invention relates to a method for producing a polyurethane urea and to an elastic yarn produced using the same, and more particularly to preparing a prepolymer using ether-based glycol having a low number average molecular weight of about 600 to 1300 Dalton and diisocyanate Polyurethane urea and a high-power elastic yarn prepared using the same, characterized in that the polyurethane urea obtained by adding a chain extender to the prepolymer to obtain a polyurethane urea polymer, and then stirred by spinning to obtain a polyurethane urea spinning stock solution It is about.

더욱 상세하게는 원사 파워가 우수한 폴리우레탄우레아 탄성사를 제조함으로써, 상기 폴리우레탄우레아 탄성사를 사용하여 교편직한 직물의 고파워화 및 경량화를 가능하게 하는 기술에 관한 것이다.
More specifically, the present invention relates to a technology that enables high power and light weight of interwoven fabrics by producing a polyurethane urea elastic yarn having excellent yarn power.

폴리우레탄우레아는 일반적으로 고분자량의 디올 화합물인 폴리올과 과량의 디이소시아네이트 화합물을 반응시켜 폴리올의 양 말단에 이소시아네이트기를 가지는 예비중합체(prepolymer)를 얻는 1차 중합반응물과, 상기 예비중합체를 적절한 용매에 용해시킨 후 그 용액에 디아민계 또는 디올계 사슬 연장제를 첨가하고 모노알코올 또는 모노아민 등과 같은 사슬종결제 등을 반응시키는 단계를 거쳐 폴리우레탄우레아 섬유의 방사액을 만든 후, 건식 및 습식 방사에 의해 폴리우레탄우레아 탄성 섬유를 얻는다.Polyurethane urea is a primary polymerization reaction product which generally reacts a polyol which is a high molecular weight diol compound with an excess diisocyanate compound to obtain a prepolymer having an isocyanate group at both ends of the polyol, and the prepolymer in an appropriate solvent. After dissolving, a diamine-based or diol-based chain extender is added to the solution, and a chain terminator such as monoalcohol or monoamine is reacted to form a spinning solution of polyurethaneurea fibers, and then subjected to dry and wet spinning. The polyurethaneurea elastic fiber is obtained by this.

폴리우레탄우레아 탄성섬유는 우수한 탄성 및 탄성회복력을 갖는 고유의 특성 때문에 다양한 용도로 사용되고 있고, 그 용도 범위가 확대됨에 따라 기존의 섬유에 새로운 부가적인 특성이 계속하여 요구되고 있다.
Polyurethane urea elastic fibers are used in various applications because of their inherent properties with excellent elasticity and elastic recovery ability, and as the range of applications thereof is expanded, new additional properties are continuously required for existing fibers.

일반적으로 폴리우레탄우레아 탄성섬유는 상대사(나일론, 면, 실크, 울 등)와 교편직하여 직물로 사용되는데, 세 데니아(denier)의 고파워 탄성사를 사용하여 교편직 시 직물을 경량화하면서도 높은 파워를 발현시키고자 하는 수요가 점차 증가하고 있다. 또한, 교편직 후 실시되는 후가공에서 높은 열에 의해 열적 취화가 발생하며, 이는 원단의 파워가 저하되는 등의 문제를 유발시키게 되는데, 이러한 문제를 해결하기 위해 높은 파워 및 내열성을 가진 폴리우레탄우레아 탄성섬유에 대한 수요가 증가하고 있다.In general, polyurethaneurea elastic fiber is used as a fabric by interlacing with other yarns (nylon, cotton, silk, wool, etc.). It is made of high power elastic yarn of denier (denier) to make the fabric light weight while high power. The demand for expressing is increasing gradually. In addition, thermal embrittlement occurs due to high heat in post-processing after knitting, which causes problems such as deterioration of the power of the fabric. Polyurethane urea elastic fiber having high power and heat resistance to solve such problems The demand for is increasing.

상기 문제에 대응하여, 폴리우레탄계 탄성 섬유의 파워 및 내열성을 향상시키기 위한 노력이 지속적으로 이루어져 왔다. 그간 탄성사 제조업체에서 가장 보편적으로 사용해온 방법은 탄성사 제조용 중합물 제조시에 캡핑비(capping ratio)를 높여서 파워를 향상시키고, 결합력이 높고 측쇄(side chain)가 없는 쇄연장제를 사용하여 내열성을 향상시키는 것이다. 그러나 상기와 같은 방법으로 파워 및 내열성을 향상시키는 경우에는 중합물의 겔 형성에 따른 급격한 점도의 상승, 용해성 저하 등의 문제가 발생하여 공정관리가 용이하지 못한 한계가 있다. 즉, 아직까지는 원사 신도를 확보하고 안정적인 중합물을 유지하면서 폴리우레탄계 탄성 섬유의 파워 및 내열성 향상이 가능한 방법이 정립되지 않은 상태이다.
In response to the above problems, efforts have been made to improve the power and heat resistance of polyurethane-based elastic fibers. The most common method used by elastic yarn manufacturers has been to increase the power by increasing the capping ratio in the preparation of polymers for elastic yarn production, and to improve heat resistance by using a chain extension agent having high bonding strength and no side chain. will be. However, in the case of improving power and heat resistance in the above manner, problems such as rapid rise in viscosity and lower solubility due to gel formation of the polymer may occur, which may limit process control. That is, a method for improving the power and heat resistance of the polyurethane-based elastic fiber while securing yarn elongation and maintaining a stable polymer has not been established.

상기 과제를 해결하기 위하여, 본 발명의 적절한 실시형태에 따르면, 폴리올과 디이소시아네이트 중합물로 이루어진 폴리우레탄우레아 탄성사의 제조방법에 있어서, 1) 600 내지 1300 돌턴의 낮은 수평균분자량을 갖는 에테르계 글리콜과 디이소시아네이트를 사용하여 예비중합체를 제조하고, 2) 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성하여 방사하는 것을 특징으로 하는 고파워 탄성사의 제조 방법을 제공한다. 이와 같이 제조된 높은 파워를 가진 탄성사를 이용하여 교편직한 원단은 우수한 파워를 발현한다.
In order to solve the above problems, according to a preferred embodiment of the present invention, in the method for producing a polyurethane urea elastic yarn consisting of a polyol and a diisocyanate polymer, 1) ether glycol having a low number average molecular weight of 600 to 1300 Dalton and A prepolymer is prepared using diisocyanate, and 2) a chain extender is added to the prepolymer to obtain a polyurethane urea polymer, and then the polyurethane urea spinning solution obtained by stirring is aged to spin. Provided are methods for producing a power elastic yarn. The fabric interwoven with the high power elastic yarn manufactured as described above exhibits excellent power.

본 발명은 우수한 파워를 가진 폴리우레탄우레아 탄성사를 제조함으로서, 상기 폴리우레탄우레아 탄성사를 사용하여 교편직한 직물의 고파워화 및 경량화를 가능하게 하고, 이를 열세팅 할 경우 열에 의해 취화되지 않도록 하는 기술에 관한 것이다.
The present invention is to produce a polyurethane urea elastic yarn having excellent power, by using the polyurethane urea elastic yarn to enable high power and light weight of the interwoven fabric, and when the heat setting it to a technology that is not embrittled by heat It is about.

이하, 본 발명의 폴리우레탄우레아 탄성사를 제조하는 방법에 대하여 보다 상세하게 설명한다.  본 발명의 탄성사 제조 시 사용되는 폴리우레탄우레아는 유기 디이소시아네이트와 고분자 디올을 반응시켜 예비중합체를 제조하고, 이를 유기 용매에 용해한 후 디아민 및 모노아민과 반응시킴으로써 제조된다.  Hereinafter, the method of manufacturing the polyurethaneurea elastic yarn of this invention is demonstrated in detail. The polyurethaneurea used in the preparation of the elastic yarn of the present invention is prepared by reacting an organic diisocyanate with a polymer diol to prepare a prepolymer, and then dissolving it in an organic solvent and then reacting with a diamine and a monoamine.

본 발명에 사용되는 폴리우레탄우레아 탄성사의 제조에 사용되는 디이소시아네이트의 구체적인 예로는 4,4’-디페닐메탄디이소시아네이트, 1,5'-나프탈렌디이소시아네이트, 1,4'-페닐렌디이소시아네이트, 헥사메틸렌 디이소시아네이트, 1,4'-시클로헥산디이소시아네이트, 4,4'-디시클로헥실 메탄디이소시아네이트, 이소포론디이소시아네이트 등이 있다. Specific examples of the diisocyanate used in the production of the polyurethaneurea elastic yarn used in the present invention include 4,4'-diphenylmethane diisocyanate, 1,5'-naphthalene diisocyanate, 1,4'-phenylenedi isocyanate, hexa Methylene diisocyanate, 1,4'-cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate, and the like.

또한 본 발명에 사용되는 폴리올은 폴리테트라메틸렌에테르 글리콜, 폴리프로필렌 글리콜, 등 에테르계로 제한된다. 본 발명에서 사용하는 폴리올의 수평균분자량은 600 내지 1300 돌턴이다.
The polyols used in the present invention are also limited to polytetramethylene ether glycol, polypropylene glycol, and the like ether system. The number average molecular weight of the polyol used in the present invention is 600 to 1300 Daltons.

수평균분자량이 약 600 내지 1300 인 에테르계 폴리올을 첨가할 경우, 그 이상의 분자량을 갖는 폴리올 대비 소프트 세그먼트(soft segment)의 길이가 짧아서, 실질적으로는 캡핑비를 증가한 것과 동일한 효과를 나타내어 파워가 높은 탄성섬유를 수득할 수 있다. 구체적으로 수평균분자량이 600 돌턴 미만이면 중합물의 용해성이 저하되어 적용이 불가능하고, 1300돌턴 초과하면 원사 파워 향상 효과가 저하되는 문제가 있다.
When an ether polyol having a number average molecular weight of about 600 to 1300 is added, the length of the soft segment is shorter than that of the polyol having a molecular weight higher than that of the polyol, thereby exhibiting substantially the same effect as that of increasing the capping ratio. Elastic fibers can be obtained. Specifically, if the number average molecular weight is less than 600 Daltons, the solubility of the polymer is lowered and cannot be applied. If the number average molecular weight exceeds 1300 Daltons, there is a problem that the yarn power improving effect is lowered.

사슬연장제로는 디아민류가 사용되며, 그 예로는 에틸렌디아민, 1, 2-디아미노프로판, 1, 3-디아미노프로판, 1,4-디아미노부탄, 2,3-디아미노부탄, 1,5-디아미노펜탄, 1, 6-헥사메틸렌디아민 및 1,4-씨클로헥산디아민 등의 1종 또는 이들의 2종 이상의 혼합물을 예시할 수 있다. Diamines are used as the chain extender, and examples thereof include ethylenediamine, 1, 2-diaminopropane, 1, 3-diaminopropane, 1,4-diaminobutane, 2,3-diaminobutane, 1, One kind or a mixture of two or more kinds thereof, such as 5-diaminopentane, 1, 6-hexamethylenediamine and 1,4-cyclohexanediamine, can be exemplified.

폴리우레탄우레아의 사슬종지제로는 1 관능기를 갖는 아민, 예를 들어 디에틸아민, 모노에탄올아민, 디메틸아민 등이 사용될 수 있다.As the chain terminator of the polyurethane urea, an amine having a monofunctional group, for example, diethylamine, monoethanolamine, dimethylamine and the like can be used.

또한, 본 발명에서는 자외선, 대기 스모그 및 스판덱스 가공에 수반되는 열처리 과정 등에 의한 폴리우레탄우레아의 변색과 물성 저하를 방지하기 위해, 방사원액에 입체장애 페놀계 화합물, 벤조퓨란-온계 화합물, 세미카바자이드계 화합물, 벤조 트리아졸계 화합물, 중합체성 3급 아민 안정제 등을 적절히 조합하여 첨가할 수 있다.In addition, in the present invention, in order to prevent discoloration of the polyurethane urea and deterioration of physical properties due to ultraviolet rays, atmospheric smog, and heat treatment associated with spandex processing, a steric hindrance phenol compound, a benzofuran-one compound, and a semicarbazide Type compound, a benzo triazole type compound, a polymeric tertiary amine stabilizer, etc. can be added combining them suitably.

나아가, 본 발명의 폴리우레탄우레아 탄성사는 상기 성분 외에도 이산화티탄, 마그네슘 스테아레이트 등과 같은 첨가제를 포함할 수 있다.
Furthermore, the polyurethaneurea elastic yarn of the present invention may include additives such as titanium dioxide, magnesium stearate, and the like in addition to the above components.

본 발명에 의해 제조된 탄성사는 고파워를 가지며, 구체적으로 생산 직후 원사의 파워(5th Unload at 200% [g/d])가 0.0380g/d 내지 0.0550g/d이다. 원사의 파워가 0.0380g/d 미만일 경우에는 일반 스판덱스와 유사한 파워 수준을 갖는 것이므로 고파워사로 볼 수 없고, 0.0550g/d 초과할 경우에는 파워가 높은 것 자체로는 문제가 되지 않으나 신도 등 기타 물성이 저하될 것으로 예상된다.The elastic yarn produced by the present invention has a high power, specifically, the power (5th Unload at 200% [g / d]) of the yarn immediately after production is 0.0380 g / d to 0.0550 g / d. If the yarn's power is less than 0.0380g / d, it has a power level similar to that of ordinary spandex, so it cannot be regarded as a high power yarn. If it exceeds 0.0550g / d, the power is not a problem by itself but other properties such as elongation It is expected that this will be degraded.

이하, 구체적인 실시예 및 비교예를 통하여 본 발명의 우수성을 상세하게 설명하고자 하나, 이러한 실시예들은 단지 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 제한하는 것으로 해석되어서는 안 된다. Hereinafter, the present invention will be described in detail with reference to specific examples and comparative examples, but these examples are merely to illustrate the present invention and should not be construed as limiting the scope of the present invention.

후술하는 실시예 및 비교예에서 언급한 폴리머의 NCO% 및 폴리우레탄우레아 탄성사의 물성, 원단의 파워는 아래와 같이 측정하였다.
NCO% of the polymers mentioned in Examples and Comparative Examples to be described later, physical properties of the polyurethane urea elastic yarn, and the power of the fabric were measured as follows.

* NCO% 측정법 * NCO% measurement

NCO%=[100*2*NCO화학식량*(캡핑비-1)]/{(디이소시아네이트분자량*캡핑비)+폴리올 분자량}NCO% = [100 * 2 * NCO chemical formula * (capping ratio-1)] / {(diisocyanate molecular weight * capping ratio) + polyol molecular weight}

상기 식에서 캡핑비는 디이소시아네이트 몰비/폴리올 몰비이다.
Where the capping ratio is the diisocyanate molar ratio / polyol molar ratio.

* 원사의 데니아 * Denia of yarn

시료길이 90cm*10가닥의 무게를 측정하여 아래 식에 따라 데니아를 계산한다.Measure the weight of 90cm * 10 strands of sample length and calculate Denia according to the following formula.

Denier = 시료 10가닥의 무게g/9m * 9000m/1g
Denier = weight of 10 strands of sample g / 9m * 9000m / 1g

* 원사의 강신도 * Elongation of yarn

자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료길이 10cm, 인장속도 100cm/min로 하여 측정한다. 이 때 파단 시의 강력과 신도값이 측정되며, 원사 200% 신장 시 원사에 걸리는 하중(200% 모듈러스)도 측정된다.
Measurement is made at a sample length of 10 cm and a tensile speed of 100 cm / min using an automatic power measuring device (MEL, Textechno). In this case, the strength and elongation at break are measured, and the load (200% modulus) applied to the yarn at 200% elongation is also measured.

* 원사의 파워 * The power of yarn

자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료길이 10cm*20가닥, 인장속도 100cm/min로 300% 5회 반복 신장하여 측정한다.
Using an automatic elongation measuring device (MEL machine, Textechno Co., Ltd.), the sample is measured by repeating 300% 5 times with a sample length of 10cm * 20 strands and a tensile speed of 100cm / min.

* 원사의 내열성* Heat resistance of yarn

자동강신도 측정장치를 이용하여 0-300% 사이에서의 신장을 5회 반복한 후, 5회째 신장 시 200%에서의 응력(P1)과 열처리 후의 응력(P2)을 측정하여 아래의 식에 따라 원사의 내열성으로 나타낸다. After repeating the elongation between 0-300% five times by using the automatic strength measuring device, measure the stress (P1) at 200% and the stress (P2) after heat treatment at the fifth elongation. It is represented by the heat resistance of.

원사의 열처리는, 원사를 대기에 노출된 상태로 100% 신장하여 190℃에서 1분간 건열 처리하였다가 실온으로 냉각한 후, 이완된 상태로 100℃에서 30분간 습열 처리한 뒤 실온에서 건조한다. The heat treatment of the yarn is 100% elongated while being exposed to the air, followed by dry heat treatment at 190 ° C. for 1 minute, cooling to room temperature, followed by wet heat treatment at 100 ° C. for 30 minutes in a relaxed state, and drying at room temperature.

내열성(%) = P2/P1 X 100
Heat Resistance (%) = P2 / P1 X 100

* 원단의 파워 * Power of fabric

탄성사와 Nylon 원사를 사용하여 금용 사(社)의 직경 32인치, 28게이지, 96 피더(feeder)의 규격을 갖는 환편기를 이용해 환편물을 제작하였다. 이 환편물은 Nylon 원사 70데니어, 상기에 의해 제조된 탄성사 40 데니어를 사용하여 편직하였고, 탄성사의 함량은 전체 편물 중량 대비 8% 이다.
Circular knitted fabrics were fabricated using elastic yarn and Nylon yarn using a circular knitting machine having a diameter of 32 inches, 28 gauge, and 96 feeders. The circular knitted fabric was knitted using 70 denier of nylon yarn and 40 denier of elastic yarn prepared above, and the content of the elastic yarn was 8% of the total knit weight.

교편직 된 Nylon/폴리우레탄우레아 탄성사로 만든 환편 원단을 프리세팅(Pre-setting)→염색→파이널세팅(Final-setting) 처리한 후, 자동 강신도 측정장치(MEL기, Textechno社)를 이용하여 시료 폭 2.5 cm * 시료 길이 20cm, 인장속도 100cm/min로 100% 5회 반복 신장하여 측정한다.After pre-setting, dyeing, and final-setting the circular knitting fabric made of interwoven nylon / polyurethane urea elastic yarn, the sample is processed using an automatic elongation measuring device (MEL machine, Textechno). 2.5 cm in width * Sample length 20 cm, tensile rate 100 cm / min 100% repeated five times elongation is measured.

  

   < 실시예 1> <Example 1>

캡핑비(CR) 1.55, 폴리올은 폴리테트라메틸렌에테르 글리콜(분자량 1000)을 사용하였고, 4,4'-디페닐메탄디이소시아네이트를 혼합하여 조제하였다. 사슬연장제로는 에틸렌디아민과 1,2-디아미노 프로판을 80몰%와 20몰% 비율로, 사슬종결제로는 디에틸아민을 사용하였다. 사슬연장제와 사슬종결제의 비율은 10:1로 하였고, 사용된 아민은 총 농도 7몰%로 조제되었으며, 용매로는 디메틸아세트아마이드를 사용하였다. 상기 중합물의 고형분 대비 첨가제로서 에틸렌비스(옥시에틸렌)비스-(3-(5-t-부틸-4-히드록시-m-토일)-프로피오네이트) 1.5중량%, 5,7-디-t-부틸-3-(3,4-디메틸페닐)-3H-벤조퓨란-2-온 0.5중량%, 1,1,1',1'-테트라메틸-4,4'-(메틸렌-디-p-페닐렌)디세미카바지드 1중량%, 폴리(N,N-디에틸-2-아미노에틸 메타크릴레이트) 1중량%, 이산화티탄 0.1중량%를 첨가 혼합하여 폴리우레탄우레아 방사원액을 얻었다. As a capping ratio (CR) of 1.55 and polyol, polytetramethylene ether glycol (molecular weight 1000) was used, and 4,4'-diphenylmethane diisocyanate was mixed. Ethylenediamine and 1,2-diamino propane were used as the chain extender at a ratio of 80 mol% and 20 mol%, and diethylamine was used as the chain terminator. The ratio of the chain extender to the chain terminator was 10: 1, and the amine used was prepared at a total concentration of 7 mol%, and dimethylacetamide was used as the solvent. As a solid preparation of the additive polymer of ethylene bis (oxyethylene) bis - (3- (5- t-butyl-4-hydroxy-m-weekends) -propionate), 1.5% by weight, 5,7-di-t 0.5% by weight of 1,1,1 ', 1'-tetramethyl-4,4' - (methylene-di- p -tert-butylphenyl) 1% by weight of poly (N, N-diethyl-2-aminoethyl methacrylate) and 0.1% by weight of titanium dioxide were added and mixed to obtain a polyurethane urea spinning stock solution.

즉, 4,4'-디페닐메탄디이소시아네이트 329.72g과 폴리테트라메틸렌에테르 글리콜(분자량 1000) 850.0g을, 질소가스기류 중에서 90℃, 150분간 교반하면서 반응시켜 양말단에 이소시아네이트를 지닌 폴리우레탄우레아를 제조하였다. 예비중합체(prepolymer)를 실온까지 냉각시킨 후, 디메틸아세트아마이드 1815.73g을 가하여 폴리우레탄우레아 예비중합체(prepolymer) 용액을 얻었다. 이어서 에틸렌디아민 22.48g(0.56몰), 1,2-디아노프로판 6.93g(0.14몰), 디에틸아민 3.42g을 디메틸아세트아마이드 436.14g에 용해하고 10℃ 이하에서 상기 예비중합체(prepolymer) 용액에 첨가하여 폴리우레탄우레아 용액을 얻었다. That is, 329.72 g of 4,4'-diphenylmethane diisocyanate and 850.0 g of polytetramethylene ether glycol (molecular weight 1000) are reacted with stirring at 90 ° C. for 150 minutes in a nitrogen gas stream for a polyurethaneurea having an isocyanate at the sock end. Was prepared. After cooling the prepolymer to room temperature, 1815.73 g of dimethylacetamide was added to obtain a polyurethaneurea prepolymer solution. Then 22.48 g (0.56 mole) of ethylenediamine, 6.93 g (0.14 mole) of 1,2-diopropane and 3.42 g of diethylamine were dissolved in 436.14 g of dimethylacetamide and added to the prepolymer solution at 10 ° C. or lower. It added and obtained the polyurethaneurea solution.

위와 같이 수득한 방사 원액을 건식 방사 (방사 온도: 270oC)에 의해 900m/min 속도로 방사하여 20 데니아 1 필라멘트와 40 데니아 3 필라멘트 2종의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다.The spinning stock solution obtained as described above was spun at a speed of 900 m / min by dry spinning (spinning temperature: 270 o C) to prepare two polyurethaneurea elastic yarns of 20 denia 1 filament and 40 denia 3 filament, and evaluated for their physical properties. It is shown in Tables 1 and 2.

  

   < 실시예 2> <Example 2>

캡핑비(CR) 1.65, 4,4'-디페닐메탄디이소시아네이트 350.99g과 폴리테트라메틸렌에테르 글리콜(분자량 1000) 850.0g 함량으로 조제하는 것을 제외하고는 실시예 1과 동일하다. 수득한 방사 원액을 건식 방사 (방사 온도: 270oC)에 의해 900m/min 속도로 방사하여 20 데니아 1 필라멘트와 40 데니아 3 필라멘트 2종의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다. It is the same as Example 1 except preparing with capping ratio (CR) 1.65, 350.99g of 4,4'- diphenylmethane diisocyanate, and 850.0g of polytetramethylene ether glycol (molecular weight 1000). The obtained spinning stock solution was spun at a speed of 900 m / min by dry spinning (spinning temperature: 270 ° C.) to prepare two polyurethane urea elastic yarns of 20 denia 1 filament and 40 denia 3 filament, and evaluated for their physical properties. 1 and 2 are shown.

  

   < 실시예 3> <Example 3>

캡핑비(CR) 1.75, 4,4'-디페닐메탄디이소시아네이트 372.26g과 폴리테트라메틸렌에테르 글리콜(분자량 1000) 850.0g 함량으로 조제하는 것을 제외하고는 실시예 1과 동일하다. 수득한 방사 원액을 건식 방사 (방사 온도: 270oC)에 의해 900m/min 속도로 방사하여 20 데니아 1 필라멘트와 40 데니아 3 필라멘트 2종의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다.
It is the same as Example 1 except preparing with capping ratio (CR) 1.75, 372.26g of 4,4'- diphenylmethane diisocyanate, and 850.0g of polytetramethylene ether glycol (molecular weight 1000). The obtained spinning stock solution was spun at a speed of 900 m / min by dry spinning (spinning temperature: 270 ° C.) to prepare two polyurethane urea elastic yarns of 20 denia 1 filament and 40 denia 3 filament, and evaluated for their physical properties. 1 and 2 are shown.

   < 비교예 1> <Comparative Example 1>

폴리올은 폴리테트라메틸렌에테르 글리콜(분자량 1800)을 사용한 것을 제외하고는 실시예 2과 동일하다. 수득한 방사 원액을 건식 방사 (방사 온도: 270oC)에 의해 900m/min 속도로 방사하여 20 데니아 1 필라멘트와 40 데니아 3 필라멘트 2종의 폴리우레탄우레아 탄성사를 제조하였고, 그 물성을 평가하여 표 1과 2에 나타내었다.
The polyol is the same as in Example 2 except that polytetramethylene ether glycol (molecular weight 1800) was used. The obtained spinning stock solution was spun at a speed of 900 m / min by dry spinning (spinning temperature: 270 ° C.) to prepare two polyurethane urea elastic yarns of 20 denia 1 filament and 40 denia 3 filament, and evaluated for their physical properties. 1 and 2 are shown.

PTMG
분자량
PTMG
Molecular Weight
NCO%NCO% DenierDenier 강도
[g/d]
burglar
[g / d]
신도
[%]
Shindo
[%]
200%
모듈러스
[g]
200%
Modulus
[g]
5th
Unload at
200% [g/d]
5th
Unload at
200% [g / d]
내열성
[%]
Heat resistance
[%]
실시예1Example 1 10001000 3.3303.330 20.120.1 1.381.38 456456 5.115.11 0.04020.0402 5555 39.839.8 1.661.66 453453 12.2912.29 0.03830.0383 5656 실시예2Example 2 10001000 3.8663.866 19.619.6 1.321.32 438438 5.835.83 0.04320.0432 5858 40.340.3 1.621.62 429429 13.9213.92 0.04010.0401 6060 실시예3Example 3 10001000 4.3834.383 19.819.8 1.241.24 420420 6.406.40 0.04750.0475 6363 39.539.5 1.551.55 414414 15.4015.40 0.04290.0429 6464 비교예1Comparative Example 1 18001800 2.4682.468 19.419.4 0.960.96 475475 3.603.60 0.02940.0294 5353 40.540.5 1.031.03 465465 8.808.80 0.03080.0308 5959

상기 표1과 같이 폴리테트라메틸렌에테르 글리콜(분자량 1000)을 사용하여 제조된 폴리우레탄우레아 탄성사는 높은 원사 파워를 나타냄을 확인할 수 있었다.As shown in Table 1, it was confirmed that the polyurethaneurea elastic yarn manufactured using polytetramethylene ether glycol (molecular weight 1000) showed high yarn power.

하기 표2는 원단 평가법에 의해 환편물을 제조하여 후가공한 원단의 가공 조건 및 파워를 나타낸 것이다.
Table 2 below shows the processing conditions and power of the fabric after the circular knitted fabric prepared by the fabric evaluation method.

원사
Denier
Yarn
Denier
프리세팅온도(℃)Presetting temperature (℃) 파이널세팅온도(℃)Final setting temperature (℃) 원단 중량[g/m2]Fabric weight [g / m2] 원단 파워
5th unload at 50%
[g/m2]
Fabric power
5th unload at 50%
[g / m2]
실시예2Example 2 2020 190190 180180 113113 136.7136.7 4040 195195 185185 192192 283.6283.6 비교예1Comparative Example 1 2020 190190 180180 117117 95.695.6 4040 195195 185185 198198 225.2225.2

상기 표2와 같이 나일론 환편물 제조 시 실시예 2로 제작된 원단은 비교예 1로 제작된 원단 대비 원단 파워가 우수함을 확인하였다.
As shown in Table 2, the fabric produced in Example 2 when the nylon circular knitted fabric was prepared was confirmed to have superior fabric power compared to the fabric produced in Comparative Example 1.

Claims (5)

폴리올과 디이소시아네이트 중합물로 이루어진 폴리우레탄우레아 탄성사의 제조방법에 있어서,
1) 600 내지 1300 돌턴의 수평균분자량을 갖는 에테르계 글리콜과 디이소시아네이트 혼합물을 사용하여 예비중합체를 제조하고, 2) 예비중합체에 사슬연장제를 첨가하여 폴리우레탄우레아 중합물을 얻은 후, 이를 교반하여 수득된 폴리우레탄우레아 방사원액을 숙성한 후 방사하여 원사를 제조하는 것과, 제조된 원사의 파워(5th Unload at 200% [g/d])가 0.0380g/d 내지 0.0550g/d인 것을 특징으로 하는 우수한 파워를 가진 탄성사의 제조 방법.
In the production method of polyurethane urea elastic yarn composed of a polyol and a diisocyanate polymer,
1) preparing a prepolymer using an ether glycol and diisocyanate mixture having a number average molecular weight of 600 to 1300 Dalton, 2) adding a chain extender to the prepolymer to obtain a polyurethaneurea polymer, and then stirring the mixture. The obtained polyurethaneurea spinning stock solution is aged and then spun to prepare a yarn, and the power of the prepared yarn (5th Unload at 200% [g / d]) is 0.0380 g / d to 0.0550 g / d. Method of manufacturing elastic yarn with excellent power to.
제 1항에 있어서, 디이소시아네이트는 4,4’-디페닐메탄디이소시아네이트, 1,5’-나프탈렌디이소시아네이트, 1,4’-페닐렌디이소시아네이트, 헥사메틸렌 디이소시아네이트, 1,4’-시클로헥산디이소시아네이트, 4,4’-디시클로헥실메탄디이소시아네이트, 또는 이소포론디이소시아네이트로 이루어진 군에서 선택된 1종 또는 2종이상을 사용하는 것을 특징으로 하는 우수한 파워를 가진 탄성사의 제조 방법.The diisocyanate of claim 1, wherein the diisocyanate is 4,4'-diphenylmethane diisocyanate, 1,5'-naphthalene diisocyanate, 1,4'-phenylene diisocyanate, hexamethylene diisocyanate, 1,4'-cyclohexane A method for producing an elastic yarn having excellent power, characterized in that one or more selected from the group consisting of diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, or isophorone diisocyanate is used. 제1항에 있어서, 에테르계 글리콜은 폴리테트라메틸렌에테르 글리콜 또는 폴리프로필렌 글리콜인 것을 특징으로 하는 우수한 파워를 가진 탄성사의 제조 방법.The method of claim 1, wherein the ether glycol is polytetramethylene ether glycol or polypropylene glycol. 제 1항에 있어서, 사슬연장제는 에틸렌디아민, 1,2-디아미노프로판, 1,3-디아미노프로판, 1,4-디아미노부탄, 2,3-디아미노부탄, 1,5-디아미노펜탄, 1,6-헥사메틸렌디아민 및 1,4-씨클로헥산디아민으로 구성된 군에서 선택되는 1종 또는 2종 이상인 것을 특징으로 하는 우수한 파워를 가진 탄성사의 제조 방법.The chain extender of claim 1 wherein the chain extender is ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 2,3-diaminobutane, 1,5-di A method for producing an elastic yarn having excellent power, characterized in that one or two or more selected from the group consisting of aminopentane, 1,6-hexamethylenediamine and 1,4-cyclohexanediamine. 삭제delete
KR1020100121719A 2010-12-02 2010-12-02 Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it KR101253420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100121719A KR101253420B1 (en) 2010-12-02 2010-12-02 Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100121719A KR101253420B1 (en) 2010-12-02 2010-12-02 Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it

Publications (2)

Publication Number Publication Date
KR20120060293A KR20120060293A (en) 2012-06-12
KR101253420B1 true KR101253420B1 (en) 2013-04-11

Family

ID=46611221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100121719A KR101253420B1 (en) 2010-12-02 2010-12-02 Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it

Country Status (1)

Country Link
KR (1) KR101253420B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240076116A (en) * 2022-11-23 2024-05-30 효성티앤씨 주식회사 Method for preparing polyurethanurea elastic yarn with improved heat resistance and elasticity recovery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090106288A (en) * 2008-04-04 2009-10-08 주식회사 효성 Polyurethaneurea elastic fiber with enhanced elongation and coalescence and Preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090106288A (en) * 2008-04-04 2009-10-08 주식회사 효성 Polyurethaneurea elastic fiber with enhanced elongation and coalescence and Preparation method thereof

Also Published As

Publication number Publication date
KR20120060293A (en) 2012-06-12

Similar Documents

Publication Publication Date Title
KR100942359B1 (en) Method for preparing polyurethaneurea elastic fiber with improved heat settability
KR20090106288A (en) Polyurethaneurea elastic fiber with enhanced elongation and coalescence and Preparation method thereof
KR101148583B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation
KR101499310B1 (en) Method for preparing polyurethaneurea elastic fiber
KR101148302B1 (en) Manufacturing method of polyurethaneurea elastic fiber by high speed spinning method
KR101157335B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power
KR101426208B1 (en) Polyurethaneurea elastic fiber with high uniformity and excellent heat settable property
KR101167377B1 (en) Process for Preparing polyurethaneurea elastic fiber with improved heat settable properties
KR101941317B1 (en) Polyurethaneurea elastic fiber with low temperature workability
KR101312843B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and good recovery
KR101157327B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and Heat-resistance and fiber using it
KR101253420B1 (en) Polyurethaneurea Elastic Fiber having high Power and Process for Preparing it
KR101086744B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber with Excellent Heat Settable Property at Low Temperature
KR101578156B1 (en) Polyurethanurea elastic fiber having an excellent indexes of evenness and power and method of manufacturing the same
KR101255453B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation
KR101396107B1 (en) Polyurethaneurea elastic fiber with improved heat setting property and manufacturing method thereof
KR20140094357A (en) Polyurethanurea elastic yarn having improved power and elastic recovery and method for preparing the same
KR101675280B1 (en) Polyurethanurea elastic fiber and method of manufacturing the same
KR20150043906A (en) Polyurethanurea elastic fiber having a high resilience and method of manufacturing the same
WO2013103159A1 (en) Method for manufacturing elastic yarn having high power and high power elastic yarn manufactured using same
KR101247850B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber by high speed spinning method
KR101238557B1 (en) Manufacturing method of polyurethaneurea elastic fiber by high speed spinning method
KR101620573B1 (en) Polyurethanurea elastic fiber with good unwinding performance and method of manufacturing the same
KR101453649B1 (en) Polyurethaneurea elastic fiber and manufacturing method of the same
KR20240076116A (en) Method for preparing polyurethanurea elastic yarn with improved heat resistance and elasticity recovery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160316

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200311

Year of fee payment: 8