KR101250856B1 - Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water - Google Patents

Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water Download PDF

Info

Publication number
KR101250856B1
KR101250856B1 KR1020110100623A KR20110100623A KR101250856B1 KR 101250856 B1 KR101250856 B1 KR 101250856B1 KR 1020110100623 A KR1020110100623 A KR 1020110100623A KR 20110100623 A KR20110100623 A KR 20110100623A KR 101250856 B1 KR101250856 B1 KR 101250856B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
water
carbonated water
dissolved
microalgae
Prior art date
Application number
KR1020110100623A
Other languages
Korean (ko)
Inventor
박종익
박정우
박종락
Original Assignee
주식회사 삼에스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼에스코리아 filed Critical 주식회사 삼에스코리아
Priority to KR1020110100623A priority Critical patent/KR101250856B1/en
Priority to PCT/KR2011/007958 priority patent/WO2013051750A1/en
Application granted granted Critical
Publication of KR101250856B1 publication Critical patent/KR101250856B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE: A dissolved carbon dioxide concentration controlling method for a carbon dioxide fixing apparatus using carbonated water is provided to more effectively prepare an optimal culturing condition for microalgae by controlling the concentration of carbon dioxide inside culture water, and reducing installation cost for the carbon dioxide fixing apparatus by using a pH meter or an oxygen meter instead of an expensive carbon dioxide meter. CONSTITUTION: A dissolved carbon dioxide concentration controlling method for a carbon dioxide fixing apparatus includes: a step of manufacturing carbonated water by dissolving carbon dioxide in water using a carbonated water maker; a step of culturing microalgae inside a collecting water tank using the carbonated water fed from the carbonated water maker as culture water; and a step of feeding the carbonated water from a carbon dioxide reducing apparatus collecting the carbon dioxide to inside the collecting water tank with the carbon assimilation of the microalgae. The optimal pH value of the culture water for increasing the microalgae inside the collecting water tank is determined(ST11). The pH value of the culture water inside the collecting water tank is measured(ST12). The supply amount of the carbon dioxide dissolved in the carbonated water is varied according to the variation of the measured pH value on the basis of the determined optimal pH value so that the concentration of the dissolved carbon dioxide is controlled(ST13). [Reference numerals] (ST11) Setting the optimal pH value; (ST12) Measuring the pH value of culture water; (ST13) Controlling the carbon dioxide concentration of carbonated water;

Description

탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법{METHOD OF CONTROLLING CONCENTRATION OF CARBON DIOXIDE FOR CARBON DIOXIDE FIXING DEVICE USING CATBONATED WATER}METHOD OF CONTROLLING CONCENTRATION OF CARBON DIOXIDE FOR CARBON DIOXIDE FIXING DEVICE USING CATBONATED WATER}

본 발명은 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법에 관한 것으로서, 좀더 상세하게는 포집수조 내에서 이산화탄소 포집을 위해 증식되는 미세조류의 최적 배양 조건을 유지하도록 용존 이산화탄소 농도를 제어하기 위한 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법에 관한 것이다.
The present invention relates to a method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using carbonated water, and more particularly, to control the dissolved carbon dioxide concentration to maintain the optimum culture conditions of microalgae grown for carbon dioxide capture in the collection tank. It relates to a method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using.

주지된 바와 같이, 이산화탄소는 탄소나 그 화합물이 완전 연소하거나, 생물이 호흡 또는 발효할 때 생기는 기체로 대기의 약 0.03%를 차지한다.As is well known, carbon dioxide is a gas produced by the complete combustion of carbon or its compounds, or by the respiration or fermentation of living organisms, accounting for about 0.03% of the atmosphere.

상기한 이산화탄소를 지구 온난화를 일으키는 온실 가스의 일종으로 현대 사회의 산업화가 가속화되면서 화석연료의 사용량이 증가함에 따라 대기중의 이산화탄소량도 매년 증가하고 있다. Carbon dioxide is a kind of greenhouse gas that causes global warming. As the industrialization of modern society accelerates, the amount of carbon dioxide in the atmosphere increases every year as the amount of fossil fuel increases.

최근 온실가스의 저감을 위하여 세계 각국에서 대략의 이산화탄소를 저감하고 저장하는 연구가 활발하게 진행되고 있다. Recently, in order to reduce greenhouse gases, studies are being actively conducted to reduce and store approximately carbon dioxide in various countries around the world.

그 중 식물 또는 미세조류 등의 식생을 이용한 이산화탄소 고정 기술은 다른 물리, 화학적 회수 방법들과 달리 태양에너지를 광원으로 이용하므로 투자 및 운전 비용이 저렴하고, 환경 유해 물질의 발생으로 인한 2차 처리 비용이 소요되지 않으며, 경관 조성에도 크게 기여할 수 있다는 장점이 있다. Among them, carbon dioxide fixation technology using vegetation such as plants or microalgae, unlike other physical and chemical recovery methods, uses solar energy as a light source, so the investment and operation cost are low, and the secondary treatment cost due to the generation of environmentally harmful substances This does not take, and has the advantage that can greatly contribute to the landscape creation.

뿐만 아니라 이산화탄소 처리 후 얻은 미세조류로부터 약, 건각식품, 착색제, 효소 등의 유용물질을 추출하여 사용할 수 있다는 장점을 갖는다.In addition, it has the advantage that it can be used to extract useful substances, such as medicine, dried food, colorants, enzymes from the microalgae obtained after carbon dioxide treatment.

그러나, 종래 미세조류를 이용한 이산화탄소 고정 장치의 경우 미세조류가 배양되는 수조 내에 이산화탄소가 포함되는 배기 가스를 기포 상태로 공급함에 따라 수조 내에 용해되는 이산화탄소량이 제한적이어서 배양되는 미세조류의 탄소동화작용에 의해 포집될 수 있는 이산화탄소량이 감소하게 되고 물에 녹지 않은 다량의 이산화탄소가 공기 중으로 방출되는 문제점을 갖는다. However, in the case of the conventional carbon dioxide fixing device using the microalgae, by supplying the exhaust gas containing carbon dioxide in the bubble tank in which the microalgae is cultured in a bubble state, the amount of carbon dioxide dissolved in the tank is limited by the carbon assimilation of the cultured microalgae The amount of carbon dioxide that can be collected is reduced and a large amount of carbon dioxide which is not dissolved in water is released into the air.

따라서, 상기한 문제점을 해결하기 위해 동일 출원인에 의해 기출원된 대한민국 특허 출원 제2011-0071935호에서는 탄산수 제조기를 이용해 이산화탄소를 물에 용해시켜 제조되는 탄산수를 포집수조 내로 공급하여 배양되는 미세조류를 이용해 이산화탄소를 포집하는 "이산화탄소 저감 장치 및 이를 이용한 이산화탄소 저감 방법"을 개시하고 있다.Therefore, in the Republic of Korea Patent Application No. 2011-0071935, previously filed by the same applicant to solve the above problems using a microalgae that is cultured by supplying carbonated water prepared by dissolving carbon dioxide in water using a carbonated water maker into the collection tank Disclosed is a "carbon dioxide reduction device and a carbon dioxide reduction method using the same" for capturing carbon dioxide.

상기한 미세조류를 이용한 이산화탄소 고정 장치의 경우 이산화탄소를 물에 용해한 탄산수를 배양수로 사용하기 때문에, 탄산수의 이산화탄소 농도가 조류 성장에 적합하지 않으면 미세조류의 성장이 정상적으로 이루어지지 않아 이산화탄소 포집 효율이 떨어지게 된다. In the case of the carbon dioxide fixing device using the microalgae, carbonated water dissolved in carbon dioxide is used as the culture water, so if the carbon dioxide concentration of the carbonated water is not suitable for algae growth, the microalgae growth is not performed normally, and thus the carbon dioxide collection efficiency is reduced. do.

따라서, 종래 이산화탄소 고정 장치에서 미세조류 증식에 따른 배양수의 최적 이산화탄소 농도를 일정 유지하도록 하기 위해 상기 배양수의 이산화탄소 농도를 감시하기 위한 이산화탄소 농도 측정기를 사용 하였다. Therefore, in order to maintain a constant carbon dioxide concentration of the culture water according to the growth of the microalgae in the conventional carbon dioxide fixing device was used a carbon dioxide concentration meter for monitoring the carbon dioxide concentration of the culture water.

그러나, 이산화탄소 농도 측정기의 경우 대부분 측정 범위가 30% 범위 이내로 제한되기 때문에 이산화탄소 양을 직접 측정하는 방법은 적용이 곤란할 뿐만 아니라 좀더 정밀한 측정을 위해 고정도의 이산화탄소 농도 측정기를 사용하고자 하는 경우 고가여서 이산화탄소 고정 장치의 설비비를 과도하게 증가시키게 되는 단점을 갖는다.
However, since most carbon dioxide concentration meters are limited to within 30% of the measurement range, the method of directly measuring carbon dioxide is difficult to apply, and it is expensive to use a high-precision carbon dioxide concentration meter for more accurate measurement. The disadvantage is that the equipment cost of the apparatus is excessively increased.

상기한 문제점을 해결하기 위한 본 발명의 목적은, 이산화탄소 농도 측정기를 이용한 직접적인 배양수의 용존 이산화탄소 농도 측정 없이 우회적인 방법들을 통해 좀더 쉽고 간편하게 미세조류의 증식을 위한 배양수 내의 최적 용존 이산화탄소의 농도를 유지할 수 있도록 하는 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법을 제공하는 것이다.
An object of the present invention for solving the above problems, the concentration of the optimum dissolved carbon dioxide in the culture water for the growth of microalgae more easily and conveniently through the bypass method without directly measuring the dissolved carbon dioxide concentration of the culture water using a carbon dioxide concentration meter. It is to provide a method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using carbonated water to maintain.

상기의 목적을 달성하기 위한 본 발명의 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법은, 탄산수 제조기를 이용해 이산화탄소를 물에 용해시켜 탄산수를 제조하고, 포집수조 내에서 상기 탄산수 제조기로부터 공급된 탄산수를 배양수로 이용해 미세조류를 배양하여, 상기 미세조류의 탄소동화작용에 의해 이산화탄소를 포집하는 이산화 탄소 저감 장치에서 상기 포집수조 내부로 공급되는 상기 탄산수의 이산화탄소 농도 제어 방법에 있어서, 상기 포집수조 내에서 상기 미세조류 증식을 위한 상기 배양수의 최적 pH값을 설정하고, 상기 포집수조 내의 상기 배양수의 pH 값을 측정하여, 상기 최적 pH 설정값을 기준으로 상기 pH 측정값의 변화량에 따라 상기 탄산수 내에 용해되는 이산화탄소 공급량을 가변시켜 용존 이산화탄소 농도를 제어하는 것을 특징으로 한다. In the method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water of the present invention for achieving the above object, the carbon dioxide is dissolved in water using a carbonated water maker to produce carbonated water, and the carbonated water supplied from the carbonated water maker in the collection tank In the method of controlling the carbon dioxide concentration of the carbonated water supplied into the collection tank in the carbon dioxide reduction device for culturing the microalgae using the culture water as a culture water, and collects carbon dioxide by the carbon assimilation of the microalgae, Set the optimum pH value of the culture water for the growth of the microalgae, and measure the pH value of the culture water in the collection tank, the carbonated water according to the change amount of the pH measurement value based on the optimum pH set value Dissolved carbon dioxide by varying the amount of carbon dioxide dissolved Characterized by controlling the concentration.

여기서, 상기 최적 pH 설정값을 기준으로 상기 측정된 pH 값이 낮아질수록, 상기 탄산수 내에 용해되는 이산화탄소 공급량을 증가시키도록 제어하는 것이 바람직하다.Here, as the measured pH value is lowered based on the optimum pH set value, it is preferable to control to increase the amount of carbon dioxide dissolved in the carbonated water.

또 다른 본 발명의 탄산수를 이용한 이산화탄소 고정 장치의 이산화탄소 농도 제어 방법은, 탄산수 제조기를 이용해 이산화탄소를 물에 용해시켜 탄산수를 제조하고, 포집수조 내에서 상기 탄산수 제조기로부터 공급된 탄산수를 배양수 이용해 미세조류를 배양하여, 상기 미세조류의 탄소동화작용에 의해 이산화탄소를 포집하는 이산화 탄소 저감 장치에서 상기 포집수조 내부로 공급되는 상기 탄산수의 이산화탄소 농도 제어 방법에 있어서, 상기 포집수조 내에서 상기 미세조류 증식을 위한 상기 배양수의 최적의 용존 이산화탄소 농도를 설정하고, 상기 포집수조로부터 배출되는 산소(O2) 배출량을 측정하여, 상기 측정된 상기 산소 배출량에 따라 상기 탄산수 내에 용해되는 이산화탄소 공급량을 가변시켜 이산화탄소 농도를 제어하는 것을 특징으로 한다. In another method of controlling carbon dioxide concentration of a carbon dioxide fixing device using carbonated water according to the present invention, carbon dioxide is dissolved in water using a carbonated water maker to produce carbonated water, and the microalgae using carbonated water supplied from the carbonated water maker in a collection tank is cultured. In the method of controlling the carbon dioxide concentration of the carbonated water supplied into the collection tank in the carbon dioxide reduction device for capturing carbon dioxide by the carbon assimilation of the microalgae, for the growth of the microalgae in the collection tank Set the optimum dissolved carbon dioxide concentration of the culture water, measure the amount of oxygen (O2) discharged from the collection tank, and control the carbon dioxide concentration by varying the amount of carbon dioxide dissolved in the carbonated water according to the measured oxygen discharge Characterized by do.

여기서, 상기 이산화탄소 공급량은 상기 산소 배출량과 44: 32의 중량% 비율로 이루어지는 것이 바람직하다.
Here, the carbon dioxide supply amount is preferably made of the weight ratio of 44: 32 and the oxygen emissions.

상기한 본 발명의 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법에 따르면, 상기 포집수조 내의 상기 배양수의 pH 값을 측정하거나 또는 상기 포집수조로부터 배출되는 산소(O2) 배출량을 측정하는 우회적인 용존 이산화탄소(CO2) 농도 측정 방법들을 통해 좀더 효과적으로 미세조류의 최적 배양 조건을 갖도록 배양수 내의 이산화탄소 농도 값을 제어할 수 있도록 하는 효과를 갖는다.According to the method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water of the present invention, by measuring the pH value of the culture water in the collection tank or by measuring the oxygen (O 2 ) emissions discharged from the collection tank Phosphorus dissolved carbon dioxide (CO 2 ) concentration measurement methods have the effect of more effectively controlling the concentration of carbon dioxide in the culture water to have an optimum culture conditions of microalgae.

또한, 본 발명의 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법에 따르면, 고가의 이산화탄소 농도 측정기를 대신하여 pH 측정기 또는 산소 측정기를 사용함으로써 이산화탄소 고정 장치의 설비비를 절감할 수 있도록 하는 효과를 갖는다.
In addition, according to the method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water of the present invention, it has the effect of reducing the equipment cost of the carbon dioxide fixing device by using a pH meter or an oxygen meter in place of the expensive carbon dioxide concentration meter. .

도 1은 본 발명의 제1 실시예에 따른 이산화탄소 고정 장치를 도시한 개략도이다.
도 2는 도 1의 이산화탄소 고정 장치의 탄산수의 용존 이산화탄소 농도 제어 과정을 도시한 순서도이다.
도 3은 본 발명의 제2 실시예에 따른 이산화탄소 고정 장치를 도시한 개략도이다.
도 4는 도 3의 이산화탄소 고정 장치의 탄산수의 용존 이산화탄소 농도 제어 과정을 도시한 순서도이다.
1 is a schematic diagram showing a carbon dioxide fixing device according to a first embodiment of the present invention.
FIG. 2 is a flowchart illustrating a process for controlling dissolved carbon dioxide concentration of carbonated water in the carbon dioxide fixing device of FIG. 1.
3 is a schematic view showing a carbon dioxide fixing device according to a second embodiment of the present invention.
4 is a flowchart illustrating a process for controlling dissolved carbon dioxide concentration of carbonated water in the carbon dioxide fixing device of FIG. 3.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.

도 1은 본 발명의 제1 실시예에 따른 이산화탄소 고정 장치를 도시한 개략도이다.1 is a schematic diagram showing a carbon dioxide fixing device according to a first embodiment of the present invention.

도 1을 참조하여 설명하면, 본 실시예의 이산화탄소 고정 장치(1)는 탄산수 제조기(20), 포집수조(10), pH 측정기(35), 제어기(30)를 포함하여 구성된다.Referring to FIG. 1, the carbon dioxide fixing device 1 of the present embodiment includes a carbonated water producer 20, a collection tank 10, a pH meter 35, and a controller 30.

탄산수 제조기(20)는 공기 또는 배기가스 중에 포함된 가스 상태의 이산화탄소를 물에 용해시켜 아래 화학식 1과 같이 탄산수를 제조하도록 구성된다.The carbonated water maker 20 is configured to dissolve carbon dioxide in a gaseous state contained in air or exhaust gas in water to produce carbonated water as shown in Chemical Formula 1 below.

Figure 112011077217257-pat00001
Figure 112011077217257-pat00001

한편, 상기 탄산수 제조기(20)는 후술하는 제어기(30)의 제어 신호에 따라 포집수조(10) 내로 공급되는 탄산수 내의 이산화탄소 농도 조절이 가능하도록 구성되는 것이 바람직하다.On the other hand, the carbonated water maker 20 is preferably configured to enable the control of the carbon dioxide concentration in the carbonated water supplied into the collection tank 10 according to the control signal of the controller 30 to be described later.

본 실시예에서는 이산화탄소 고정 장치(1)에 사용되는 탄산수 제조기(20)는 물이 담긴 압력 용기 내에 가스 상태의 이산화탄소를 폭기시켜 용해하는 기폭식 탄산수 제조기로 이루어지는 것을 예시한다. In the present embodiment, the carbonated water producer 20 used in the carbon dioxide fixing device 1 exemplifies that the carbonated water producer 20 is formed of an explosive carbonated water maker which aerated and dissolved gaseous carbon dioxide in a pressure vessel containing water.

그러나 본 발명이 이에 반드시 한정되는 것은 아니며 가스 형태로 존재하는 이산화탄소를 물에 용해시켜 이산화탄소 농도 조절이 가능하게 탄산수를 제조할 수 있도록 하는 한 다양한 형태로 변형되어 적용될 수 있음은 당연하다.However, the present invention is not necessarily limited thereto, and it is obvious that the present invention may be modified and applied in various forms as long as carbon dioxide is dissolved in water to prepare carbonated water to control carbon dioxide concentration.

포집수조(10)는 상기한 탄산수 제조기(20)로부터 공급된 탄산수를 배양수(12)로 하여 미세조류(11)를 배양하여 이들의 탄소동화작용에 의해 탄산수 내에 용해된 이산화탄소를 포집하도록 구성된다. The collection tank 10 is configured to incubate the microalgae 11 by using the carbonated water supplied from the carbonated water maker 20 as the culture water 12 to capture carbon dioxide dissolved in the carbonated water by their carbon assimilation. .

여기서, 포집수조(10)로 공급된 탄산수를 미세조류(11)의 광합성을 이용한 탄소동화작용을 통해 이산화탄소를 포집하는 과정은 아래 화학식2 및 화학식 3의 과정을 거치며 이루어진다. Here, the process of capturing carbon dioxide through carbon assimilation using the photosynthesis of the microalgae 11 of the carbonated water supplied to the collection tank 10 is performed through the processes of Formulas 2 and 3 below.

Figure 112011077217257-pat00002
Figure 112011077217257-pat00002

Figure 112011077217257-pat00003
Figure 112011077217257-pat00003

여기서, H2A는 물, 황화수소 이외에 수소, 지방산, 알코올류를 사용하는 미세조류 모두를 포함할 수 있다. Here, H 2 A may include both microalgae using hydrogen, fatty acids, and alcohols in addition to water and hydrogen sulfide.

따라서, 본 실시예의 미세조류를 이용한 이산화탄소 저감 장치(1)는, 이산화탄소를 물에 용해시켜 탄산수를 제조하고, 제조된 탄산수에 배양되는 미세조류의 탄소동화작용에 의한 이산화탄소의 고정 효율을 높일 수 있게 된다. Therefore, the carbon dioxide abatement apparatus 1 using the microalgae of the present embodiment may dissolve carbon dioxide in water to produce carbonated water and increase the fixed efficiency of carbon dioxide by carbon assimilation of microalgae cultured in the produced carbonated water. do.

한편, pH 측정기(35)는 상기 포집수조(10) 내부에 고정 설치되어 상기 포집수조(10) 내의 배양수(12)의 pH 값을 측정하도록 한다.On the other hand, the pH meter 35 is fixed to the collection tank 10 to measure the pH value of the culture water 12 in the collection tank (10).

그리고, 제어기(30)는 pH 측정기(35)에 의해 측정된 상기 포집수조(10 상기 배양수(12)의 pH 값에 따라, 탄산수 제조기(20)로부터 제조되는 상기 포집수조(10) 내부로 공급되는 상기 탄산수(12)의 용존 이산화탄소 농도를 조절하도록 한다.Then, the controller 30 is supplied into the collection tank 10 manufactured from the carbonated water maker 20 according to the pH value of the collection water tank 10 of the culture water 12 measured by the pH meter 35. It is to adjust the dissolved carbon dioxide concentration of the carbonated water 12.

도 2는 도 1의 이산화탄소 고정 장치의 이산화탄소 농도 제어 과정을 도시한 순서도이다. FIG. 2 is a flowchart illustrating a carbon dioxide concentration control process of the carbon dioxide fixing device of FIG. 1.

도 2에 도시한 바와 같이, 본 실시예의 이산화탄소 고정 장치의 이산화탄소 농도 제어 방법은 최적 pH값 설정(ST11), 배양수 pH값 측정(ST12) 및 탄산수의 이산화탄소 농도 제어(ST13) 단계를 통해 포집수조(10) 내의 미세조류(11) 배양을 위한 배양수(12) 내의 최적 이산화탄소 농도값을 유지할 수 있도록 한다.As shown in Figure 2, the carbon dioxide concentration control method of the carbon dioxide fixing device of the present embodiment is the collection tank through the optimal pH value setting (ST11), culture water pH value measurement (ST12) and carbon dioxide concentration control of the carbonated water (ST13) step It is possible to maintain the optimum carbon dioxide concentration value in the culture water 12 for culturing the microalgae (11) in (10).

먼저, 최적 pH값 설정(ST11) 단계에서는, 포집수조(10) 내에 설치되는 pH 측정기(35)를 이용해 미세조류(11)의 최적 배양 조건을 만족하는 이산화탄소 농도 값일 때의 pH 값을 측정하여 최적 pH 설정값으로 설정한다.First, in the step of setting the optimum pH value (ST11), by using the pH meter 35 installed in the collection tank 10, by measuring the pH value when the carbon dioxide concentration value that satisfies the optimum culture conditions of the microalgae 11, Set to pH setpoint.

이때, 최적 pH 설정값은 포집수조 내에 수용된 배양수(12)의 용량, 배양수(12)의 온도, 배양수(12) 내로 조사되는 빛 에너지의 세기 및 미세조류의 종류에 따른 증식 속도 등의 조건들을 고려하여 각각의 변수들에 대한 최적 범위로 설정하게 된다.At this time, the optimum pH value is set such as the capacity of the culture water 12 accommodated in the collection tank, the temperature of the culture water 12, the intensity of light energy irradiated into the culture water 12 and the growth rate according to the type of microalgae Considering the conditions, the optimum range for each variable is set.

배양수 pH값 측정(ST12) 단계에서는, 상기한 이산화탄소 고정 장치의 운전기간 동안 지속적으로 포집수조(10) 내에 설치되는 pH 측정기(35)를 이용해 배양수(12)의 pH값을 지속적으로 측정 감시하도록 한다.In the cultured water pH value measurement (ST12) step, the pH value of the cultured water 12 is continuously monitored and monitored using a pH meter 35 installed in the collection tank 10 continuously during the operation of the carbon dioxide fixing device. Do it.

한편, 상기한 최적 pH 설정값은 각각의 설정 조건에 따라 데이터 베이스화된 상태로 제어기(30)에 설정 저장되고, 연속적으로 측정된 pH 측정값은 제어기(30)로 입력되어 최적 이산화탄소 농도 유지를 위해 저장 및 상기한 최적 pH 설정값과 비교 연산처리 된다.On the other hand, the optimal pH set value is stored in the controller 30 in a database state according to each setting condition, the continuously measured pH measurement value is input to the controller 30 to maintain the optimum carbon dioxide concentration Stored and compared with the optimum pH setpoint described above.

탄산수의 이산화탄소 농도 제어(ST13) 단계에서는, 제어기(30)를 통해 상기 최적 pH 설정값을 기준으로 상기 pH 측정값의 변화량을 산출하고, pH 측정값의 변화량에 따라 상기 탄산수 제조기(20)를 통해 상기 포집수조 내로 공급되는 상기 탄산수 내의 이산화탄소 농도 값을 가변 제어하도록 한다.In the step of controlling carbon dioxide concentration of carbonated water (ST13), the controller 30 calculates a change amount of the pH measurement value based on the optimum pH set value, and through the carbonated water maker 20 according to the change amount of the pH measurement value. Variable control of the carbon dioxide concentration value in the carbonated water supplied into the collection tank.

여기서, 상기 배양수의 pH 측정값이 감소할수록 배양수 내의 이산화탄소 용존량이 감소하는 것을 의미한다.Here, as the pH value of the culture water decreases, it means that the amount of carbon dioxide dissolved in the culture water decreases.

따라서, 상기 최적 pH 설정값을 기준으로 상기 pH 측정값이 낮아질수록 이산화탄소의 투입량 즉, 기폭량을 높여 포집수조(10)로 공급되는 상기 탄산수의 이산화탄소 농도 값이 증가하도록 제어하고, 상기 최적 pH 설정값을 기준으로 상기 pH 측정값이 낮아질수록 이산화탄소의 투입량을 줄여 포집수조(10)로 공급되는 상기 탄산수의 이산화탄소 농도 값이 감소하도록 제어함으로써, 결국 포집수조 내의 배양수가 미세조류 배양에 필요한 최적의 용존 이산화탄소 농도를 유지할 수 있게 된다. Therefore, as the pH measured value is lowered based on the optimal pH set value, the carbon dioxide concentration of the carbonated water supplied to the collection tank 10 is increased by increasing the input amount of carbon dioxide, that is, the detonation amount, and setting the optimum pH. As the pH measurement value is lowered based on the value, the amount of carbon dioxide is reduced to control the carbon dioxide concentration value of the carbonated water supplied to the collection tank 10 so that the culture water in the collection tank is optimally dissolved in microalgae culture. It is possible to maintain the carbon dioxide concentration.

이처럼, 본 실시예의 탄산수를 이용한 이산화탄소 고정 장치의 이산화탄소 농도 제어 방법을 통해 pH 측정기(35)를 이용해 포집수조(10) 내의 상기 배양수의 pH 값을 측정하는 우회전인 방법을 통해 좀더 쉽고 간편하며 저비용으로 미세조류(11)의 최적 배양 조건에 대한 배양수 내의 용존 이산화탄소 농도를 제어할 수 있는 효과를 갖게 된다. As such, through the method of controlling the carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water of the present embodiment, the right turn to measure the pH value of the culture water in the collection tank 10 using the pH meter 35 is easier, simpler and lower cost. This has the effect of controlling the dissolved carbon dioxide concentration in the culture water for the optimum culture conditions of the microalgae (11).

이하, 본 발명의 제2 실시예에 따른 탄산수를 이용한 이산화탄소 고정 장치의 이산화탄소 농도 제어 방법을 첨부한 도면을 참조하여 설명하고, 상기한 제1 실시예와 동일 및 유사한 구성에 대해서는 동일 참조 부호를 사용하고 이에 대한 반복적인 설명은 생략한다.Hereinafter, a method of controlling carbon dioxide concentration of a carbon dioxide fixing device using carbonated water according to a second embodiment of the present invention will be described with reference to the accompanying drawings, and the same reference numerals are used for the same and similar components as those of the first embodiment. The repeated description thereof will be omitted.

도 3은 본 발명의 제2 실시예에 따른 이산화탄소 고정 장치를 도시한 개략도이고, 도 4는 도 3의 이산화탄소 고정 장치의 탄산수의 용존 이산화탄소 농도 제어 과정을 도시한 순서도이다.3 is a schematic diagram illustrating a carbon dioxide fixing device according to a second embodiment of the present invention, and FIG. 4 is a flowchart illustrating a process for controlling dissolved carbon dioxide concentration of carbonated water in the carbon dioxide fixing device of FIG. 3.

도 3 및 도 4를 참조하여 설명하면, 본 실시예의 이산화탄소 고정 장치(100)는, 제1 실시예의 이산화탄소 고정 장치(1)와 비교하여 포집수조(10) 내에 설치되는 pH 측정기(35)를 대신하여 포집수조(10) 상측을 덮으며 산소 배기관(45)이 설치됨과 아울러 상기 산소 배기관(45)을 통해 배출되는 산소(O2) 량을 측정하기 위한 산소 측정기(40)가 설치되는 구성의 차이를 갖는다.Referring to FIG. 3 and FIG. 4, the carbon dioxide fixing device 100 of the present embodiment replaces the pH meter 35 installed in the collection tank 10 as compared to the carbon dioxide fixing device 1 of the first embodiment. The difference between the configuration in which the oxygen exhaust pipe 45 is installed to cover the upper side of the collection tank 10 and the oxygen measuring device 40 for measuring the amount of oxygen (O 2 ) discharged through the oxygen exhaust pipe 45 is installed. Has

따라서, 본 실시예의 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법은 최적 용존 이산화탄소 농도 설정(ST101), 산소 배출량 측정(ST102) 및 탄산수의 용존 이산화탄소 농도 제어(ST103)를 통해 이루어진다.Therefore, the method for controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device of the present embodiment is performed by setting the optimal dissolved carbon dioxide concentration (ST101), measuring the oxygen emission amount (ST102), and controlling the dissolved carbon dioxide concentration of the carbonated water (ST103).

최적 용존 이산화탄소 농도 설정(ST101) 단계에서는, 상기 포집수조(10) 내에서 상기 미세조류 증식을 위한 최적의 용존 이산화탄소 농도 값을 범위를 이산화탄소 농도 측정기(36)를 이용해 전술한 각각의 조건에 따라 설정한다.In the step of setting the optimal dissolved carbon dioxide concentration (ST101), the range of the optimal dissolved carbon dioxide concentration for the growth of the microalgae in the collection tank 10 is set in accordance with the above-described conditions using the carbon dioxide concentration meter 36. do.

이때, 이산화탄소 농도 측정기(36)는 배양수의 상기한 최적 범위의 이산화탄소 농도 값의 범위를 설정하기 위한 것으로 포집수조(10) 내에 반드시 고정 설치될 필요가 없어 상기한 이산화탄소 고정 장치(100)의 초기 설비비를 절감할 수 있다. At this time, the carbon dioxide concentration measuring device 36 is for setting the range of the carbon dioxide concentration value of the optimum range of the culture water is not necessarily fixed to be installed in the collection tank 10, the initial stage of the carbon dioxide fixing device 100 The cost of equipment can be reduced.

산소 배출량 측정(ST102) 단계에서는, 산소 측정기(40)를 이용해 포집수조(10) 내에서 미세조류의 탄소동화작용에 의해 생산되어 산소 배출관(45)을 통해 배출되는 산소(O2) 량을 측정한다. In the step of measuring oxygen emission (ST102), the oxygen measuring device 40 measures the amount of oxygen (O 2 ) produced by the carbonization of microalgae in the collection tank 10 and discharged through the oxygen discharge pipe 45. do.

탄산수의 용존 이산화탄소 농도 제어(ST103) 단계에서는, 제어기(30)를 통해 상기 측정된 상기 산소 배출량에 따라 상기 탄산수 내에 용해되는 이산화탄소 투입량을 가변시켜 이산화탄소 농도를 제어하도록 한다. In the step of controlling dissolved carbon dioxide concentration of carbonated water (ST103), the amount of carbon dioxide dissolved in the carbonated water is varied through the controller 30 to control the carbon dioxide concentration.

즉, 포집수조(10) 내의 배양수의 용존 이산화탄소 농도를 미세조류 증식에 최적 상태가 되도록 초기 조건을 설정한 후, 포집수조(10)에서 배출되는 산소량을 측정하여, 측정된 산소 배출량에 따라 동일 비율로 이산화탄소 투입량을 가변시켜 최적의 이산화탄소 농도값을 지속적으로 유지하도록 하는 것이다. That is, after the initial conditions are set so that the dissolved carbon dioxide concentration of the culture water in the collection tank 10 is optimal for microalgal growth, the amount of oxygen discharged from the collection tank 10 is measured, and the same according to the measured oxygen discharge amount. By varying the carbon dioxide input at a ratio, the optimum carbon dioxide concentration value is continuously maintained.

이때, 이산화탄소 공급량은 산소 배출량과 44: 32의 중량% 비율로 이루어지도록 하는 것이 바람직하다. At this time, the carbon dioxide supply amount is preferably made to the oxygen emissions and 44: 32% by weight ratio.

포집수조(10) 내에서 미세조류(11)에 의한 광합성의 전체 과정은 아래 화학식4와 같이, 광합성의 명반응을 통해 산소(O2) 생성되며, 암반응을 통해 포도당(C3H12O6)이 합성되고 물(H2O)을 발생시킨다. The entire process of photosynthesis by the microalgae 11 in the collection tank 10 is produced by oxygen (O 2 ) through the photosynthetic light reaction, as shown in the following formula (4), glucose through the cancer reaction (C 3 H 12 O 6 ) Is synthesized and generates water (H 2 O).

Figure 112011077217257-pat00004
Figure 112011077217257-pat00004

즉, 6몰(mol)의 이산화탄소(CO2)가 소비하여 1몰(mol)의 포도당(C3H12O6)과 6몰(mol)의 산소(O2)를 생산하게 된다.That is, 6 mol (mol) of carbon dioxide (CO 2 ) is consumed to produce 1 mol (mol) of glucose (C 3 H 12 O 6 ) and 6 mol (mol) of oxygen (O 2 ).

따라서, 1몰(mol; 32g)의 산소(O2)를 생성하기 위해서는 동일 비율로 1몰(mol; 44g)의 이산화탄소(CO2)가 필요하기 때문에, 이산화탄소 공급량이 산소 배출량은 44: 32의 중량% 를 이루도록 하여 배양수 내의 최적 용존 이산화탄소 농도값을 일정하게 유지시킨다. Therefore, in order to generate 1 mol (32 g) of oxygen (O 2 ), since 1 mol (mol; 44 g) of carbon dioxide (CO 2 ) is required at the same ratio, the carbon dioxide supply amount is 44: 32. By weight percent to maintain a constant dissolved carbon dioxide concentration value in the culture.

이처럼, 본 실시예의 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법에서는 상기 포집수조(10)로부터 배출되는 산소(O2) 배출량을 측정하는 우회전인 방법을 통해 좀더 간편하고 저비용으로 미세조류의 최적 배양 조건에 대한 배양수 내의 용존 이산화탄소 농도 값을 제어할 수 있는 효과를 갖는다.As such, in the method of controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water of the present embodiment, the optimal cultivation of microalgae at a simpler and lower cost through the right rotation method of measuring the oxygen (O 2) emission discharged from the collection tank 10. It has the effect of controlling the dissolved carbon dioxide concentration value in the culture water for the conditions.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형 또는 변경하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications or changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. In addition, it is natural that it belongs to the scope of the present invention.

1, 100; 이산화탄소 고정 장치 10: 포집수조
11: 미세조류 12: 배양수(탄산수)
20: 탄산수 제조기 30: 제어기
35: pH 측정기 36: 이산화탄소 농도 측정기
40: 산소 측정기 45: 산소 배출관
1, 100; CO2 fixture 10: collection tank
11: microalgae 12: cultured water (carbonated water)
20: carbonated water maker 30: controller
35: pH meter 36: carbon dioxide concentration meter
40: oxygen measuring instrument 45: oxygen discharge pipe

Claims (4)

탄산수 제조기를 이용해 이산화탄소를 물에 용해시켜 탄산수를 제조하고,
포집수조 내에서 상기 탄산수 제조기로부터 공급된 탄산수를 배양수로 이용해 미세조류를 배양하여,
상기 미세조류의 탄소동화작용에 의해 이산화탄소를 포집하는 이산화 탄소 저감 장치에서 상기 포집수조 내부로 공급되는 상기 탄산수의 용존 이산화탄소 농도 제어 방법에 있어서,

상기 포집수조 내에서 상기 미세조류 증식을 위한 상기 배양수의 최적 pH값을 설정하고,
상기 포집수조 내의 상기 배양수의 pH 값을 측정하여,
상기 최적 pH 설정값을 기준으로 상기 pH 측정값의 변화량에 따라 상기 탄산수 내에 용해되는 이산화탄소 공급량을 가변시켜 용존 이산화탄소 농도를 제어하는 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법.
Carbonated water is prepared by dissolving carbon dioxide in water using a carbonated water maker,
Incubating the microalgae in the collection tank using the carbonated water supplied from the carbonated water maker as culture water,
In the method of controlling the dissolved carbon dioxide concentration of the carbonated water supplied into the collection tank in the carbon dioxide reduction device for collecting carbon dioxide by the carbon assimilation of the microalgae,

Setting an optimum pH value of the culture water for the growth of the microalgae in the collection tank;
By measuring the pH value of the culture water in the collection tank,
The method of controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using carbonated water to control the dissolved carbon dioxide concentration by varying the amount of carbon dioxide dissolved in the carbonated water according to the change amount of the pH measurement value based on the optimum pH set value.
제1항에서,
상기 최적 pH 설정값을 기준으로 상기 측정된 pH 값이 낮아질수록, 상기 탄산수 내에 용해되는 이산화탄소 공급량을 증가시키도록 제어하는 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법.
In claim 1,
The method of controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using carbonated water to control to increase the amount of carbon dioxide dissolved in the carbonated water, the lower the measured pH value based on the optimum pH set value.
탄산수 제조기를 이용해 이산화탄소를 물에 용해시켜 탄산수를 제조하고,
포집수조 내에서 상기 탄산수 제조기로부터 공급된 탄산수를 배양수로 이용해 미세조류를 배양하여,
상기 미세조류의 탄소동화작용에 의해 이산화탄소를 포집하는 이산화 탄소 저감 장치에서 상기 포집수조 내부로 공급되는 상기 탄산수의 용존 이산화탄소 농도 제어 방법에 있어서,

상기 포집수조 내에서 상기 미세조류 증식을 위한 상기 배양수의 최적의 용존 이산화탄소 농도를 설정하고,
상기 포집수조로부터 배출되는 산소(O2) 배출량을 측정하여,
상기 측정된 상기 산소 배출량에 따라 상기 탄산수 내에 용해되는 이산화탄소 공급량을 가변시켜 용존 이산화탄소 농도를 제어하는 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법.
Carbonated water is prepared by dissolving carbon dioxide in water using a carbonated water maker,
Incubating the microalgae in the collection tank using the carbonated water supplied from the carbonated water maker as culture water,
In the method of controlling the dissolved carbon dioxide concentration of the carbonated water supplied into the collection tank in the carbon dioxide reduction device for collecting carbon dioxide by the carbon assimilation of the microalgae,

Setting the optimum dissolved carbon dioxide concentration of the culture water for the growth of the microalgae in the collection tank,
By measuring the oxygen (O2) emissions discharged from the collection tank,
The method of controlling the dissolved carbon dioxide concentration of the carbon dioxide fixing device using the carbonated water to control the dissolved carbon dioxide concentration by varying the amount of carbon dioxide dissolved in the carbonated water according to the measured oxygen emissions.
제3항에서,
상기 이산화탄소 공급량은 상기 산소 배출량과 44: 32의 중량% 비율로 이루어지는 탄산수를 이용한 이산화탄소 고정 장치의 용존 이산화탄소 농도 제어 방법.
4. The method of claim 3,
The carbon dioxide supply amount is the dissolved carbon dioxide concentration control method of the carbon dioxide fixing device using carbonated water in the ratio of 44: 32% by weight of the oxygen discharge.
KR1020110100623A 2011-10-04 2011-10-04 Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water KR101250856B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110100623A KR101250856B1 (en) 2011-10-04 2011-10-04 Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water
PCT/KR2011/007958 WO2013051750A1 (en) 2011-10-04 2011-10-25 Dissolved carbon dioxide concentration control method for carbon dioxide-fixing device using carbonated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110100623A KR101250856B1 (en) 2011-10-04 2011-10-04 Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water

Publications (1)

Publication Number Publication Date
KR101250856B1 true KR101250856B1 (en) 2013-04-04

Family

ID=48043901

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110100623A KR101250856B1 (en) 2011-10-04 2011-10-04 Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water

Country Status (2)

Country Link
KR (1) KR101250856B1 (en)
WO (1) WO2013051750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040963A (en) * 2019-04-25 2022-02-11 道达尔能源欧洲公司 Method for measuring microalgae culture activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090121659A (en) * 2008-05-22 2009-11-26 주식회사 포스코 Micoalgal species having high uptake rate of carbon dioxide and use thereof
JP2010022331A (en) 2008-07-24 2010-02-04 Takenaka Komuten Co Ltd System and method for regenerating carbon dioxide
KR20110051329A (en) * 2009-11-10 2011-05-18 한국에너지기술연구원 Method for cultivation of microalgae combined with co2 capture process from flue gas using ammonia water
KR20110098620A (en) * 2010-02-26 2011-09-01 (주)이노비드 System for fixation of carbon dioxide using microalgae and operation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090121659A (en) * 2008-05-22 2009-11-26 주식회사 포스코 Micoalgal species having high uptake rate of carbon dioxide and use thereof
JP2010022331A (en) 2008-07-24 2010-02-04 Takenaka Komuten Co Ltd System and method for regenerating carbon dioxide
KR20110051329A (en) * 2009-11-10 2011-05-18 한국에너지기술연구원 Method for cultivation of microalgae combined with co2 capture process from flue gas using ammonia water
KR20110098620A (en) * 2010-02-26 2011-09-01 (주)이노비드 System for fixation of carbon dioxide using microalgae and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040963A (en) * 2019-04-25 2022-02-11 道达尔能源欧洲公司 Method for measuring microalgae culture activity

Also Published As

Publication number Publication date
WO2013051750A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Doucha et al. Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor
Yue et al. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae
CN105585129B (en) A kind of simulation original position river channel ecology system nitrogen returns the device and method to become
Filali et al. Growth modeling of the green microalga Chlorella vulgaris in an air-lift photobioreactor
KR101122986B1 (en) Method for reducing co2 in exhaust gas using microalgae
CN103112993B (en) Method for processing oilfield wastewater and fixing CO2 (carbon dioxide) by using microalgae
EP2981604B1 (en) Photobioreactor for co2 biosequestration with immobilised biomass of algae or cyanobacteria
Karube et al. Biotechnological reduction of CO 2 emissions
US20140186931A1 (en) Process of Operating a Plurality of Photobioreactors
CN103946368A (en) Process using exhaust gases for effecting growth of phototrophic biomass
RU151251U1 (en) PLANT FOR GROWING MICROALGAE
CN115369041A (en) Production of biomass
KR101250856B1 (en) Method of controlling concentration of carbon dioxide for carbon dioxide fixing device using catbonated water
CN105248350A (en) High-yield aquaculture method
KR20130036505A (en) Device of fixing carbon dioxide with the microalgae to be able to measure natural anemy microorganism
CN105420176A (en) Microalgae breeding method with high CO2 tolerance and fixed rate
CN112899125B (en) Microalgae efficient carbon sequestration device and nutrient supplement control method
Rinanti et al. Integrated vertical photobioreactor system for carbon dioxide removal using phototrophic microalgae
KR20150006718A (en) Microalgal Cultivation Facility Using Closed Carbon Dioxide Photobioreactor
KR20130036506A (en) Device of fixing carbon dioxide with the microalgae and methode of realtime measuring carbon dioxide fixing eficiency using the same
CN109275560B (en) System and method for researching long-term acidification adaptability of large marine algae
KR20130036504A (en) Method of havesting microalgae for carbon dioxide fixing device
KR101236506B1 (en) Device of reducting carbon dioxide with the microalgae and methode of reducting carbon dioxide using the same
Hadiningrat et al. The utilization of microalgae as an agent for converting CO2 to O2 in a photosynthesis reactor to mitigate CO2 emissions
TWI308177B (en) Method of culturing microorganism and apparatus thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 8