KR101250071B1 - Siderophore over-production method from microorganism - Google Patents

Siderophore over-production method from microorganism Download PDF

Info

Publication number
KR101250071B1
KR101250071B1 KR1020110092470A KR20110092470A KR101250071B1 KR 101250071 B1 KR101250071 B1 KR 101250071B1 KR 1020110092470 A KR1020110092470 A KR 1020110092470A KR 20110092470 A KR20110092470 A KR 20110092470A KR 101250071 B1 KR101250071 B1 KR 101250071B1
Authority
KR
South Korea
Prior art keywords
present
microorganism
iron
gene
ftr2
Prior art date
Application number
KR1020110092470A
Other languages
Korean (ko)
Other versions
KR20130029213A (en
Inventor
윤철원
김지현
김정결
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020110092470A priority Critical patent/KR101250071B1/en
Publication of KR20130029213A publication Critical patent/KR20130029213A/en
Application granted granted Critical
Publication of KR101250071B1 publication Critical patent/KR101250071B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 ftr1 ftr2 유전자가 결손된 시데로포아 생산 미생물의 변이체를 배지에서 배양하는 단계를 포함하는 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법에 관한 것이다. 상기 본 발명에 의하면 변이체는 야생주에 비해 13 ~ 23 배로 대량 생산할 수 있고, 이렇게 대량 생산된 시데로포아는 식물의 생장 촉진 및 중금속으로 오염된 토양 등을 친환경적으로 정화하는 데 유용하게 이용될 수 있다. Present invention ftr1 And it relates to a method for producing a siderofoa from the microorganism comprising the step of culturing in a medium a variant of the cideropoa producing microorganism lacking the ftr2 gene. According to the present invention, the variant can be mass produced 13-23 times as compared to wild wine, and this mass-produced siderofoa can be usefully used to promote the growth of plants and to clean environment-friendly soils contaminated with heavy metals. have.

Description

미생물로부터 시데로포아를 대량으로 생산하는 방법{Siderophore over-production method from microorganism}Siderophore over-production method from microorganism

본 발명은 미생물로부터 시데로포아(siderophore)를 대량으로 생산하는 방법에 관한 것이다. 더욱 상세하게는 철 대사 과정에서 관여하는 유전자 중 ftr1ftr2 유전자를 결손시키고 배양 조건을 조절하여 미생물로부터 시데로포아를 대량으로 생산하는 방법에 관한 것이다.
The present invention relates to a method for mass production of siderophores from microorganisms. More specifically, the present invention relates to a method for producing a large amount of ciderofoa from microorganisms by deleting the ftr1 and ftr2 genes among the genes involved in the iron metabolism process and adjusting the culture conditions.

철은 생물체의 필수 영양분으로서 생체내의 다양한 대사과정에 관여한다. 인간과 같은 고등생물체에서는 주로 철은 단순한 형태로 흡수되어 생체 내 다양한 부위에 전해진다. 그러나 미생물의 경우 철이 부족한 환경에서 살아가는 이유로 조금 다른 형태의 철 흡수 기작을 지니고 있으며 시데로포아를 이용하여 철의 흡수를 활성화시키는 독특한 기작으로 알려져 있다. Iron is an essential nutrient for organisms and is involved in various metabolic processes in vivo. In higher organisms such as humans, iron is mainly absorbed in simple forms and transmitted to various parts of the body. However, microorganisms have a slightly different form of iron absorption mechanism for living in an iron-deficient environment and are known as a unique mechanism of activating iron absorption using ciderropoa.

시데로포아는 수용성인 저분자의 철이온-특이 결합(ferric iron-chelating) 화합물이며 일반적으로 펩타이드 사슬로 연결된 황록색의 형광 크로모포어(fluorescent chromophore)이다. 이는 펩타이드 사슬의 구성과 크기에 따라 크게 2가지의 구조학적인 형태로 나누어지는데, 카테콜(catechol;o-dihydroxybenzene)의 유도체 카테콜 아마이드(cathechol amides; phenolates, catecholates) 형태와 하이드록사민산(hydroxamic acid; RCONHO의 유도체로 하이드록사메이트(hydroxamates) 형태가 있다. 카테콜 형태의 시데로포아는 엔테로틴(enterobactin), 파라박틴(parabactin), 아크로박틴(acrobactin), 안구이박틴(anguibactin), 비브리오박틴(vibriobactin), 아조토박틴(azotobactin) 등이 있으며, 하이드록사메이트 형태의 시데로포아는 페리크롬(ferrichrom), 페리옥사민(ferrioxamine), 코프로겐(coprogen), 노카다민(nocardamine) 등이 있다. 또한, 최근에 시트레이트-하이드록사메이트(citrate-hydroxamate) 형태의 시데로포아는 아쓰로박틴(arthrobactin), 아에로박틴(aerobactin), 시조키넨(schizokinen) 등이, 그리고 퀴놀린(quinoline) 형태의 시데로포아로 슈더-박틴(pseudo-bactin), 이나표베르틴(pyoverdin) 등이 밝혀져 있다.Siderofoa is a water-soluble, low molecular, ferric iron-chelating compound, generally a yellow-green fluorescent chromophore linked by peptide chains. It is divided into two structural forms according to the composition and size of the peptide chain. The derivatives of catechol (o-dihydroxybenzene) are catechol amides (phenolates, catecholates) and hydroxamic acid. acid, a derivative of RCONHO, is in the form of hydroxamates: catechol forms of cideropoa are enterrobactin, parabactin, acrobactin, anguibactin, and vibriobactin. (vibriobactin), azotobactin, etc., and the form of the hydroxamate form cideropoa includes ferrichrom, ferrioxamine, coprogen, and nocardamine. In recent years, citrate-hydroxamate forms of cideropoa include asthrobactin, aerobactin, schizokinen, and quinoline. (quinoline) form cideroporo is known as pseudo-bactin, inabervertin, and the like.

상기와 같이 시데로포아는 미생물이 생산하는 소분자 물질로서 주로 철과 결합하는 기능을 지니고 있으며 이러한 복합체 형태로 미생물에 의해 흡수된다. 그러나 최근에는 시데로포아의 다른 기능이 알려지기 시작하면서 그 용도가 다양해 지고 있다. 특히 미생물의 생육에 도움이 되는 이유로 식물과 미생물의 상호작용을 활성화함으로써 식물생장의 도움을 준다는 보고가 있다. 2004년 녹두의 실험을 보면 근류에 존재하는 미생물 중 시데로포아를 대량 생산하는 균주의 경우 뿌리 생장을 대조군에 비해 30% 이상 증가시키는 것으로 확인되었다(Plant. Growth. Regulation 2004). 또한, 토양에 존재하는 식물의 성장을 촉진하는 균주의 시데로포아의 생산능력은 토양의 식물병원성 균주와의 경쟁에서 우월한 위치를 확보하는데 도움을 준다는 보고도 있다(J. Bac 1988). 슈도모나스의 경우 식물 생장 촉진 세균(plant growth-promoting bacteria)으로서 시데로포아의 생산 여부가 미생물의 활성을 결정한다고 알려져 있다(Nature 1980).As described above, sideeropoa is a small molecule material produced by microorganisms, and mainly has a function of binding to iron, and is absorbed by microorganisms in the form of such a complex. Recently, however, as other functions of ciderofoa become known, their uses are diversified. In particular, it has been reported that it helps plant growth by activating the interaction between plants and microorganisms, which is helpful for the growth of microorganisms. In 2004, mung bean experiments showed that root strains increased more than 30% of the microorganisms in the roots that produced a large amount of cederopoa compared to the control group (Plant. Growth.Regulation 2004). It is also reported that the ability of the plant to produce cedrophora to promote plant growth in the soil helps to secure a superior position in competition with phytopathogenic strains of the soil (J. Bac 1988). Pseudomonas is known to determine the activity of microorganisms, whether the production of the sideropoa as a plant growth-promoting bacteria (Nature 1980).

한편, 최근에는 시데로포아가 친환경적으로 중금속 오염을 방제하는 기술로 개발이 진행되고 있다. On the other hand, the recent development of a siderofoa technology to control heavy metal pollution in an environmentally friendly manner.

상기와 같이 시데로포아는 식물의 성장 등에 도움을 주는 물질이지만 실제 사용이 제한되어 왔다. 시데로포아의 화학적 합성이 불가능하고 미생물로부터 생산하고 있는데 생산방법이 정립되어 있지 못하고 생산량 또는 제한되어 있기 때문이다. 또한, 미생물에 의한 생산의 경우 재현성이 낮고 각각의 시데로포아를 분리하는 것이 매우 어렵다.As described above, cideropoa is a substance that helps plant growth and the like, but its practical use has been limited. Chemical synthesis of cedropoa is impossible and is produced from microorganisms because the production method is not established and the amount or production is limited. In addition, in the case of production by microorganisms, the reproducibility is low and it is very difficult to separate each siderofoa.

본 발명의 배경이 되는 기술로서 대한민국 특허공보 제10-0850373호(2008.07.29)에 개시된 바와 같이 세라티아 (Serratia) 속 미생물, 이의 동정 방법 및 이를 이용한 식물 생장 촉진 및 토양 정화 방법이 공개되어 있으나, 시데로포아의 대량 생산에 대해서는 언급되어 있지 않다.As a background technology of the present invention, as disclosed in Korean Patent Publication No. 10-0850373 (2008.07.29), there is disclosed a microorganism of the genus Serratia, a method for identifying the same, and a method for promoting plant growth and soil purification using the same. However, there is no mention of mass production of ciderofoa.

또한, 본 발명의 배경이 되는 기술로서 박용성 외, Current genetics Volume 52, Numbers 3-4 187-190 ISSN 1432-0983에 Saccharomyces cerevisiae mutant를 이용하여 푸자리움 그라미니아룸(Fusarium graminearum)에 의해 생산된 시데로포아를 효율적으로 분리 및 동정하는 방법이 개시되어 있으나, 시데로포아의 대량 생산에 대해서는 기재되어 있지 않다.In addition, as a background technology of the present invention, Side produced by Fusarium graminearum using Saccharomyces cerevisiae mutant in Park Yong-Sung et al., Current genetics Volume 52, Numbers 3-4 187-190 ISSN 1432-0983 Methods of efficiently separating and identifying ropoa are disclosed, but there is no description of mass production of cideropoa.

따라서, 상술한 바와 같이, 시데로포아는 화학적 합성이 불가능하고 미생물에 의한 생산이 제한적이라는 것이 현재 문제점으로 남아 있다. 이에 본 발명자들은 시데로포아의 대량생산을 목표로 연구를 수행하여 본 발명을 완성하였다.
Thus, as described above, the present problem remains that the siderofoa is not chemically synthesized and the production by microorganisms is limited. The present inventors have completed the present invention by conducting research aiming at mass production of ciderrofoa.

대한민국 특허공보 제10-0850373호(2008.07.29)Republic of Korea Patent Publication No. 10-0850373 (2008.07.29)

PARK et al., New and efficient method using Saccharomyces cerevisiae mutants for identification of siderophores produced by microorganisms, Current genetics Volume 52, Numbers 3-4 187-190 ISSN 1432-0983 PARK et al., New and efficient method using Saccharomyces cerevisiae mutants for identification of siderophores produced by microorganisms, Current genetics Volume 52, Numbers 3-4 187-190 ISSN 1432-0983 PARK et al., Physical and functional interaction of FgFtr1-FgFet1 and FgFtr2-FgFet2 is required for iron uptake in Fusarium graminearum, Biochem. J. (2007) 408, 97-104PARK et al., Physical and functional interaction of FgFtr1-FgFet1 and FgFtr2-FgFet2 is required for iron uptake in Fusarium graminearum, Biochem. J. (2007) 408, 97-104

본 발명은 상기와 같은 종래기술의 문제점 및 요구를 해결하고자 하는 것으로, 그 목적은 철 대사 관여 유전자의 변이체 미생물로부터 시데로포아를 대량 생산하는 방법을 제공하고자 하는 것이다.The present invention is to solve the problems and demands of the prior art as described above, the object of the present invention is to provide a method for mass-producing a siderofoa from a variant microorganism of a gene involved in iron metabolism.

본 발명의 다른 목적은 배양조건을 조절하여 상기 미생물을 이용하여 시데로포아를 대량 생산하는 방법을 제공하고자 하는 것이다.Another object of the present invention is to provide a method for mass-producing ciderropoia using the microorganisms by adjusting the culture conditions.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

상기 목적을 달성하기 위해, 본 발명은 ftr1 ftr2 유전자가 결손된 시데로포아 생산 미생물의 변이체를 배지에서 배양하는 단계를 포함하는 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법을 제공한다.In order to achieve the above object, the present invention provides the ftr1 And Provided is a method for producing cideropoa from a microorganism, comprising culturing a variant of a cideropoa producing microorganism lacking the ftr2 gene in a medium.

본 발명에서 미생물은 ftr1 ftr2 유전자를 결손시키기 위한 미생물은 예를 들어 푸자리움 그라미니아룸(Fusarium graminearum)이 속하는 사상성 균류에서 선택되는 하나를 이용할 수 있으며, 예를 들어 아스퍼질러스(Aspergillus), 푸자리움( Fusarium ) 속 균류 등을 포함할 수 있으며, 바람직하게는 푸자리움 그라미니아룸(Fusarium graminearum)을 이용할 수 있다.In the present invention, the microorganism is ftr1 And Microorganisms for the deletion of the ftr2 gene can be used, for example, one selected from filamentous fungi belonging to Fusarium graminearum , for example Aspergillus , Fungus ( Fusarium ) may include fungi, and the like, preferably Fusarium Graminia ( Fusarium graminearum ) is available.

본 발명에서 ftr1 ftr2 유전자는 철 대사 과정에서 관여하는 유전자로 철 투과효소(iron permease)를 코딩하며, Ftr1/Fet1 및 Ftr2/Fet2의 방식으로 염색체상에 위치해 있는 것으로 알려져 있다(도 1 참조, PARK et al., Biochem. J. (2007) 408, 97-104). Ftr1 in the present invention And The ftr2 gene encodes iron permease as a gene involved in iron metabolic processes and is known to be located on the chromosome in the manner of Ftr1 / Fet1 and Ftr2 / Fet2 (see FIG. 1, PARK et al., Biochem J. (2007) 408, 97-104).

본 발명의 미생물 염색체상에서 ftr1 ftr2 유전자를 결손시키는 방법으로는 당업계에 알려진 통상적인 유전자결손 방법, 예를 들면, 화학물질이나 자외선과 같은 빛을 이용하거나, 상동재조합 기술을 통한 유전자 재조합 기술을 이용하여 ftr1 ftr2 유전자 부위가 변이되어 결실된 돌연변이체를 얻을 수 있고, 유전자 팝-아웃기술을 이용할 수 있다. 본 발명의 구체적 실시예에서는 ftr1 ftr2 유전자가 결손된 푸자리움 그라미니아룸(Fusarium graminearum) 변이체를 제조하였다(도 2a 및 도 2b 참조). ftr1 ftr2 유전자를 결손시키면 시데로포아의 생산량이 야생형에 비해 급격히 증가하였다(도 4 및 도 5 참조). Ftr1 on the microbial chromosome of the present invention And in a manner that the defect gene is ftr2 known conventional genetic defect in the art, for example, using light, such as chemical or ultraviolet light, or, ftr1 using gene recombination technology by homologous recombination technology And The ftr2 gene region may be mutated to obtain a deleted mutant, and gene pop-out techniques may be used. In a specific embodiment of the present invention, ftr1 And The genetic defect is ftr2 Fujairah Solarium Mini Gras arum (Fusarium graminearum ) variants were prepared (see FIGS. 2A and 2B). Deletion of the ftr1 and ftr2 genes resulted in a sharp increase in the production of sideeropoa compared to the wild type (see FIGS. 4 and 5).

본 발명에 의한 미생물 변이체는 철이 없는 배지에서 배양할 때 시데로포아 생산성이 철이 있는 배지에서 보다 매우 급격히 증가하였다(표 1 참조).The microbial variant according to the present invention increased significantly more rapidly in the iron-containing medium when cultured in an iron-free medium (see Table 1).

본 발명에 의한 미생물 변이체는 철이 없는 배지에서 배양할 때 시데로포아 생산성이 같은 균주가 아닌 사상성 균류 중에서 가장 많이 증가하였다(표 2 참조 ).The microbial variant according to the present invention was most increased among filamentous fungi rather than the same strain when cultured in an iron-free medium (see Table 2).

또한, 본 발명에 의한 변이체는 철이 있는 배지에서도 야생주보다 시데로포아 생산성이 증가하였다 (도 5 참조).In addition, the variant according to the present invention increased the sideropoa productivity in the medium containing iron (see Fig. 5).

본 발명에 의한 미생물로부터 시데로포어를 생산하는 방법은 상기 미생물 변이체가 생산하는 시데로포아를 HPLC를 이용하여 분리 및 정제하는 단계를 더 포함할 수 있다.
The method for producing ciderrophore from the microorganism according to the present invention may further include the step of separating and purifying the cideropoa produced by the microbial variant using HPLC.

상술한 바와 같이, 본 발명에 의하면 Δ Fgftr1 , ftr2 변이체를 이용하고 배양조건을 조절하여 시데로포아를 야생주에 비해 대략 13 ~ 23 배로 대량으로 생산할 수 있다. 이렇게 대량 생산된 시데로포아는 식물의 생장 촉진 및 중금속으로 오염된 토양 등을 친환경적으로 정화하는 데 유용하게 이용될 수 있다.
As described above, according to the present invention Δ Fgftr1 , ftr2 By using a variant and adjusting the culture conditions, it is possible to produce a large amount of cideropoa 13-23 times compared to wild strains. This mass-produced siderofoa can be usefully used to promote the growth of plants and to clean the environment contaminated with heavy metals.

도 1은 푸자리움 그라미니아룸(Fusarium graminearum)의 염색체상의 Fgftr1/2의 위치를 나타내는 도면이다.
도 2a 및 도 2b는 본 발명에 의한 Fgftr1,ftr2 푸자리움 그라미니아룸(Fusarium graminearum) 변이체의 제조에 관한 모식도 및 상기 유전자 결손을 서던 분석으로 확인한 결과를 나타낸다.
도 3은 본 발명에 의한 시데로포아를 정제 분리하기 위한 HPLC 조건을 개략적으로 나타낸 도면이다.
도 4는 본 발명에 따라 Hydrospere C18 column을 이용한 HPLC한 결과를 나타내는 도면이다.
도 5는 본 발명에 의한 Δ Fgftr1 , ftr2 푸자리움 그라미니아룸(Fusarium graminearum) 변이체의 시데로포아 생산량을 야생주와 비교한 결과를 나타낸 도면이다.
도 6은 본 발명에 의해 생산된 시데로포아 종류를 예시적으로 나타낸 도면이다.
1 is a view showing the position of Fgftr1 / 2 on the chromosome of Fusarium graminearum .
Figure 2a and Figure 2b shows a schematic diagram of the production of the Fgftr1, ftr2 Fusarium graminearum variant according to the present invention and the result of the gene deletion confirmed by Southern analysis.
Figure 3 is a schematic diagram showing the HPLC conditions for purification separation of the ciderofoa according to the present invention.
4 is a view showing the results of HPLC using a Hydrospere C18 column according to the present invention.
5 shows Δ Fgftr1 and ftr2 according to the present invention. Figure showing the result of comparing the production of the side of the Fusarium graminearum ( Fusarium graminearum ) with wild wine.
Figure 6 is an illustration showing the kind of siderofoa produced by the present invention.

이하, 첨부된 도면을 참조하여 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다.  이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example 1. 실험 균주 및  1. Experimental strains and 변이체Mutant 제작 making

1) 계통(1) System StrainsStrains ))

실험 균주(Tested strains)로 아래 19 개를 이용하였다 :The following 19 strains were used as the tested strains:

Fusarium graminearum ( WT ), Δ Fgsit1 , Δ Fgsit2 , Δ Fgend1 , Δ Fgftr1ftr2 , ΔF gsit1ft r1, Aspergillus niger , Trichoderma longibrachiatum , Trichoderma atroviride, Polyporus bruomalis , Trametes versicolor , Pharero chrysosporium , Irpex lacteus , Phanerochaete sordida (장승), Gloeophyllum trabeum , Phanerochaete sordida (백합), Fomitopsis palustris , Rhizopus oryzae , Mucor circinelloides Fusarium graminearum ( WT ), Δ Fgsit1 , Δ Fgsit2 , Δ Fgend1 , Δ Fgftr1ftr2 , ΔF gsit1ft r1, Aspergillus niger , Trichoderma longibrachiatum , Trichoderma atroviride, Polyporus bruomalis , Trametes versicolor , Pharero chrysosporium , Irpex lacteus , Phanerochaete sordida Jang Seung , Gloeophyllum trabeum , Phanerochaete sordida (Lily) , Fomitopsis palustris , Rhizopus oryzae , Mucor circinelloides

그 중 시데로포아 생산성이 확보되어 선발된 균주(Selected strains) 2 개는 ΔF gftr1ft r2 ( Fusarium graminearum ) Fomitopsis palustris였다.
Among them, two selected strains were found to have sidoforea productivity, and ΔF gftr1ft r2 ( Fusarium graminearum ) and Fomitopsis was palustris .

2) 2) ΔΔ Fgftr1Fgftr1 ,, ftr2ftr2 푸자리움Fujingum 그라미니아룸Gramania Room (( FusariumFusarium graminearumgraminearum ) ) 변이체Mutant 제작  making

PCR을 이용하여 FgFtr 유전자 (Fg05160.1, Fg02143.1)의 5' 유전자 앞쪽의 1500bp와 3' 유전자 뒤쪽의 1500bp를 Hygromycin B 유전자 또는 Geneticin 유전자의 앞쪽 뒤쪽에 double-joint PCR 방법을 이용하여 재조합된 유전자 카세트를 만들었다(도 2a). 야생주에 각 재조합된 유전자 카세트를 넣어 형질 전환체를 Hygromycin B 또는 Geneticin으로 선별하여 FgFtrs 유전자가 결손된 형질 전환체를 서던 분석을 통하여 확인하였다(도 2b)(PARK et al., Functional identification of high-affinity iron permeases from Fusarium graminearum, Fungal Genetics and Biology (2006) 43, 273-282).
By using PCR, 1500bp in front of 5 'gene and 1500bp behind 3' gene of FgFtr gene (Fg05160.1, Fg02143.1) were recombined by double-joint PCR method in front of Hygromycin B gene or Geneticin gene. Gene cassettes were made (FIG. 2A). Each recombinant gene cassette was inserted into the wild strain, and the transformants were selected by Hygromycin B or Geneticin, and the transformants lacking the FgFtrs gene were confirmed through Southern analysis (FIG. 2B) (PARK et al., Functional identification of high). affinity iron permeases from Fusarium graminearum, Fungal Genetics and Biology (2006) 43, 273-282).

실시예Example 2. 실험 균주들의 배양 2. Cultivation of Experimental Strains

우선 실험균주들은 PDA (Potato dextrose agar; Bifco PD broth 24 g, Agar 20 g/ liter) plate (90x15mm petri Dish)에 곰팡이(Fungi)를 상온(25 ℃)에서 5일간 키웠다.The first strains were fungi grown at room temperature (25 ° C) for 5 days on PDA (Potato dextrose agar; Bifco PD broth 24 g, Agar 20 g / liter) plates (90x15mm petri Dish).

다음, CMC (Carboxymethyl cellulose 1.5 g, Yeast extract 1 g, Magnesium sulfate 7H2O 0.5 g, Ammonium nitrate 1 g, Photassium phosphate 1 g / liter) broth 40ml에 4 ㎠ 정도의 양의 균사(hyphae)를 넣고 상온(25 ℃)에서 3일간 키웠다.Next, put a hyphae of about 4 cm 2 into CMC (Carboxymethyl cellulose 1.5 g, Yeast extract 1 g, Magnesium sulfate 7H 2 O 0.5 g, Ammonium nitrate 1 g, Photassium phosphate 1 g / liter) broth 40ml (25 ° C.) for 3 days.

상기 CMC broth 배지에서 자란 균사(hyphae)를 여과지(filter paper, 125 mm)로 걸러 철이 없는 배지(Low iron broth; Sodium nitrate 6 g, Potassium chloride 0.52 g, Magnesium sulfate 7H2O 0.52 g, Potassium dihydrogen phosphate 1.52 g, Glucose 10 g, 100 mM BPS 1 ml / liter, pH 6.5) 또는 철이 있는 배지 (Iron broth; Sodium nitrate 6 g, Potassium chloride 0.52 g, Magnesium sulfate 7H2O 0.52 g, Potassium dihydrogen phosphate 1.52 g, Glucose 10 g, 1.5 M Ferric chloride 1 ml / liter, pH 6.5) 2 liter로 플라스틱 플라스크(plastic flask)에 상온(25 ℃)에서 일주일 간 키웠다.
Hyphae grown on the CMC broth medium were filtered with filter paper (125 mm), and the iron-free medium (Low iron broth; 6 g Sodium nitrate, 0.52 g Potassium chloride, 0.52 g Magnesium sulfate 7H 2 O, Potassium dihydrogen phosphate) 1.52 g, Glucose 10 g, 100 mM BPS 1 ml / liter, pH 6.5) or medium with iron (Iron broth; Sodium nitrate 6 g, Potassium chloride 0.52 g, Magnesium sulfate 7H 2 O 0.52 g, Potassium dihydrogen phosphate 1.52 g, Glucose 10 g, 1.5 M Ferric chloride 1 ml / liter, pH 6.5) 2 liters were grown in a plastic flask at room temperature (25 ℃) for one week.

실시예Example 3.  3. 시데로포아Siderofoa 복합체( Complex SiderophoreSiderophore mixturemixture ) 정제 및 분리Purification and separation

1) One) 컬럼을Column 통한  through 시데로포아Siderofoa 복합체의 정제 Purification of the Complex

실시예 2에서 제조된 샘플을 거즈로 한번 걸러준 후 곰팡이를 제거한 배지를 0.45μm 여과지에 펌프를 이용하여 곰팡이의 작은 포자(spore)까지 제거하였다.After filtering the sample prepared in Example 2 once with gauze, the medium from which the mold was removed was removed to a small spore of the mold by using a pump on a 0.45 μm filter paper.

다음, Amberlite XAD16 resin(Sigma) 20 g을 컬럼에 채우고 50mM Potassium phosphate buffer (pH 7.5) 200ml로 세척(washing)하여 충분히 평형화( equilibration) 시킨 후 곰팡이를 제거한 위의 샘플을 레진(resin)에 통과시켜 흘려보냈다.Next, 20 g of Amberlite XAD16 resin (Sigma) was charged to the column, washed with 200 ml of 50 mM Potassium phosphate buffer (pH 7.5) to allow sufficient equilibration, and the above sample from which the mold was removed was passed through a resin. Spilled.

붉게 변한 레진(resin)에 50mM Potassium phosphate buffer (pH 7.5) 50 ml로 세척(washing)하고 Methanol (HPLC grade) 20ml을 흘려 컬럼에서 나오는 용액을 용리(elution) 하였다. The resin turned red was washed with 50 ml of 50 mM Potassium phosphate buffer (pH 7.5) and 20 ml of Methanol (HPLC grade) was eluted from the column.

이 단계에서 시데로포아 복합체(Siderophore mixture)는 culture volume의 1/1000 H2O로 용리(elution)한 후 사용, 4 ℃에서 보관하였다.
At this stage, the siderophore mixture was eluted with 1/1000 H 2 O of the culture volume and stored at 4 ° C.

2) 2) HPLCHPLC 를 통한 Through 시데로포아Siderofoa 분리 정제 Separation tablets

상기 용리(elution) 용액을 진공농축기(Vacuum concentrator)에 100mm/hg, 20 ℃로 메탄올(methanol)을 날려 농축시켰다. 상기 농축된 시데로포아 복합체(siderophore mixture)를 메탄올 (HPLC grade) 500㎕로 녹인 후 원심분리 (12000 rpm, 4 ℃, 1 min)하여 녹지 않은 찌꺼기를 제거한 후 상층액을 옮겨주었다. 상기 옮긴 상층액을 0.22μm Nylon membrane syringe filter로 걸렀다.The elution solution was concentrated by blowing methanol (methanol) at 100 ℃ / hg, 20 ℃ in a vacuum concentrator (Vacuum concentrator). The concentrated siderophore complex was dissolved in 500 μl of methanol (HPLC grade), followed by centrifugation (12000 rpm, 4 ° C., 1 min) to remove undissolved residues, and then the supernatant was transferred. The transferred supernatant was filtered with a 0.22 μm Nylon membrane syringe filter.

이와 같이 준비된 시데로포아 복합체(Siderophore mixture, 4 ℃ 보관) 중 100 ㎕를 HPLC (High Performance Liquid Chromatography)로 분리하여 정제하였다 (Agilent Eclipse XDB-C18 column). 100 μl of the prepared Siderophore complex (Siderophore mixture, stored at 4 ° C.) was purified by separation by HPLC (High Performance Liquid Chromatography) (Agilent Eclipse XDB-C18 column).

1차 분획(fraction)은 다음과 같은 조건으로 실시하였다.The first fraction was carried out under the following conditions.

Solvent 조건: Water 90 % (w/ 0.1 % TFA): Acetonitrile 10 %(w/ 0.1 % TFA) (TFA: Triflouroacetic acid)Solvent Condition: Water 90% (w / 0.1% TFA): Acetonitrile 10% (w / 0.1% TFA) (TFA: Triflouroacetic acid)

Detection & gradient 조건 : Absorbance at 435 nm (Sample volume: 100 ㎕) (도 3 참조)Detection & gradient conditions: Absorbance at 435 nm (Sample volume: 100 μl) (see Fig. 3)

0 min - 10 %,0 min-10%,

15 min - 20 %,15 min-20%,

30 min - 50 %,30 min-50%,

40 min - 60 %,40 min-60%,

45 min - 10 %,45 min-10%,

65 min - 10 %65 min-10%

분획(fraction) 받은 시데로포아를 진공농축기(Vacuum concentrator)에 100mm/hg, 20 ℃로 용액을 날린 후 50 ㎕ H2O (HPLC grade)로 녹여 스핀다운(spin down) 한 후 상층액을 분획(fraction)하여 정제하고 피크(peak)를 세분화하기 위하여 같은 조건으로 한 번 더 반복하였다.Fractionated ciderrophore was blown into a vacuum concentrator at 100 mm / hg and 20 ° C, and then dissolved in 50 μl H 2 O (HPLC grade) to spin down, followed by fractionation of the supernatant. Purification by fractionation was repeated one more time under the same conditions to refine the peak.

다음 2차 및 3차 분획(fraction)을 다음 조건으로 하였다.The second and third fractions were then subjected to the following conditions.

Solvent 조건 : Water 90% (w/ 0.1% TFA): Acetonitrile 10%(w/ 0.1% TFA)Solvent Condition: Water 90% (w / 0.1% TFA): Acetonitrile 10% (w / 0.1% TFA)

Detection & gradient 조건: Absorbance at 435nm (Sample volume: 50 ㎕) Detection & gradient condition: Absorbance at 435nm (Sample volume: 50 μl)

20 min - 10%20 min-10%

60 min - 20%60 min-20%

그 결과를 도 4 ~ 도 6 그리고 표 1 및 표 2에 나타내었다.The results are shown in FIGS. 4 to 6 and Tables 1 and 2.

Figure 112011071177841-pat00001
Figure 112011071177841-pat00001

Figure 112011071177841-pat00002
Figure 112011071177841-pat00002

이상으로 본 발명의 특정한 부분을 상세히 기술하였으나, 당업계의 통상의 지식을 가진 자에게 있어 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다.  따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 균등물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is obvious that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention. It is therefore intended that the scope of the present invention be defined by the appended claims and their equivalents.

Claims (4)

ftr1ftr2 유전자가 결손된 시데로포아 생산 미생물의 변이체를 배지에서 배양하는 단계를 포함하는 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법. A method of producing cideropoa from a microorganism, comprising culturing a variant of a cideropoa producing microorganism lacking the ftr1 and ftr2 genes in a medium. 제1항에 있어서, 상기 미생물은 푸자리움 그라미니아룸(Fusarium graminearum)이 속하는 사상성 균류 그룹에서 선택되는 하나인 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법.The method of claim 1, wherein the microorganism is one selected from the group of filamentous fungi belonging to Fusarium graminearum . 제1항 또는 제2항에 있어서, 상기 미생물의 변이체를 배양하는 단계는 철이 부족한 배지에서 배양하는 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법.The method of claim 1, wherein the culturing the variant of the microorganism is culturing in an iron-deficient medium. 제3항에 있어서, 상기 배지는 철이 없는 배지인 것을 특징으로 하는 미생물로부터 시데로포아를 생산하는 방법.4. The method of claim 3, wherein the medium is an iron-free medium.
KR1020110092470A 2011-09-14 2011-09-14 Siderophore over-production method from microorganism KR101250071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110092470A KR101250071B1 (en) 2011-09-14 2011-09-14 Siderophore over-production method from microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110092470A KR101250071B1 (en) 2011-09-14 2011-09-14 Siderophore over-production method from microorganism

Publications (2)

Publication Number Publication Date
KR20130029213A KR20130029213A (en) 2013-03-22
KR101250071B1 true KR101250071B1 (en) 2013-04-03

Family

ID=48179239

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110092470A KR101250071B1 (en) 2011-09-14 2011-09-14 Siderophore over-production method from microorganism

Country Status (1)

Country Link
KR (1) KR101250071B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230151768A (en) 2022-04-26 2023-11-02 경상국립대학교산학협력단 Aerobactin and desferrioxamine E over producing Pantoea ananatis mutant strain having a controlling fire blight and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054580A (en) 2006-08-31 2008-03-13 Gekkeikan Sake Co Ltd Deferriferrichrysin highly productive variant, liquid medium for producing siderophore and method for producing siderophore
JP2009028030A (en) 2007-06-28 2009-02-12 Gekkeikan Sake Co Ltd Production method for siderophore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054580A (en) 2006-08-31 2008-03-13 Gekkeikan Sake Co Ltd Deferriferrichrysin highly productive variant, liquid medium for producing siderophore and method for producing siderophore
JP2009028030A (en) 2007-06-28 2009-02-12 Gekkeikan Sake Co Ltd Production method for siderophore

Also Published As

Publication number Publication date
KR20130029213A (en) 2013-03-22

Similar Documents

Publication Publication Date Title
Abdallah Pyoverdins and pseudobactins
Renshaw et al. Fungal siderophores: structures, functions and applications
Franco et al. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109)
Jalal et al. Extracellular siderophores from Aspergillus ochraceous
Kumar et al. Cultural, morphological and molecular characterization of vinca alkaloids producing endophytic fungus Fusarium solani isolated from Catharanthus roseus
CN102952178A (en) Preparation method for high-purity echinocandin compound
KR101486120B1 (en) Method for removing heavy metal using siderophore produced by microbes
CN105331562B (en) Bacillus amyloliquefaciens Q-426 and separation method of lipopeptide thereof
Marappa et al. Morphological, molecular characterization and biofilm inhibition effect of endophytic Frankia sp. from root nodules of Actinorhizal plant Casuarina sp.
Tang et al. Improving the production of a novel antifungal alteramide B in Lysobacter enzymogenes OH11 by strengthening metabolic flux and precursor supply
Sia et al. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source
Meenupriya et al. Analytical characterization and structure elucidation of metabolites from Aspergillus ochraceus MP2 fungi
Anwar et al. Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria
KR101250071B1 (en) Siderophore over-production method from microorganism
JP6181972B2 (en) Method for producing aromatic compound
CN101270344A (en) Bacillus subtillis for preventing and controlling cole sclerotium and antibioticsubstance separation
WO2010115802A1 (en) New actinomycetes strain compositions and their use for the prevention and/or the control of micro organism inducing plant diseases
Gogoi et al. Impact of submerged culture conditions on growth and bioactive metabolite produced by endophyte Hypocrea spp. NSF-08 isolated from Dillenia indica Linn. in North-East India
KR20180023212A (en) Method for mass production of sesquiterpene from Polyporus brumalis
EP3626815B1 (en) Strain of microorganism clonostachys rosea f. catenulata as a biofungicide, plant growth stimulant and metabolite producer for agricultural use
CN113481106B (en) Deep sea source penicillium mycoides and obtained compound
Nazir et al. Bioactive potentials of endophyte (Fusarium redolens) isolated from Olea europaea
CN104877925B (en) A kind of different wall actinomyces and three kinds of new antimycotic maclafungins classes compounds and its preparation and application
Hundley Structure Elucidation of bioactive compounds isolated from endophytes of alstonia scholaris and acmena graveolens
Bourzama et al. Effect of Zinc metal at high concentration on secondary metabolic pathways in Penicillium chrysogenum strain.

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180322

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 7