JP2009028030A - Production method for siderophore - Google Patents

Production method for siderophore Download PDF

Info

Publication number
JP2009028030A
JP2009028030A JP2008121482A JP2008121482A JP2009028030A JP 2009028030 A JP2009028030 A JP 2009028030A JP 2008121482 A JP2008121482 A JP 2008121482A JP 2008121482 A JP2008121482 A JP 2008121482A JP 2009028030 A JP2009028030 A JP 2009028030A
Authority
JP
Japan
Prior art keywords
culture
siderophore
oxygen
aspergillus
dfcy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008121482A
Other languages
Japanese (ja)
Other versions
JP5553969B2 (en
Inventor
Katsuharu Fukuda
克治 福田
Kengo Matsumura
憲吾 松村
Motoko Irie
元子 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gekkeikan Sake Co Ltd
Original Assignee
Gekkeikan Sake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gekkeikan Sake Co Ltd filed Critical Gekkeikan Sake Co Ltd
Priority to JP2008121482A priority Critical patent/JP5553969B2/en
Publication of JP2009028030A publication Critical patent/JP2009028030A/en
Application granted granted Critical
Publication of JP5553969B2 publication Critical patent/JP5553969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing siderophore, using an Aspergillus filamentous fungus. <P>SOLUTION: (1) The production method of the siderophore includes: a cultivation step of cultivating Aspergillus filamentous fungus in a culture solution with the rate of oxygen capacity movement at 8 mmol×l<SP>-1</SP>×h<SP>-1</SP>or higher; and a recovering step of recovering the siderophore from the culture products. (2) Alternatively, the production method of the siderophore includes a cultivation step of cultivating the Aspergillus filamentous fungus, in a culture solution whose inorganic nitrogen source is an ammonium salt and a recovering step of recovering the siderophore from the culture products. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、鉄補給用の医薬品や健康食品などに有用なシデロフォアの製造方法に関する。   The present invention relates to a method for producing a siderophore useful for, for example, pharmaceuticals for iron supplementation and health foods.

微生物の中でも真菌(かび)の一種であるアスペルギルス属糸状菌は、伝統的に食品等の発酵に利用されてきた。アスペルギルス属糸状菌はヒトにとって有用な様々な物質を生産する。   Among the microorganisms, Aspergillus filamentous fungi, which is a type of fungus, have been traditionally used for fermentation of foods and the like. Aspergillus fungi produce a variety of substances that are useful to humans.

アスペルギルス属糸状菌が生産する有用物質の一種にシデロフォアがある。シデロフォアは鉄キレート物質であり、その中にはフェリクロームが含まれる。フェリクロームは鉄をキレートする為、鉄補給用の医薬品や健康食品などに利用が可能である(特許文献1参照)。しかし、シデロフォアは二次代謝産物であることから大量生産はきわめて困難であり、シデロフォアの大量生産方法は技術的に確立されていない。
特開2005−225874号公報
Siderophore is one of the useful substances produced by Aspergillus fungi. Siderophores are iron chelators, including ferrichrome. Since ferrichrome chelates iron, it can be used for medicines for supplementing iron, health foods, and the like (see Patent Document 1). However, since siderophore is a secondary metabolite, mass production is extremely difficult, and a method for mass production of siderophore has not been technically established.
JP 2005-225874 A

本発明は、アスペルギルス属糸状菌を用いてシデロフォアを効率よく生産することができる方法を提供することを課題とする。   An object of the present invention is to provide a method capable of efficiently producing a siderophore using Aspergillus filamentous fungi.

本発明者らは、上記課題を解決するために鋭意研究を行なった結果、アスペルギルス属糸状菌を培養する際に、培養液への通気量や攪拌速度などを調整して、酸素容量移動速度を8mmol・l-1・h-1以上にすることにより、培養物中にシデロフォアが効率よく生産されることを見出した。また、培養液中の無機窒素源をアンモニウム塩にすることによっても、培養物中にシデロフォアが効率よく生産されることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have adjusted the aeration rate to the culture solution and the stirring speed when culturing Aspergillus filamentous fungi, thereby increasing the oxygen capacity transfer rate. It was found that siderophore was efficiently produced in the culture by setting the concentration to 8 mmol·l −1 · h −1 or more. Moreover, it discovered that a siderophore was efficiently produced in a culture also by making the inorganic nitrogen source in a culture solution into an ammonium salt.

本発明は上記知見に基づき完成されたものであり、以下のシデロフォアの製造方法を提供する。
項1. アスペルギルス属糸状菌を、酸素容量移動速度を8mmol・l-1・h-1以上とした培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含むシデロフォアの製造方法。
項2. 培養液中の無機窒素源がアンモニウム塩である項1に記載の方法。
項3. アスペルギルス属糸状菌を、無機窒素源がアンモニウム塩である培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含むシデロフォアの製造方法。
The present invention has been completed based on the above findings, and provides the following method for producing a siderophore.
Item 1. A method for producing a siderophore comprising a culture step of culturing Aspergillus filamentous fungi in a culture solution having an oxygen capacity transfer rate of 8 mmol·l −1 · h −1 or more, and a recovery step of recovering siderophore from the culture.
Item 2. Item 2. The method according to Item 1, wherein the inorganic nitrogen source in the culture solution is an ammonium salt.
Item 3. A method for producing a siderophore, comprising a culture step of culturing Aspergillus fungi in a culture solution whose inorganic nitrogen source is an ammonium salt, and a recovery step of recovering siderophore from the culture.

本発明のシデロフォアの製造方法によれば、アスペルギルス属糸状菌を用いて効率よく、シデロフォアを生産することができる。
詳述すれば、本発明の第1の方法では、酸素容量移動速度を8mmol・l-1・h-1以上にすることにより、培養物中にシデロフォアが効率よく生産される。酸素容量移動速度は、培養液中への通気量、撹拌速度、攪拌翼の直径や形状、容器の形、または吹き込む気体の酸素濃度、容器内の圧力などの条件を適宜設定することにより調整することができる。また本発明の第2の方法では、培養液中の無機窒素源をアンモニウム塩にすることにより、培養物中にシデロフォアが効率よく生産される。
According to the method for producing a siderophore of the present invention, a siderophore can be efficiently produced using Aspergillus filamentous fungi.
More specifically, in the first method of the present invention, siderophore is efficiently produced in the culture by setting the oxygen capacity transfer rate to 8 mmol·l −1 · h −1 or more. The oxygen capacity transfer rate is adjusted by appropriately setting conditions such as the amount of aeration into the culture medium, the stirring speed, the diameter and shape of the stirring blade, the shape of the container, or the oxygen concentration of the gas to be blown, and the pressure in the container. be able to. In the second method of the present invention, siderophore is efficiently produced in the culture by converting the inorganic nitrogen source in the culture solution to an ammonium salt.

本発明方法により得られるシデロフォアは鉄をキレートするため、鉄補給用の医薬品や健康食品などに利用が可能である。本発明方法により得られるシデロフォアは古くから食品分野で利用されてきたアスペルギルス属糸状菌によって生産される為、その安全性は高く、さらに、長期間継続的に服用することによる副作用の心配もない。   Since the siderophore obtained by the method of the present invention chelates iron, it can be used for pharmaceuticals and health foods for iron supplementation. Since the siderophore obtained by the method of the present invention is produced by Aspergillus filamentous fungi that have been used in the food field for a long time, its safety is high, and there is no concern about side effects caused by taking it continuously for a long time.

以下、本発明を詳細に説明する。
(1)第1の方法
本発明の第1のシデロフォアの製造方法は、アスペルギルス属糸状菌を、酸素容量移動速度を8mmol・l-1・h-1以上とした培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含む方法である。
Hereinafter, the present invention will be described in detail.
(1) First Method The first method for producing a siderophore according to the present invention comprises culturing an Aspergillus fungus in a culture solution having an oxygen capacity transfer rate of 8 mmol·l −1 · h −1 or more. And a recovery step of recovering the siderophore from the culture.

アスペルギルス属糸状菌
アスペルギルス属糸状菌とは真菌(かび)の一種で、昔から日本酒、味噌、醤油などの発酵食品等に使用されている。本発明方法で使用するアスペルギルス属糸状菌はシデロフォアを生産する菌種であれば特に限定されないが、例えばアスペルギルス・オリゼ、アスペルギルス・アワモリ、アスペルギルス・カワチ、アスペルギルス・ニガー、アスペルギルス・ソーヤ、アスペルギルス・ウサミ、アスペルギルス・グラウカスなどが挙げられる。中でも、医薬品や健康食品の有効成分として有用なデフェリフェリクリシン(以下「Dfcy」という)を生産する点で、アスペルギルス・オリゼが好ましく、アスペルギルス・オリゼのDfcy高生産変異株3129−7株(FERM P−20961)がより好ましい。
Aspergillus fungi Aspergillus fungi are a type of fungi that have been used for many years in fermented foods such as sake, miso, and soy sauce. The Aspergillus genus fungus used in the method of the present invention is not particularly limited as long as it is a bacterial species that produces siderophore. Examples include Aspergillus glaucus. Among these, Aspergillus oryzae is preferable in terms of producing deferifericlysin (hereinafter referred to as “Dfcy”) useful as an active ingredient of pharmaceuticals and health foods. Aspergillus oryzae Dfcy high-producing mutant 3129-7 (FERM P-20961) is more preferable.

前培養工程
本発明の第1の製造方法においては、アスペルギルス属糸状菌を本培養する前に、前培養を行ってもよく、行わなくてもよい。前培養を行うことにより、菌の増殖に要する培養時間を短縮することができ、本培養工程において効率良くシデロフォアを生成することができる。また、本培養工程の初発菌数を増やし、雑菌によるコンタミネーションを防止することができる。
前培養工程で使用する培地は真菌類の培養に通常用いられる培地を制限なく使用できる。このような培地としてはツァペックドックス培地や麦芽エキス(MA)培地などが挙げられる。本培養に使用する培養液で前培養液を例えば5〜20倍程度に希釈することにより、本培養を開始すればよい。なお、前培養は、固体培地を用いて行ってもよい。
Pre-culture step In the first production method of the present invention, the pre-culture may or may not be performed before the main culture of Aspergillus filamentous fungi. By performing the pre-culture, the culture time required for the growth of the bacteria can be shortened, and siderophores can be efficiently generated in the main culture process. In addition, it is possible to increase the number of initial bacteria in the main culturing step and prevent contamination due to various bacteria.
As the medium used in the preculture step, a medium usually used for fungal culture can be used without limitation. Examples of such a medium include a zapek dox medium and a malt extract (MA) medium. What is necessary is just to start main culture by diluting a preculture liquid about 5 to 20 times with the culture medium used for main culture. The pre-culture may be performed using a solid medium.

本培養工程
本培養工程に使用する液体培地の種類は特に限定されず、アスペルギルス属糸状菌の培養に使用される公知の培地を制限なく使用できる。炭素源としては、デンプン、デキストリンのような高分子化合物;グルコース、スクロース、フラクトース、マンニトール、ソルビトール、ガラクトース、マルトース、エリスリトール、ラクトース、キシロース、イノシット、トレハロースのような単糖又はオリゴ糖;グリセロールのような低分子化合物などを用いることができる。また、窒素源としては、硝酸塩、亜硝酸塩、アンモニウム塩などの無機化合物の他、アミノ酸、酒粕のプロテアーゼ分解物のような有機化合物を用いることができる。酒粕は米の糖質が発酵中に分解されて大部分が除かれており、タンパク質を高濃度で含むため、酒粕プロテアーゼ分解物は効率良い窒素源となる。また、培地には、P、K、S、Mg、Zn、Cuのようなミネラルや、ビオチン、チアミンなどのビタミン類などが含まれていてよい。培地中の鉄濃度は、約2ppm以下とすることが好ましい。液体培地としては、代表的には、鉄濃度を約2ppm以下にした、鉄制限ツァペックドックス液体培地や鉄制限麦芽エキス(MA)培地などの培地を用いることができる。培養液のpHは約3〜8とすればよい。
Main culturing step The type of liquid medium used in the main culturing step is not particularly limited, and any known medium used for culturing Aspergillus filamentous fungi can be used without limitation. Carbon sources include high molecular compounds such as starch and dextrin; monosaccharides or oligosaccharides such as glucose, sucrose, fructose, mannitol, sorbitol, galactose, maltose, erythritol, lactose, xylose, inosit, trehalose; A low molecular weight compound can be used. Moreover, as a nitrogen source, in addition to inorganic compounds such as nitrates, nitrites and ammonium salts, organic compounds such as amino acids and protease degradation products of sake lees can be used. In sake lees, sugars in rice are decomposed during fermentation, and most of them are removed, and because they contain protein at a high concentration, the decomposition product of sake lees protease becomes an efficient nitrogen source. The medium may contain minerals such as P, K, S, Mg, Zn, and Cu, and vitamins such as biotin and thiamine. The iron concentration in the medium is preferably about 2 ppm or less. As the liquid medium, typically, a medium such as an iron-restricted zapek dox liquid medium or an iron-restricted malt extract (MA) medium having an iron concentration of about 2 ppm or less can be used. The pH of the culture solution may be about 3-8.

本培養時には、酸素容量移動速度(NA/V)を8mmol・l-1・h-1以上とした培養液中で培養する。酸素容量移動速度は、10mmol・l-1・h-1以上とすることが好ましく、20mmol・l-1・h-1以上とすることがより好ましい。これによりシデロフォアの生産量が格段に高くなる。酸素容量移動速度の上限値は特に限定されないが、通常80mmol・l-1・h-1程度である。
酸素容量移動速度(NA/V)は液体体積(V)あたりの酸素の移動速度(NA)であり、酸素移動容量係数(KLa)と濃度勾配(Δc)との積で表され次式の関係で示される値である。
酸素容量移動速度(NA/V)=(KLa)×(Δc)
酸素容量移動速度が大きいほど微生物の酸素要求量を連続的に充足しうる供給速度を有していることを示す。
酸素容量移動速度(NA/V)は、培養液への通気量(F)、液体体積(V)、培養槽からの排気中の酸素濃度(Cout )、培養液に通気する気体中の酸素濃度(Cin )を測定し、次式に従って算出することができる
NA/V=(F/V)( Cin −Cout )
排気及び通気中の酸素濃度は排ガス分析装置(堀場製作所製、VA−3000)を用いて測定した値である。
酸素容量移動速度を高めるためには、酸素の移動容量係数(KLa)、酸素の濃度勾配(Δc)のいずれか、あるいは両方を高めることが必要となる。KLは酸素の液境膜移動係数であり、またaは単位容積当たりの気体−液体間の接触面積である。従って、通常の液体培養においてKLは大きく変化せず、aの大小によってKLaは変化する。つまり酸素移動容量係数(KLa)は、培養液中への通気量、撹拌速度、攪拌翼の直径、または容器の形などにより変化する値である。また、酸素の濃度勾配(Δc)は通気する気体中の酸素濃度、容器内の圧力などにより変化する値である。
例えば、5Lの通気攪拌型培養槽に3Lの液体培地を入れて培養を行う場合に酸素容量移動速度(NA/V)を8mmol・l-1・h-1以上にするには、その通気量を約0.67〜1vvm(volume/volume/minute)とすればよい。攪拌翼の直径は4〜7cm程度とすればよい。攪拌速度は、約300〜500rpmとすればよい。上記の攪拌速度の範囲であれば、酸素移動容量係数を大きくすることができ、かつせん断応力により菌体に損傷を与えることがない。また、培養液中へ酸素を空気より高い濃度で吹き込めばよく、純酸素の方がよりよい。容器内の圧力を常圧より高圧にすればよく、常圧〜0.2MPa程度とすればよい。上記の酸素濃度、加圧条件であれば酸素の濃度勾配を大きくすることができる。
培養液中への通気量、撹拌速度、攪拌翼の直径や形状、容器の形、または吹き込む気体の酸素濃度、容器内の圧力などの条件を上記範囲で適宜設定することにより、培養液の酸素容量移動速度(NA/V)を8mmol・l-1・h-1以上にすることができる。また、培養槽の容量及び培養液量を変える場合は、上記条件に準じて培養槽の条件を適宜設定することにより、培養液の酸素容量移動速度(NA/V)を8mmol・l-1・h-1以上にすることができる。
本培養工程の培養方法は、回分培養や流加(半回分)培養などのバッチ方式や灌流培養などの連続培養方式などいずれであってもよい。
また、培養温度は、使用する菌種や菌株によって異なるが、概ね25〜35℃程度とすればよい。また、培養時間は、回分培養や流加(半回分)培養では2〜7日間程度とすればよい。また、連続培養では滞留時間を2〜6日間程度とすればよい。
During the main culture are cultured at an oxygen volume moving speed (N A / V) of the culture solution as a 8mmol · l -1 · h -1 or more. The oxygen capacity transfer rate is preferably 10 mmol·l −1 · h −1 or more, and more preferably 20 mmol·l −1 · h −1 or more. This significantly increases the production of siderophore. The upper limit of the oxygen capacity transfer rate is not particularly limited, but is usually about 80 mmol·l −1 · h −1 .
Oxygen capacity transfer rate (N A / V) is the oxygen transfer rate (N A ) per liquid volume (V) and is expressed as the product of oxygen transfer capacity coefficient (K L a) and concentration gradient (Δc). It is a value shown by the relationship of the following formula.
Oxygen capacity transfer rate (N A / V) = (K L a) × (Δc)
It shows that it has the supply rate which can satisfy | fill the oxygen demand amount of microorganisms continuously, so that an oxygen capacity transfer rate is large.
Oxygen content moving speed (N A / V), the airflow rate to the culture solution (F), liquid volume (V), the oxygen concentration in the exhaust gas from the culture tank (C out *), the gas in the aerated culture Measure the oxygen concentration (C in * ) and calculate according to the following formula
N A / V = (F / V) (C in * −C out * )
The oxygen concentration during exhaust and ventilation is a value measured using an exhaust gas analyzer (VA-3000, manufactured by Horiba, Ltd.).
In order to increase the oxygen capacity transfer rate, it is necessary to increase either or both of the oxygen transfer capacity coefficient (K L a) and the oxygen concentration gradient (Δc). K L is a liquid film transfer coefficient of oxygen, and a is a gas-liquid contact area per unit volume. Thus, K L does not change significantly in normal liquid culture, K L a is changed depending on the magnitude of a. That is, the oxygen transfer capacity coefficient (K L a) is a value that varies depending on the amount of aeration into the culture solution, the stirring speed, the diameter of the stirring blade, or the shape of the container. The oxygen concentration gradient (Δc) is a value that varies depending on the oxygen concentration in the gas to be vented, the pressure in the container, and the like.
For example, the oxygen capacity moving speed (N A / V) to 8mmol · l -1 · h -1 or more in the case of performing culture put broth 3L to aeration-agitation type fermentor 5L, the vent The amount may be about 0.67 to 1 vvm (volume / volume / minute). The diameter of the stirring blade may be about 4 to 7 cm. The stirring speed may be about 300 to 500 rpm. If it is the range of said stirring speed, an oxygen movement capacity | capacitance coefficient can be enlarged and a microbial cell will not be damaged by a shear stress. Also, oxygen may be blown into the culture solution at a higher concentration than air, and pure oxygen is better. What is necessary is just to make the pressure in a container higher pressure than normal pressure, and what is necessary is just to be about normal pressure-about 0.2 MPa. The oxygen concentration gradient can be increased under the above oxygen concentration and pressure conditions.
By appropriately setting the conditions such as the amount of ventilation into the culture medium, the stirring speed, the diameter and shape of the stirring blade, the shape of the container, the oxygen concentration of the gas to be blown, the pressure in the container, etc. within the above ranges, The capacity transfer rate (N A / V) can be 8 mmol·l −1 · h −1 or more. Further, when changing the capacity and culture volume of culture tank, by appropriately setting the conditions of the culture tank according to the above conditions, the oxygen capacity moving speed of the culture solution (N A / V) to 8 mmol · l -1・ It can be h -1 or more.
The culture method in the main culturing step may be any of a batch system such as batch culture and fed-batch (half batch) culture, and a continuous culture system such as perfusion culture.
Moreover, although culture | cultivation temperature changes with strains and strains to be used, it may be about 25 to 35 ° C. The culture time may be about 2 to 7 days in batch culture or fed-batch (half batch) culture. In continuous culture, the residence time may be about 2 to 6 days.

回収工程
本発明において回収工程とは、培養物からシデロフォアを回収する工程をいう。
アスペルギルス属糸状菌は、通常、菌体外にシデロフォアを分泌生産する。よって、菌体を含んだまま培地ごと回収してもよいし、遠心分離等で菌体を除去した後の培地から、公知の方法で精製してもよい。
シデロフォア
シデロフォアとは細菌や放線菌又は真核微生物が生産する分子量1500以下の鉄イオンキレート物質である。アスペルギルス属糸状菌体が生産するシデロフォアとしては、以下の一般式(鉄をキレートした状態を示す)で表わされる化合物が挙げられる。

(式中、R1は水素原子、又はヒドロキシメチル基を示し;R2は水素原子、メチル基又はヒドロキシメチル基を示し;R3、R4、R5は、同一又は異なって、メチル基、N5−(トランス−5−ヒドロキシ−3−メチルペント−2−エノイル)基、N5−(シス−5−ヒドロキシ−3−メチルペント−2−エノイル)基、又はN5−(トランス−4−カルボキシ−3−メチルペント−2−エノイル)基を示す。)
これらの化合物の一般式(1)における官能基であるR1〜R5を以下の表1にまとめて示す。
Recovery Step In the present invention, the recovery step refers to a step of recovering siderophore from the culture.
Aspergillus fungi usually secrete and produce siderophores outside the cells. Therefore, the whole culture medium may be collected while containing the bacterial cells, or may be purified by a known method from the culture medium after removing the bacterial cells by centrifugation or the like.
A siderophore siderophore is an iron ion chelate substance having a molecular weight of 1500 or less produced by bacteria, actinomycetes or eukaryotic microorganisms. Examples of siderophores produced by Aspergillus filamentous fungi include compounds represented by the following general formula (showing a state in which iron is chelated).

(Wherein R 1 represents a hydrogen atom or a hydroxymethyl group; R 2 represents a hydrogen atom, a methyl group or a hydroxymethyl group; and R 3 , R 4 and R 5 are the same or different and represent a methyl group, N 5 - (trans-5-hydroxy-3-methylpent-2-enoyl) group, N 5 - (cis-5-hydroxy-3-methylpent-2-enoyl) group, or an N 5 - (trans-4-carboxy -3-methylpent-2-enoyl) group.)
R 1 to R 5 which are functional groups in the general formula (1) of these compounds are summarized in Table 1 below.


本発明方法により製造されるシデロフォアの種類は、使用菌種によって定まる。アスペルギルス・オリゼを用いる場合は、主にフェリクリシンのデフェリ体であるDfcyが得られる。

The type of siderophore produced by the method of the present invention is determined by the bacterial species used. When Aspergillus oryzae is used, Dfcy, which is a deferiated form of ferriclysin, is mainly obtained.

(II)第2の方法
本発明の第2のシデロフォアの製造方法は、アスペルギルス属糸状菌を、無機窒素源がアンモニウム塩である培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含む方法である。
第2の方法では、前培養を行ってもよく、行わなくてもよい。前培養を行う場合の条件は、第1の方法について説明した通りである。
培養液中の無機窒素源のアンモニウム塩としては、アスペルギルス属糸状菌の培養に用いられる公知のアンモニウム塩を制限なく使用できる。このようなアンモニウム塩としては、例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム、クエン酸二アンモニウム、クエン酸三アンモニウム、酢酸アンモニウム、燐酸水素二アンモニウム、燐酸二水素アンモニウム、蟻酸アンモニウムなどが挙げられる。中でも、硫酸アンモニウムが好ましい。アンモニウム塩は1種を単独で、又は2種以上を組み合わせて使用できる。
アンモニウム塩の含有量は、通常0.1〜2.5%(w/v)程度、好ましくは0.5〜1.0%(w/v)程度とすればよい。
その他の無機窒素化合物は、前培養培地から混入したものを除き、実質的に含まれない。このような、アンモニウム塩以外の無機窒素化合物としては、硝酸塩、亜硝酸塩などが挙げられる。
培地中のその他の成分や培地pHなどの培地条件は、第1の方法について説明した通りである。培養方法、培養温度、培養時間、回収工程も、第1の方法と同様である。
(II) Second Method The second method for producing a siderophore according to the present invention comprises culturing an Aspergillus fungus in a culture solution whose inorganic nitrogen source is an ammonium salt, and recovering the siderophore from the culture. And a recovery step.
In the second method, pre-culture may or may not be performed. The conditions for pre-culture are as described for the first method.
As the ammonium salt of the inorganic nitrogen source in the culture solution, a known ammonium salt used for culturing Aspergillus fungi can be used without limitation. Examples of such ammonium salts include ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium carbonate, diammonium citrate, triammonium citrate, ammonium acetate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and ammonium formate. Of these, ammonium sulfate is preferable. Ammonium salts can be used alone or in combination of two or more.
The content of the ammonium salt is usually about 0.1 to 2.5% (w / v), preferably about 0.5 to 1.0% (w / v).
Other inorganic nitrogen compounds are not substantially contained except those mixed from the preculture medium. Examples of such inorganic nitrogen compounds other than ammonium salts include nitrates and nitrites.
Other components in the medium and medium conditions such as medium pH are as described for the first method. The culture method, culture temperature, culture time, and recovery step are also the same as in the first method.

実施例
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples.

シデロフォアの製造方法
後掲の実施例1〜4は、基本的に以下の条件で行った。各実施例で変更した条件は後述する。
<前培養工程>
以下の表2に示す条件で、Dfcy高生産変異株アスペルギルス・オリゼ3129−7株(FERM P−20961)の前培養を行なった。

酒粕プロテアーゼ分解物粉末は、酒粕をプロテアーゼで分解したものであり、以下の方法で調製したものを用いた。即ち、酒粕の凍結乾燥品300gに蒸留水600mlを加え均一にし、市販のプロテアーゼであるスミチームLP(新日本化学工業社製)を0.6g加えて50℃で16時間攪拌しながら反応させた。反応終了後、80℃で10分間加熱し、酵素を失活させた後、遠心分離(11000rpm、15分)により不溶性の残渣を除去し、上清液を凍結乾燥機で粉末になるまで除湿乾燥したものを使用した。
Production Method of Siderophore Examples 1 to 4 described later were basically performed under the following conditions. The conditions changed in each embodiment will be described later.
<Pre-culture process>
Under the conditions shown in Table 2 below, preculture of Dfcy high-producing mutant Aspergillus oryzae 3129-7 strain (FERM P-20961) was performed.

* Sake lees protease decomposed powder was obtained by degrading sake lees with protease and prepared by the following method. That is, 600 ml of distilled water was added to 300 g of a lyophilized product of sake lees and homogenized, and 0.6 g of a commercially available protease, Sumiteam LP (manufactured by Shin Nippon Chemical Industry Co., Ltd.) was added and reacted at 50 ° C. for 16 hours with stirring. After the reaction is completed, the enzyme is inactivated by heating at 80 ° C. for 10 minutes, and then insoluble residue is removed by centrifugation (11000 rpm, 15 minutes), and the supernatant is dehumidified and dried until it becomes a powder in a freeze dryer. We used what we did.

<本培養工程>
以下の表3に示す条件で本培養を行なった。

酒粕プロテアーゼ分解物粉末に関しては前培養と同様である。
<Main culture process>
The main culture was performed under the conditions shown in Table 3 below.

* Sake lees protease protease powder is the same as pre-culture.

酸素容量移動速度の測定方法
下記式に各数値を代入することにより算出した。
酸素容量移動速度(NA/V) =(F/V)( Cin −Cout )
F:培養液への通気量
V:培養液体積
Cin :培養液に通気する気体中の酸素濃度
Cout :培養槽からの排気中の酸素濃度
Cin 、Cout は排ガス分析装置(堀場製作所製、VA-3000)を用いて測定した。
Measurement method of oxygen capacity transfer rate It was calculated by substituting each numerical value into the following equation.
Oxygen content moving speed (N A / V) = ( F / V) (C in * -C out *)
F: Aeration volume to culture medium
V: Volume of culture solution
C in * : Oxygen concentration in the gas aerated in the culture
C out * : Oxygen concentration in the exhaust from the culture tank
C in * and C out * were measured using an exhaust gas analyzer (VA-3000, manufactured by Horiba, Ltd.).

Dfcy生産量の測定方法
培養上清に100μlに10μlの0.2Mクエン酸バッファー(pH4.0)、10μlの3000ppm FeCl溶液を添加し、Dfcyに鉄をキレートしフェリクリシン(Fcy)とした。
このFcy溶液を、HPLC(SHIMADZU社製;Prominence)を用いた逆相クロマト分析に供し、Fcyに特異的な吸収波長である波長430nmを指標にFcyピークを同定した。そのピーク面積からFcyの定量を行った。定量したFcy量に、Fcyに対するDfcyの分子量比0.93(744/800)を乗じてDfcy量を算出した。
Method for Measuring Dfcy Production Amount 10 μl of 0.2 M citrate buffer (pH 4.0) and 10 μl of 3000 ppm FeCl 3 solution were added to 100 μl of the culture supernatant, and iron was chelated to Dfcy to obtain ferriclysin (Fcy).
This Fcy solution was subjected to reverse phase chromatographic analysis using HPLC (manufactured by SHIMADZU; Prominence), and an Fcy peak was identified using a wavelength of 430 nm, which is an absorption wavelength specific for Fcy, as an index. Fcy was quantified from the peak area. The Dfcy amount was calculated by multiplying the quantified Fcy amount by the molecular weight ratio of Dfcy to Fcy of 0.93 (744/800).

実施例1
酸素容量移動速度がDfcy生産性に与える影響の検討(1)(通気条件)
培養時の通気条件を変化させることにより酸素容量移動速度を変化させ、酸素容量移動速度がDfcyの生産性に与える影響について検証した。即ち、空気を0.67(vvm)で通気する場合と、酸素(濃度約100%、以下同じ。)を0.33(vvm)で通気する場合との間で、酸素容量移動速度、及びDfcyの生産量を比較した。前培養条件は前掲の表2の条件の通りである。本培養条件は前掲の表3の通りであり、但し窒素源としてはNaNOを1.0%(w/v)添加し、(NHSOは非添加とした。pH制御は行わなかった。また、本培養時の攪拌速度は300rpmとし、48時間培養した。
結果を以下の表4に示す。
Example 1
Examination of the effect of oxygen capacity transfer rate on Dfcy productivity (1) (aeration condition)
The oxygen capacity transfer rate was changed by changing the aeration conditions during culture, and the influence of the oxygen capacity transfer rate on the productivity of Dfcy was verified. That is, the oxygen capacity transfer rate and Dfcy between when air is vented at 0.67 (vvm) and when oxygen (concentration is about 100%, the same applies hereinafter) is vented at 0.33 (vvm). The production amount was compared. The preculture conditions are as shown in Table 2 above. The main culture conditions were as shown in Table 3 above, except that 1.0% (w / v) NaNO 3 was added as a nitrogen source, and (NH 4 ) 2 SO 4 was not added. No pH control was performed. Moreover, the stirring speed at the time of main culture was 300 rpm, and cultured for 48 hours.
The results are shown in Table 4 below.

表4より、Dfcy生産量は、酸素通気時は空気通気時と比較して約2倍近くになることが分かる。   From Table 4, it can be seen that the Dfcy production amount is nearly doubled when oxygen is ventilated compared to when air is aerated.

実施例2
酸素容量移動速度がDfcy生産性に与える影響の検討(2)(攪拌翼速度)
培養時の攪拌翼速度を変化させることにより酸素容量移動速度を変化させ、酸素容量移動速度がDfcyの生産性に与える影響について検証した。即ち、攪拌速度を100rpm、300rpm、500rpm、及び700rpmに変化させて、酸素容量移動速度、及びDfcyの生産量を比較した。前培養条件は前掲の表2の条件の通りである。本培養条件は前掲の表3の通りであり、但し窒素源としてはNaNOを1.0%(w/v)添加し、(NHSOは非添加とした。pH制御は行わなかった。通気は空気を0.67vvmとし、64時間培養した。
結果を以下の表5に示す。
表5より、酸素容量移動速度が高いほどDfcy生産量が多くなることが分かる。また、攪拌速度300rpm、500rpm、及び700rpmのときの64時間培養後の菌体の光学顕微鏡写真を図1に示す。攪拌速度が700rpmのときに菌体がせん断されている。攪拌速度を余りに大きくすると菌体がせん断されて、酸素容量移動速度の増大に見合うようにはDfcy生産量が増大しないことも分かる。
表4及び表5から、酸素容量移動速度を8mmol・l-1・h-1以上にすることによりDfcyを高生産できることが示された。また、酸素容量移動速度を高くする方法としては、酸素通気や攪拌速度上昇などの方法があるが、攪拌速度は菌体がせん断されない範囲に設定することが必要であることも示された。
Example 2
Examination of the effect of oxygen capacity transfer speed on Dfcy productivity (2) (stirring blade speed)
The oxygen volume transfer speed was changed by changing the stirring blade speed during the culture, and the influence of the oxygen capacity transfer speed on the productivity of Dfcy was verified. That is, the oxygen capacity transfer speed and the production amount of Dfcy were compared by changing the stirring speed to 100 rpm, 300 rpm, 500 rpm, and 700 rpm. The preculture conditions are as shown in Table 2 above. The main culture conditions were as shown in Table 3 above, except that 1.0% (w / v) NaNO 3 was added as a nitrogen source, and (NH 4 ) 2 SO 4 was not added. No pH control was performed. For aeration, air was set to 0.67 vvm and cultured for 64 hours.
The results are shown in Table 5 below.
From Table 5, it can be seen that the higher the oxygen capacity transfer rate, the greater the Dfcy production amount. Moreover, the optical microscope photograph of the microbial cell after culture | cultivating for 64 hours when stirring speed is 300 rpm, 500 rpm, and 700 rpm is shown in FIG. The cells are sheared when the stirring speed is 700 rpm. It can also be seen that if the stirring speed is increased too much, the cells are sheared and the Dfcy production amount does not increase to meet the increase in oxygen capacity transfer speed.
From Tables 4 and 5, it was shown that Dfcy can be produced at high yields by setting the oxygen capacity transfer rate to 8 mmol·l −1 · h −1 or more. In addition, as a method for increasing the oxygen capacity transfer rate, there are methods such as oxygen aeration and increase in the stirring speed, but it has also been shown that the stirring speed needs to be set in a range where the cells are not sheared.

実施例3
無機窒素源の種類がDfcy生産に与える影響の検討
培養液中の窒素源の種類がDfcyの生産性に与える影響について検証した。即ち、窒素源として硝酸ナトリウムを用いた場合と、硫酸アンモニウムを用いた場合とで、Dfcyの生産量を比較した。前培養条件は前掲の表2の条件の通りである。本培養条件は前掲の表3の通りであり、培地のpHは、硫酸アンモニウムを使用した場合のみ4.0以下にならないように12.5%アンモニア水を添加して制御した。通気及び攪拌速度は、培養開始後16時間までは空気を0.67vvm及び300rpmとし、その後は酸素を0.5vvm及び450rpmとした。合計64時間培養した。
結果を以下の表6に示す。
Example 3
Examination of Influence of Kind of Inorganic Nitrogen Source on Dfcy Production The influence of the kind of nitrogen source in the culture solution on the productivity of Dfcy was verified. That is, the amount of Dfcy produced was compared between when sodium nitrate was used as the nitrogen source and when ammonium sulfate was used. The preculture conditions are as shown in Table 2 above. The main culture conditions were as shown in Table 3 above, and the pH of the medium was controlled by adding 12.5% aqueous ammonia so that it did not become 4.0 or less only when ammonium sulfate was used. The aeration and agitation speeds were 0.67 vvm and 300 rpm for air up to 16 hours after the start of culture, and 0.5 vvm and 450 rpm for oxygen thereafter. Incubated for a total of 64 hours.
The results are shown in Table 6 below.

表6に示すように、N源として硝酸ナトリウムを添加した場合よりも、硫酸アンモニウムをN源として添加した方が、Dfcyの生産性が高いことが示された。   As shown in Table 6, it was shown that the productivity of Dfcy was higher when ammonium sulfate was added as the N source than when sodium nitrate was added as the N source.

実施例4
生産されるシデロフォアの種類
鉄制限培地及び鉄添加培地を用いて、以下に示す条件で、アスペルギルス・オリゼ1013株(FERM P−16528)を培養し、培養上清に最終濃度(500ppm)のFeCl溶液を添加した場合と、添加しない場合とについてHPLC分析を行い、シデロフォアを検出した。
<培養条件>
前培養条件は前掲の表2の条件の通りである。本培養条件は前掲の表3の通りであり、培地のpHは、硫酸アンモニウムを使用した場合のみ4.0以下にならないように12.5%アンモニア水を添加して制御した。通気及び攪拌速度は、培養開始後16時間までは空気を0.67vvm及び300rpmとし、その後は硫酸アンモニウムを使用した場合のみ酸素を0.5vvm及び450rpmとした。合計64時間培養した。
<HPLC分析条件>
培養上清100μlに10μlの0.2M クエン酸バッファー(pH4.0)、10μlの3000ppm FeCl溶液を添加し、シデロフォアに鉄をキレートさせた。
これをHPLC(SHIMADZU社製;Prominence)を用いた逆相クロマト分析に供し、シデロフォアに特異的な吸収波長である波長430nmを指標にFcyやその他のシデロフォアを同定した。各シデロフォアはピーク面積比にて生産量を比較した。
結果を以下の表7に示す。

なお、培養上清に鉄を添加しなかった場合にはDfcyやその他のシデロフォアA、Bのいずれのピークも検出されなかった。
結果を図2に示す。鉄制限培養して得た培養液の上清にFeCl溶液を添加して初めて検出されるピークがシデロフォアのピークであると考えられることから、1013株はDfcyの他に2種のシデロフォアを生産していることが分かる。
Example 4
Kind of produced siderophore Aspergillus oryzae strain 1013 (FERM P-16528) is cultured under conditions shown below using an iron-restricted medium and an iron-added medium, and the final concentration (500 ppm) of FeCl 3 is cultured in the culture supernatant. A siderophore was detected by HPLC analysis with and without addition of the solution.
<Culture conditions>
The preculture conditions are as shown in Table 2 above. The main culture conditions were as shown in Table 3 above, and the pH of the medium was controlled by adding 12.5% aqueous ammonia so that it did not become 4.0 or less only when ammonium sulfate was used. The aeration and stirring speeds were 0.67 vvm and 300 rpm for air up to 16 hours after the start of culture, and oxygen was 0.5 vvm and 450 rpm only when ammonium sulfate was used thereafter. Incubated for a total of 64 hours.
<HPLC analysis conditions>
10 μl of 0.2 M citrate buffer (pH 4.0) and 10 μl of 3000 ppm FeCl 3 solution were added to 100 μl of culture supernatant to chelate iron to the siderophore.
This was subjected to reverse phase chromatographic analysis using HPLC (manufactured by SHIMADZU; Prominence), and Fcy and other siderophores were identified using a wavelength of 430 nm, which is an absorption wavelength specific for siderophores, as an index. Each siderophore was compared in production by peak area ratio.
The results are shown in Table 7 below.

In addition, when no iron was added to the culture supernatant, none of the peaks of Dfcy and other siderophores A and B were detected.
The results are shown in FIG. Since the peak detected for the first time after adding FeCl 3 solution to the supernatant of the culture broth obtained by iron-restricted culture is considered to be the siderophore peak, 1013 strain produces two siderophores in addition to Dfcy. You can see that

本発明の製造方法は、鉄補給用の医薬品や健康食品などとして有用なシデロフォアを効率的に生産するために好適に使用できる。   The production method of the present invention can be suitably used to efficiently produce a siderophore useful as a pharmaceutical or health food for iron supplementation.

実施例2で培養した菌体の光学顕微鏡写真である。2 is an optical micrograph of the cells cultured in Example 2. 実施例4のHPLCチャートである。6 is an HPLC chart of Example 4.

Claims (3)

アスペルギルス属糸状菌を、酸素容量移動速度を8mmol・l-1・h-1以上とした培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含むシデロフォアの製造方法。 A method for producing a siderophore comprising a culture step of culturing Aspergillus filamentous fungi in a culture solution having an oxygen capacity transfer rate of 8 mmol·l −1 · h −1 or more, and a recovery step of recovering siderophore from the culture. 培養液中の無機窒素源がアンモニウム塩である請求項1に記載の方法。   The method according to claim 1, wherein the inorganic nitrogen source in the culture solution is an ammonium salt. アスペルギルス属糸状菌を、無機窒素源がアンモニウム塩である培養液中で培養する培養工程と、培養物からシデロフォアを回収する回収工程とを含むシデロフォアの製造方法。   A method for producing a siderophore, comprising a culture step of culturing Aspergillus fungi in a culture solution whose inorganic nitrogen source is an ammonium salt, and a recovery step of recovering siderophore from the culture.
JP2008121482A 2007-06-28 2008-05-07 Method for producing siderophore Active JP5553969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121482A JP5553969B2 (en) 2007-06-28 2008-05-07 Method for producing siderophore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007171266 2007-06-28
JP2007171266 2007-06-28
JP2008121482A JP5553969B2 (en) 2007-06-28 2008-05-07 Method for producing siderophore

Publications (2)

Publication Number Publication Date
JP2009028030A true JP2009028030A (en) 2009-02-12
JP5553969B2 JP5553969B2 (en) 2014-07-23

Family

ID=40399272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121482A Active JP5553969B2 (en) 2007-06-28 2008-05-07 Method for producing siderophore

Country Status (1)

Country Link
JP (1) JP5553969B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252747A (en) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Detection method for legionella and fluorescent material
JP2012126684A (en) * 2010-12-16 2012-07-05 Gekkeikan Sake Co Ltd Melanin inhibitor and its application
KR101250071B1 (en) 2011-09-14 2013-04-03 고려대학교 산학협력단 Siderophore over-production method from microorganism
WO2013105653A1 (en) * 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2013105652A1 (en) * 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
CN105176846A (en) * 2015-10-30 2015-12-23 云南大学 FEDT-866 fungi strains for producing biological siderophore compounds and preparation method
WO2017126626A1 (en) * 2016-01-20 2017-07-27 国立大学法人旭川医科大学 Antitumor agent

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JPN6013021199; J. Biosci. Bioeng. Vol. 95, No. 1, 2003, p. 82-88 *
JPN6013021201; Microbiology Vol. 146, 2000, p. 1617-1626 *
JPN6013021202; Infect. Immun. Vol. 59, No. 3, 1991, p. 776-780 *
JPN6013021203; FEMS Microbiol. Lett. Vol. 196, 2001, p. 147-151 *
JPN6013021205; FEMS Microbiol. Lett. Vol. 115, 1994, p. 125-130 *
JPN6013021206; Appl. Microbiol. Biotechnol. Vol. 32, 1990, p. 505-510 *
JPN6013021208; FEMS Microbiol. Lett. Vol. 67, 1990, p. 201-205 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252747A (en) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Detection method for legionella and fluorescent material
JP2012126684A (en) * 2010-12-16 2012-07-05 Gekkeikan Sake Co Ltd Melanin inhibitor and its application
KR101250071B1 (en) 2011-09-14 2013-04-03 고려대학교 산학협력단 Siderophore over-production method from microorganism
WO2013105653A1 (en) * 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
WO2013105652A1 (en) * 2012-01-13 2013-07-18 東レ株式会社 Method for producing chemical substance
JPWO2013105653A1 (en) * 2012-01-13 2015-05-11 東レ株式会社 Manufacturing method of chemical products
JPWO2013105652A1 (en) * 2012-01-13 2015-05-11 東レ株式会社 Manufacturing method of chemical products
CN105176846A (en) * 2015-10-30 2015-12-23 云南大学 FEDT-866 fungi strains for producing biological siderophore compounds and preparation method
WO2017126626A1 (en) * 2016-01-20 2017-07-27 国立大学法人旭川医科大学 Antitumor agent
US10576126B2 (en) 2016-01-20 2020-03-03 National University Corporation Asahikawa Medical University Antitumor agent

Also Published As

Publication number Publication date
JP5553969B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5553969B2 (en) Method for producing siderophore
JP6876603B2 (en) Method for producing Bacillus bacterial spores
Wainwright Hydrogen sulphide production by yeast under conditions of methionine, pantothenate or vitamin B6 deficiency
BE533886A (en)
JP2009011315A (en) Production method of hyaluronic acid
JPWO2011118807A1 (en) Yeast culture method
WO2018155485A1 (en) Novel microorganism and production method for urolithins using same
CN103146595B (en) Bacillus subtilis and method for fermentation production of D- ribose
Uchida et al. Fermentative production of hypoxanthine derivatives
Chen et al. Optimizing culture medium for debittering constitutive enzyme naringinase production by Aspergillus oryzae JMU316
CN105567584A (en) Bacillus capable of resolving (+/-)gamma-lactam to obtain (+)gamma-lactam and screening and application of bacillus
JPS6214794A (en) Production of guanosine and/or inosine by fermentation
Fratelli et al. Effect of medium composition on the production of tetanus toxin by Clostridium tetani
JPS5945359B2 (en) Production method of abscisic acid by fermentation method
CN102586383B (en) Process for preparing cytidine diphosphate choline
JP2011092045A (en) Inexpensive method for producing lactic acid by fermentation method
WO2012067106A1 (en) Method for producing yeast extract
JP2009045008A (en) Method for producing tetrahydrocurcumins
Miguez et al. Application of Plackett–Burman design for medium constituents optimization for the production of L-phenylacetylcarbinol (L-PAC) by Saccharomyces Cerevisiae
JPS63283588A (en) Production of carboxylic acid by microbiological fermentation of alcohol
JP4870442B2 (en) Method for producing lactic acid
MD2590G2 (en) Nutrient medium for indication of Candida kind yeasts
JPWO2004038009A1 (en) Method for producing matsutake mycelium
JPH0686343B2 (en) Method for degrading phytate by microorganisms
JP2019180283A (en) Method for producing urolithin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5553969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250