KR101247119B1 - Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same - Google Patents
Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same Download PDFInfo
- Publication number
- KR101247119B1 KR101247119B1 KR1020120007958A KR20120007958A KR101247119B1 KR 101247119 B1 KR101247119 B1 KR 101247119B1 KR 1020120007958 A KR1020120007958 A KR 1020120007958A KR 20120007958 A KR20120007958 A KR 20120007958A KR 101247119 B1 KR101247119 B1 KR 101247119B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- expanded graphite
- manufacturing
- metal powder
- parts
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 239000000203 mixture Substances 0.000 title claims abstract description 41
- 230000005855 radiation Effects 0.000 title 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 87
- 239000010439 graphite Substances 0.000 claims abstract description 86
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 86
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000000843 powder Substances 0.000 claims abstract description 57
- 230000017525 heat dissipation Effects 0.000 claims abstract description 42
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000006185 dispersion Substances 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 23
- 238000001746 injection moulding Methods 0.000 claims abstract description 16
- 239000008188 pellet Substances 0.000 claims abstract description 16
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 13
- 230000003078 antioxidant effect Effects 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims description 16
- 229920001577 copolymer Polymers 0.000 claims description 12
- 239000002270 dispersing agent Substances 0.000 claims description 12
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 11
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 11
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229920006351 engineering plastic Polymers 0.000 claims description 10
- 239000000088 plastic resin Substances 0.000 claims description 9
- 239000004677 Nylon Substances 0.000 claims description 8
- 238000003801 milling Methods 0.000 claims description 8
- 229920001778 nylon Polymers 0.000 claims description 8
- 239000004417 polycarbonate Substances 0.000 claims description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 7
- HNURKXXMYARGAY-UHFFFAOYSA-N 2,6-Di-tert-butyl-4-hydroxymethylphenol Chemical compound CC(C)(C)C1=CC(CO)=CC(C(C)(C)C)=C1O HNURKXXMYARGAY-UHFFFAOYSA-N 0.000 claims description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000007983 Tris buffer Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 claims description 3
- BYLSIPUARIZAHZ-UHFFFAOYSA-N 2,4,6-tris(1-phenylethyl)phenol Chemical compound C=1C(C(C)C=2C=CC=CC=2)=C(O)C(C(C)C=2C=CC=CC=2)=CC=1C(C)C1=CC=CC=C1 BYLSIPUARIZAHZ-UHFFFAOYSA-N 0.000 claims description 3
- PFEFOYRSMXVNEL-UHFFFAOYSA-N 2,4,6-tritert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 PFEFOYRSMXVNEL-UHFFFAOYSA-N 0.000 claims description 3
- JFGVTUJBHHZRAB-UHFFFAOYSA-N 2,6-Di-tert-butyl-1,4-benzenediol Chemical compound CC(C)(C)C1=CC(O)=CC(C(C)(C)C)=C1O JFGVTUJBHHZRAB-UHFFFAOYSA-N 0.000 claims description 3
- MVRPPTGLVPEMPI-UHFFFAOYSA-N 2-cyclohexylphenol Chemical compound OC1=CC=CC=C1C1CCCCC1 MVRPPTGLVPEMPI-UHFFFAOYSA-N 0.000 claims description 3
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims description 3
- DVHGDZGBIREILC-UHFFFAOYSA-N CCCC.C(C)C1=C(C=C(C(=C1)O)C(C)(C)C)O Chemical compound CCCC.C(C)C1=C(C=C(C(=C1)O)C(C)(C)C)O DVHGDZGBIREILC-UHFFFAOYSA-N 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 235000010354 butylated hydroxytoluene Nutrition 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000002525 ultrasonication Methods 0.000 claims description 3
- DBAKFASWICGISY-DASCVMRKSA-N Dexchlorpheniramine maleate Chemical group OC(=O)\C=C/C(O)=O.C1([C@H](CCN(C)C)C=2N=CC=CC=2)=CC=C(Cl)C=C1 DBAKFASWICGISY-DASCVMRKSA-N 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 3
- 239000000463 material Substances 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract description 4
- 239000012467 final product Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004512 die casting Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 2
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- XERAGTFKMJZSDI-UHFFFAOYSA-N ethene;ethenyl prop-2-enoate Chemical compound C=C.C=COC(=O)C=C XERAGTFKMJZSDI-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/507—Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/85—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2101/00—Point-like light sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S362/00—Illumination
- Y10S362/80—Light emitting diode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
본 발명은 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법에 관한 것으로, 구체적으로는 초음파 분산방법을 이용하여 팽창흑연/알루미늄 금속분말을 용매에 분산시키고 이를 에틸렌 비닐 아크릴레이트 공중합체 수지(이하, 'EVA'라 함)와 혼합하여 EVA/팽창흑연/알루미늄 마스터 뱃치를 먼저 제조한 후, 상기 제조된 마스터 뱃치를 발광다이오드(이하, LED라 함) 하우징 등의 방열 구조물에 적용시키는 것을 특징으로 하는 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법에 관한 것이다.
The present invention relates to a method for producing a heat dissipating composition for an LED housing, a heat dissipating composition prepared by the method and a method for manufacturing an LED housing using the heat dissipating composition, specifically, expanded graphite / aluminum metal powder using an ultrasonic dispersion method. Is dispersed in a solvent and mixed with ethylene vinyl acrylate copolymer resin (hereinafter referred to as 'EVA') to prepare an EVA / expanded graphite / aluminum master batch first, and then the prepared master batch is a light emitting diode (hereinafter, The present invention relates to a method for producing a heat dissipating composition for an LED housing, which is applied to a heat dissipating structure such as an LED housing, a heat dissipating composition produced by the method, and a method for manufacturing an LED housing using the heat dissipating composition.
최근들어, 전 세계적으로 저탄소 녹색 성장의 일환으로 에너지 사용량을 줄이고 온실가스를 감축하기 위해서 저공해 친환경 제품으로 인정받고 있는 발광다이오드(LED)를 각종 조명등으로 사용이 증가하고 있다.
Recently, in order to reduce energy consumption and reduce greenhouse gas as part of low-carbon green growth worldwide, the use of light emitting diodes (LEDs), which are recognized as low-pollution eco-friendly products, is increasing in various lightings.
이에 따라 산업계에서는 고효율, 고집적, 고기능, 경박단소화 등을 고려하여 LED를 부품, 모듈(module), 세트(set) 등으로 설계하고 있다. 각 분야의 설계자들이 상기 열거한 기술적 경향을 만족시키기 위해 설계를 하다 보면, 종래의 설계 기술에서 발생하는 열보다 더 많은 열이 방출되는 경우가 있고 이러한 열에 의해서 시스템 등의 성능 저하 등과 같은 문제 등이 발생하는 경우가 나타난다. 따라서 관련 산업계에서는 발생하는 열적인 문제(방열, 열확산, 열분산, 열수집, 열전달 등)을 효율적으로 처리하기 위한 연구를 끊임없이 지속하고 있다.
Accordingly, the industry is designing LEDs as parts, modules, sets, etc. in consideration of high efficiency, high integration, high functionality, and light and small size. When designers in each field design to satisfy the above-mentioned technical trends, more heat may be released than heat generated in the conventional design technology, and such heat may cause problems such as performance degradation of the system. It happens. Therefore, related industries are constantly researching to efficiently deal with thermal problems (heat dissipation, heat diffusion, heat dissipation, heat collection, heat transfer, etc.).
따라서, LED를 이용한 조명등은 에너지 효율이 높은 LED 소자와, 발광다이오LED 소자에 공급하는 전원의 안정화 장치, 상기 두 부분에서 발생하는 열을 대기 중으로 방열시키는 방열부분으로 구성되어 있다.
Therefore, the lamp using the LED is composed of a high-efficiency LED device, a stabilization device of the power supply to the light emitting diode LED device, and a heat dissipation part for dissipating heat generated in the two parts to the atmosphere.
LED는 화합물 반도체로서 사용 온도가 높아지면 원자들의 열진동으로 전자의 흐름이 방해를 받아 조도가 떨어지는 현상이 일어나고, 온도가 더욱 높아지게 되면 반도체의 확산층의 확산이 일어나 급격한 조도 저하와 사용 수명이 급격히 짧아지게 된다.
LED is a compound semiconductor. When the temperature is high, the illumination of the atoms is disturbed by the thermal vibration of the atoms, and the illuminance is reduced. When the temperature is higher, the diffusion layer of the semiconductor is diffused, resulting in a sudden decrease in the illuminance and a short service life. You lose.
즉. LED의 고유한 장점인 고효율 장수명의 관건은 LED 방열 기술이며, 이에 따라서 고효율 방열 모듈의 개발을 위한 핵심 기술의 개발이 시급한 상황이다.
In other words. The key advantage of high efficiency and long life, which is a unique advantage of LED, is LED heat dissipation technology. Therefore, it is urgent to develop key technologies for the development of high efficiency heat dissipation module.
한편, 현재 LED 조명 관련 국내 연구는 주로 LED 소자 개발과 패키징 분야의 기술에 집중되어 방열 모듈에 관한 연구는 소외받는 경향이 있으나, LED 조명기구 전체의 방열 특성 향상을 위해서는 방열 모듈 전체에 관한 연구가 필수적이다.
On the other hand, domestic research related to LED lighting mainly focuses on LED device development and packaging technology, so research on heat dissipation module tends to be alienated. It is essential.
따라서, LED 조명의 실용화를 위해서는 LED 방열 모듈의 내구성, 소형화 및 경량화에 관한 연구가 필수적이며 현재까지 방열모듈은 히트싱크(heat sink)의 일종인 방열체를 주로 사용하고 있으나, 방열체 만으로는 향후 중대형 LED 조명 기구의 크기가 매우 커질 것으로 예상되고 있다.
Therefore, the study of durability, miniaturization and light weight of the LED heat dissipation module is essential for the practical use of the LED lighting. Until now, the heat dissipation module mainly uses a heat sink, which is a kind of heat sink. It is expected that the size of the LED luminaire will be very large.
아울러, LED 램프 하우징 소재는 거의 대부분 알루미늄 다이케스팅(알루미늄 분말을 사출기에 넣어 용융시켜 금형의 틀에 주입하는 방법으로 제조하는 것)으로 적용하고 있으며 3W급 이상의 제품에 모두 사용된다. 알루미늄 자체의 방열도는 높으나 생산성과 가공성, 무게, 가격 등에서 플라스틱에 비해 경쟁력이 떨어지며, 10W급 이상의 LED 램프 제품은 아직까지 알루미늄 소재로 사용하고 있으나 10W급 이하 제품은 알루미늄 다이케스팅 하우징 제품을 방열 플라스틱으로 대체가 시급하다.
In addition, most of the LED lamp housing material is applied by aluminum die casting (manufactured by melting aluminum powder into an injection molding machine and injecting it into a mold of a mold) and used for all products of 3W or higher. Although aluminum has high heat dissipation, it is less competitive than plastic in productivity, processability, weight, and price. LED lamp products of 10W or higher are still used as aluminum materials, but products of 10W or lower are made of aluminum die-casting housing products with heat-radiating plastic. Replacement is urgent.
한편, 특허문헌 1인 대한민국 등록특허공보 제10-1034046호, 특허문헌 2인 대한민국 공개특허공보 제10-2008-0096083호 및 특허문헌 3인 제10-2011-0078577호에는 팽창 흑연(exfoilated graphite) 시트를 방열재로 채택한 기술이 공개되어 있다.
On the other hand,
하지만, 상기와 같은 종래의 기술은 팽창 흑연을 시트형태, 즉 하나의 구조물로 제조하여 인쇄회로기판의 하부에 설치하는 구조로써, LED 조명등의 부피가 커질 뿐만 아니라 방열효율이 극히 미비한 문제점이 있었다.
However, the conventional technology as described above is a structure in which expanded graphite is manufactured in a sheet form, that is, installed in a lower portion of a printed circuit board, and has a problem that not only the volume of the LED light is increased but also the heat dissipation efficiency is extremely poor.
한편, 상기와 같이, 팽창 흑연을 별도의 구조물로 형성시킬 수 밖에 없었던 이유는 팽창 흑연의 분산성이 매우 낮기 때문이며, 팽창 흑연과 알루미늄 금속분말을 일반적인 알루미늄 다이케스팅 사출방식 즉, 알루미늄 분말을 사출기에 넣어 용융시켜 금형의 틀에 주입하는 방법으로 제조할 경우, 팽창 흑연의 분산성이 매우 낮기 때문에 그 성형이 매우 어려울 뿐만 아니라, 성형이 되더라도 최종 제품의 물성 및 방열특성이 매우 미비하게 되는 문제점이 있었다.
On the other hand, as described above, the reason why the expanded graphite was to be formed as a separate structure is because the dispersibility of the expanded graphite is very low, and the expanded graphite and aluminum metal powder are put into a general aluminum die casting injection method, that is, aluminum powder In the case of manufacturing by melting and injecting into the mold of the mold, since the dispersibility of the expanded graphite is very low, the molding thereof is very difficult, and there is a problem in that even if the molding is performed, the physical properties and heat dissipation characteristics of the final product are very poor.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 방열특성이 우수한 팽창흑연과 알루미늄 금속분말을 종래 알루미늄 다이케스팅 사출방식(팽창흑연과 알루미늄 금속분말알루미늄 분말을 단순히 사출기에 넣어 용융시킨 후, 금형의 틀에 주입하는 방법)으로 제조하는 것과 달리, 초음파 분산방법을 이용하여 팽창흑연/알루미늄 금속분말을 용매에 분산시키고 이를 EVA와 혼합하여 EVA/팽창흑연/알루미늄 마스터 뱃치를 먼저 제조한 후, 상기 마스터 뱃치를 통상의 엔지니어링 플라스틱 수지와 혼합하여 펠렛(pellet)으로 제조하고 이를 사출가공하여 LED 방열 하우징을 제조하여 팽창 흑연 특유의 적층 형상을 상기 마스터 뱃치 제조 단계에서 분산시킴으로써, 팽창흑연의 분산효과가 매우 크게 나타날 뿐만 아니라 방열성이 우수한 알루미늄 파우더가 상기 팽창 흑연의 적층 사이에 골고루 분산되도록 하며, 이로 인해 최종제품의 방열특성을 향상시키고, 팽창흑연과 알루미늄 금속분말을 적게 사용하더라도 우수한 방열특성을 가지도록 하는 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법을 제공함을 과제로 한다.
The present invention is to solve the above problems, the conventional graphite die casting injection method (expanded graphite and aluminum metal powder aluminum powder by simply inserting the expanded graphite and aluminum metal powder aluminum powder into the injection machine and melted, the mold of the mold) In contrast to the manufacturing method, the expanded graphite / aluminum metal powder is dispersed in a solvent using an ultrasonic dispersion method and mixed with EVA to prepare an EVA / expanded graphite / aluminum master batch first, and then the master batch. Is prepared into pellets by mixing with a general engineering plastic resin and injection-processed to produce an LED heat dissipation housing to disperse the laminated shape unique to the expanded graphite in the master batch manufacturing step, thereby greatly dispersing the expanded graphite. Not only that, but the aluminum powder with excellent heat dissipation Method for producing a heat dissipating composition for LED housings to be evenly dispersed between the laminated graphite, thereby improving the heat dissipation characteristics of the final product, and to have excellent heat dissipation characteristics even if less expanded graphite and aluminum metal powder, An object of the present invention is to provide a heat dissipation composition produced by the method and a manufacturing method of the LED housing using the heat dissipation composition.
아울러, 상기와 같이 제조된 방열조성물을 LED 조명기구 외에도 열적인 문제를 수반하는 다양한 산업군에 적용되어 방열을 필요로 하는 각종 구조물(예를 들면, 가로등의 설치대 등)의 경량화 및 소형화를 가능하게 함으로써, 방열 특성, 내열성, 기계적 강도, 소형화, 경량화 및 자원 사용과 비용 절감 등의 경제적 측면에서 전자재료의 방열 및 각종 산업 전 분야에 크게 기여할 수 있으며, 특히, LED 조명기구의 소형, 경량화를 통해 정부의 녹색 성장 정책에 부응할 수 있을 뿐만 아니라 향후 다양한 종류의 조명기구 보급사업에 활발히 활용될 수 있도록 하는 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법을 제공함을 다른 과제로 한다.
In addition, the heat-dissipating composition prepared as described above is applied to various industrial groups with thermal problems in addition to LED lighting fixtures, thereby enabling the weight reduction and miniaturization of various structures (for example, a street lamp mounting stand) requiring heat dissipation. In terms of economics such as heat dissipation characteristics, heat resistance, mechanical strength, miniaturization, weight reduction, and resource use and cost reduction, it can greatly contribute to heat dissipation of electronic materials and various industries. Manufacturing method of heat dissipation composition for LED housing, which can meet the green growth policy of the company and can be actively used in various kinds of lighting fixtures supply business, heat dissipation composition manufactured by this method and LED using this heat dissipation composition Another object is to provide a method for manufacturing the housing.
본 발명은 LED 하우징용 방열 조성물의 제조방법에 있어서,The present invention provides a method for producing a heat dissipating composition for an LED housing,
용매 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 1 ~ 5 중량부와 분산제 0.1 ~ 0.5 중량부를 투입한 후, 연속식 초음파 처리장치를 이용하여 1 ~ 2시간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조하는 분산액 제조단계(S1); 및To 100 parts by weight of solvent, 1 to 5 parts by weight of expanded graphite and aluminum metal powder and 0.1 to 0.5 parts by weight of a dispersant were added, followed by ultrasonication for 1 to 2 hours using a continuous ultrasonic treatment apparatus, and milling. Dispersion manufacturing step (S1) for producing an expanded graphite / aluminum metal powder dispersion through a process; And
상기 팽창흑연/알루미늄 금속분말 분산액을 80 ~ 100℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 50 ~ 90 중량부와 산화방지제 0.1 ~ 0.3 중량부를 투입한 후, 60 ~ 80℃의 니이더(kneader)기에서 20 ~ 30분간 혼련하고, 60 ~ 80℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 130 ~ 150℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조하는 마스터 뱃치 제조단계(S2);를 포함하여 구성되는 것을 특징을 하는 LED 하우징용 방열 조성물의 제조방법을 과제의 해결 수단으로 한다.
After drying the expanded graphite / aluminum metal powder dispersion to 80 ~ 100 ℃ to make a powder state, with respect to 100 parts by weight of the powdered expanded graphite / aluminum metal powder,
여기서, 상기 용매는, 물, DMF(dimethylforamide) 또는 THF(tetrahydrofuran) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용하는 것이 바람직하다.
Here, the solvent is preferably used in combination with one or more selected from water, DMF (dimethylforamide) or THF (tetrahydrofuran).
아울러, 상기 분산제는, 알킬암모늄염 공중합체 화합물, 폴리에스터/폴리에테르계 화합물이나 인산 기를 함유한 공중합체 또는 극성/비극성 아민기를 가진 공중합체 중에서 1종 또는 그 이상을 선택, 병용하여 사용하는 것이 바람직하다.
In addition, it is preferable to select and use together the said dispersing
또한, 상기 산화방지제는, 3,5-디-제3부틸-4-히드록시 톨루엔, 2,4,6-트리 제3부틸페놀, 스티렌화 페놀, 4-히드록시-메틸-2,6-디-제3부틸페놀, 2,5-디-제3부틸-하이드로키논, 시클로헥실페놀, 부틸 히드록시아니졸, 2,2‘-메틸렌-비스(4-메틸-6제3부틸-페놀), 4,4’-이소프로필리덴 비스페놀, 1,1,3-트리스(2-에틸-4-히드록시-5-제3부틸-페놀)부탄, 1,3,5-트리스-메틸-2,4,6-트리스(3,5-디-제3부틸-4-히드록시벤질)벤젠 또는 테트라키스[메틸렌-3(3,5-디-제3부틸-4-히드록시-페놀)프로필로네이트]메탄 중에서 1종 또는 그 이상을 선택, 병용하여 사용하는 것이 바람직하다.
Further, the antioxidant is 3,5-di-tert-butyl-4-hydroxy toluene, 2,4,6-tri tert-butylphenol, styrenated phenol, 4-hydroxy-methyl-2,6- Di-tert-butylphenol, 2,5-di-tert-butylhydroquinone, cyclohexylphenol, butyl hydroxyanisole, 2,2'-methylene-bis (4-methyl-6 tert-butyl-phenol) , 4,4'-isopropylidene bisphenol, 1,1,3-tris (2-ethyl-4-hydroxy-5-tert-butyl-phenol) butane, 1,3,5-tris-methyl-2, 4,6-tris (3,5-di-tertbutyl-4-hydroxybenzyl) benzene or tetrakis [methylene-3 (3,5-di-tertbutyl-4-hydroxy-phenol) propyl Nate] It is preferable to select and use together 1 or more types from methane.
한편, 본 발명은 상기와 같은 제조방법에 의해 제조되는 것을 특징으로 하는 방열 조성물을 과제의 다른 해결 수단으로 한다.
On the other hand, this invention makes a heat dissipation composition characterized by being manufactured by the above manufacturing method as another solving means of a subject.
또한, 본 발명은 상기와 같은 제조방법에 의해 제조된 EVA/팽창흑연/알루미늄 마스터 뱃치 50 ~ 90 중량%와, 엔지니어링 플라스틱 수지 10 ~ 50 중량%를 200 ~ 250℃의 압출기를 통해 펠렛(pellet)으로 제조한 후, 이를 200 ~ 250℃의 사출기를 통해 사출성형하는 사출성형단계(S3)로 이루어지는 것을 특징으로 하는 LED 하우징의 제조방법을 과제의 또 다른 해결 수단으로 한다.
In addition, the
여기서, 상기 엔지니어링 플라스틱 수지는, 아크릴로나이트릴 부타디엔 스타일렌 공중합체(ABS : acrylonitrile butadiene styrene copolymer), 폴리카보네이트수지(PC : PolyCarbonate) 또는 나일론(nylon) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용하는 것이 바람직하다.
Here, the engineering plastic resin, one or more selected from acrylonitrile butadiene styrene copolymer (ABS: acrylonitrile butadiene styrene copolymer), polycarbonate resin (PC: PolyCarbonate) or nylon (nylon), used in combination It is desirable to.
본 발명에 의하면, 단순히 팽창흑연과 알루미늄 금속분말을 엔지니어링 플라스틱 매트릭스(matrix) 수지에 단순 분산하는 것이 아니라 초음파 분산 방법을 이용하여 제조된 팽창흑연/알루미늄 금속분말을 EVA와 혼합하여 EVA/팽창흑연/알루미늄 금속분말 마스터 뱃치를 사용함으로서 팽창흑연 특유의 적층 형상을 마스터 뱃치 제조 단계에서 분산시킴으로써 팽창흑연의 분산효과가 매우 크게 나타나고, 방열성이 우수한 알루미늄 파우더를 적층 사이에 골고루 분산시킴으로써, 최종제품의 방열특성을 향상시키며 팽창흑연/알루미늄 금속분말을 적게 사용하더라도 우수한 방열특성을 가지도록 하는 장점이 있다.
According to the present invention, rather than simply dispersing the expanded graphite and aluminum metal powder in the engineering plastic matrix resin, the expanded graphite / aluminum metal powder prepared by the ultrasonic dispersion method is mixed with the EVA to expand the EVA / expanded graphite / By using aluminum metal powder master batch, dispersing characteristic of expanded graphite is dispersed in the master batch manufacturing step, and the dispersing effect of expanded graphite is very high. It has the advantage of having excellent heat dissipation characteristics even when using less expanded graphite / aluminum metal powder.
아울러, 상기와 같이 제조된 방열조성물을 LED 조명기구 외에도 열적인 문제를 수반하는 다양한 산업군에 적용되어 방열을 필요로하는 각종 구조물(예를 들면, 가로등의 설치대 등)의 경량화 및 소형화를 가능하게 함으로써, 방열 특성, 내열성, 기계적 강도, 소형화, 경량화 및 자원 사용과 비용 절감 등의 경제적 측면에서 전자재료의 방열 및 각종 산업 전 분야에 크게 기여할 수 있으며, 특히, LED 조명기구의 소형, 경량화를 통해 정부의 녹색 성장 정책에 부응할 수 있을 뿐만 아니라 향후 다양한 종류의 조명기구 보급사업에 활발히 활용될 수 있도록 하는 장점이 있다.
In addition, the heat-dissipating composition prepared as described above is applied to various industrial groups with thermal problems in addition to LED lighting fixtures, thereby enabling the weight reduction and miniaturization of various structures (for example, a street lamp mounting stand) requiring heat dissipation. In terms of economics such as heat dissipation characteristics, heat resistance, mechanical strength, miniaturization, weight reduction, and resource use and cost reduction, it can greatly contribute to heat dissipation of electronic materials and various industries. In addition to meeting the company's green growth policy, it has the advantage of being able to be actively used in various kinds of lighting supply projects.
도 1은 본 발명의 일 실시예에 따른 LED 하우징용 방열 조성물의 제조방법 및 이 방열 조성물을 이용한 LED 하우징의 제조방법을 나타낸 흐름도
도 2는 도 1의 방법에 의해 제조된 LED 하우징의 사시도
도 3은 도 2의 표면을 나타내는 SEM(5000배 확대) 사진
도 4는 종래 LED 하우징과 도 2의 LED 하우징의 표면온도를 나타낸 그래프
도 5는 종래 LED하우징과 도 2의 LED 하우징의 무게를 나타낸 그래프1 is a flowchart illustrating a method of manufacturing a heat dissipating composition for an LED housing according to an embodiment of the present invention and a method of manufacturing an LED housing using the heat dissipating composition.
2 is a perspective view of an LED housing made by the method of FIG.
3 is a SEM (5000 times magnified) photograph showing the surface of FIG.
Figure 4 is a graph showing the surface temperature of the conventional LED housing and the LED housing of Figure 2
Figure 5 is a graph showing the weight of the conventional LED housing and the LED housing of Figure 2
상기의 효과를 달성하기 위한 본 발명은 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
The present invention for achieving the above effect relates to a method for manufacturing a heat dissipating composition for an LED housing, a heat dissipating composition prepared by the method and a method for manufacturing an LED housing using the heat dissipating composition, and to understand the technical configuration of the present invention. It should be noted that only necessary parts are described and explanations of other parts will be omitted so as not to distract from the gist of the present invention.
이하, 본 발명에 따른 LED 하우징용 방열 조성물의 제조방법을 상세히 설명하면 다음과 같다.
Hereinafter, a method for manufacturing a heat dissipating composition for an LED housing according to the present invention will be described in detail.
본 발명에 따른 LED 하우징용 방열 조성물의 제조방법은 도 1에 도시된 바와 같이, 분산액 제조단계(S1) 및 마스터 뱃치 제조단계(S2)를 포함하여 구성된다.
Method for producing a heat dissipating composition for an LED housing according to the present invention, as shown in Figure 1, comprises a dispersion manufacturing step (S1) and the master batch manufacturing step (S2).
상기 분산액 제조단계(S1)는, 팽창흑연과 알루미늄 금속분말을 용매에 분산시켜 분산액을 제조하는 단계로써, 구체적으로는 용매 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 1 ~ 5 중량부와 분산제 0.1 ~ 0.5 중량부를 투입한 후, 1,000W 급의 연속식 초음파 처리장치를 이용하여 1 ~ 2시간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조한다.
The dispersion preparation step (S1) is a step of preparing a dispersion by dispersing the expanded graphite and aluminum metal powder in a solvent, specifically 1 to 5 parts by weight of the expanded graphite and aluminum metal powder, respectively, with respect to 100 parts by weight of the solvent and After adding 0.1 to 0.5 parts by weight of the dispersant, ultrasonic treatment was performed for 1 to 2 hours using a 1000 W continuous ultrasonic treatment apparatus, and a expanded graphite / aluminum metal powder dispersion was prepared through a milling process.
상기 본 발명에서 사용되는 팽창흑연은, 방열특성이 우수한 결정질 흑연이 크롬산 및 묽은 황산 용액에 산화되고, 가열에 의해 물이 흑연의 층 사이에 접적되어 초기 부피에 비해 100~700%로 팽창되어진 흑연으로써, 그 내부에 공극(공기의 열전도도 0.028W/m.K)을 포함하고 있고, 6각형 고리구조의 평면층이 적층된 특유의 적층 형상을 가지므로 분산성이 매우 낮은 특성이 있으나, 본 발명에서는 후술되어질 마스터 뱃치 제조 단계에서 상기 특유의 적층현상을 분산시킴으로써, 팽창흑연의 분산효과가 매우 크게 나타난다.In the expanded graphite used in the present invention, crystalline graphite having excellent heat dissipation characteristics is oxidized to a solution of chromic acid and dilute sulfuric acid, and water is deposited between layers of graphite by heating, thereby expanding to 100 to 700% of the initial volume. In the present invention, since the air gap (air conduction of air 0.028 W / mK) is contained therein and has a unique laminated shape in which the planar layer of the hexagonal ring structure is laminated, the dispersibility is very low. By dispersing the unique lamination phenomenon in the master batch manufacturing step to be described later, the dispersion effect of the expanded graphite is very large.
상기와 같은 팽창흑연은 다양한 스펙의 팽창흑연을 사용할 수 있으나, 본 발명에서는 두께 50 ~ 80nm, 크기 5 ~ 10㎛ 순도 95중량% 이상의 팽창흑연을 사용하였다.
As the expanded graphite as described above, expanded graphite of various specifications may be used, but in the present invention, expanded graphite having a thickness of 50 to 80 nm and a size of 5 to 10 μm and a purity of 95 wt% or more is used.
한편, 상기와 같은 팽창흑연은 용매 100 중량부에 대하여, 팽창흑연 1 ~ 5 중량부를 혼합하게 되는데, 상기 팽창흑연의 혼합량이 1 중량부 미만일 경우, 방열성 및 전기전도도가 저하될 우려가 있으며, 5 중량부를 초과할 경우, 최종제품의 기계적 물성이 저하될 우려가 있다.
On the other hand, the expanded graphite as described above is mixed with 1 to 5 parts by weight of expanded graphite with respect to 100 parts by weight of the solvent, when the mixed amount of the expanded graphite is less than 1 part by weight, there is a fear that the heat dissipation and electrical conductivity is lowered, 5 When it exceeds the weight part, there exists a possibility that the mechanical property of a final product may fall.
상기 본 발명에서 사용되는 알루미늄 금속분말은, 방열특성이 우수한 알루미늄 금속을 분말화시킨 것으로, 용매 100 중량부에 대하여, 알루미늄 금속분말 1 ~ 5 중량부를 혼합하게 되는데, 상기 알루미늄 금속분말의 혼합량이 1 중량부 미만일 경우, 방열성 및 전기전도도가 저하될 우려가 있으며, 5 중량부를 초과할 경우, 최종제품의 단가가 높아지고 기계적 물성이 저하될 우려가 있다.The aluminum metal powder used in the present invention is a powdered aluminum metal having excellent heat dissipation characteristics, and is mixed with 1 to 5 parts by weight of the aluminum metal powder with respect to 100 parts by weight of the solvent, and the mixed amount of the aluminum metal powder is 1 When the amount is less than the weight part, the heat dissipation and the electrical conductivity may be lowered. When the amount is more than 5 parts by weight, the unit price of the final product may be increased and mechanical properties may be reduced.
상기와 같은 알루미늄 금속분말은 다양한 스펙의 알루미늄 금속분말을 사용할 수 있으나, 본 발명에서는 크기 9 ~ 20㎛ 순도 99중량% 이상의 알루미늄 금속분말을 사용하였다.
As the aluminum metal powder as described above, aluminum metal powder of various specifications may be used, but in the present invention, aluminum metal powder having a purity of 9 to 20 μm and a purity of 99 wt% or more is used.
한편, 상기 용매는 물, DMF(dimethylforamide) 또는 THF(tetrahydrofuran) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용할 수 있다.
On the other hand, the solvent may be used in combination with one or more selected from water, DMF (dimethylforamide) or THF (tetrahydrofuran).
상기 본 발명에서 사용되는 분산제는 상기 용매에 대한 팽창흑연과 알루미늄 금속분말의 분산성을 향상시키기 위한 것으로, 알킬암모늄염 공중합체 화합물, 폴리에스터/폴리에테르계 화합물이나 인산 기를 함유한 공중합체 또는 극성/비극성 아민기를 가진 공중합체 중에서 1종 또는 그 이상을 선택, 병용하여 사용할 수 있으며, 상기 용매 100 중량부에 대하여, 분산제 0.1 ~ 0.5 중량부를 혼합하게 되는데, 상기 분산제의 혼합량이 0.1 중량부 미만일 경우, 팽창흑연과 알루미늄분말이골고루 분산되지 못할 우려가 있으며, 0.5 중량부를 초과할 경우, 최종제품에서 분산제의 이행현상이 발생할 우려가 있다.
The dispersant used in the present invention is to improve the dispersibility of the expanded graphite and aluminum metal powder in the solvent, alkyl ammonium salt copolymer compounds, polyester / polyether compounds or copolymers containing phosphoric acid groups or polar / One or more of the copolymers having a non-polar amine group may be selected and used in combination, and 0.1 to 0.5 parts by weight of the dispersant may be mixed with respect to 100 parts by weight of the solvent, when the amount of the dispersant is less than 0.1 parts by weight, There is a fear that the expanded graphite and aluminum powder may not be evenly distributed, and if it exceeds 0.5 parts by weight, transition of dispersant may occur in the final product.
한편, 상기 분산액 제조단계(S1)의 온도, 시간 등의 공정조건이 상기 범위를 벗어날 경우, 팽창흑연이 충분하게 박리되지 않을 우려가 있고, 알루미늄 금속분말이 침전될 우려가 있다.
On the other hand, when the process conditions such as temperature, time, etc. of the dispersion manufacturing step (S1) is out of the above range, there is a fear that the expanded graphite is not sufficiently peeled, there is a fear that the aluminum metal powder is precipitated.
상기 마스터 뱃치 제조단계(S2)는, 상기 제조된 분산액을 분말화시키고 여기에 EVA를 혼합하하여 마스터 뱃치를 제조하는 단계로써, 구체적으로는 상기 팽창흑연/알루미늄 금속분말 분산액을 80 ~ 100℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 50 ~ 90 중량부와 산화방지제 0.1 ~ 0.3 중량부를 투입한 후, 60 ~ 80℃의 니이더(kneader)기에서 20 ~ 30분간 혼련하고, 60 ~ 80℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 130 ~ 150℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조한다.
The master batch manufacturing step (S2) is a step of preparing a master batch by powdering the prepared dispersion and mixing EVA therein, specifically, the expanded graphite / aluminum metal powder dispersion to 80 ~ 100 ℃ After drying, the powder is made into powder, and 50 to 90 parts by weight of EVA and 0.1 to 0.3 parts by weight of antioxidant are added to 100 parts by weight of the powdered expanded graphite / aluminum metal powder, and then kneader at 60 to 80 ° C. Knead for 20 to 30 minutes in a mixing machine, disperse again in a mixing roll of 60 to 80 ° C., and then put into an extruder at 130 to 150 ° C. to prepare an EVA / expanded graphite / aluminum master batch using pellets. do.
상기 본 발명에서 사용되는 EVA는, 에틸렌과 비닐알코올을 공중합하여 얻는 열가소성 수지로 유연성(부드러움), 내충격성(충격흠수성), 질감성, 단열성, 보온성 등을 고루 갖추고 있으며 상기 분말화된 팽창흑연/알루미늄 금속분말과 함께 마스터 뱃치를 형성하는 기재로써, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, 50 ~ 90 중량부를 혼합하게 되는데, 상기 EVA의 혼합량이 50 중량부 미만일 경우, 최종 마스터 뱃치의 물성이 저하될 우려가 있으며, 90 중량부를 초과할 경우, 고분자수지의 함량이 높아 방열성 및 전기전도도가 저하될 우려가 있다.
The EVA used in the present invention is a thermoplastic resin obtained by copolymerizing ethylene and vinyl alcohol and has flexibility (softness), impact resistance (impact scratch resistance), texture, heat insulation, heat retention, and the like, and the powdered expanded graphite As a base material for forming a master batch with the aluminum metal powder, 50 to 90 parts by weight of the powdered expanded graphite / aluminum metal powder is mixed, when the mixed amount of the EVA is less than 50 parts by weight, There is a fear that the physical properties of the final master batch, and if it exceeds 90 parts by weight, the polymer resin content is high, there is a fear that the heat dissipation and electrical conductivity is lowered.
상기 본 발명에서 사용되는 산화방지제는, 3,5-디-제3부틸-4-히드록시 톨루엔, 2,4,6-트리 제3부틸페놀, 스티렌화 페놀, 4-히드록시-메틸-2,6-디-제3부틸페놀, 2,5-디-제3부틸-하이드로키논, 시클로헥실페놀, 부틸 히드록시아니졸, 2,2‘-메틸렌-비스(4-메틸-6제3부틸-페놀), 4,4’-이소프로필리덴 비스페놀, 1,1,3-트리스(2-에틸-4-히드록시-5-제3부틸-페놀)부탄, 1,3,5-트리스-메틸-2,4,6-트리스(3,5-디-제3부틸-4-히드록시벤질)벤젠 또는 테트라키스[메틸렌-3(3,5-디-제3부틸-4-히드록시-페놀)프로필로네이트]메탄 중에서 1종 또는 그 이상을 선택, 병용하여 사용할 수 있으며, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, 0.1 ~ 0.3 중량부를 혼합하게 되는데, 상기 산화방지제의 혼합량이 0.1 중량부 미만일 경우, 압출가공 및 사출가공 중 변색 또는 표면이 거칠어질 우려가 있으며, 0.3 중량부를 초과할 경우, 최종제품에서 산화방지제의 이행현상이 발생할 우려가 있다.The antioxidant used in the present invention is 3,5-di-tert-butyl-4-hydroxy toluene, 2,4,6-tri tert-butylphenol, styrenated phenol, 4-hydroxy-methyl-2 , 6-di-tert-butylphenol, 2,5-di-tert-butylhydroquinone, cyclohexylphenol, butyl hydroxyanizol, 2,2'-methylene-bis (4-methyl-6 tert-butyl -Phenol), 4,4'-isopropylidene bisphenol, 1,1,3-tris (2-ethyl-4-hydroxy-5-tert-butyl-phenol) butane, 1,3,5-tris-methyl -2,4,6-tris (3,5-di-tertbutyl-4-hydroxybenzyl) benzene or tetrakis [methylene-3 (3,5-di-tert-butyl-4-hydroxy-phenol ) Propanolate] methane may be used in combination of one or more selected, and 0.1 to 0.3 parts by weight based on 100 parts by weight of the powdered expanded graphite / aluminum metal powder, the antioxidant If the mixing amount is less than 0.1 part by weight, the discoloration or surface may change during extrusion and injection processing. If there are concerns eojil, exceeds 0.3 parts by weight, there is a fear that the transition phenomenon of the antioxidant occurs in the finished product.
한편, 상기 마스터 뱃치 제조단계(S2)의 온도, 시간 등의 공정조건이 상기 범위를 벗어날 경우, 제품의 기계적 물성이 저하될 우려가 있다.
On the other hand, if the process conditions such as temperature, time, etc. of the master batch manufacturing step (S2) is out of the above range, there is a fear that the mechanical properties of the product is lowered.
이하, 본 발명에 따른 LED 하우징용 방열 조성물의 제조방법에 의해 제조된 방열 조성물을 이용한 LED 하우징의 제조방법을 상세히 설명하면 다음과 같다.
Hereinafter, the manufacturing method of the LED housing using the heat dissipating composition prepared by the method of manufacturing the heat dissipating composition for LED housing according to the present invention will be described in detail.
본 발명에 따른 LED 하우징의 제조방법은 도 1에 도시된 바와 같이, 상기 분산액 제조단계(S1) 및 마스터 뱃치 제조단계(S2)를 거친 후, 사출성형단계(S3)를 추가하여 LED 하우징을 제조한다.
Method of manufacturing the LED housing according to the present invention, as shown in Figure 1, after the dispersion manufacturing step (S1) and the master batch manufacturing step (S2), by adding an injection molding step (S3) to manufacture an LED housing. do.
상기 사출성형단계(S3)는, 상기 분산액 제조단계(S1) 및 마스터 뱃치 제조단계(S2)를 거쳐 제조된 EVA/팽창흑연/알루미늄 마스터 뱃치에 통상의 엔지니어링 플라스틱 수지를 혼합하고 사출성형하여 도 2 및 3에 도시된 바와 같은 LED 하우징을 제조하는 단계로써, 구체적으로는 EVA/팽창흑연/알루미늄 마스터 뱃치 50 ~ 90 중량%와, 엔지니어링 플라스틱 수지 10 ~ 50 중량%를 200 ~ 250℃의 압출기를 통해 펠렛(pellet)으로 제조한 후, 이를 200 ~ 250℃의 사출기를 통해 사출성형하여 제조한다.
The injection molding step (S3), by mixing and injection molding a conventional engineering plastic resin to the EVA / expanded graphite / aluminum master batch prepared through the dispersion production step (S1) and the master batch manufacturing step (S2) Figure 2 And manufacturing the LED housing as shown in 3, specifically, 50 to 90% by weight of the EVA / expanded graphite / aluminum master batch and 10 to 50% by weight of the engineering plastic resin through an extruder at 200 to 250 ° C. After the manufacture of the pellet (pellet), it is manufactured by injection molding through an injection machine of 200 ~ 250 ℃.
상기 본 발명에서 사용하는 엔지니어링 플라스틱 수지는, EVA/팽창흑연/알루미늄 마스터 뱃치와 함께 LED 하우징을 형성하는 기재로써, 아크릴로나이트릴 부타디엔 스타일렌 공중합체(ABS : acrylonitrile butadiene styrene copolymer), 폴리카보네이트수지(PC : PolyCarbonate) 또는 나일론(nylon) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용할 수 있다.
The engineering plastic resin used in the present invention is an acrylonitrile butadiene styrene copolymer (ABS) and a polycarbonate resin (ABS) as a substrate for forming an LED housing together with an EVA / expanded graphite / aluminum master batch. PC: PolyCarbonate) or nylon (nylon) can be used in combination of one or more.
여기서, 상기 EVA/팽창흑연/알루미늄 마스터 뱃치의 혼합량이 50 중량% 미만일 경우, 방열성 및 전기전도도가 낮아질 우려가 있으며, 90 중량%를 초과할 경우, 최종제품의 기계적 물성이 낮아질 우려가 있다.
Here, when the mixed amount of the EVA / expanded graphite / aluminum master batch is less than 50% by weight, there is a fear that the heat dissipation and electrical conductivity is lowered, if it exceeds 90% by weight, the mechanical properties of the final product may be lowered.
또한, 상기 엔지니어링 플라스틱 수지의 혼합량이 10 중량% 미만일 경우, 최종제품의 충격강도 및 기계적 물성이 낮아질 우려가 있으며, 50 중량%를 초과할 경우, 방열성 및 전기전도도가 낮아질 우려가 있다.
In addition, when the mixing amount of the engineering plastic resin is less than 10% by weight, there is a fear that the impact strength and mechanical properties of the final product is lowered, if it exceeds 50% by weight, the heat dissipation and electrical conductivity may be lowered.
한편, 상기 사출성형단계(S3)의 온도, 시간 등의 공정조건이 상기 범위를 벗어날 경우, 최종제품의 성형이 원활히 이루어지지 않을 우려가 있고, 기계적 물성 또한 낮아질 우려가 있다.
On the other hand, if the process conditions such as temperature, time, etc. of the injection molding step (S3) is out of the above range, there is a fear that the molding of the final product may not be made smoothly, mechanical properties may also be lowered.
이하 본 발명을 아래 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention.
1. LED 하우징의 제조
1.Manufacture of LED Housing
(실시예 1)(Example 1)
용매로써, 물 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 1 중량부와 분산제로써 알킬암모늄염 공중합체 화합물 0.5 중량부를 투입한 후, 1,000W 급의 연속식 초음파 처리장치를 이용하여 1시간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조(S1)한 후, 상기 팽창흑연/알루미늄 금속분말 분산액을 80℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 50 중량부와 산화방지제로써, 4,4’-이소프로필리덴 비스페놀을 0.3 중량부를 투입한 후, 80℃의 니이더(kneader)기에서 20분간 혼련하고, 80℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 130℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조(S2)한 후, 상기 제조된 EVA/팽창흑연/알루미늄 마스터 뱃치 50 중량%와, 아크릴로나이트릴 부타디엔 스타일렌 공중합체(ABS : acrylonitrile butadiene styrene copolymer) 50 중량%를 200℃의 압출기를 통해 펠렛(pellet)으로 제조한 후, 이를 250℃의 사출기를 통해 사출성형(S3)하여 LED 하우징을 제조하였다.
1 part by weight of expanded graphite and aluminum metal powder, and 0.5 part by weight of alkylammonium salt copolymer compound as a dispersant were added to 100 parts by weight of water as a solvent, and then ultrasonic wave was operated for 1 hour using a 1000 W continuous ultrasonic treatment apparatus. After the treatment, milling (milling) to prepare the expanded graphite / aluminum metal powder dispersion (S1), the expanded graphite / aluminum metal powder dispersion is dried to 80 ℃ to make a powder, the powdered expanded graphite Per 100 parts by weight of aluminum metal powder, 0.3 parts by weight of 4,4'-isopropylidene bisphenol was added as 50 parts by weight of EVA and an antioxidant, followed by kneading for 20 minutes in a kneader at 80 ° C. After dispersing again in a mixing roll at 80 ° C., and then putting it in an extruder at 130 ° C. to prepare an EVA / expanded graphite / aluminum master batch using pellets (S2), the prepared EVA / expanded graphite was Of 50% by weight of the aluminum master batch and 50% by weight of acrylonitrile butadiene styrene copolymer (ABS) were pelletized through an extruder at 200 ° C., followed by a 250 ° C. injection machine. Injection molding (S3) to prepare an LED housing.
(실시예 2)(Example 2)
용매로써, DMF 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 2 중량부와 분산제로써 알킬암모늄염 공중합체 화합물 0.3 중량부를 투입한 후, 1,000W 급의 연속식 초음파 처리장치를 이용하여 1시간 30분간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조(S1)한 후, 상기 팽창흑연/알루미늄 금속분말 분산액을 90℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 60 중량부와 산화방지제로써, 4,4’-이소프로필리덴 비스페놀을 0.2 중량부를 투입한 후, 70℃의 니이더(kneader)기에서 25분간 혼련하고, 70℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 140℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조(S2)한 후, 상기 제조된 EVA/팽창흑연/알루미늄 마스터 뱃치 70 중량%와, 폴리카보네이트수지(PC : PolyCarbonate) 30 중량%를 225℃의 압출기를 통해 펠렛(pellet)으로 제조한 후, 이를 225℃의 사출기를 통해 사출성형(S3)하여 LED 하우징을 제조하였다.
2 parts by weight of expanded graphite and aluminum metal powder and 0.3 parts by weight of an alkylammonium salt copolymer compound were added as a dispersant, respectively, based on 100 parts by weight of DMF as a solvent. After the ultrasonic treatment for a minute and the expanded graphite / aluminum metal powder dispersion through the milling process (S1) to prepare a (S1), the expanded graphite / aluminum metal powder dispersion is dried to 90 ℃ to make a powder state, the powdered To 100 parts by weight of expanded graphite / aluminum metal powder, 0.2 part by weight of 4,4'-isopropylidene bisphenol was added as 60 parts by weight of EVA and an antioxidant, followed by 25 minutes in a kneader machine at 70 ° C. After kneading, dispersing again in a mixing roll of 70 ° C., and then putting it in an extruder at 140 ° C. to prepare an EVA / expanded graphite / aluminum master batch using pellets (S2), and then preparing the prepared EVA /
(실시예 3)(Example 3)
용매로써, THF 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 5 중량부와 분산제로써 알킬암모늄염 공중합체 화합물 0.1 중량부를 투입한 후, 1,000W 급의 연속식 초음파 처리장치를 이용하여 2시간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조(S1)한 후, 상기 팽창흑연/알루미늄 금속분말 분산액을 100℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 90 중량부와 산화방지제로써, 4,4’-이소프로필리덴 비스페놀을 0.1 중량부를 투입한 후, 60℃의 니이더(kneader)기에서 30분간 혼련하고, 60℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 150℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조(S2)한 후, 상기 제조된 EVA/팽창흑연/알루미늄 마스터 뱃치 90 중량%와, 나일론(nylon) 10 중량%를 250℃의 압출기를 통해 펠렛(pellet)으로 제조한 후, 이를 200℃의 사출기를 통해 사출성형(S3)하여 LED 하우징을 제조하였다.
5 parts by weight of expanded graphite and aluminum metal powder and 0.1 parts by weight of alkyl ammonium salt copolymer compound were added as a dispersant to 100 parts by weight of THF as a solvent, followed by ultrasonication for 2 hours using a 1000 W continuous ultrasonic treatment apparatus. After the treatment, milling (milling) to produce the expanded graphite / aluminum metal powder dispersion (S1), the expanded graphite / aluminum metal powder dispersion is dried to 100 ℃ to make a powder, the powdered expanded graphite 0.1 parts by weight of 4,4'-isopropylidene bisphenol was added as 90 parts by weight of EVA and 100 parts by weight of aluminum metal powder and an antioxidant, followed by kneading for 30 minutes in a kneader at 60 ° C. After dispersing again in a mixing roll at 60 ° C., and then introducing the extruder at 150 ° C. to produce an EVA / expanded graphite / aluminum master batch using pellets (S2), the prepared EVA / expanded graphite was Of And the aluminum master batch 90% by weight of nylon (nylon) was prepared with 10% by weight of the pellet (pellet) through an extruder of 250 ℃, injection molded (S3) through the injection molding machine of 200 ℃ this, the LED housing was prepared.
(비교예 1)(Comparative Example 1)
팽창흑연 50 중량%와 알루미늄 금속분말 50 중량%를 250℃사출기에 넣어 용융시킨 후, 사출성형하여 LED 하우징을 제조하였다.
50% by weight of expanded graphite and 50% by weight of aluminum metal powder were put into a 250 ° C. injection machine and melted, followed by injection molding to prepare an LED housing.
2. LED 하우징의 평가
2. Evaluation of LED Housing
상기 실시예 1 ~ 3 및 비교예 1에 의해 제조된 LED 하우징을 다음과 같은 방법으로 평가하였으며, 그 결과를 [표 1] 및 도 4, 5에 나타내었다.
The LED housings manufactured by Examples 1 to 3 and Comparative Example 1 were evaluated in the following manner, and the results are shown in [Table 1] and FIGS. 4 and 5.
1) 열전도도 : JIS A 1412-2(평판법 : 두개 이상의 가열판 사이에 시료를 넣고 시료를 통과하는 열량을 계산하여 열전도도를 측정하는 방법)에 준하여 열전도도를 측정하였다.
1) Thermal Conductivity: The thermal conductivity was measured according to JIS A 1412-2 (Plating Method: A method of measuring the thermal conductivity by placing a sample between two or more heating plates and calculating the amount of heat passing through the sample).
2) 표면온도 : 적외선 온도계를 사용하여, 5회 측정한 후 평균값으로 나타내었다.
2) Surface temperature: After measuring five times using an infrared thermometer, the average value was shown.
3) 무게 : 정밀(매틀러) 전자저울을 사용하여 5회 측정한 후 평균값으로 나타내었다.
3) Weight: Measured five times using a precision (Matler) electronic balance, and then expressed as an average value.
상기 [표 1]에 나타낸 바와 같이 실시예 1 ~ 3에 따른 LED 하우징이 비교예1에 따른 LED 하우징 보다 열전도도가 우수할 뿐만 아니라, 도 4에 도시된 바와 같이, 표면온도가 높음에 따라 방열특성이 우수함을 알 수 있으며, 도 5에 도시된 바와 같이, 무게가 가벼움에 따라 LED 하우징의 소형화 및 경량화를 용이하게 구현할 수 있는 것으로 판단된다.
As shown in Table 1, the LED housings according to Examples 1 to 3 have better thermal conductivity than the LED housings according to Comparative Example 1, and as shown in FIG. It can be seen that the characteristics are excellent, as shown in Figure 5, according to the light weight, it is determined that the compact and lightweight LED housing can be easily implemented.
상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 LED 하우징용 방열 조성물의 제조방법, 이 방법에 의해 제조된 방열 조성물 및 이 방열 조성물을 이용한 LED 하우징의 제조방법을 상기한 설명 및 도면에 따라 설명하였지만 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.
As described above, a method of manufacturing a heat dissipating composition for an LED housing according to a preferred embodiment of the present invention, a heat dissipating composition prepared by the method and a method of manufacturing an LED housing using the heat dissipating composition according to the above description and drawings However, it will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention.
S1 : 분산액 제조단계
S2 : 마스터 뱃치 제조단계
S3 : 사출성형단계S1: Dispersion Preparation Step
S2: Master Batch Manufacturing Stage
S3: Injection Molding Step
Claims (7)
용매 100 중량부에 대하여, 팽창흑연과 알루미늄 금속분말 각각 1 ~ 5 중량부와 분산제 0.1 ~ 0.5 중량부를 투입한 후, 연속식 초음파 처리장치를 이용하여 1 ~ 2시간 초음파 처리하고, 밀링(milling) 공정을 거쳐 팽창흑연/알루미늄 금속분말 분산액을 제조하는 분산액 제조단계(S1); 및
상기 팽창흑연/알루미늄 금속분말 분산액을 80 ~ 100℃로 건조한 후 분말상태로 만들고, 상기 분말화된 팽창흑연/알루미늄 금속분말 100 중량부에 대하여, EVA 50 ~ 90 중량부와 산화방지제 0.1 ~ 0.3 중량부를 투입한 후, 60 ~ 80℃의 니이더(kneader)기에서 20 ~ 30분간 혼련하고, 60 ~ 80℃의 믹싱롤(mixing roll)에서 다시 분산시킨 다음 130 ~ 150℃의 압출기에 투입하여 펠렛(pellet)으로 EVA/팽창흑연/알루미늄 마스터 뱃치를 제조하는 마스터 뱃치 제조단계(S2);를 포함하여 구성되는 것을 특징을 하는 LED 하우징용 방열 조성물의 제조방법
In the manufacturing method of the heat dissipation composition for LED housings,
To 100 parts by weight of solvent, 1 to 5 parts by weight of expanded graphite and aluminum metal powder and 0.1 to 0.5 parts by weight of a dispersant were added, followed by ultrasonication for 1 to 2 hours using a continuous ultrasonic treatment apparatus, and milling. Dispersion manufacturing step (S1) for producing an expanded graphite / aluminum metal powder dispersion through a process; And
After drying the expanded graphite / aluminum metal powder dispersion to 80 ~ 100 ℃ to make a powder state, with respect to 100 parts by weight of the powdered expanded graphite / aluminum metal powder, EVA 50 ~ 90 parts by weight and antioxidant 0.1 ~ 0.3 weight After the addition, the mixture was kneaded in a kneader machine at 60 to 80 ° C. for 20 to 30 minutes, dispersed again in a mixing roll at 60 to 80 ° C., and then poured into an extruder at 130 to 150 ° C. to pellet. Method for producing a heat dissipating composition for an LED housing, characterized in that it comprises a; (batch) a master batch manufacturing step (S2) to produce an EVA / expanded graphite / aluminum master batch as (pellet)
상기 용매는,
물, DMF(dimethylforamide) 또는 THF(tetrahydrofuran) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용하는 것을 특징으로 하는 LED 하우징용 방열 조성물의 제조방법
The method of claim 1,
The solvent,
Method for producing a heat dissipating composition for an LED housing, characterized in that one or more selected from water, DMF (dimethylforamide) or THF (tetrahydrofuran), used in combination
상기 분산제는,
알킬암모늄염 공중합체 화합물, 폴리에스터/폴리에테르계 화합물이나 인산 기를 함유한 공중합체 또는 극성/비극성 아민기를 가진 공중합체 중에서 1종 또는 그 이상을 선택, 병용하여 사용하는 것을 특징으로 하는 LED 하우징용 방열 조성물의 제조방법
The method of claim 1,
The dispersant,
Heat dissipation for LED housings, characterized in that one or more selected from among alkyl ammonium salt copolymer compounds, polyester / polyether compounds, copolymers containing phosphoric acid groups, or copolymers having polar / non-polar amine groups are used in combination. Method of Preparation of the Composition
상기 산화방지제는,
3,5-디-제3부틸-4-히드록시 톨루엔, 2,4,6-트리 제3부틸페놀, 스티렌화 페놀, 4-히드록시-메틸-2,6-디-제3부틸페놀, 2,5-디-제3부틸-하이드로키논, 시클로헥실페놀, 부틸 히드록시아니졸, 2,2‘-메틸렌-비스(4-메틸-6제3부틸-페놀), 4,4’-이소프로필리덴 비스페놀, 1,1,3-트리스(2-에틸-4-히드록시-5-제3부틸-페놀)부탄, 1,3,5-트리스-메틸-2,4,6-트리스(3,5-디-제3부틸-4-히드록시벤질)벤젠 또는 테트라키스[메틸렌-3(3,5-디-제3부틸-4-히드록시-페놀)프로필로네이트]메탄 중에서 1종 또는 그 이상을 선택, 병용하여 사용하는 것을 특징으로 하는 LED 하우징용 방열 조성물의 제조방법
The method of claim 1,
The antioxidant,
3,5-di-tert-butyl-4-hydroxy toluene, 2,4,6-tri tert-butylphenol, styrenated phenol, 4-hydroxy-methyl-2,6-di-tert-butylphenol, 2,5-di-tert-butyl-hydrokinone, cyclohexylphenol, butyl hydroxyanisole, 2,2'-methylene-bis (4-methyl-6 tert-butyl-phenol), 4,4'-iso Propylidene bisphenol, 1,1,3-tris (2-ethyl-4-hydroxy-5-tertbutyl-phenol) butane, 1,3,5-tris-methyl-2,4,6-tris (3 One of, 5-di-tert-butyl-4-hydroxybenzyl) benzene or tetrakis [methylene-3 (3,5-di-tert-butyl-4-hydroxy-phenol) propylonate] methane or The method of manufacturing a heat dissipating composition for an LED housing, characterized by selecting more than that and using together.
Heat dissipation composition prepared by the manufacturing method according to claim 1
50 to 90% by weight of the EVA / expanded graphite / aluminum masterbatch according to claim 1 and 10 to 50% by weight of the engineering plastic resin are prepared into pellets through an extruder at 200 to 250 ° C., and then 200 to 250 Manufacturing method of the LED housing, characterized in that the injection molding step (S3) for injection molding through an injection machine of ℃
상기 엔지니어링 플라스틱 수지는,
아크릴로나이트릴 부타디엔 스타일렌 공중합체(ABS : acrylonitrile butadiene styrene copolymer), 폴리카보네이트수지(PC : PolyCarbonate) 또는 나일론(nylon) 중에서 1 종 또는 그 이상을 선택, 병용하여 사용하는 것을 특징으로 하는 LED 하우징의 제조방법The method according to claim 6,
The engineering plastic resin,
LED housing, characterized in that one or more selected from acrylonitrile butadiene styrene copolymer (ABS: acrylonitrile butadiene styrene copolymer), polycarbonate resin (PC: PolyCarbonate) or nylon (nylon), used in combination Manufacturing method
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120007958A KR101247119B1 (en) | 2012-01-26 | 2012-01-26 | Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120007958A KR101247119B1 (en) | 2012-01-26 | 2012-01-26 | Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101247119B1 true KR101247119B1 (en) | 2013-04-02 |
Family
ID=48441848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120007958A KR101247119B1 (en) | 2012-01-26 | 2012-01-26 | Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101247119B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160018333A (en) | 2014-08-08 | 2016-02-17 | 천재영 | Manufacturing method of LED radiator structure by molding Cu-Al alloying powder using Al can |
KR101606450B1 (en) * | 2014-05-27 | 2016-03-25 | 주식회사 대신테크젠 | Manufacturing method of Highly thermally conductive inorganic-polymer complex composition for applying lighting lamp LED that contains expanded graphite |
KR101766230B1 (en) * | 2015-12-10 | 2017-08-08 | 인성 엔프라 주식회사 | Heat exchanger materials using carbon composites and manufacturing method thereof |
KR101783392B1 (en) | 2017-06-07 | 2017-10-23 | 주식회사 하이씨엔티 | manufacturing method of carbon nanotube composite for heat dissipation and heat dissipation for lighting apparatus therewith |
WO2018194418A1 (en) * | 2017-04-20 | 2018-10-25 | 주식회사 아모그린텍 | Graphite composition, masterbatch comprising same, and graphite composite material embodied thereby |
KR20180118073A (en) * | 2017-04-20 | 2018-10-30 | 주식회사 아모그린텍 | Graphite composition, mater batch comprising the same and graphite composite material comprising the same |
KR20190018228A (en) * | 2017-08-14 | 2019-02-22 | 주식회사 아모그린텍 | Composition for manufacturing graphite-polymer composite and Graphite-polymer composites comprising the same |
CN113121972A (en) * | 2019-12-30 | 2021-07-16 | 江苏派锐电子有限公司 | Novel easy-heat-dissipation anti-aging electronic component plastic shell material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422570B1 (en) * | 2001-10-20 | 2004-03-11 | 최재영 | Resin Composition for Heat Sink and a Method of Manufacturing Sheets for Heat Sink Using the Same |
JP2008143731A (en) * | 2006-12-07 | 2008-06-26 | Oiles Ind Co Ltd | Heat resistant expanded graphite sheet and its production method |
KR101026867B1 (en) * | 2010-09-10 | 2011-04-06 | 진현정 | Mixed carbon sheet for thermal diffusion and method for making the sheet |
KR101084977B1 (en) * | 2010-04-16 | 2011-11-23 | (주)월드튜브 | Nanocarbon liquid composition, nanocarbon resin composion, nanocarbon shaped solid body, nanocarbon resin body and manufacturing method of the sames |
-
2012
- 2012-01-26 KR KR1020120007958A patent/KR101247119B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422570B1 (en) * | 2001-10-20 | 2004-03-11 | 최재영 | Resin Composition for Heat Sink and a Method of Manufacturing Sheets for Heat Sink Using the Same |
JP2008143731A (en) * | 2006-12-07 | 2008-06-26 | Oiles Ind Co Ltd | Heat resistant expanded graphite sheet and its production method |
KR101084977B1 (en) * | 2010-04-16 | 2011-11-23 | (주)월드튜브 | Nanocarbon liquid composition, nanocarbon resin composion, nanocarbon shaped solid body, nanocarbon resin body and manufacturing method of the sames |
KR101026867B1 (en) * | 2010-09-10 | 2011-04-06 | 진현정 | Mixed carbon sheet for thermal diffusion and method for making the sheet |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101606450B1 (en) * | 2014-05-27 | 2016-03-25 | 주식회사 대신테크젠 | Manufacturing method of Highly thermally conductive inorganic-polymer complex composition for applying lighting lamp LED that contains expanded graphite |
KR20160018333A (en) | 2014-08-08 | 2016-02-17 | 천재영 | Manufacturing method of LED radiator structure by molding Cu-Al alloying powder using Al can |
KR101766230B1 (en) * | 2015-12-10 | 2017-08-08 | 인성 엔프라 주식회사 | Heat exchanger materials using carbon composites and manufacturing method thereof |
WO2018194418A1 (en) * | 2017-04-20 | 2018-10-25 | 주식회사 아모그린텍 | Graphite composition, masterbatch comprising same, and graphite composite material embodied thereby |
KR20180118073A (en) * | 2017-04-20 | 2018-10-30 | 주식회사 아모그린텍 | Graphite composition, mater batch comprising the same and graphite composite material comprising the same |
KR102076200B1 (en) * | 2017-04-20 | 2020-02-11 | 주식회사 아모그린텍 | Graphite composition, mater batch comprising the same and graphite composite material comprising the same |
US11319211B2 (en) | 2017-04-20 | 2022-05-03 | Amogreentech Co., Ltd. | Graphite composition, masterbatch comprising same, and graphite composite material embodied thereby |
KR101783392B1 (en) | 2017-06-07 | 2017-10-23 | 주식회사 하이씨엔티 | manufacturing method of carbon nanotube composite for heat dissipation and heat dissipation for lighting apparatus therewith |
KR20190018228A (en) * | 2017-08-14 | 2019-02-22 | 주식회사 아모그린텍 | Composition for manufacturing graphite-polymer composite and Graphite-polymer composites comprising the same |
KR102498312B1 (en) | 2017-08-14 | 2023-02-09 | 주식회사 아모그린텍 | Composition for manufacturing graphite-polymer composite and Graphite-polymer composites comprising the same |
CN113121972A (en) * | 2019-12-30 | 2021-07-16 | 江苏派锐电子有限公司 | Novel easy-heat-dissipation anti-aging electronic component plastic shell material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101247119B1 (en) | Manufacturing method for heat radiation composition, heat radiation composition using the same and manufacturing method for led housing using the same | |
CN103738022B (en) | A kind of heat conductive insulating composite and preparation method thereof | |
CN102977540A (en) | Method for preparing organic polymer matrix composite material and LED (Light-Emitting Diode) radiator | |
JP2013089718A (en) | Heat sink with highly heat-conducting resin, and led light source | |
CN105061855A (en) | Preparation method of thermal conductive electrical insulating material | |
KR20210038733A (en) | Surface modification method of the inorganic filler, and low viscosity heat dissipating resin composition comprising thereof | |
TW201343359A (en) | Manufacturing method of carbon heat sink | |
CN102321370B (en) | Anti-static high heat conductivity light-emitting diode (LED) packaging substrate material and production process thereof | |
CN107109059A (en) | Thermal conductive polymer product for electronic circuit | |
CN109369930B (en) | Preparation method of graphite-reinforced thermoplastic heat-conducting plastic | |
KR20170036332A (en) | Sheets with phase change material for heat sink and heat sink coated the same | |
KR101387086B1 (en) | Insulative and heat-dissipative master batch and insulative and heat-dissipative products | |
KR101581499B1 (en) | Heat radiating macromolecular resin material, heat radiating resin composition, plastic heat radiating material, and method for preparing thereof | |
KR101273248B1 (en) | High thermal conductivity molding method of manufacture | |
CN104672836A (en) | High-efficiency halogen-free environment-friendly flame-retardant PC material | |
KR101657338B1 (en) | Macromolecular resin composition, method for preparing thereof, and injection molded plastics | |
KR101544190B1 (en) | LED lighting lamp heat conduction sheet and manufacture method thereof | |
CN104710732A (en) | Phase change heat conduction material for preparing LED (light-emitting diode) lamp base and radiator and preparation method of phase change heat conduction material | |
CN103865257A (en) | Thermoplastic polyamide composition and preparation method thereof | |
CN109354868B (en) | Graphene-modified flame-retardant heat-conducting nylon plastic and preparation method thereof | |
CN110951199B (en) | Insulating heat conduction material for semiconductor and preparation method thereof | |
KR101967856B1 (en) | High Thermal Conductive Film and Manufacturing the Same | |
KR101281696B1 (en) | Method of manufacture of biodegradable plastic composite that are used as the material of the led heat sink | |
KR20120032597A (en) | Thermal conductive resin composition and injection-molded article therefrom | |
KR101220209B1 (en) | High heat radiation and light-weight plastic resin composition for led lamp parts and manufacturing method of the same and product using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |