KR101228685B1 - Substrate for ci(g)s solar cell and ci(g)s solar cell using the same - Google Patents

Substrate for ci(g)s solar cell and ci(g)s solar cell using the same Download PDF

Info

Publication number
KR101228685B1
KR101228685B1 KR1020110057108A KR20110057108A KR101228685B1 KR 101228685 B1 KR101228685 B1 KR 101228685B1 KR 1020110057108 A KR1020110057108 A KR 1020110057108A KR 20110057108 A KR20110057108 A KR 20110057108A KR 101228685 B1 KR101228685 B1 KR 101228685B1
Authority
KR
South Korea
Prior art keywords
layer
solar cell
substrate
lower electrode
composite metal
Prior art date
Application number
KR1020110057108A
Other languages
Korean (ko)
Other versions
KR20120137929A (en
Inventor
김경보
백제훈
박영준
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110057108A priority Critical patent/KR101228685B1/en
Priority to JP2014515716A priority patent/JP5908073B2/en
Priority to PCT/KR2012/004573 priority patent/WO2012173360A2/en
Priority to EP12800914.9A priority patent/EP2720279A4/en
Priority to CN201280039611.6A priority patent/CN103733352A/en
Priority to US14/126,115 priority patent/US20140130859A1/en
Publication of KR20120137929A publication Critical patent/KR20120137929A/en
Application granted granted Critical
Publication of KR101228685B1 publication Critical patent/KR101228685B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 은 CI(G)S 태양전지용의 하부전극에 Na를 함유하여 태양전지의 전지 효율을 향상시키고, 금속물질을 이용함으로서 하부전극의 밀착성과 내식성을 향상시킨 CI(G)S 태양전지용 기판과 이용한 CI(G)S 태양전지을 제공한다.
이를 위해 본 발명은 하부기판과 상기 하부기판의 상부에 하부전극을 포함하고, 상기 하부전극은 Mo-X-Na 3성분계 복합금속층으로 이루어지며, 상기 X는 Nb, Ni, Si, Ti, W, Cr 중 선택된 1종이고, 상기 Mo-X-Na 3성분계 복합금속층에서 Mo의 함량은 50중량% 이하인 것을 특징으로 하는 CI(G)S 태양전지용 기판 및 하부기판과 상기 하부기판 상부에는 하부전극으로서 Mo-X-Na 3성분계 복합금속층을 포함하며, 상기 하부전극층 상부에는 광흡수층으로서 CI(G)S층을 포함하고, 상기 광흡수층 상부에는 버퍼층으로서 CdS층을 포함하며, 상기 버퍼층 상부에는 투명창을 포함하고, 상기 투명창 상부에는 상부전극을 포함하는 CI(G)S 태양전지를 제공한다.
The present invention improves the cell efficiency of a solar cell by containing Na in the lower electrode of the silver CI (G) S solar cell, and improves the adhesion and corrosion resistance of the lower electrode by using a metal material. To provide a used CI (G) S solar cell.
To this end, the present invention includes a lower substrate and a lower electrode on the lower substrate, wherein the lower electrode is composed of a Mo-X-Na three-component composite metal layer, wherein X is Nb, Ni, Si, Ti, W, One selected from Cr, and the Mo-X-Na three-component composite metal layer, the Mo content of the CI (G) S solar cell substrate and lower substrate, characterized in that less than 50% by weight as a lower electrode on the lower substrate. It comprises a Mo-X-Na three-component composite metal layer, the lower electrode layer comprises a CI (G) S layer as a light absorption layer, the light absorbing layer includes a CdS layer as a buffer layer, a transparent window on the buffer layer It includes, and the top of the transparent window provides a CI (G) S solar cell comprising an upper electrode.

Description

CI(G)S태양전지용 기판 및 이를 이용한 CI(G)S태양전지{SUBSTRATE FOR CI(G)S SOLAR CELL AND CI(G)S SOLAR CELL USING THE SAME}SUBSTRATE FOR CI (G) S SOLAR CELL AND CI (G) S SOLAR CELL USING THE SAME}

본 발명은 CI(G)S 태양전지용 기판 및 태양전지에 관한 것으로, 보다 상세하게는 하부기판과 하부전극의 밀착성 및 내식성을 향상시키기 위해, 금속 원소를 포함하는 새로운 하부전극을 포함한 CI(G)S 태양전지용 기판 및 이를 이용한 CI(G)S 태양전지에 관한 것이다.The present invention relates to a substrate and a solar cell for a CI (G) S solar cell, and more particularly, to improve the adhesion and corrosion resistance of the lower substrate and the lower electrode, CI (G) including a new lower electrode containing a metal element It relates to an S solar cell substrate and a CI (G) S solar cell using the same.

지구의 온난화, 연료 자원의 고갈, 환경오염 등의 영향으로 화석연료를 사용하여 에너지를 채취하는 전통적인 에너지 채취 방법은 서서히 한계에 달하고 있다. 특히, 석유 연료의 경우에는 예측자마다 약간씩 상이하기는 하지만, 그리 멀지 않은 시간내에 바닥을 드러낼 것이라는 전망이 우세하다.
Traditional methods of collecting energy using fossil fuels are slowly reaching their limits due to global warming, depletion of fuel resources, and environmental pollution. In particular, petroleum fuels, though slightly different for every forecaster, are expected to bottom out not too long.

뿐만 아니라, 교토 의정서로 대표되는 에너지 기후 협약에 따르면, 화석 연료의 연소에 따라 생성되는 이산화탄소의 배출을 감소시킬 것을 강제적으로 요구하고 있다. 따라서, 현재의 체약국은 물론이며 향후에는 전세계 각국에 그 효력이 미쳐서 화석연료의 연간 사용량에 제약을 받을 것은 불을 보듯이 명확하다.
In addition, the Energy Climate Convention, represented by the Kyoto Protocol, requires compulsory reduction of the emissions of carbon dioxide produced by the burning of fossil fuels. Therefore, it is clear that the current consumption of fossil fuels will be limited not only in the present Contracting State but also in other countries around the world in the future.

화석연료에 대체하기 위하여 사용되는 가장 대표적인 에너지 원으로서는, 원자력 발전을 들 수 있다. 원자력 발전은 원료가 되는 우라늄이나 플루토늄 단위 중량당 채취 가능한 에너지의 양이 크고, 이산화탄소 등의 온실가스를 발생시키지 않으므로, 상기 석유 등의 화석연료를 대체할 수 있는 유력한 무한에 가까운 대체 에너지원으로 각광 받아왔다.
The most representative energy source used to replace fossil fuels is nuclear power. Nuclear power has a high amount of energy that can be collected per unit weight of uranium or plutonium as a raw material, and does not generate greenhouse gases such as carbon dioxide, so it is a promising alternative energy source that can replace fossil fuels such as petroleum. Have been received.

그러나, 구소련 체르노빌 원자력 발전소나, 동일본 대지진에 의한 일본 후쿠시마 원자력 발전소 등의 폭발 사고는 무한의 청정 에너지원으로 간주되어 왔던 원자력의 안전성을 다시 검토하게 하는 계기가 되었으며, 그 결과 원자력이 아닌 또다른 대체 에너지의 도입이 어느 때보다도 절실히 요망되고 있다.
However, the explosion of the former Soviet Chernobyl nuclear power plant and Japan's Fukushima nuclear power plant caused by the Great East Japan Earthquake led to a review of the safety of nuclear power, which has been regarded as an infinite clean energy source. The introduction of energy is more urgently needed than ever.

그 밖의 대체 에너지로서 많이 사용되고 있는 에너지 원으로서는 수력 발전을 들 수 있으나, 상기 수력 발전은 지형적인 인자와 기후적인 인자에 의해 많이 영향받기 때문에 그 사용이 제한적일 수 밖에 없다. 또한, 기타의 대체 에너지원들 역시 발전양이 적거나 또는 사용 지역이 크게 제한되는 등의 이유로 화석연료의 대체수단으로까지는 사용되기 어렵다.
Hydrogen power may be used as an energy source that is widely used as other alternative energy, but the use of hydroelectric power may be limited because it is influenced by topographic and climatic factors. In addition, other alternative energy sources are also unlikely to be used as an alternative to fossil fuels due to their low power generation or largely limited use areas.

그러나, 태양 전지는 적당한 일조량만 보장된다면 어디서나 사용할 수 있을 뿐만 아니라, 발전용량과 설비규모가 거의 직선적으로 비례하기 때문에, 가정용과 같은 소용량 수요로 사용할 경우에는 건물 옥상 등에 작은 면적으로 전지판을 설치함으로써 발전이 가능하다는 장점이 있어, 세계적으로 그 이용이 증가되고 있을 뿐만 아니라, 그와 관련된 연구 역시 증가하고 있다.
However, solar cells can be used anywhere as long as only a reasonable amount of sunlight is ensured, and the power generation capacity and equipment scale are almost linearly proportional to each other. Therefore, when the solar cells are used for small capacity such as home use, the solar cells are installed by installing a small area on the roof of a building. The advantage of this is that not only is its use globally, but its research is also increasing.

태양전지는 반도체의 원리를 이용한 것으로서, p-n 접합된 반도체에 일정 수준 이상의 에너지를 갖춘 빛을 조사하면 상기 반도체의 가전자가 자유롭게 이동될 수 있는 가전자로 여기되어 전자와 정공의 쌍(EHP: electron hole pair)이 생성된다. 생성된 전자와 정공은 서로 반대쪽에 위치하는 전극으로 이동하여 기전력을 발생시키게 된다.
The solar cell is based on the principle of a semiconductor. When a light having a predetermined level or more of energy is irradiated to a pn-bonded semiconductor, the solar cell is excited as a home electronic device that can move freely. ) Is generated. The generated electrons and holes move to the electrode located on the opposite side to generate an electromotive force.

상기 태양전지의 가장 최초 형태는 실리콘 기판에 불순물(B)을 도핑하여 p형 반도체를 형성시킨 다음 그 위에 또다른 불순물(P)을 도핑시켜 층의 일부를 n형 반도체화 함으로써 p-n 접합이 이루어지도록 한 실리콘계 태양전지로서 1세대 태양전지로 많이 불린다.
The first form of the solar cell is to form a p-type semiconductor by doping an impurity (B) to a silicon substrate and then doping another impurity (P) thereon to form a n-type semiconductor to form a pn junction As a silicon solar cell, it is often called the first generation solar cell.

상기 실리콘계 태양전지는 비교적 높은 에너지 전환효율과 셀 전환효율(실험실 최고의 에너지 전환효율에 대한 양산시 전환효율의 비율)이 높기 때문에, 가장 상용화 정도가 높다. 그러나, 상기 실리콘계 태양전지 모듈을 제조하기 위해서는 우선 소재로부터 잉곳을 제조하고 상기 잉곳을 웨이퍼화한 후 셀을 제조하고 모듈화한다고 하는 다소 복잡한 공정단계를 거쳐야 할 뿐만 아니라, 벌크 재질의 재료를 사용하기 때문에, 재료소비가 증가하여 제조비용이 높다는 문제가 있다.
The silicon-based solar cell has the highest degree of commercialization because it has a relatively high energy conversion efficiency and a high cell conversion efficiency (ratio of conversion efficiency at the time of mass production to the highest energy conversion efficiency of the laboratory). However, in order to manufacture the silicon-based solar cell module, the ingot is first manufactured from a material, the ingot is wafered, and then a cell is manufactured and modularized. In addition, a bulk material is used. As a result, the consumption of materials increases, leading to a high manufacturing cost.

이러한 실리콘계 태양전지의 단점을 해결하기 위하여, 2세대 태양전지로 불리우는 소위 박막형 태양전지가 제안되게 되었다. 박막형 태양전지는 상술한 과정으로 태양전지를 제조하는 것이 아니라, 기판 위에 순차적으로 필요한 박막층을 적층하는 형태로 제조하기 때문에, 그 과정이 단순하며, 두께가 얇아 재료비용이 저렴하다는 장점을 가진다.
In order to solve the shortcomings of the silicon-based solar cells, so-called thin film solar cells called second generation solar cells have been proposed. The thin film type solar cell does not manufacture the solar cell by the above-described process, but is manufactured in the form of laminating the necessary thin film layers on the substrate sequentially.

그러나, 많은 경우 아직까지는 상기 실리콘계 태양전지와 비교할 때 에너지 전환효율이 높지 않아 상용화에 많은 걸림돌이 되고 있으나, 일부 높은 에너지 전환효율을 가진 태양전지가 개발되어 상용화 추진 중에 있다.
However, in many cases, the energy conversion efficiency is not high compared to the silicon-based solar cell, and thus many obstacles to commercialization have been developed. However, solar cells having some high energy conversion efficiency have been developed and commercialized.

그 중 하나로서 CI(G)S계 태양전지를 들 수 있는데, 상기 태양전지는 구리(Cu), 인듐(In), 게르마늄(Ge)(게르마늄은 포함되지 않을 수 있음. 게르마늄이 포함되지 않을 경우에는 CIS로 불림), 셀레늄(Se)을 포함하는 CI(G)S 화합물 반도체를 기본으로 한 것이다.
One of them is CI (G) S-based solar cell, which is copper (Cu), indium (In), germanium (Ge) (germanium may not be included. Is called CIS) and CI (G) S compound semiconductors containing selenium (Se).

상기 반도체는 3 또는 4가지 원소를 포함하고 있기 때문에 원소의 함량을 조절함으로써 밴드갭의 폭을 제어할 수 있어 에너지 변환효율을 상승시킬 수 있다는 장점을 가진다. 간혹 셀레늄(Se)을 황(S)으로 대체하거나 셀레늄(Se)을 황(S)과 함께 사용하는 경우도 있다. 본 발명에서는 이러한 경우 모두 CI(G)S 태양전지로 간주한다.
Since the semiconductor contains three or four elements, the width of the band gap can be controlled by adjusting the content of the element, thereby increasing the energy conversion efficiency. Sometimes selenium (Se) is replaced with sulfur (S) or selenium (Se) is used in combination with sulfur (S). In the present invention, all of these cases are regarded as CI (G) S solar cells.

CIGS(게르마늄이 포함된 경우) 태양전지는 최하층에 기판이 존재하며, 상기 기판 위에 전극으로 사용되는 하부전극이 형성된다. 상기 하부전극 위에는 p형 반도체로서 광흡수층(CIGS)과 n형 반도체로서 버퍼층(예를 들면 CdS), 투명창, 상부 전극이 순차적으로 형성된다.
In the case of CIGS (when germanium is included), a solar cell has a substrate on a lowermost layer, and a lower electrode used as an electrode is formed on the substrate. On the lower electrode, a light absorption layer (CIGS) as a p-type semiconductor, a buffer layer (for example, CdS) as a n-type semiconductor, a transparent window, and an upper electrode are sequentially formed.

종래에 CI(G)S 태양전지의 기판으로는 유리를 많이 사용하였고, 하부전극으로는 몰리브덴(Mo)으로된 금속전극을 많이 사용하였다. 상기 유리 기판을 사용하는 경우에, 유리에 포함된 Na이 태양전지의 특성을 향상시키는 것으로 알려져 있다. 즉, 상기 Na이 CI(G)S 박막에 확산되어 첨가되면 전하농도가 증가하여 태양전지의 개방전압과 충실도를 높여준다.
Conventionally, glass was used as a substrate of CI (G) S solar cells, and metal electrodes made of molybdenum (Mo) were used as lower electrodes. In the case of using the glass substrate, Na contained in the glass is known to improve the characteristics of the solar cell. That is, when Na is diffused and added to the CI (G) S thin film, the charge concentration is increased to increase the open voltage and fidelity of the solar cell.

최근에, 고가이고 대량 생산이 적지 않으며, 정형화된 형태로만 사용될 수 있는 유리 기판 대신에 유연성 기판을 사용하고자 하는 시도가 다수 이루어졌다. 유연성 기판은 유리에 비해서는 저렴하며, 롤 투 롤 방식으로 태양전지를 제조할 수 있으며, 여러가지 형태로 가공할 수 있기 때문에 건물 일체형 모듈(BIPV) 뿐만 아니라 항공 우주용 등의 다양한 용도로 사용될 수 있다. 상기 유연성 기판으로는 스테인레스강, 알루미늄 호일, 폴리이미드 필름와 같은 금속판이나 플라스틱 계열의 기판이 많이 사용된다.
Recently, many attempts have been made to use flexible substrates instead of glass substrates that are expensive, low in mass production, and can only be used in standardized form. The flexible substrate is cheaper than glass, and can be manufactured in a roll-to-roll manner, and can be used in various forms such as a building integrated module (BIPV) as well as aerospace because it can be processed in various forms. . As the flexible substrate, a metal plate such as stainless steel, an aluminum foil, a polyimide film, or a plastic-based substrate is used.

상기 유연성 기판의 경우에는 Na의 첨가에 의한 효과를 볼 수 있다는 문제가 발생하였다. 이에 도 1에 나타난 바와 같이, 기판(10)과 CI(G)S층(30) 사이에 형성된 하부전극(20)을 Na를 함유하는 Mo-Na층으로 형성하여, 상기 문제를 해결하려는 시도가 있다.
In the case of the flexible substrate, there is a problem that the effect of the addition of Na can be seen. As shown in FIG. 1, an attempt is made to solve the problem by forming a lower electrode 20 formed between the substrate 10 and the CI (G) S layer 30 as a Mo-Na layer containing Na. have.

그러나, 상기 Na 함유한 하부전극의 경우에도 하부전극의 금속기판과의 밀착성 및 내식성에 대한 문제가 여전히 남아있다.However, even in the case of the Na-containing lower electrode, problems regarding the adhesion and corrosion resistance of the lower electrode to the metal substrate still remain.

본 발명의 일측면은 CI(G)S 태양전지용의 하부전극으로서 Na를 함유하여 태양전지의 전지 효율을 향상시키고, 금속물질을 이용함으로서 하부전극과 하부기판과의 밀착성 및 하부전극의 내식성을 향상시킨 CI(G)S 태양전지용 기판 및 이를 이용한 CI(G)S 태양전지를 제공하고자 하는 것이다.One aspect of the present invention includes Na as a lower electrode for CI (G) S solar cells to improve the cell efficiency of the solar cell, and by using a metal material to improve the adhesion between the lower electrode and the lower substrate and the corrosion resistance of the lower electrode. It is to provide a CI (G) S solar cell substrate and CI (G) S solar cell using the same.

본 발명의 일실시예는 하부기판과 상기 하부기판의 상부에 하부전극을 포함하고, 상기 하부전극은 Mo-X-Na 3성분계 복합금속층으로 이루어지며, 상기 X는 Nb, Ni, Si, Ti, W, Cr 중 선택된 1종이고, 상기 Mo-X-Na 3성분계 복합금속층에서 Mo의 함량은 50중량% 이하인 것을 특징으로 하는 CI(G)S 태양전지용 기판을 제공한다.
One embodiment of the present invention includes a lower substrate and a lower electrode on the lower substrate, the lower electrode is composed of a Mo-X-Na three-component composite metal layer, wherein X is Nb, Ni, Si, Ti, W, Cr is one selected, and the Mo-X-Na three-component composite metal layer provides a CI (G) S solar cell substrate, characterized in that the content of Mo is 50% by weight or less.

상기 Mo-X-Na 3성분계 복합금속층의 두께는 1㎛ 이하인 것이 바람직하다.It is preferable that the thickness of the said Mo-X-Na tricomponent composite metal layer is 1 micrometer or less.

상기 하부기판과 상기 Mo-X-Na 3성분계 복합금속층 사이에 적어도 2층 이상이고, 서로 접하는 층간은 이종의 금속인 다층 확산방지막을 포함할 수 있다.At least two or more layers between the lower substrate and the Mo-X-Na three-component composite metal layer may be in contact with each other.

상기 다층 확산방지막은 금속층 사이에 산화물층을 추가로 포함할 수 있다.The multilayer diffusion barrier layer may further include an oxide layer between the metal layers.

상기 하부기판은 스테인레스, 알루미늄 호일, Fe-Ni계 금속, Fe-Cu계 금속, 폴리이미드로 이루어진 그룹에서 선택된 1종인 것이 바람직하다.
The lower substrate is preferably one selected from the group consisting of stainless steel, aluminum foil, Fe-Ni metal, Fe-Cu metal, and polyimide.

하부기판과 상기 하부기판 상부에는 하부전극층으로서 Mo-X-Na 3성분계 복합금속층을 포함하며, 상기 하부전극층 상부에는 광흡수층으로서 CI(G)S층을 포함하고, 상기 광흡수층 상부에는 버퍼층으로서 CdS층을 포함하며, 상기 버퍼층 상부에는 투명창을 포함하고, 상기 투명창 상부에는 상부전극을 포함하는 CI(G)S 태양전지를 제공한다.
The lower substrate and the lower substrate includes a Mo-X-Na three-component composite metal layer as a lower electrode layer, the lower electrode layer includes a CI (G) S layer as a light absorption layer, and a CdS as a buffer layer on the upper light absorbing layer It includes a layer, and provides a CI (G) S solar cell including a transparent window on the buffer layer, and an upper electrode on the transparent window.

상기 하부기판과 하부전극 사이에 적어도 2층 이상이고, 서로 접하는 층간은 이종의 금속인 다층 확산방지막을 포함할 수 있다.At least two or more layers between the lower substrate and the lower electrode, and the interlayers in contact with each other may include a multilayer diffusion barrier layer of different kinds of metals.

상기 다층 확산방지막은 금속층 사이에 산화물층을 추가로 포함할 수 있다.The multilayer diffusion barrier layer may further include an oxide layer between the metal layers.

본 발명에 의하면, 기존의 Mo-Na 화합물 형태의 하부전극에 비해, 밀착성과 내식성이 향상된 CI(G)S 태양전지용 하부전극을 포함한 기판을 제공할 수 있고, 이로 인해, 내구성 및 품질 안정성이 향상된 CI(G)S 태양전지를 제공할 수 있는 장점이 있다.According to the present invention, it is possible to provide a substrate including a lower electrode for CI (G) S solar cells, which has improved adhesion and corrosion resistance, as compared to the lower electrode of the conventional Mo-Na compound type, thereby improving durability and quality stability. There is an advantage that can provide CI (G) S solar cells.

도 1은 종래의 Mo-Na 금속의 하부전극을 나타낸 단면도임.
도 2는 본 발명의 일실시예인 Mo-X-Na 3성분계 복합금속층으로 이루어진 하부전극을 나타낸 단면도임.
1 is a cross-sectional view showing a lower electrode of a conventional Mo-Na metal.
Figure 2 is a cross-sectional view showing a lower electrode made of a Mo-X-Na three-component composite metal layer of an embodiment of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명자들은 유연성 하부기판의 상부에 적층된 하부전극에 나트륨(Na)을 함유하고, Na에 의한 CI(G)S 태양전지의 성능을 향상시킬 뿐만 아니라, 밀착성 및 내식성을 향상시킬 수 있는 방안을 깊이 연구한 결과, 하부전극을 복합금속 전극으로 제조함으로서, 이를 해결할 수 있음을 인지하고 본 발명에 이르게 되었다.
The inventors have found a way to contain sodium (Na) in the lower electrode stacked on the flexible lower substrate and to improve the performance of CI (G) S solar cell by Na, as well as to improve adhesion and corrosion resistance. As a result of the in-depth study, it was recognized that the lower electrode could be solved by manufacturing the composite metal electrode, thus leading to the present invention.

먼저, 본 발명의 CI(G)S 태양전지용 기판에 대하여 상세히 설명한다. 본 발명에서 기판은 하부기판과 상기 하부기판에 적층된 하부전극, 확산방지막을 모두 포함한다.
First, the CI (G) S solar cell substrate of the present invention will be described in detail. In the present invention, the substrate includes a lower substrate, a lower electrode stacked on the lower substrate, and a diffusion barrier.

상기 하부전극은 Mo-X-Na 3성분계 복합금속층의 형태인 것을 특징으로 한다. 도 2를 참조하여 본 발명을 설명하면, 하부기판(10)과 CI(G)S층(30)사이에 형성되는 하부전극(20')을 Mo-X-Na 3성분계 복합금속층으로 형성한다. 상기 Mo-X-Na 3성분계 복합금속층을 형성하는 X는 Nb, Ni, Si, Ti, W, Cr 등이 적용될 수 있다. X 중 Mo 보다 밀도가 큰 W을 사용하는 것이 바람직하며, 이를 통하여 내식성향상 효과를 극대화할 수 있다. X를 포함함으로서 Mo만으로 이루어진 전극을 사용할 때 보다 하기 서술할 확산방지막과의 밀착성 및 내식성을 향상시킬 수 있으며, Na을 포함함으서 정공의 밀도를 높여 태양전지의 개방전압을 향상시킬 수 있다.
The lower electrode is in the form of a Mo-X-Na three-component composite metal layer. Referring to FIG. 2, the lower electrode 20 ′ formed between the lower substrate 10 and the CI (G) S layer 30 is formed of a Mo-X-Na tricomponent composite metal layer. X forming the Mo-X-Na three-component composite metal layer may be applied to Nb, Ni, Si, Ti, W, Cr and the like. It is preferable to use W having a higher density than Mo among X, thereby maximizing the effect of improving corrosion resistance. By including X, it is possible to improve the adhesion and corrosion resistance with the diffusion barrier described below when using an electrode composed of only Mo, and to increase the density of holes by including Na can improve the open-circuit voltage of the solar cell.

Mo-X-Na 3성분계 복합금속층의 X는 상술한 바와 같은 원소들이 적용될 수 있으나, Mo-X-Na 3성분계 복합금속층과 하부기판 사이에 확산방지막이 형성되는 경우 상기 확산방지막과 동일한 원소로 이루어지는 것이 바람직하다. 양 원소가 동일한 경우 하부전극과 기판의 밀착성을 더욱 높일 수 있다. 그리고, 확산방지막이 단층으로 구성되지 아니하고 2층 이상으로 적층되는 경우 최상층의 원소와 Mo-X-Na 3성분계 복합금속층의 X는 동일한 원소인 것이 바람직하다.
X of the Mo-X-Na three-component composite metal layer may be the same as the above-described elements, but when the diffusion barrier is formed between the Mo-X-Na three-component composite metal layer and the lower substrate, the same element as the diffusion barrier is formed. It is preferable. If both elements are the same, the adhesion between the lower electrode and the substrate may be further improved. In addition, when the diffusion barrier is not composed of a single layer but is laminated in two or more layers, the element of the uppermost layer and the X of the Mo-X-Na tricomponent composite metal layer are preferably the same element.

Mo-X-Na 3성분계 복합금속 중 Mo의 함량의 상한은 50중량%인 것이 바람직하며, 잔부는 X 및 Na일 수 있다. Mo의 함량이 50중량%를 초과하는 경우에는 Mo 대비 X의 함량이 크지 않아서 X의 투입효과로서 내식성이 향상되지 않고 밀착성이 저하된다. 단, 본 발명에서 Na 및 X의 함량은 제한하지 않을 수 있다..
The upper limit of the content of Mo in the Mo-X-Na tricomponent composite metal is preferably 50% by weight, and the balance may be X and Na. When the content of Mo exceeds 50% by weight, the content of X is not large compared to Mo, so that the corrosion resistance is not improved as the input effect of X and adhesion is reduced. However, the content of Na and X in the present invention may not be limited.

여기서, 상기 Mo-X-Na 3성분계 복합금속층으로 이루어진 하부전극의 두께는 1㎛ 이하인 것이 바람직하다. 하부전극층의 두께를 1㎛ 이하로 제어하여야, 본 발명이 의도하는 박막 CI(G)S 태양전지용 하부전극으로 사용하기 적합하다.
Here, the thickness of the lower electrode made of the Mo-X-Na tricomponent composite metal layer is preferably 1 μm or less. The thickness of the lower electrode layer should be controlled to 1 μm or less, so that the lower electrode layer is suitable for use as a lower electrode for thin film CI (G) S solar cells.

상기 기판으로 유연성 기판을 사용하는 것이 바람직하고, 상기 유연성 기판은 스테인레스, 알루미늄 호일, Fe-Ni계 금속, Fe-Cu계 금속, 폴리이미드계 등이 사용되는 것이 보다 바람직하다.
It is preferable to use a flexible substrate as the substrate, and it is more preferable that the flexible substrate be stainless, aluminum foil, Fe-Ni-based metal, Fe-Cu-based metal, polyimide-based or the like.

본 발명의 CI(G)S 태양전지용 기판을 제조하는 방법에 대하여 상세히 설명하면, 먼저, Mo-X-Na 3성분계 복합금속을 타겟물질로 준비한다. 또한, Mo, X, Na 각각 타겟물질로 준비할 수 있다. 상기 X는 전술한 바와 같이 Nb, Ni, Si, Ti, W, Cr 등이 적용될 수 있고, 바람직하게는 W을 사용한다.
Referring to the method for producing a substrate for a CI (G) S solar cell of the present invention in detail, first, Mo-X-Na three-component composite metal is prepared as a target material. In addition, Mo, X, and Na may be prepared as target materials, respectively. As described above, Nb, Ni, Si, Ti, W, Cr, etc. may be applied as described above, and preferably W is used.

상기 타겟물질을 스퍼터링(sputtering)법을 이용하여 상기 하부기판 위에 증착시킬 수 있다. 상기 스퍼터링은 Co-스퍼터링을 이용하여 실시하는 것이 바람직하다. 즉, 타겟물질로서 Mo, X, Na를 한번에 스퍼터링 할 수 있다. 또한, Mo 및 X를 타겟물질로 적층하고 Na를 추후 도핑할 수 있다. 더불어, 스퍼터링법에 의하여, 각 원소를 레이어(layer)로 적층한 후 열처리하여 상기 복합금속층을 형성할 수도 있다.
The target material may be deposited on the lower substrate by sputtering. The sputtering is preferably performed using Co-sputtering. That is, Mo, X, Na can be sputtered as a target material at once. In addition, Mo and X may be laminated with the target material and Na may be later doped. In addition, by sputtering, each of the elements may be laminated in a layer and then heat treated to form the composite metal layer.

더불어 본 발명의 CI(G)S 태양전지는 상기 하부기판과 상기 Mo-X-Na 3성분계 복합금속층 사이에 1 또는 2이상의 금속층으로 이루어진 확산방지막을 포함할 수 있다.
In addition, the CI (G) S solar cell of the present invention may include a diffusion barrier formed of one or more metal layers between the lower substrate and the Mo-X-Na tricomponent composite metal layer.

본 발명의 확산방지막은 태양전지의 기판 및 하부전극 사이에 형성되고, 2이상의 금속층으로 이루어질 수 있다. 3개의 금속층으로 이루어지는 것이 보다 바람직하다. 이종 물질에 의해 형성되는 계면은 불순물 등의 이종 원소가 확산하는데 장벽으로 작용할 수 있다. 동일한 물질내를 확산하던 이종 원소는 새로운 물질을 만나게 되면 기존 물질과의 확산 거동 차이에 의하여 확산에 장벽을 느끼게 된다. 이와 같은 장벽 효과에 의해 다층 확산방지막 구조는 불순물의 확산을 더욱 효과적으로 억제할 수 있다.
The diffusion barrier of the present invention is formed between the substrate and the lower electrode of the solar cell, it may be composed of two or more metal layers. It is more preferable that it consists of three metal layers. The interface formed by the dissimilar material may act as a barrier for diffusion of heterogeneous elements such as impurities. Heterogeneous elements that have diffused within the same material are exposed to barriers to diffusion due to differences in diffusion behavior with existing materials. By such a barrier effect, the multilayer diffusion barrier structure can more effectively suppress the diffusion of impurities.

본 발명에서 확산방지막의 총두께는 100~1500㎚로 제어하는 것이 바람직하다. 100㎚ 미만인 경우 본 발명이 의도하고자 하는 확산방지효과를 얻기 어렵다. 반면에, 1500㎚를 초과하는 경우 기판과 하부전극 사이의 밀착성이 떨어질 수 있다.
In the present invention, the total thickness of the diffusion barrier is preferably controlled to 100 ~ 1500nm. If the thickness is less than 100 nm, it is difficult to obtain a diffusion preventing effect of the present invention. On the other hand, when it exceeds 1500 nm, the adhesion between the substrate and the lower electrode may be inferior.

또한, 상기 금속층 계면에 의한 확산방지 효과를 통해, 단일층과 동일한 두께로 확산방지막을 형성하더라도, 단일층에 비해 월등히 우수한 확산 방지 효과를 확보할 수 있다. 가령, 150㎚의 단일층으로 이루어진 확산방지막과, 50㎚로 3개의 층으로 이루어진 다층의 확산방지막을 비교하면, 다층의 확산방지막은 단일층으로 이루어진 확산방지막보다 2개 이상의 계면을 더 보유하고 있기 때문에 동일한 두께에서도 보다 우수한 확산 방지 효과를 가질 수 있다.
In addition, through the anti-diffusion effect by the metal layer interface, even if the anti-diffusion film is formed to the same thickness as a single layer, it is possible to secure an excellent anti-diffusion effect compared to the single layer. For example, if a diffusion barrier consisting of a single layer of 150 nm is compared with a multilayer diffusion barrier consisting of three layers of 50 nm, the multilayer diffusion barrier has more than two interfaces than a diffusion barrier consisting of a single layer. Therefore, even at the same thickness may have a better diffusion prevention effect.

상기 2이상의 금속층은 서로 다른 금속 물질로 이루어진 것이 바람직하다. 보다 바람직하게는 상기 2이상의 금속층은 서로 접하는 금속층간에는 서로 다른 물질로 이루어진 것이 바람직하다. 상기 금속층은 Nb, Ni, Si, Ti, W, Cr 중 1종의 금속을 적용할 수 있다. 또한 각각의 금속층은 10㎚ 이상인 것이 바람직하다.
Preferably, the two or more metal layers are made of different metal materials. More preferably, the two or more metal layers are made of different materials between metal layers in contact with each other. The metal layer may be one of Nb, Ni, Si, Ti, W, Cr. Moreover, it is preferable that each metal layer is 10 nm or more.

그리고 상기 금속층 사이에는 산화물층이 형성되는 것이 바람직하며, 상기 산화물층은 SiOX, SiNX, Al2O3 중 1종을 포함할 수 있다. 더불어, 상기 산화물층의 두께는 10㎚ 이상인 것이 바람직하다. 세라믹 물질의 경우 이종 원소의 확산이 금속 등에 대비하여 어렵기 때문에 확산방지효과를 향상시킬 수 있다.
In addition, an oxide layer is preferably formed between the metal layers, and the oxide layer may include one of SiO X , SiN X , and Al 2 O 3 . In addition, the oxide layer preferably has a thickness of 10 nm or more. In the case of the ceramic material, the diffusion prevention effect of the dissimilar elements is difficult compared to that of the metal.

여기서, 각층을 적층하는 방법은 스퍼터링을 이용할 수 있다. 다만, 반드시 스퍼터링법에 한정되는 것은 아니고, 본 발명이 의도하는 방향으로 상기 금속층 또는 산화물층을 적층하는 방법이라면, 모두 가능하다.
Here, sputtering can be used for the method of laminating each layer. However, the present invention is not necessarily limited to the sputtering method, and any method can be used as long as the method is to laminate the metal layer or the oxide layer in the direction intended by the present invention.

이하, 본 발명의 일측면인 CI(G)S 태양전지에 대하여 상세히 설명한다.
Hereinafter, a CI (G) S solar cell which is one aspect of the present invention will be described in detail.

상기 CI(G)S 태양전지는 하부기판과 상기 하부기판 상부에는 하부전극으로서 Mo-X-Na 3성분계 복합금속층을 포함하며, 상기 하부전극 상부에는 광흡수층으로서 CI(G)S층을 포함하고, 상기 광흡수층 상부에는 버퍼층으로서 CdS층을 포함하며, 상기 버퍼층 상부에는 투명창을 포함하고, 상기 투명창 상부에는 상부전극을 포함할 수 있다.The CI (G) S solar cell includes a Mo-X-Na tricomponent composite metal layer as a lower electrode on a lower substrate and the lower substrate, and a CI (G) S layer as a light absorption layer on the lower electrode. The light absorbing layer may include a CdS layer as a buffer layer, a transparent window above the buffer layer, and an upper electrode above the transparent window.

10: 하부기판
20, 20': 하부전극
30: CI(G)S층
10: lower substrate
20, 20 ': lower electrode
30: CI (G) S layer

Claims (8)

하부기판과 상기 하부기판의 상부에 하부전극을 포함하고, 상기 하부전극은 Mo-X-Na 3성분계 복합금속층으로 이루어지며, 상기 X는 Nb, Ni, Si, Ti, W, Cr 중 선택된 1종이고, 상기 Mo-X-Na 3성분계 복합금속층에서 Mo의 함량은 50중량% 이하인 것을 특징으로 하는 CI(G)S 태양전지용 기판.
A lower electrode is provided on the lower substrate and the lower substrate, and the lower electrode is composed of a Mo-X-Na three-component composite metal layer, wherein X is one selected from Nb, Ni, Si, Ti, W, and Cr. And, the Mo-X-Na three-component composite metal layer, the content of Mo is CI (G) S solar cell substrate, characterized in that less than 50% by weight.
청구항 1에 있어서,
상기 Mo-X-Na 3성분계 복합금속층의 두께는 1㎛ 이하인 것을 특징으로 하는 CI(G)S 태양전지용 기판.
The method according to claim 1,
CI-G-S solar cell substrate, characterized in that the thickness of the Mo-X-Na three-component composite metal layer is 1㎛ or less.
청구항 1에 있어서,
상기 하부기판과 상기 Mo-X-Na 3성분계 복합금속층 사이에 적어도 2층 이상이고, 서로 접하는 층간은 이종의 금속인 다층 확산방지막을 포함하는 CI(G)S 태양전지용 기판.
The method according to claim 1,
At least two layers between the lower substrate and the Mo-X-Na three-component composite metal layer, the interlayer contacting each other is a CI (G) S solar cell substrate comprising a multi-layer diffusion barrier film of a heterogeneous metal.
청구항 3에 있어서,
상기 다층 확산방지막은 금속층 사이에 산화물층을 추가로 포함하는 것을 특징으로 하는 CI(G)S 태양전지용 기판.
The method according to claim 3,
The multilayer diffusion barrier film is a CI (G) S solar cell substrate, characterized in that it further comprises an oxide layer between the metal layer.
청구항 1에 있어서,
상기 하부기판은 스테인레스, 알루미늄 호일, Fe-Ni계 금속, Fe-Cu계 금속, 폴리이미드로 이루어진 그룹에서 선택된 1종인 것을 특징으로 하는 CI(G)S 태양전지용 기판.
The method according to claim 1,
The lower substrate is a substrate for CI (G) S solar cell, characterized in that one selected from the group consisting of stainless steel, aluminum foil, Fe-Ni-based metal, Fe-Cu-based metal, polyimide.
하부기판과 상기 하부기판 상부에는 하부전극으로서 Mo-X-Na 3성분계 복합금속층을 포함하며, 상기 하부전극 상부에는 광흡수층으로서 CI(G)S층을 포함하고, 상기 광흡수층 상부에는 버퍼층으로서 CdS층을 포함하며, 상기 버퍼층 상부에는 투명창을 포함하고, 상기 투명창 상부에는 상부전극을 포함하는 CI(G)S 태양전지.
The lower substrate and the lower substrate includes a Mo-X-Na three-component composite metal layer as a lower electrode, the lower electrode includes a CI (G) S layer as a light absorption layer, and a CdS as a buffer layer on the upper light absorbing layer CI (G) S solar cell comprising a layer, the buffer layer comprises a transparent window on the top, the transparent window comprises an upper electrode.
청구항 6에 있어서,
상기 하부기판과 하부전극 사이에 적어도 2층 이상이고, 서로 접하는 층간은 이종의 금속인 다층 확산방지막을 포함하는 CI(G)S 태양전지.
The method of claim 6,
CI (G) S solar cell comprising a multi-layer diffusion barrier film of at least two or more layers between the lower substrate and the lower electrode, the interlayer contact with each other is a different type of metal.
청구항 7에 있어서,
상기 다층 확산방지막은 금속층 사이에 산화물층을 추가로 포함하는 것을 특징으로 하는 CI(G)S 태양전지.
The method of claim 7,
The multilayer diffusion barrier is a CI (G) S solar cell, characterized in that it further comprises an oxide layer between the metal layer.
KR1020110057108A 2011-06-13 2011-06-13 Substrate for ci(g)s solar cell and ci(g)s solar cell using the same KR101228685B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020110057108A KR101228685B1 (en) 2011-06-13 2011-06-13 Substrate for ci(g)s solar cell and ci(g)s solar cell using the same
JP2014515716A JP5908073B2 (en) 2011-06-13 2012-06-08 Solar cell substrate and solar cell using the same
PCT/KR2012/004573 WO2012173360A2 (en) 2011-06-13 2012-06-08 Solar cell substrate and solar cell using same
EP12800914.9A EP2720279A4 (en) 2011-06-13 2012-06-08 Solar cell substrate and solar cell using same
CN201280039611.6A CN103733352A (en) 2011-06-13 2012-06-08 Solar cell substrate and solar cell using same
US14/126,115 US20140130859A1 (en) 2011-06-13 2012-06-08 Solar cell substrate and solar cell using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110057108A KR101228685B1 (en) 2011-06-13 2011-06-13 Substrate for ci(g)s solar cell and ci(g)s solar cell using the same

Publications (2)

Publication Number Publication Date
KR20120137929A KR20120137929A (en) 2012-12-24
KR101228685B1 true KR101228685B1 (en) 2013-01-31

Family

ID=47904830

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110057108A KR101228685B1 (en) 2011-06-13 2011-06-13 Substrate for ci(g)s solar cell and ci(g)s solar cell using the same

Country Status (1)

Country Link
KR (1) KR101228685B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190010517A (en) * 2018-11-23 2019-01-30 한국과학기술연구원 Flexible thin film solar cells with back side of controllable color

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060756B1 (en) 2013-03-14 2019-12-30 삼성전자주식회사 Electronic device with protective case and operating method thereof
KR101501742B1 (en) * 2013-11-01 2015-03-12 전북대학교산학협력단 Method for fabricating a thin film solar cell with diffusion barrier and Thin film solar cell produced by the same
KR101534941B1 (en) 2013-11-15 2015-07-07 현대자동차주식회사 a method for forming conductive electrode patterns and a method for manufacturing colar cells comprising thereof
KR102069845B1 (en) * 2018-02-28 2020-02-11 한국에너지기술연구원 Forming method for thin film using cbd, forming apparatus for thin film and manufacturing method for cigs solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
US20080271781A1 (en) * 2004-12-09 2008-11-06 Showa Shell Sekiyu K. K. Cis Type Thin-Film Solar Cell and Process for Producing the Same
US20100258191A1 (en) * 2009-04-13 2010-10-14 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
US20080271781A1 (en) * 2004-12-09 2008-11-06 Showa Shell Sekiyu K. K. Cis Type Thin-Film Solar Cell and Process for Producing the Same
US20100258191A1 (en) * 2009-04-13 2010-10-14 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190010517A (en) * 2018-11-23 2019-01-30 한국과학기술연구원 Flexible thin film solar cells with back side of controllable color
KR102165322B1 (en) * 2018-11-23 2020-10-14 한국과학기술연구원 Flexible thin film solar cells with back side of controllable color

Also Published As

Publication number Publication date
KR20120137929A (en) 2012-12-24

Similar Documents

Publication Publication Date Title
EP2720276A2 (en) Solar cell substrate, method for manufacturing same, and solar cell using same
KR101228685B1 (en) Substrate for ci(g)s solar cell and ci(g)s solar cell using the same
JP5840213B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5908073B2 (en) Solar cell substrate and solar cell using the same
KR101228735B1 (en) Solar cell substrate having multi-layer barrier layer and solar cell using the same
KR20120119807A (en) Solar cell
KR101253953B1 (en) Laminated substrate for ci(g)s solar cell
KR101502208B1 (en) Solar cell array and thin-film solar module and production method therefor
KR101412150B1 (en) Tandem structure cigs solar cell and method for manufacturing the same
KR101228666B1 (en) Substrate with multi-layer bottom electrode for ci(g)s solar cell and ci(g)s solar cell using the same
KR20150071553A (en) Flexible solar cell having layer for diffusion barrier comprising transparent conducting oxide
KR101228772B1 (en) Solar cell substrate having na contained multi-layer metal barrier layer and solar cell using the same
CN104254926B (en) Photovoltaic apparatus
KR101867617B1 (en) Solar cell having layer for multi diffusion barrier
KR101304710B1 (en) Solar cell substrate having multi-layer metal barrier layer and solar cell using the same
KR101242856B1 (en) Fe-Cr ALLOY SUBSTRATE FOR CI(G)S SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME
KR101765922B1 (en) Solar cell apparatus and method of fabricating the same
KR20130104347A (en) Solar cell and manufacturing method thereof
JP2013098190A (en) Photoelectric conversion device
KR20120136931A (en) Fe-ni alloy substrate for ci(g)s solar cell and method for manufacturing the same
KR101228743B1 (en) Solar cell substrate and method for manutacturing the same
KR101867616B1 (en) Solar cell having layer for diffusion barrier
KR101242942B1 (en) Solar cell substrate and method for manutacturing the same
KR101253907B1 (en) Solar cell substrate having barrier layer containing sodium and method for manufacturing the same
KR101189366B1 (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160122

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190123

Year of fee payment: 7