KR101225821B1 - A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant - Google Patents

A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant Download PDF

Info

Publication number
KR101225821B1
KR101225821B1 KR1020110064234A KR20110064234A KR101225821B1 KR 101225821 B1 KR101225821 B1 KR 101225821B1 KR 1020110064234 A KR1020110064234 A KR 1020110064234A KR 20110064234 A KR20110064234 A KR 20110064234A KR 101225821 B1 KR101225821 B1 KR 101225821B1
Authority
KR
South Korea
Prior art keywords
fiber
fiber reinforcement
concrete composition
nuclear power
containment
Prior art date
Application number
KR1020110064234A
Other languages
Korean (ko)
Other versions
KR20130003146A (en
Inventor
전중규
Original Assignee
코오롱글로벌 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱글로벌 주식회사 filed Critical 코오롱글로벌 주식회사
Priority to KR1020110064234A priority Critical patent/KR101225821B1/en
Priority to PCT/KR2012/004865 priority patent/WO2013002508A2/en
Publication of KR20130003146A publication Critical patent/KR20130003146A/en
Application granted granted Critical
Publication of KR101225821B1 publication Critical patent/KR101225821B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/093Concrete vessels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/04Concretes; Other hydraulic hardening materials
    • G21F1/042Concretes combined with other materials dispersed in the carrier
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2046Shock-absorbing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명에 따른 원전 격납건물용 섬유보강 콘크리트 조성물에 관한 것으로, 이를 더욱 상세히 설명하면 섬유보강재의 화학적 성질 및 물리적 성질에 기해 섬유보강 콘크리트 조성물에 의한 원자력 발전소 격납건물에 있어 인성을 강화시킴과 동시에 내충격성을 강화시킴으로 외부 충격(대형 민항기, 경비행기, 군용기, 등)에 의한 안정성을 확보할 수 있는 격납건물용 섬유보강 콘크리트 조성물에 관한 것이다. The present invention relates to a fiber reinforced concrete composition for a nuclear power plant containment, which will be described in more detail based on the chemical and physical properties of a fiber reinforced material, thereby enhancing toughness in a nuclear power plant containment building by a fiber reinforced concrete composition. The present invention relates to a fiber-reinforced concrete composition for a containment building that can secure stability by external impact (large civil aircraft, light aircraft, military aircraft, etc.) by enhancing impact properties.

Description

원자력 발전소 격납건물용 섬유보강 콘크리트 조성물{A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant} A concrete composite having fiber for containment building of nuclear power plant

본 발명에 따른 원전 격납건물용 섬유보강 콘크리트 조성물에 관한 것으로, 이를 더욱 상세히 설명하면 섬유보강재의 화학적 성질 및 물리적 성질에 기해 섬유보강 콘크리트 조성물에 의한 원전 격납건물에 있어 인성을 강화시킴과 동시에 내충격성을 강화시킴으로 외부 충격(대형 민항기, 경비행기, 군용기, 등)에 의한 안정성을 확보할 수 있는 격납건물용 섬유보강 콘크리트 조성물에 관한 것이다.The present invention relates to a fiber-reinforced concrete composition for a nuclear power plant containment, which will be described in more detail based on the chemical and physical properties of a fiber-reinforced material. It relates to a fiber-reinforced concrete composition for containment buildings that can secure stability by external impact (large civil aircraft, light aircraft, military aircraft, etc.) by strengthening.

일반적으로 원전 격납건물(Containment Building)은 핵반응조와 증기발생기 등 원자력발전소의 주기기가 배치되는 밀폐건물로서 일반적으로 돔(Dome)형 건물로 이루어진다. 상기 격납건물의 내측은 스텐레스 스틸 등의 강재 플레이트로 라이닝되고, 라이너 플레이트의 외측에는 콘크리트를 타설한 형태로 이루어지는데, 강재 라이닝은 돔 라이너와 셀 라이너, 그리고 상기 셀 라이너 하부에 지반으로 함몰된 캐비티 라이너로 이루어진다.In general, a containment building is a sealed building in which a cycle of nuclear power plants, such as a nuclear reactor and a steam generator, is arranged and is generally composed of a dome-type building. The inner side of the containment is lined with a steel plate such as stainless steel, and the outside of the liner plate is formed by pouring concrete. The steel lining is a dome liner and a cell liner, and a cavity recessed into the ground under the cell liner. It consists of a liner.

이렇게 격납건물 등을 포함하는 원전구조물에 있어 라이너 플레이트의 외측에는 콘크리트를 타설하여 벽체를 구성하는 바, 이러한 벽체의 조성에 있어 사용되는 콘크리트 조성물은 일반적으로 내압, 지진, 열화 등에 대한 저항성을 향상시키기 위한 조성이 제시된다.As such, in nuclear power plants including containment buildings, concrete walls are formed on the outside of the liner plate, and the concrete composition used in the composition of such walls generally improves resistance to internal pressure, earthquake, and deterioration. The composition for this is presented.

그런데 이러한 원전 격납건물용 콘크리트 조성물에 있어서 외부충격에 대한 저항성의 향상에 대한 연구는 미비한 상태이다. 이러한 외부충격으로는 항공기 오작동에 의한 충돌, 특히 대한민국의 경우 남북 대치상황, 최근에 대두되는 테러에 대한 위협에 대해 안전지대라고 할 수 없으므로 이러한 외부 충돌의 위험이 있는 격납건물 등 원전구조물에 있어 내충격성 강화를 위한 연구가 필요한 실정이다. 현재 이러한 내충격성을 강화시키기 위한 해결책으로 제시되는 것은 고작 벽체두께를 크게 함으로서 이를 보강하고자 하는 정도인데 이렇게 벽체두께를 크게 하는 것은 비경제적일 뿐 아니라 온도균열 등의 내구성에 있어서도 문제가 발생할 수 있다. However, studies on the improvement of resistance to external impact in the concrete composition for a nuclear power containment building are insufficient. Such external shocks are not safe zones for collisions caused by aircraft malfunctions, especially the South-North confrontation situation and the recent threat of terrorism. There is a need for research to strengthen the impact. Currently, the solution proposed to reinforce the impact resistance is to increase the wall thickness by increasing the wall thickness. However, increasing the wall thickness is not only economical but also may cause problems in durability such as temperature cracking.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 격납건물 등 원전구조물에 있어 두께를 크게 하지 않으면서도 인성 및 내충격성을 강화시킬 수 있는 원전 격납건물용 섬유보강 콘크리트 조성물을 제공하고자 함이다. The present invention has been made to solve the above problems, to provide a fiber-reinforced concrete composition for nuclear power containment buildings that can enhance the toughness and impact resistance without increasing the thickness in nuclear power plants, such as containment buildings. .

상기 목적을 달성하기 위해, 본 발명의 원전 격납건물용 섬유보강 콘크리트 조성물은 시멘트, 골재, 혼화재로 구성되되, 물-결합재비가 30 내지 50%로 구성되며, 시멘트 100 중량부 대비 플라이애쉬 10 내지 30 중량부로 구성되고, 섬유보강재가 전체중량 대비 0.01 내지 2.00 중량%로 배합되되, 상기 섬유보강재는 친수성 섬유로 구성되며 소수성 계면활성제에 의해 표면에 코팅층이 형성됨을 특징으로 한다. 이렇게 본 발명은 섬유보강재를 첨가하되 친수성 섬유로 구성되도록 하여 시멘트와 강한 결합력을 발생시키도록 하여 내구성을 강화시키되, 섬유보강재의 표면을 소수성 계면활성제로 코팅함으로서 너무 강한 결합력에 의해 섬유절단의 문제를 해결하여 충격저항성을 향상시키도록 함에 그 특징이 있는 것이다. In order to achieve the above object, the fiber-reinforced concrete composition for nuclear power containment building of the present invention is composed of cement, aggregate, admixture, water-bonding material ratio of 30 to 50%, fly ash 10 to 30 to 100 parts by weight of cement It is composed of parts by weight, the fiber reinforcement is blended with 0.01 to 2.00% by weight relative to the total weight, the fiber reinforcement is composed of hydrophilic fibers, characterized in that the coating layer is formed on the surface by a hydrophobic surfactant. Thus, the present invention is added to the fiber reinforcement, but made of hydrophilic fibers to generate a strong bonding force with cement to enhance the durability, by coating the surface of the fiber reinforcement with a hydrophobic surfactant to solve the problem of fiber cutting by too strong bonding force It is characterized by improving the impact resistance by solving.

본 발명에 따른 원전 격납건물용 섬유보강 콘크리트 조성물은 섬유보강재의 화학적 성질 및 물리적 성질에 기해 원전 격납건물에 있어 인성을 강화시킴과 동시에 내충격성을 강화시킴에 의해 원전 격납건물의 외부충격에 의한 안정성을 보장할 수 있는 장점이 있다. The fiber-reinforced concrete composition for nuclear power containment according to the present invention is based on the chemical and physical properties of the fiber reinforcement, thereby enhancing the toughness and impact resistance of the nuclear containment building. There is an advantage that can be guaranteed.

도 1은 시멘트 페이스트 내에서 섬유보강재가 분산된 상태를 나타내는 개략도이고,
도 2는 공기교락장치에서 섬유보강재가 교락되는 상태를 나타내는 개략도이고,
도 3은 본 발명의 일 구성인 섬유보강재의 사진이고,
도 4는 도 3의 섬유보강재 일측 끝단을 확대 촬영한 사진이고,
도 5는 도 3의 섬유보강재 표면을 확대한 사진이다.
1 is a schematic view showing a state in which fiber reinforcement material is dispersed in a cement paste,
Figure 2 is a schematic diagram showing a state in which the fiber reinforcing material entangled in the air entanglement device,
Figure 3 is a photograph of a fiber reinforcing material which is one configuration of the present invention,
4 is an enlarged photograph of one end of the fiber reinforcement of Figure 3,
5 is an enlarged photograph of the surface of the fiber reinforcement of FIG.

이하 본 발명의 바람직한 실시 예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

도 1은 시멘트 페이스트 내에서 섬유보강재가 분산된 상태를 나타내는 개략도이고, 도 2는 공기교락장치에서 섬유보강재가 교락되는 상태를 나타내는 개략도이고, 도 3은 본 발명의 일 구성인 섬유보강재의 사진이고, 도 4는 도 3의 섬유보강재 일측 끝단을 확대 촬영한 사진이고, 도 5는 도 3의 섬유보강재 표면을 확대한 사진이다.1 is a schematic view showing a state in which fiber reinforcement material is dispersed in cement paste, FIG. 2 is a schematic view showing a state in which fiber reinforcement is entangled in an air entanglement apparatus, and FIG. 3 is a photograph of a fiber reinforcement material which is one component of the present invention. 4 is an enlarged photograph of one end of the fiber stiffener of FIG. 3, and FIG. 5 is an enlarged picture of the surface of the fiber stiffener of FIG. 3.

본 발명은 물-결합재비가 30 내지 50%로 구성되며, 시멘트 100중량부 대비 플라이애쉬 10 내지 30중량부를 제시하여 고유동성 및 고강도를 발휘하도록 함과 동시에 상기에서 언급한 바와 같이 인성 및 내충격저항성을 강화시키기 위해 섬유보강재를 첨가하는 바, 섬유보강재가 전체중량 대비 0.01 내지 2.00중량%로 배합되되, 상기 섬유보강재는 친수성 섬유로 구성되며, 소수성 계면활성제에 의해 코팅층이 형성됨을 특징으로 한다. The present invention comprises a water-bonding material ratio of 30 to 50%, presenting 10 to 30 parts by weight of fly ash with respect to 100 parts by weight of cement to exhibit high fluidity and high strength, and at the same time as mentioned above toughness and impact resistance When the fiber reinforcing material is added to reinforce, the fiber reinforcing material is blended in an amount of 0.01 to 2.00% by weight based on the total weight of the fiber reinforcing material, and the fiber reinforcing material is composed of hydrophilic fibers, and the coating layer is formed by a hydrophobic surfactant.

상기 섬유보강재를 전체중량 대비 0.01 내지 2.00중량%로 한정하는 것은 0.01중량%미만으로 첨가하는 경우 섬유보강재가 시멘트 페이스트 내에서 인성 및 내충격저항성을 강화시키는 효과가 미미하고, 2.00중량%를 초과하는 경우는 경제성이 낮아지고 시멘트풀의 형성을 방해하므로 원전 격납건물용으로서 강도가 오히려 낮아지는 문제가 있어 이와 같이 한정하는 것이 바람직하다. When the fiber reinforcing material is limited to 0.01 to 2.00% by weight based on the total weight of less than 0.01% by weight, the fiber reinforcing material is insignificant to enhance the toughness and impact resistance in the cement paste, and exceeds 2.00% by weight. Since it is economical and hinders the formation of cement paste, there is a problem that the strength is rather low for the nuclear power containment building.

상기 원전 격납건물은 본 발명의 원전 격납건물용 섬유보강 콘크리트 조성물에 의해 형성되는 구조물을 말하는 것이다.The nuclear power plant containment refers to a structure formed by the fiber reinforced concrete composition for the nuclear power plant containment of the present invention.

또한 본 발명은 섬유보강재를 첨가하되 친수성 섬유로 구성되도록 하여 시멘트와 강한 결합력을 발생시키도록 하여 내구성(인성)을 강화시키되, 섬유보강재의 표면을 소수성 계면활성제로 코팅함으로서 너무 강한 결합력에 의해 섬유절단의 문제를 해결하여 내충격저항성을 향상시키도록 함에 그 특징이 있는 것이다. 즉 친수성 섬유로 구성된 섬유보강재를 첨가함으로서 시멘트 페이스트와의 수소결합력을 증대시킴으로서 인성을 강화하는 것이며, 이러한 수소결합력이 너무 커지면 시멘트 페이스트에 있어 외부 충격 등에 의해 변형이 발생 시 너무 큰 결합력에 의해 섬유절단의 문제가 발생하여 내충격성 면에서 불리할 수 있는 바, 이러한 친수성 섬유로 구성된 섬유보강재에 소수성 계면활성제로 코팅을 함으로서 그 표면을 친유기 처리하여 섬유보강재 고유의 탄성을 그대로 발휘하면서 일정 충격에 의한 변형발생시 뽑힘이 발생하도록 하여 내충격성을 강화시키기 위함이다. In addition, the present invention is added to the fiber reinforcement, but made of hydrophilic fibers to generate a strong bonding force with cement to enhance the durability (toughness), by cutting the fiber by too strong bonding force by coating the surface of the fiber reinforcement with a hydrophobic surfactant It is characterized by improving the impact resistance by solving the problem of. In other words, by adding a fiber reinforcement composed of hydrophilic fibers to increase the hydrogen bonding strength of the cement paste to strengthen the toughness, if the hydrogen bonding force is too large, fiber cutting by too large bonding strength when deformation occurs due to external impact, etc. in the cement paste It may be disadvantageous in terms of impact resistance, and the fiber reinforcement composed of hydrophilic fibers is coated with a hydrophobic surfactant, so that the surface is lipophilic to exhibit the elasticity inherent in the fiber reinforcement, while deforming by a certain impact. This is to strengthen the impact resistance by causing the pull to occur when it occurs.

또한 본 발명에서는 상기에서 언급한 바와 같이 친수성 섬유를 섬유보강재로 구성하여 원전 격납건물의 인성을 증대시키고 친수성 섬유로 구성된 섬유보강재의 표면을 친유기 처리함으로서 내충격성을 강화시킴과 더불어 상기 친수성 섬유로 구성된 섬유보강재를 구성함에 있어서도 친수성 섬유로 직경이 큰 폴리아미드 섬유를 사용하여 인성을 강화시킴과 동시에 직경이 작은 아라미드 섬유를 사용하여 내충격성을 강화시킴에 특징이 있다. 즉 도 1에서 보는 바와 같이 직경이 큰 폴리아미드 섬유로 구성된 섬유보강재(100a)와 직경이 작은 아라미드 섬유로 구성된 섬유보강재(100b)를 혼합하여 구성하는 것은 폴리아미드 섬유로 구성된 섬유보강재(100a)의 직경을 크게 함으로서 인장강도 등을 강화시켜 원전 격납건물에 있어 인성을 강화시키기 위함인데 전체 섬유보강재의 직경을 크게 하는 것은 시멘트 모르타르에 있어서 이중 충을 형성하는 등으로 오히려 부착력 저하를 유발함으로서 섬유보강재 중에 일부를 폴리아미드 섬유로 구성하면서 직경을 크게 하여 인성에 대한 저항성을 향상시키도록 하는 것이며, 아라미드 섬유로 구성된 섬유보강재(100b)의 경우는 직경을 작게 하더라도 그 자체 탄성이 우수하므로 원전 격납건물에 있어 충격저항성을 향상시킬 수 있는 것이다. 즉 섬유보강재에 있어서도 직경이 큰 폴리아미드 섬유로 구성된 섬유보강재(100a)는 인성을 강화시키도록 하고, 직경이 작은 아라미드 섬유로 구성된 섬유보강재(100b)는 내충격성을 강화시키도록 하여 섬유보강재가 원전 격납건물에서 하이브리드한 기능을 하도록 하는 것이 바람직하다. In addition, in the present invention, as mentioned above, the hydrophilic fiber is composed of the fiber reinforcement material to increase the toughness of the nuclear containment building, and the hydrophilic treatment of the surface of the fiber reinforcement material composed of the hydrophilic fiber enhances the impact resistance and is composed of the hydrophilic fiber. In the construction of the fiber reinforcing material, hydrophilic fibers are used to strengthen toughness using polyamide fibers having a large diameter, and at the same time, impact resistance is enhanced by using aramid fibers having a small diameter. That is, as shown in FIG. 1, the fiber reinforcement material 100a composed of polyamide fibers having a large diameter and the fiber reinforcement member 100b composed of aramid fibers having a small diameter are mixed to constitute a fiber reinforcement member 100a composed of polyamide fibers. In order to enhance the toughness in the nuclear containment building by increasing the tensile strength by increasing the diameter, increasing the diameter of the entire fiber reinforcement is to form a double filling in the cement mortar, rather it causes a decrease in adhesion force. Part of the polyamide fibers to increase the diameter to improve the resistance to toughness, and the fiber reinforcement (100b) consisting of aramid fibers in the nuclear containment building because it has excellent elasticity even if the diameter is small. Impact resistance can be improved. That is, even in the fiber reinforcement, the fiber reinforcement (100a) composed of polyamide fibers having a large diameter is to strengthen the toughness, and the fiber reinforcement (100b) consisting of aramid fibers having a small diameter to strengthen the impact resistance so that the fiber reinforcement It is desirable to have a hybrid function in the containment building.

이러한 섬유보강재의 직경은 0.01mm ~ 20mm까지 가능하나, 더욱 바람직하게는 0.05mm ~ 10mm로 한정함이 타당하다. 0.01mm 미만의 경우에는 각각의 섬유보강재가 시멘트 페이스트 내에서 작용하고자 하는 기능으로서 인성 및 내충격성을 발휘하기가 어려우며, 반대로 직경이 20mm를 초과하는 경우에는 상기에서 언급한 바와 같이 시멘트 페이스트 내에서 이중층이 생기게 되므로 구조적으로 불리하게 되는 것이다. 즉 직경이 0.01mm ~ 20mm 내에서 폴리아미드로 구성된 섬유보강재(100a)가 아라미드로 구성된 섬유보강재(100b)보다 직경을 크게 하여 각각의 섬유보강재를 혼입하여 배합하는 것이 바람직하다. The diameter of the fiber reinforcement can be up to 0.01mm ~ 20mm, more preferably limited to 0.05mm ~ 10mm. If it is less than 0.01 mm, it is difficult for each fiber reinforcement to exert toughness and impact resistance as a function to act in the cement paste, whereas if the diameter exceeds 20 mm, as described above, the double layer in the cement paste. This is a structural disadvantage. That is, it is preferable that the fiber reinforcement material 100a composed of polyamide within the diameter of 0.01 mm to 20 mm has a larger diameter than the fiber reinforcement material 100 b composed of aramid, and mixes and mixes the respective fiber reinforcement materials.

또한, 상기 섬유보강재는 그 길이를 5 내지 200mm로 한정하는 것이 바람직한 바, 5mm미만의 경우는 상기 섬유보강재가 원전 격납건물에서 인성 및 내충격성을 강화시키는 효과를 발현하는 것이 미미하고, 반대로 상기 섬유보강재가 200mm를 초과하는 경우 상기 섬유보강재 간에 뭉침이 발생하여 분산성이 저하될 수 있어 이와 같이 한정한다. In addition, the fiber reinforcing material is preferably limited to the length of 5 to 200mm bar less than 5mm, the fiber reinforcing material is insignificant to express the effect of strengthening the toughness and impact resistance in the nuclear containment building, on the contrary the fiber When the reinforcing material exceeds 200mm it is limited in this way because agglomeration occurs between the fiber reinforcement may be lowered dispersibility.

한편 상기 소수성 계면활성제로는 폴리옥시에틸렌 스테아릴 에테르 유도체(POLYOXYETHYLENE STEARYL ETHER DERIVATIVES), 솔비탄 지방산 에스테르 유도체(SORBITAN FATTY ACID ESTER DERIVATIVES) 및 폴리옥시에틸렌 올레일 아민 유도체(POLYOXYETHYLENE OLEYLAMINE DERIVATIVES) 중 선택된 1 또는 혼합물인 것을 사용하는 것이 바람직하며, 이러한 코팅층(120)을 형성하는 소수성 계면활성제는 HLB 값이 3 내지 10으로 한정되는 것이 바람직하다. 여기서, HLB 값이란, 계면활성제의 특징을 나타내는 값으로서, 계면활성제의 분자들에서 친수(hydrophilic)기와 친유(lipophilic)기의 평형(balance)에 따라 주어지는 값이다. 이 값은 0.1∼40의 임의범위에서 분자들의 극성을 나타낸다. 친수성이 커질수록 HLB 값이 커지며 반대로 친유성이 커질수록 HLB 값이 작아지게 되는 것이다. 이러한 소수성 계면활성제는 HLB 값이 3 미만이면 친수기가 너무 적어서 친수성 섬유로 구성된 섬유보강재로 부착력이 저하되는 문제가 있으며, HLB값이 10을 초과하면 과다한 친수기로 인해 시멘트와 강한 수소결합을 일으키게 되므로 내충격성을 저하시키는 문제가 있어 본 발명에서는 소수성 계면활성제 HLB 값을 3 내지 10으로 한정을 하는 것이 바람직하다. Meanwhile, the hydrophobic surfactant may be selected from polyoxyethylene stearyl ether derivative (POLYOXYETHYLENE STEARYL ETHER DERIVATIVES), sorbitan fatty acid ester derivative (SORBITAN FATTY ACID ESTER DERIVATIVES) and polyoxyethylene oleyl amine derivative (POLYOXYETHYLENE OLEYLAMINE DERIVATIVES) It is preferable to use a mixture, and the hydrophobic surfactant forming the coating layer 120 is preferably HLB value is limited to 3 to 10. Here, the HLB value is a value indicating the characteristic of the surfactant, and is a value given according to the balance of a hydrophilic group and a lipophilic group in the molecules of the surfactant. This value represents the polarity of the molecules in the arbitrary range of 0.1-40. The larger the hydrophilicity, the higher the HLB value. On the contrary, the larger the lipophilic value, the smaller the HLB value. If the HLB value is less than 3, the hydrophilic group is so small that the hydrophobic surfactant is a fiber reinforcement composed of hydrophilic fibers, there is a problem that the adhesive strength is lowered. Since there is a problem of lowering the impact property, it is preferable to limit the hydrophobic surfactant HLB value to 3 to 10 in the present invention.

이러한 소수성 계면활성제로 구성된 코팅층(120)은 섬유보강재 전체 중량대비 0.5 ~ 2중량%인 것이 바람직한 바, 0.5중량%미만의 경우 친유기가 너무 적어 섬유절단의 문제를 해결할 수 없는 것이며, 2중량%를 초과하는 경우 시멘트 페이스트와의 수소결합을 너무 저해하게 되므로 오히려 인성 및 내충격성 면에서 불리하게 되는 것이다. Coating layer 120 composed of such a hydrophobic surfactant is preferably 0.5 to 2% by weight relative to the total weight of the fiber reinforcement bar, less than 0.5% by weight lipophilic is too small to solve the problem of fiber cutting, 2% by weight If exceeded, the hydrogen bond with the cement paste is inhibited so much that it is rather disadvantageous in terms of toughness and impact resistance.

한편 상기 섬유보강재는 도 1에서 보는 바와 같이 복수의 필라멘트(S)로 구성되며 양 단부에 각각의 필라멘트가 풀어진 형상의 부착부(110)가 구성되어 상기 부착부에 기해 골재, 시멘트 등으로 구성된 시멘트 페이스트(10)와의 부착력을 증진시켜 섬유보강재 자체의 구조적 형상에 기해 인성을 강화시킬 수 있다. On the other hand, the fiber reinforcement is composed of a plurality of filaments (S), as shown in Figure 1 is formed on each end of the filament is attached to the attachment portion 110 is configured cement based on the attachment portion aggregates, cement, etc. By enhancing adhesion with the paste 10, toughness can be enhanced based on the structural shape of the fiber reinforcement itself.

이에 더하여 도 2에서 보는 바와 같이 복수의 필라멘트(S)에 의해 형성되는 섬유보강재는 공기교락 시킴에 의해 그 표면에 다수의 루프(R)를 형성하게 되고 이러한 루프(R)가 시멘트 페이스트와의 부착성능을 향상시켜 결국 원전 격납건물에 있어 인성을 강화시키게 되는 것이다. In addition, as shown in FIG. 2, the fiber reinforcement formed by the plurality of filaments S forms a plurality of loops R on its surface by air entanglement, and the loops R adhere to the cement paste. This improves performance and ultimately enhances toughness in nuclear containment buildings.

여기서 "공기교락"이라함은 도 2에서 보는 바와 같이 공기교락장치 내에 복수의 필라멘트(S)로 구성된 모체를 공급하여 고압의 공기를 분사함에 의해 필라멘트(S) 간을 교락시키는 것을 말한다.Here, "air entanglement" refers to entanglement between the filaments (S) by supplying a matrix composed of a plurality of filaments (S) in the air entanglement apparatus as shown in Figure 2 by injecting a high-pressure air.

본 발명의 형상은 도 3 내지 도 5에서 나타낸 바와 같이 섬유보강재 표면에 루프가 형성되어 있는 것을 볼 수 있다. 표면에 형성된 루프들이 시멘트 페이스트와의 접촉면적을 증가시키며 앵커 역할을 섬유보강재 전체적으로 할 수 있고, 마찰 특성을 증대시키기 때문에 물리적 구조에 기해 원전 격납건물의 물성을 향상시킬 수 있다. 또한 도 4에서와 같이 커팅면에 의해서 필라멘트가 풀린 형상으로 부착부가 구성된 예가 도시된다. 이것은 시멘트 페이스트와 배합시에 자연스럽게 풀림이 발생하여 양생 중에는 시멘트 페이스트와의 접촉면을 높이고 앵커와 같은 역할을 하게 된다. 필라멘트 사이로 시멘트 페이스트가 유입되며 이러한 유입에 의해 각각의 필라멘트에 있어 시멘트 페이스트와의 접촉 표면적이 증가하여 결국 원전 격납건물의 물성을 높이게 되는 것이다.3 to 5, the shape of the present invention can be seen that the loop is formed on the surface of the fiber reinforcement. The loops formed on the surface increase the contact area with the cement paste and can act as anchors throughout the fiber reinforcement, and increase the friction characteristics, thereby improving the properties of the nuclear containment building based on the physical structure. In addition, as shown in Figure 4 is shown an example in which the attachment portion is configured in a shape where the filament is loosened by the cutting surface. This naturally occurs loosen when combined with the cement paste, which increases the contact surface with the cement paste during curing and acts like an anchor. Cement paste is introduced between the filaments, and the inflow increases the contact surface area with the cement paste in each filament, thereby increasing the properties of the nuclear containment building.

한편 상기 섬유보강재는 그 표면에 크기가 0.01~20㎜인 루프(R)들이 상기 섬유보강재 길이 1m당 100~1,000,000개 형성되어 있는 것이 부착성 및 분산성에 보다 유리하다.On the other hand, the fiber stiffener is more advantageous in adhesion and dispersibility that the loop (R) having a size of 0.01 ~ 20mm on the surface is formed 100 ~ 1,000,000 per 1m length of the fiber stiffener.

이러한 공기교락 형태로 제조하기 위한 필라멘트의 단사섬도(모노섬도)는 0.5 ~ 10데니어이고, 섬유보강재의 총섬도는 100 ~ 5,000데니어인 것이 좋다. 그러나 모노 섬도가 낮은 것이 유리하다. 너무 굵은 모노섬도를 가지는 경우에는 교락이 느슨하며, 배합 시에 쉽게 풀리기 때문이다.
Single filament fineness (mono fineness) of the filament for manufacturing in the form of such air entanglement is 0.5 ~ 10 denier, the total fineness of the fiber reinforcement is preferably 100 ~ 5,000 denier. However, low mono fineness is advantageous. This is because the entanglement is loose when the mono fineness is too thick, and is easily released when blended.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여 져야만 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.

100 : 섬유보강재 100a : 폴리아미드 섬유로 구성된 섬유보강재
100b : 아라미드 섬유로 구성된 섬유보강재 110 : 부착부
120 : 코팅층
100: fiber reinforcement 100a: fiber reinforcement composed of polyamide fibers
100b: fiber reinforcement composed of aramid fibers 110: attachment portion
120: coating layer

Claims (10)

시멘트, 골재, 혼화재로 구성되되, 물-결합재비가 30 내지 50%로 구성되며, 시멘트 100 중량부 대비 플라이애쉬 10 내지 30 중량부로 구성되고, 섬유보강재가 전체중량 대비 0.01 내지 2.00 중량%로 배합되되, 상기 섬유보강재는 친수성 섬유로 구성되며 소수성 계면활성제에 의해 표면에 코팅층이 형성됨을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
It is composed of cement, aggregate, and admixture, but the water-binder ratio is 30 to 50%, and the fly ash is composed of 10 to 30 parts by weight based on 100 parts by weight of cement, and the fiber reinforcement is mixed at 0.01 to 2.00% by weight based on the total weight. , The fiber reinforcement is composed of hydrophilic fibers and a fiber reinforced concrete composition for nuclear containment, characterized in that the coating layer is formed on the surface by a hydrophobic surfactant.
제 1항에 있어서,
상기 섬유보강재는 길이가 5 내지 200mm, 직경이 0.01~20㎜로 하되, 폴리아미드로 구성된 섬유보강재와 아라미드로 구성된 섬유보강재로 구성하고, 폴리아미드로 구성된 섬유보강재가 아라미드로 구성된 섬유보강재보다 직경이 크게 구성됨을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
The method of claim 1,
The fiber reinforcement is 5 ~ 200mm in length, 0.01 ~ 20mm in diameter, consisting of a fiber reinforcement composed of a polyamide and a fiber reinforcement composed of aramid, the fiber reinforcement composed of polyamide is a diameter than the fiber reinforcement composed of aramid Fiber reinforced concrete composition for a nuclear power plant containment, characterized in that large configuration.
제 1항에 있어서,
상기 소수성 계면활성제는 폴리옥시에틸렌 스테아릴 에테르 유도체, 솔비탄 지방산 에스테르 유도체, 폴리옥시에틸렌 올레일 아민 유도체 중 선택된 1 또는 혼합물인 것을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
The method of claim 1,
The hydrophobic surfactant is a fiber reinforced concrete composition for nuclear containment, characterized in that the polyoxyethylene stearyl ether derivatives, sorbitan fatty acid ester derivatives, polyoxyethylene oleyl amine derivatives selected from one or a mixture.
제 1항에 있어서,
상기 소수성 계면활성제는 HLB 값이 3 내지 10인 것을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
The method of claim 1,
The hydrophobic surfactant is a fiber reinforced concrete composition for nuclear power containment, characterized in that the HLB value of 3 to 10.
제 1항에 있어서,
상기 섬유보강재는 복수의 필라멘트로 구성되되, 공기교락에 의해 형성됨을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
The method of claim 1,
The fiber reinforcing material is composed of a plurality of filaments, the fiber reinforced concrete composition for nuclear containment building, characterized in that formed by air entrapment.
제 5항에 있어서,
공기교락 된 섬유보강재는 각각의 필라멘트의 섬도가 0.5~10데니어인 것을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
6. The method of claim 5,
Air-reinforced fiber reinforcement is a fiber reinforced concrete composition for nuclear power containment, characterized in that the fineness of each filament is 0.5 ~ 10 denier.
제 5항에 있어서,
공기교락 된 섬유보강재의 총섬도가 100~5,000데니어인 것을 특징으로 하는 원전 콘크리트 조성물.
6. The method of claim 5,
The nuclear power concrete composition, characterized in that the total fineness of the air-reinforced fiber reinforcement is 100 ~ 5,000 denier.
제 5항에 있어서,
공기교락 된 섬유보강재의 표면에 크기가 0.01~20㎜인 루프들이 상기 섬유보강재 길이 1m당 100~1,000,000개 형성되어 있는 것을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
6. The method of claim 5,
Fiber reinforcement concrete composition for a nuclear power containment building, characterized in that 100 ~ 1,000,000 loops having a size of 0.01 ~ 20㎜ on the surface of the air-reinforced fiber reinforcement is formed per 1m length of the fiber reinforcement.
제 5항에 있어서,
공기교락 된 섬유보강재의 양쪽 끝단에는 공기교락이 풀어져 부착부가 형성됨을 특징으로 하는 원전 격납건물용 섬유보강 콘크리트 조성물.
6. The method of claim 5,
Fiber reinforced concrete composition for a nuclear power containment building, characterized in that the air entangled at both ends of the air-reinforced fiber reinforcement to form an attachment portion.
제 1항 내지 제9항 중 어느 한 항의 원전 격납건물용 섬유보강 콘크리트 조성물로 형성되는 원전 격납건물. A nuclear power plant containment building formed of the fiber reinforced concrete composition of any one of claims 1 to 9.
KR1020110064234A 2011-06-30 2011-06-30 A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant KR101225821B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110064234A KR101225821B1 (en) 2011-06-30 2011-06-30 A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant
PCT/KR2012/004865 WO2013002508A2 (en) 2011-06-30 2012-06-20 Fiber-reinforced concrete composition for a containment building of a nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110064234A KR101225821B1 (en) 2011-06-30 2011-06-30 A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant

Publications (2)

Publication Number Publication Date
KR20130003146A KR20130003146A (en) 2013-01-09
KR101225821B1 true KR101225821B1 (en) 2013-01-23

Family

ID=47424632

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110064234A KR101225821B1 (en) 2011-06-30 2011-06-30 A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant

Country Status (2)

Country Link
KR (1) KR101225821B1 (en)
WO (1) WO2013002508A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615527B1 (en) * 2015-05-21 2016-04-27 코오롱글로벌 주식회사 Organic Hybrid Fiber and structure using the same
KR101636831B1 (en) * 2015-05-21 2016-07-07 코오롱글로벌 주식회사 Weaving type fiber reinforcement of improving impact resistance and blast resistance and cement composite structure using the same
KR20220135712A (en) 2021-03-31 2022-10-07 한국수력원자력 주식회사 A method of measuring the void between the liner plate and concrete in a nuclear reactor containment building

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482893B (en) * 2013-09-23 2015-03-18 华北水利水电大学 Application of loofah fibers in mortar and loofah fiber toughening and anti-cracking mortar
CN103723968B (en) * 2013-12-27 2016-05-18 中核混凝土股份有限公司 Nuclear power station PX pump house volute pump structure is with concrete and build the method for moulding
CN109256221B (en) * 2018-10-24 2019-12-24 清华大学 Grease impregnated surface for strengthening condensation heat exchange of inner wall surface of containment vessel of reactor
TWI780439B (en) * 2020-06-02 2022-10-11 國立臺北科技大學 Anti-blast concrete and method of fabricating anti-blast structure member using such anti-blast concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221883A (en) * 2000-02-09 2001-08-17 Taiheiyo Cement Corp Material for reactor facility and structure of reactor facility
KR20060097735A (en) * 2003-11-25 2006-09-14 가부시키가이샤 암텍 Composite synthetic resin composition and material therefrom
KR20100020812A (en) * 2008-08-13 2010-02-23 코오롱건설주식회사 Concrete composition comprising polyamide reinforcing fibers
KR20100126985A (en) * 2009-05-25 2010-12-03 코오롱건설주식회사 A high strength concrete composition with fire resistance and concrete using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502277B1 (en) * 2002-12-27 2005-07-20 (주)세라켐 Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
KR101035001B1 (en) * 2010-03-12 2011-05-17 코오롱건설주식회사 A cement structure having hybrid fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221883A (en) * 2000-02-09 2001-08-17 Taiheiyo Cement Corp Material for reactor facility and structure of reactor facility
KR20060097735A (en) * 2003-11-25 2006-09-14 가부시키가이샤 암텍 Composite synthetic resin composition and material therefrom
KR20100020812A (en) * 2008-08-13 2010-02-23 코오롱건설주식회사 Concrete composition comprising polyamide reinforcing fibers
KR20100126985A (en) * 2009-05-25 2010-12-03 코오롱건설주식회사 A high strength concrete composition with fire resistance and concrete using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615527B1 (en) * 2015-05-21 2016-04-27 코오롱글로벌 주식회사 Organic Hybrid Fiber and structure using the same
KR101636831B1 (en) * 2015-05-21 2016-07-07 코오롱글로벌 주식회사 Weaving type fiber reinforcement of improving impact resistance and blast resistance and cement composite structure using the same
KR20220135712A (en) 2021-03-31 2022-10-07 한국수력원자력 주식회사 A method of measuring the void between the liner plate and concrete in a nuclear reactor containment building

Also Published As

Publication number Publication date
WO2013002508A2 (en) 2013-01-03
WO2013002508A3 (en) 2013-02-28
KR20130003146A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
KR101225821B1 (en) A Concrete Composite Having Fiber For Containment Building Of Nuclear Power Plant
JP4368796B2 (en) Inorganic matrix fabric apparatus and method
US20090075076A1 (en) Impact resistant strain hardening brittle matrix composite for protective structures
CN207260628U (en) A kind of walls with brick masonry structure ruggedized construction
CN202073208U (en) Concrete-filled steel tube shear wall
JP2009203106A (en) Polymer cement material of high toughness for reinforcing bending of concrete frame and method for reinforcing bending of concrete frame using polymer cement material of high toughness
CN105948579A (en) Waterproof ECC and carbon fiber cloth composite reinforced material and use method thereof
CN103485481A (en) Hybrid fiber winding steel tube internally-installed reactive powder concrete member and preparation method
JP5370980B2 (en) Crack inhibiting material for hardened cement, hardened cement, and method for producing hardened cement
KR101130954B1 (en) Ultra High Strength Concrete with Polyamide Fiber
KR102286554B1 (en) Textile-reinforced cement composite for restraining occurrence of slip and crack, and method for the same
CN107311571A (en) The preparation method of nanometer enhancing TRC composites
JP5182779B2 (en) Inorganic matrix / carbon fiber composite wire for reinforcing concrete or mortar, method for producing the same, and concrete or mortar structure
RU121841U1 (en) COMPOSITION FITTINGS
KR20160144554A (en) Method for preparing high strength composite fibers reinforced concrete used for organic and inorganic combined fibers and anti-spalling fibers reinforced concrete manufactured thereby
JP4817304B2 (en) Fiber reinforced mortar or fiber reinforced concrete, and method for constructing a frame using the same
CN108457201A (en) Ultra-high performance concrete lattice ruggedized construction and its method for reinforcing masonry arch bridge
JP2004156242A (en) Tunnel reinforcing method
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
CN206245594U (en) A kind of ductility FRP beams of concretes high
CN207987792U (en) Ultra-high performance concrete lattice ruggedized construction
CN206859515U (en) Confusion type FRP steel composite reinforcing marine sand concrete beams
CN103708775A (en) Building material with high bending resistance
CN114059720B (en) Preparation method of basalt fiber toughened bamboo reinforcement
CN214784756U (en) Fabric reinforced type steel reactive powder concrete member

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee