KR101208852B1 - A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same - Google Patents

A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same Download PDF

Info

Publication number
KR101208852B1
KR101208852B1 KR1020100111162A KR20100111162A KR101208852B1 KR 101208852 B1 KR101208852 B1 KR 101208852B1 KR 1020100111162 A KR1020100111162 A KR 1020100111162A KR 20100111162 A KR20100111162 A KR 20100111162A KR 101208852 B1 KR101208852 B1 KR 101208852B1
Authority
KR
South Korea
Prior art keywords
polymer gel
electrolyte composition
dye
gel electrolyte
crosslinking
Prior art date
Application number
KR1020100111162A
Other languages
Korean (ko)
Other versions
KR20120049748A (en
Inventor
표승문
임태훈
김상욱
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020100111162A priority Critical patent/KR101208852B1/en
Publication of KR20120049748A publication Critical patent/KR20120049748A/en
Application granted granted Critical
Publication of KR101208852B1 publication Critical patent/KR101208852B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 화학적 가교를 통해 젤화된 고분자젤 전해질 조성물, 이의 제조방법 및 이를 포함하는 염료감응 태양전지에 관한 것으로, 더욱 상세하게는 고분자로서 폴리(4-비닐페놀)을 사용하고 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 고분자를 화학적으로 가교결합시켜 가교된 PVP를 제조한 후 상기 가교된 PVP에 전해액을 흡착시킴으로써 제조한 안정성이 우수한 고분자젤 전해질 조성물, 이의 제조방법 및 이를 포함하는 염료감응 태양전지에 관한 것이다.The present invention relates to a polymer gel electrolyte composition gelled through chemical crosslinking, a method for preparing the same, and a dye-sensitized solar cell including the same. More specifically, poly (4-vinylphenol) is used as a polymer and poly (melamine) is used as a crosslinking agent. -Co-formaldehyde) to prepare a crosslinked PVP by chemically crosslinking the polymer using methylated, and then excellent polymer gel electrolyte composition prepared by adsorbing the electrolyte solution to the crosslinked PVP, a method for preparing the same and the same It relates to a dye-sensitized solar cell comprising.

Description

화학적 가교를 통해 젤화된 고분자젤 전해질 조성물, 이의 제조방법 및 이를 포함하는 염료감응 태양전지{A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same}A polymer electrolyte composition gelated by chemical crosslinking, a method for preparations and a dye-sensitized solar cell comprising the same}

본 발명은 화학적 가교를 통해 젤화된 고분자젤 전해질 조성물, 이의 제조방법 및 이를 포함하는 염료감응 태양전지에 관한 것으로, 더욱 상세하게는 고분자로서 폴리(4-비닐페놀)을 사용하고 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 고분자를 화학적으로 가교결합시켜 가교된 PVP를 제조한 후 상기 가교된 PVP에 전해액을 흡착시킴으로써 제조한 안정성이 우수한 고분자젤 전해질 조성물, 이의 제조방법 및 이를 포함하는 염료감응 태양전지에 관한 것이다.
The present invention relates to a polymer gel electrolyte composition gelled through chemical crosslinking, a method for preparing the same, and a dye-sensitized solar cell including the same. More specifically, poly (4-vinylphenol) is used as a polymer and poly (melamine) is used as a crosslinking agent. -Co-formaldehyde) to prepare a crosslinked PVP by chemically crosslinking the polymer using methylated, and then excellent polymer gel electrolyte composition prepared by adsorbing the electrolyte solution to the crosslinked PVP, a method for preparing the same and the same It relates to a dye-sensitized solar cell comprising.

염료감응 태양전지(Dye-Sensitized Solar Cells, DSSCs)는 값싼 유기 염료와 나노 기술을 이용하여 저렴하면서도 고도의 에너지 효율을 갖도록 개발된 태양 전지이다. 이러한 염료 감응 태양 전지는 가시광선을 투과시킬 수 있어 건물의 유리창이나 자동차 유리에 그대로 붙여 사용할 수도 있다. 1971년 스위스 연방 기술원(EPFL) 화학과의 마이클 그랏젤 교수가 세계 최초로 광합성 반응 원리를 이용하여 전기를 생산하는 새로운 형태의 염료감응태양전지를 개발하였고, 국내에서는 한국전자통신연구원(ETRI)이 처음으로 10~20nm 크기의 산화물 표면에 유기 염료를 흡착해 수십um 필름을 만들고 전극화하는데 성공했다. Dye-Sensitized Solar Cells (DSSCs) are low cost, highly energy efficient solar cells developed using inexpensive organic dyes and nanotechnology. Such dye-sensitized solar cells can transmit visible light and can be used as it is on glass windows or automobile glass of buildings. In 1971, Professor Michael Graszel of the Swiss Federal Institute of Technology (EPFL) Department of Chemistry developed the world's first new type of dye-sensitized solar cell that produces electricity using the photosynthesis reaction principle, and Korea Electronics and Telecommunications Research Institute (ETRI) It has succeeded in making dozens of um films and electrodelizing organic dyes on 10-20 nm oxide surfaces.

염료감응 태양전지는 금속산화물인 산화티타늄(TiO2) 표면에 특수한 염료를 흡착시키고, 흡착된 특수 염료가 태양빛을 흡수하면 광전기화학적 반응을 일으켜 전기를 생산하는 원리로 작동한다. 그 염료로는 가시광선에서부터 근적외선 영역까지 폭 넓은 광 흡수성을 가진 루테늄(Ru) 염료가 가장 일반적으로 사용되고 있으며 다른 유기 염료를 사용하는 태양전지도 속속 개발되고 있다.Dye-sensitized solar cells work on the principle of adsorbing special dyes on the surface of titanium oxide (TiO 2 ), a metal oxide, and generating electricity by photoelectrochemical reactions when the adsorbed special dyes absorb sunlight. As the dye, ruthenium (Ru) dye having a broad light absorption from visible to near infrared range is most commonly used, and solar cells using other organic dyes are being developed one after another.

염료감응 태양전지는 실리콘계 태양전지에 버금가는 변환효율을 갖고 있으며 생산원가가 적게 들어 차세대 태양전지로 주목되고 있다. 현재는 루테인 염료 가격이 매우 고가이지만 많은 연구 기관에서 생산원가를 낮추기 위해 대체물질을 개발하고 있어 앞으로는 생산원가가 더 낮아질 전망이다.Dye-sensitized solar cells have conversion efficiency comparable to that of silicon-based solar cells and are attracting attention as next-generation solar cells due to their low production cost. Lutein dyes are currently very expensive, but many research institutes are developing alternatives to lower their production costs, which will lower their costs.

가격 측면 이외로도 날씨가 흐려도 발전이 가능하고, 빛의 조사 각도가 10도 만 되어도 전기가 생산되며, 투명 또는 반투명하게 만들 수도 있고, 사용하는 유기염료의 종류에 따라 황색, 적색, 녹색, 청색 등 다양한 색상과 아름다운 무늬를 가진 태양전지 생산이 가능하며, 여러장을 겹쳐 다중적층형으로 생산하면 같은 면적에서 2배, 3배 이상의 발전도 가능하다는 장점을 가진다. 이에 따라 염료감응 태양전지는 건물의 유리창호, 소형전기전자제품, 군사용 등으로 널리 활용될 수 있을 것이다.In addition to the price aspect, it is possible to generate electricity even in cloudy weather, and electricity can be produced even when the light irradiation angle is only 10 degrees. It is possible to produce solar cells with various colors and beautiful patterns such as blue, and it is possible to produce more than two times and three times more power in the same area by producing multiple layers by stacking multiple sheets. Accordingly, dye-sensitized solar cells may be widely used for glass windows of buildings, small electrical and electronic products, and military use.

염료감응 태양전지는 일반적으로 양쪽 전극의 기판으로 사용되는 불소화 주석 산화물(FTO), 인듐 주석 산화물(ITO)와 같은 투명전극, TiO2, ZnO와 같은 나노입자 산화물 반도체층, 루테늄 등의 무기 또는 유기 염료와 같은 감광제, 산화/환원쌍이 포함된 전해질 및 상대전극의 역할을 하는 백금과 같은 금속촉매로 이루어진다.Dye-sensitized solar cells are generally transparent substrates such as fluorinated tin oxide (FTO), indium tin oxide (ITO), nanoparticle oxide semiconductor layers such as TiO 2 and ZnO, inorganic or organic such as ruthenium A photocatalyst such as a dye, an electrolyte containing an oxidation / reduction pair, and a metal catalyst such as platinum serving as a counter electrode.

염료감응 태양전지의 구성요소에 있어서, 전해질은 매질의 형태에 따라 액체형과 고체형으로 나뉜다. 액체형 전해질의 경우 아세토니트릴과 같은 액체가 매질로서 사용되는 형태이다. 한편, 고체형 전해질의 경우 매질로서 폴리(에틸렌 옥사이드)(PEO), 폴리(프로필렌 옥사이드)(PPO), 폴리(아크릴로니트릴), 폴리(메틸 메타크릴레이트), 폴리(비닐 클로라이드)와 같은 낮은 유리전이 온도를 갖고 극성 그룹을 포함하는 고분자를 사용하는 고분자 전해질 형태를 들 수 있다. 또한 고분자에 가소제를 첨가하거나 고분자를 가교시킴으로써 젤화시킨 고분자젤 전해질 형태도 사용될 수 있다.In the components of dye-sensitized solar cells, the electrolyte is divided into a liquid form and a solid form, depending on the form of the medium. In the case of liquid electrolytes, liquids such as acetonitrile are used as the medium. On the other hand, in the case of solid electrolytes, low media such as poly (ethylene oxide) (PEO), poly (propylene oxide) (PPO), poly (acrylonitrile), poly (methyl methacrylate) and poly (vinyl chloride) And a polymer electrolyte type using a polymer having a glass transition temperature and containing a polar group. Also, a polymer gel electrolyte form gelled by adding a plasticizer to the polymer or crosslinking the polymer may also be used.

고체형 전해질은 낮은 전도도와 전해질과 전극의 불완전한 접촉으로 인하여 액체형 전해질에 비해 낮은 에너지 변환 효율을 나타내는 단점이 있다. 그러나, 고체형 전해질의 경우 액체형 전해질에 비해 전해질의 누출 및 휘발이 없으며 기계적 물성 또한 더욱 강하여 장기 안정성을 확보할 수 있다는 장점을 가진다. 이에 따라 전지의 효율은 떨어지지만 액체형 전해질 대신에 안정성이 우수한 고분자 기반 전해질 특히, 고분자젤 기반 전해질이 많이 사용되고 있다.The solid electrolyte has a disadvantage of showing lower energy conversion efficiency than the liquid electrolyte due to low conductivity and incomplete contact between the electrolyte and the electrode. However, in the case of the solid electrolyte, there is no leakage and volatilization of the electrolyte, and the mechanical properties are also stronger than the liquid electrolyte, thereby ensuring long-term stability. Accordingly, the efficiency of the battery is reduced, but polymer-based electrolytes, especially polymer gel-based electrolytes, which have excellent stability instead of liquid electrolytes, are frequently used.

종래 고분자젤 기반 전해질로는 친수성의 폴리(아크릴산)(PAA)과 양친매성의 폴리(에틸렌 글리콜)(PEG)을 혼합하고 열경화시켜 젤화시킴으로써 얻은 PAA-PEG 복합체에 전해액을 흡수시켜 제조한 열경화 젤 전해질이 보고된바 있다(Wu et al., Adv. Mater., 2007, 19, 4006-4011). 상기 고분자젤 전해질은 PAA가 3D 망상 구조를 가지는 고흡수성 수지이고 PEG의 분자량에 따라 마이크로 크기의 기공이 증가하기 때문에 대량의 전해액을 흡수할 수 있다는 장점을 가진다. 그러나, 상기 고분자젤 전해질은 열경화 즉, 물리적인 변화에 의해 젤 형태를 형성함으로써 고분자 사슬간의 결합력이 약하다는 단점을 가진다. As a conventional polymer gel-based electrolyte, thermosetting prepared by absorbing an electrolyte solution in a PAA-PEG composite obtained by mixing hydrophilic poly (acrylic acid) (PAA) and amphiphilic poly (ethylene glycol) (PEG), followed by thermosetting and gelling. Gel electrolytes have been reported (Wu et al., Adv. Mater. , 2007, 19, 4006-4011). The polymer gel electrolyte has a merit that it can absorb a large amount of electrolyte because PAA is a super absorbent resin having a 3D network structure and the micro-sized pores increase according to the molecular weight of PEG. However, the polymer gel electrolyte has a disadvantage in that the bond strength between polymer chains is weak by thermosetting, that is, forming a gel form by physical change.

한편, 또 다른 고분자젤 기반 전해질로서, 폴리(비닐피리딘)(PVPy)과 폴리(아크릴로니트릴)(PAN)을 가교제로서 I(CH2)6I를 사용하여 가교시킴으로써 제조한 가교된 PVPy와 PAN의 공중합체[P(VPy-co-AN)]가 보고된바 있다(Yuan Lin et al., Electrochim. Acta., 2007, 52, 4858-4863). 상기 P(VPy-co-AN)는 이전의 물리적인 변화를 통한 가교결합이 아닌 화학적 가교결합을 통해 가교됨으로써 물리적 가교에 의한 고분자젤 기반 전해질에 비해 적은 양으로도 에너지 전환 효율이 높은 장점을 가진다. 그러나, 상기 P(VPy-co-AN)는 가교제인 I(CH2)6I의 (CH2)6 즉, 직쇄의 탄화수소 사슬이 고분자간의 가교역할을 하는 방식으로 가교결합되는 것으로 두 고분자간의 결합력이 여전히 충분히 강하지 않다는 단점을 가진다.Meanwhile, as another polymer gel-based electrolyte, crosslinked PVPy and PAN prepared by crosslinking poly (vinylpyridine) (PVPy) and poly (acrylonitrile) (PAN) using I (CH 2 ) 6 I as a crosslinking agent. Copolymers of P (VPy-co-AN) have been reported (Yuan Lin et al., Electrochim. Acta. , 2007, 52, 4858-4863). The P (VPy-co-AN) has the advantage of high energy conversion efficiency in a small amount compared to the polymer gel-based electrolyte by physical crosslinking by crosslinking through chemical crosslinking rather than crosslinking through previous physical changes. . However, the P (VPy-co-AN) is a cross-linking agent is I (CH 2) 6 I of (CH 2) 6 In other words, bonding between the two polymers to the hydrocarbon chain of a straight chain is to be crosslinked in such a way that the bridges between the polymer This still has the disadvantage of not being strong enough.

이에 본 발명자는 상기와 같은 점을 감안하여 연구하던 중 고분자로서 폴리(4-비닐페놀)을 사용하고 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 고분자를 화학적으로 가교결합시켜 가교된 PVP를 제조한 후, 상기 가교된 PVP에 전해액을 흡착시킴으로써 안정성이 우수한 고분자젤 전해질 조성물을 제조할 수 있을 뿐만 아니라 이를 이용하여 안정적이고 내구성이 우수한 염료감응 태양전지를 제공할 수 있음을 확인하고 본 발명을 완성하였다.In view of the above, the present inventors chemically crosslink the polymer by using poly (4-vinylphenol) as a polymer and poly (melamine-co-formaldehyde) methylated as a crosslinking agent. After preparing the cross-linked PVP, by adsorbing the electrolyte solution to the cross-linked PVP not only can be prepared a polymer gel electrolyte composition with excellent stability, it can be confirmed that it can provide a stable and durable dye-sensitized solar cell using this This invention was completed.

본 발명의 목적은 고분자를 화학적으로 가교결합시킨 후 전해액을 흡착시킴으로써 안정성이 우수한 고분자젤 전해질 조성물을 제조하는 방법을 제공하고자 하는 것이다.It is an object of the present invention to provide a method for preparing a polymer gel electrolyte composition having excellent stability by adsorbing an electrolyte after chemically crosslinking a polymer.

본 발명의 다른 목적은 상기 방법으로 제조된 안정성이 우수한 고분자젤 전해질 조성물을 제공하고자 하는 것이다.Another object of the present invention is to provide a polymer gel electrolyte composition having excellent stability prepared by the above method.

본 발명의 또 다른 목적은 상기 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지를 제공하고자 하는 것이다.Still another object of the present invention is to provide a dye-sensitized solar cell including the polymer gel electrolyte composition.

상기 과제를 해결하기 위해, 본 발명은 하기 단계를 포함하는 고분자젤 전해질 조성물의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing a polymer gel electrolyte composition comprising the following steps.

1) 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 폴리(4-비닐페놀)(PVP)을 가교결합시켜 가교된 PVP를 제조하는 단계; 및1) crosslinking poly (4-vinylphenol) (PVP) using poly (melamine-co-formaldehyde) methylated as crosslinking agent to produce crosslinked PVP; And

2) 상기 단계의 가교된 PVP에 전해질을 흡착시키는 단계.
2) adsorbing the electrolyte to the crosslinked PVP of the step;

또한, 본 발명은 상기 제조방법에서, 첨가제를 첨가하는 단계(단계 3)를 추가로 포함할 수 있다.
In addition, the present invention may further comprise the step of adding an additive (step 3) in the above production method.

상기 단계 1은, 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 폴리(4-비닐페놀)을 가교결합시켜 가교된 PVP를 제조하는 단계로서, 화학적 가교결합을 통해 젤화되어 전해질이 흡착될 수 있는 공간을 확보할 수 있는 골격을 가지는 가교된 고분자를 제조하는 단계이다. Step 1 is a step of crosslinking poly (4-vinylphenol) using poly (melamine-co-formaldehyde) methylated as a crosslinking agent to produce crosslinked PVP, which is gelled through chemical crosslinking to be electrolyte. It is a step of preparing a crosslinked polymer having a skeleton that can secure the space that can be adsorbed.

본 발명에서 사용되는 용어 "가교제"란, 선형 구조의 고분자 물질의 분자 사이를 가교시켜 그물 구조의 고분자 중합물을 만들기 위한 물질을 의미한다.As used herein, the term "crosslinking agent" refers to a material for crosslinking molecules of a linear polymeric material to make a polymeric polymer of a net structure.

본 발명에서 사용되는 주재 고분자는 하기 화학식 1의 폴리(4-비닐페놀)[poly(4-vinylphenol), PVP)로서 폴리비닐페놀(polyvinylphenol)로도 불린다.The main polymer used in the present invention is also referred to as polyvinylphenol (polyvinylphenol) as poly (4-vinylphenol) [poly (4-vinylphenol), PVP).

본 발명에서 사용되는 가교제는 하기 화학식 2의 폴리(멜라민-코-포름알데히드) 메틸레이티드[poly(melamine-co-formaldehyde) methylated]이다.The crosslinking agent used in the present invention is poly (melamine-co-formaldehyde) methylated [Formula 2].

Figure 112010073180138-pat00001
Figure 112010073180138-pat00001

Figure 112010073180138-pat00002
Figure 112010073180138-pat00002

본 발명에서 사용되는 고분자인 상기 화학식 1의 폴리(4-비닐페놀)(PVP)은 가교제로서 상기 화학식 2의 폴리(멜라민-코-포름알데히드) 메틸레이티드를 통해 화학적으로 가교결합됨으로써 하기 화학식 3의 가교된 PVP를 제공하게 된다.The poly (4-vinylphenol) (PVP) of Formula 1, which is a polymer used in the present invention, is chemically crosslinked through poly (melamine-co-formaldehyde) methylated compound of Formula 2 as a crosslinking agent. To provide a crosslinked PVP.

Figure 112010073180138-pat00003
Figure 112010073180138-pat00003

본 발명에서 상기 가교결합의 반응온도 조건은 130~160 ℃의 온도 범위가 바람직하다. 만일 상기 온도 범위 밖이면 고분자의 가교결합 속도가 느리거나 가교결합이 일어나기 어렵게 된다. 상기의 화합물을 이용하여 화학적 가교반응을 시킬 때 반응온도는 매우 중요한 요소이다. 130 ℃ 미만의 온도에서는 반응물 사이에서 원하는 반응이 일어나지 않거나 매우 느리게 일어나므로 가교된 고분자젤을 제조하기가 어렵다. 또한, 160 ℃ 보다 높은 온도에서는 반응이 너무 빨리 일어나 가교반응의 정도를 조절할 수 없어 대부분은 과도한 반응으로 인하여 원하는 고분자젤을 제조하는데 어려움이 있다. In the present invention, the reaction temperature condition of the crosslinking is preferably a temperature range of 130 ~ 160 ℃. If it is out of the temperature range, the crosslinking rate of the polymer is slow or crosslinking hardly occurs. When chemical crosslinking reaction is carried out using the above compound, the reaction temperature is a very important factor. At temperatures below 130 ° C., the desired reaction does not occur between reactants or occurs very slowly, making crosslinked polymer gels difficult. In addition, the reaction is too fast at a temperature higher than 160 ℃ can not control the degree of crosslinking reaction, most of the difficulty due to the excessive reaction to prepare the desired polymer gel.

본 발명에서 상기 가교결합의 반응시간 조건은 반응 온도에 따라 차이가 나지만 0.5시간에서 4시간 정도가 바람직하다. 만일 상기 온도 범위 밖이면 고분자의 가교결합 속도가 느리거나 가교결합이 일어나지 않거나 과도한 가교반응으로 인하여 전해질용 고분자 젤을 제조하기가 어렵게 된다. In the present invention, the reaction time condition of the crosslinking is different depending on the reaction temperature, but 0.5 to 4 hours is preferable. If it is outside the temperature range, it is difficult to prepare the polymer gel for the electrolyte due to the slow crosslinking rate of the polymer, no crosslinking or excessive crosslinking reaction.

본 발명에서 상기 가교제의 첨가량은 주재 고분자인 폴리(4-비닐페놀) 100 중량부에 대해 50~100 중량부의 범위가 바람직하다. 만일 상기 하한보다 적게 첨가하게 되면 주재 고분자의 가교결합이 충분히 일어나지 않게 되어 고분자젤이 형성되지 않고 상기 상한보다 많이 첨가하게 되면 과량의 가교제가 반응물 중에 남게 되어 원하는 상태의 고분자 젤을 제조하기 어렵다.
In the present invention, the amount of the crosslinking agent added is preferably in the range of 50 to 100 parts by weight based on 100 parts by weight of poly (4-vinylphenol) as the main polymer. If the amount is less than the lower limit, crosslinking of the main polymer does not occur sufficiently, and if the polymer gel is not formed, and if the amount is added more than the upper limit, the excess crosslinking agent remains in the reactant, making it difficult to prepare the polymer gel in a desired state.

상기 단계 2는, 상기 단계 1의 가교된 PVP에 전해질을 흡착시키는 단계로서, 가교되어 고분자 사슬간에 형성된 공간 내로 전해질을 흡착시키는 단계이다.Step 2 is a step of adsorbing the electrolyte to the cross-linked PVP of step 1, the step of adsorbing the electrolyte into the cross-linked space formed between the polymer chains.

본 발명에서 사용되는 용어 "전해질"이란, 전해질 조성물 내에서 가교된 고분자에 흡착되어 산화환원 쌍을 생성시킬 수 있는 물질을 의미한다.As used herein, the term "electrolyte" refers to a material capable of being adsorbed to a crosslinked polymer in an electrolyte composition to produce a redox pair.

본 발명에서 상기 전해질로는 LiI와 I2, NaI와 I2, KI와 I2, CsI와 I2, 이미다졸륨 아이오다이드(imidazolium iodide)와 I2 등을 사용할 수 있으며, 이에 제한되지는 않는다. LiI and I 2 , NaI and I 2 , KI and I 2 , CsI and I 2 , imidazolium iodide and I 2 may be used as the electrolyte in the present invention, but are not limited thereto. Do not.

본 발명에서 상기 전해질의 함량은 전체 고분자젤 전해질 조성물의 중량을 기준으로 5 내지 40 중량%인 것이 바람직하다. 만일 전해질의 함량이 상기 하한보다 적으면 상기 고분자기반 전해질이 본 염료감응태양전지에서 요구되는 이온전도도를 가지지 못하여 실제로 사용되기 어려운 단점이 있고, 상기 상한보다 많으면 화학적으로 가교된 고분자가 첨가된 전해질을 충분히 흡수하지 못하여 액체전해질의 단점으로 지적되는 누액의 가능성이 있다는 단점이 있다.
In the present invention, the content of the electrolyte is preferably 5 to 40% by weight based on the total weight of the polymer gel electrolyte composition. If the content of the electrolyte is less than the lower limit, the polymer-based electrolyte does not have the ion conductivity required in the present dye-sensitized solar cell, and thus it is difficult to be used in practice. There is a disadvantage in that there is a possibility of leakage that is pointed out as a disadvantage of liquid electrolyte due to insufficient absorption.

상기 단계 3은, 첨가제를 첨가하는 단계로서, 임의로 추가 가능한 통상의 첨가제를 전해질 조성물에 첨가하는 단계이며, 필요한 경우 또는 희망에 따라 수행할 수 있다.Step 3 is a step of adding an additive, optionally adding a conventional additive, which can be optionally added, and may be performed if necessary or as desired.

본 발명에서 첨가 가능한 첨가제로는 아세토니트릴(acetonitrile, ACN), 프로필렌 카보네이트(propylene carbonate, PC), 4-터트-부틸 피리딘(4-tert-butyl pyridine, t-BP), 구아니디늄 티오시아네이트(guanidinium thiocyanate, GuTc), 1-메틸-3-프로필이미다졸리움 아이오다이드(1-methyl-3-propylimidazolium iodide, PMII), 발레로니트릴(valeronitrile, VN) 또는 이들의 조합을 사용할 수 있다.Additives that can be added in the present invention include acetonitrile (ACN), propylene carbonate (PC), 4-tert-butyl pyridine (t-BP), guanidinium thiocyanate (guanidinium thiocyanate, GuTc), 1-methyl-3-propylimidazolium iodide (1-methyl-3-propylimidazolium iodide, PMII), valeronitrile (VN) or a combination thereof can be used.

본 발명에서 프로필렌 카보네이트는 가교된 고분자의 용매로 사용하는 첨가제이다. 프로필렌 카보네이트의 첨가량은 고분자젤 전해질 조성물의 전체 중량을 기준으로 바람직하기로는 20~70중량%, 더욱 바람직하기로는 57~62중량%, 가장 바람직하기로는 59.5중량%이다. 만일 프로필렌 카보네이트의 첨가량이 상기 범위 밖이면 가교반응이 일어나지 않거나 가교된 고분자의 점도가 너무 높아지는 단점이 있다.Propylene carbonate in the present invention is an additive used as a solvent of the crosslinked polymer. The amount of propylene carbonate added is preferably 20 to 70% by weight, more preferably 57 to 62% by weight and most preferably 59.5% by weight based on the total weight of the polymer gel electrolyte composition. If the amount of the propylene carbonate is out of the above range, there is a disadvantage in that no crosslinking reaction occurs or the viscosity of the crosslinked polymer becomes too high.

본 발명에서 4-터트-부틸 피리딘은 광전극을 전해질과 직접 닿지 않게 하기 위해 사용하는 첨가제이다. 4-터트-부틸 피리딘의 첨가량은 고분자젤 전해질 조성물의 전체 중량을 기준으로 바람직하기로는 3~10중량%, 더욱 바람직하기로는 5.0~7.0중량%, 가장 바람직하기로는 5.86중량%이다. 만일 4-터트-부틸 피리딘의 첨가량이 상기 범위 밖이면 광전극에서 전해질로의 역-전자 전달이 일어나거나 효과적으로 전도가 되지 않는 단점이 있다.4-tert-butyl pyridine in the present invention is an additive used to make the photoelectrode not directly in contact with the electrolyte. The amount of 4-tert-butyl pyridine added is preferably 3 to 10% by weight, more preferably 5.0 to 7.0% by weight and most preferably 5.86% by weight based on the total weight of the polymer gel electrolyte composition. If the amount of 4-tert-butyl pyridine added is outside the above range, there is a disadvantage in that reverse-electron transfer from the photoelectrode to the electrolyte occurs or is not effectively conducted.

본 발명에서 구아니디늄 티오시아네이트는 N719 염료에서 양성자(proton)를 구아니듐(guanidium) 이온으로 효과적으로 치환시켜, 염료 분자 오비탈을 변화시킴으로써 소자의 흡광도를 변화시켜 소자의 성능을 향상시키기 위해 사용하는 첨가제이다. 구아니디늄 티오시아네이트의 첨가량은 고분자젤 전해질 조성물의 전체 중량을 기준으로 바람직하기로는 0.5~1.5중량%, 더욱 바람직하기로는 1.7~1.2중량%, 가장 바람직하기로는 1.02중량%이다. 만일 구아니디늄 티오시아네이트의 첨가량이 상기 범위 밖이면 소자 성능이 크게 향상되지 않는 단점이 있다.In the present invention, guanidinium thiocyanate is effectively used to improve the device performance by changing the absorbance of the device by changing protons to guanidium ions in N719 dyes and changing dye molecular orbitals. It is an additive. The addition amount of guanidinium thiocyanate is preferably 0.5 to 1.5% by weight, more preferably 1.7 to 1.2% by weight and most preferably 1.02% by weight based on the total weight of the polymer gel electrolyte composition. If the addition amount of guanidinium thiocyanate is outside the above range, there is a disadvantage that the device performance is not greatly improved.

본 발명에서 1-메틸-3-프로필이미다졸리움 아이오다이드은 I2와 함께 산화/환원 쌍을 형성하고 전자의 역전달을 막기 위해 사용하는 첨가제이다. 1-메틸-3-프로필이미다졸리움 아이오다이드의 첨가량은 고분자젤 전해질 조성물의 전체 중량을 기준으로 바람직하기로는 15~30중량%, 더욱 바람직하기로는 20~24중량%, 가장 바람직하기로는 21.8중량%이다. 만일 1-메틸-3-프로필이미다졸리움 아이오다이드의 첨가량이 상기 범위 밖이면 산화/환원 쌍의 농도가 적당하지 않게 되며 전자의 역전달이 발생할 수 있다는 단점이 있다.In the present invention, 1-methyl-3-propylimidazolium iodide is an additive used to form an oxidation / reduction pair together with I 2 and to prevent reverse transfer of electrons. The amount of 1-methyl-3-propylimidazolium iodide added is preferably 15-30% by weight, more preferably 20-24% by weight, most preferably 21.8, based on the total weight of the polymer gel electrolyte composition. Weight percent. If the addition amount of 1-methyl-3-propylimidazolium iodide is out of the above range, the concentration of the oxidation / reduction pair is not appropriate and there is a disadvantage that reverse transfer of electrons may occur.

본 발명에서 발레로니트릴은 액체 전해질의 용매로서 사용하는 첨가제이다. 발레로니트릴의 첨가량은 고분자젤 전해질 조성물의 전체 중량을 기준으로 바람직하기로는 10~50중량%, 더욱 바람직하기로는 30~40중량%, 가장 바람직하기로는 35.0중량%이다. 만일 발레로니트릴의 첨가량이 상기 범위 밖이면 전해질 용액의 농도가 너무 높아지거나 낮아지는 단점이 있다.
Valeronitrile in the present invention is an additive used as a solvent of a liquid electrolyte. The addition amount of valeronitrile is preferably 10 to 50% by weight, more preferably 30 to 40% by weight, most preferably 35.0% by weight based on the total weight of the polymer gel electrolyte composition. If the addition amount of valeronitrile is outside the above range, there is a disadvantage that the concentration of the electrolyte solution becomes too high or too low.

또한, 본 발명은 상기 제조방법으로 제조된 안정성이 우수한 고분자젤 전해질 조성물을 제공한다.
In addition, the present invention provides a polymer gel electrolyte composition having excellent stability prepared by the above method.

더 나아가, 본 발명은 상기 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지를 제공한다.
Furthermore, the present invention provides a dye-sensitized solar cell comprising the polymer gel electrolyte composition.

본 발명은 고분자로서 폴리(4-비닐페놀)을 사용하고 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 고분자를 화학적으로 가교결합시켜 가교된 PVP를 제조한 후, 상기 가교된 PVP에 전해액을 흡착시킴으로써 안정성이 우수한 고분자젤 전해질 조성물을 제조할 수 있을 뿐만 아니라 이를 이용하여 안정적이고 내구성이 우수한 염료감응 태양전지를 제공할 수 있는 효과가 있다.
The present invention uses poly (4-vinylphenol) as a polymer and poly (melamine-co-formaldehyde) methylated as a crosslinking agent to chemically crosslink the polymer to prepare crosslinked PVP. By adsorbing the electrolyte solution to PVP, not only the polymer gel electrolyte composition having excellent stability can be prepared, but also there is an effect of providing a stable and durable dye-sensitized solar cell using the same.

도 1은 본 발명의 고분자젤 전해질 조성물을 제조하는 과정을 보여주는 사진도이다.
도 2는 고분자젤 전해질 조성물을 이용하여 염료감응태양전지를 제작하는 과정 및 실제로 제작된 염료감응태양전지의 모습을 보여주는 도이다.
도 3은 본 발명의 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지의 전류 밀도 특성을 보여주는 그래프이다.
도 4는 액체전해질을 이용하여 제작된 염료감응태양전지의 시간에 따른 성능 즉, 태양전지 효율의 변화와 본 발명의 고분자젤 전해질 조성물을 이용하여 제작된 염료감응태양전지의 시간에 따른 성능 즉, 태양전지 효율의 변화를 비교한 그래프이다. 단, 액체전해질기반 태양전지는 누액을 방지하기 위하여 surlyn tape를 이용하여 보호된(sealed) 소자이고, 고분자젤 전해질 조성물기반 태양전지는 보호되지 않은 소자이다.
1 is a photograph showing a process for preparing a polymer gel electrolyte composition of the present invention.
2 is a view illustrating a process of manufacturing a dye-sensitized solar cell using the polymer gel electrolyte composition and a state of the fabricated dye-sensitized solar cell.
3 is a graph showing the current density characteristics of the dye-sensitized solar cell including the polymer gel electrolyte composition of the present invention.
4 is a time-dependent performance of a dye-sensitized solar cell manufactured using a liquid electrolyte, that is, a change in solar cell efficiency and a time-dependent performance of a dye-sensitized solar cell manufactured using the polymer gel electrolyte composition of the present invention. It is a graph comparing the change of solar cell efficiency. However, liquid electrolyte based solar cells are devices that are sealed using surlyn tape to prevent leakage, and polymer gel electrolyte composition based solar cells are unprotected devices.

이하, 실시예를 통해 본 발명의 구성 및 효과를 보다 더 구체적으로 설명하고자 하나, 이들 실시예는 본 발명의 예시적인 기재일뿐 본 발명의 범위가 이들 실시예에만 한정되는 것은 아니다.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

실시예 1-6: 본 발명의 고분자젤 전해질 조성물의 제조Example 1-6 Preparation of Polymer Gel Electrolyte Composition of the Present Invention

먼저, 가교제로서 0.25g의 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 0.5g의 폴리(4-비닐페놀)(PVP)을 140℃로 2시간 동안 가열하여 가교결합시켜 가교된 PVP를 제조하였다.First, 0.5 g of poly (4-vinylphenol) (PVP) was crosslinked by heating at 140 ° C. for 2 hours using 0.25 g of poly (melamine-co-formaldehyde) methylated as a crosslinking agent to crosslink PVP. Was prepared.

전해질로서 혼합 후의 용액의 중량을 기준으로 2.22 중량%의 아이오딘 및 1.95 중량%의 리튬 아이오다이드를 하기 표 1의 비율로 혼합하고, 여기에 첨가제로서 PMII 72.62 중량%, GuTc 3.45 중량%, 및 t-BP 19.74 중량%를 추가로 첨가한 뒤, 균일한 용액을 제조하기 위해서 약 30분 동안 초음파를 처리하여 환합함으로써 전해질 조성물을 제조하였다.2.22% by weight of iodine and 1.95% by weight of lithium iodide, based on the weight of the solution after mixing as an electrolyte, were mixed in the proportions of Table 1 below, where 72.62% by weight PMII, 3.45% by weight GuTc, and An electrolyte composition was prepared by further adding 19.74% by weight of t-BP, followed by sonication for about 30 minutes to produce a uniform solution.

상기 가교된 PVP에 상기에서 제조한 전해질 조성물을 14일 동안 침투시켜 가교된 PVP 내에 상기 전해질을 흡착시킴으로써 본 발명의 고분자젤 전해질 조성물을 제조하였다. The polymer gel electrolyte composition of the present invention was prepared by infiltrating the electrolyte composition prepared above into the crosslinked PVP for 14 days to adsorb the electrolyte into the crosslinked PVP.

상기 고분자젤 전해질 조성물의 제조과정을 도 1에 나타내었다.A manufacturing process of the polymer gel electrolyte composition is shown in FIG. 1.

구분division 전해질(이온) 함량Electrolyte (Ion) Content 실시예 1Example 1 10 중량%10 wt% 실시예 2Example 2 15 중량%15 wt% 실시예 3Example 3 20 중량%20 wt% 실시예 4Example 4 25 중량%25 wt% 실시예 5Example 5 30 중량%30 wt% 실시예 6Example 6 35 중량%35 wt%

실시예 7-12: 본 발명의 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지의 제조Example 7-12 Preparation of Dye-Sensitized Solar Cell Including Polymer Gel Electrolyte Composition of the Present Invention

상기 실시예 1 내지 6의 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지를 제조하였다.A dye-sensitized solar cell including the polymer gel electrolyte composition of Examples 1 to 6 was prepared.

구체적인 제조과정은 다음과 같았다.The specific manufacturing process was as follows.

전극 준비과정으로서 원하는 크기의 2개의 FTO가 증착된 유리기판을 초음파 세척기를 이용하여 세제-증류수-아세톤-아이소프로필의 순서대로 각 용매에 기판을 담가 15분씩 초음파 세척하여 깨끗한 FTO 기판을 준비하였다. 세척된 FTO 위에 스크린 프린터 또는 닥터블레이더를 이용하여 TiO2 paste를 원하는 면적만큼 프린팅 하여 진공 오븐에서 120℃의 온도에서 10분 동안 가열하여 고체화하고 그 위에 다시 위의 프린팅 과정을 6번을 반복하여 TiO2 막을 만든 다음 Furnace에 500℃로 30분간 가열하여 소성작업을 하였다. 소성작업이 끝난 다음 0.05mM의 N-719가 녹아 있는 에탄올 용액에 하루동안 담가 Dye가 TiO2의 표면에 흡착 되도록 하였다. 준비된 다른 FTO 기판은 Plasma cleaner를 이용하여 10분간 120W로 처리하고 그 위에 H2PtCl6를 스핀코팅 (2000RPM, 10초) 한 후 Furnace에 390℃로 30분간 가열하여 Pt로 환원시켜 FTO 표면에 Pt박막을 제조하였다. As an electrode preparation process, a glass substrate on which two FTOs having a desired size were deposited was immersed in each solvent in the order of detergent-distilled water-acetone-isopropyl in ultrasonic solvent for 15 minutes to prepare a clean FTO substrate. TiO 2 paste is printed on the cleaned FTO using a screen printer or doctor bladder to the desired area and heated in a vacuum oven at a temperature of 120 ° C for 10 minutes to solidify, and the above printing process is repeated 6 times. 2 film was made and calcined by heating the furnace at 500 ° C for 30 minutes. After the calcination, Dye was adsorbed on the surface of TiO 2 by immersing in 0.05mM N-719 dissolved ethanol for one day. Another prepared FTO substrate was treated with 120W for 10 minutes using a Plasma cleaner, spin-coated H 2 PtCl 6 (2000RPM, 10 seconds), heated to 390 ℃ for 30 minutes in a Furnace, and reduced to Pt. A thin film was prepared.

염료가 흡착된 FTO 기판 위에 Surlyn tape을 이용하여 적당한 space를 제공한 후 상기에서 제조한 고분자젤 전해질 조성물을 적당량 올려놓고(TiO2가 덮일만큼) Pt막이 코팅된 FTO를 전극면이 맞닿도록 접합한 후 고정을 위해 집게로 고정하여 염료감응 태양전지의 제작을 완료하였다.
After providing a suitable space on the FTO substrate on which the dye is adsorbed by using Surlyn tape, put the polymer gel electrolyte composition prepared above (as much as TiO 2 is covered) and bond the FTO coated with Pt film so that the electrode surface abuts. After fixing the tongs for fixing to complete the manufacturing of the dye-sensitized solar cell.

실험예 1: 본 발명 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지의 전류 밀도 특성 조사Experimental Example 1: Investigation of the current density characteristics of the dye-sensitized solar cell comprising the polymer gel electrolyte composition of the present invention

상기 실시예 7 내지 12에서 제조한 염료감응 태양전지의 전류 밀도 특성을 조사하였다.The current density characteristics of the dye-sensitized solar cells prepared in Examples 7 to 12 were investigated.

전류 밀도의 측정은 구체적으로 하기와 같이 수행하였다.The measurement of the current density was specifically performed as follows.

솔라 시뮬레이터에 reference cell을 먼저 연결하여, 광량을 조절하여 1sun상태(10mW/cm)의 광량으로 조절하였다. 이렇게 조절된 솔라 시뮬레이터의 광원에 수직하게 태양전지를 설치한 후 0V부터 1V까지 전압을 인가하여 전류를 측정하였다. 측정된 값에 면적을 나누어 주어 전류 밀도를 측정하였다. The reference cell was first connected to the solar simulator, and the light quantity was adjusted to 1sun state (10mW / cm). After installing the solar cell perpendicular to the light source of the solar simulator adjusted in this way, the current was measured by applying a voltage from 0V to 1V. The current density was measured by dividing the area by the measured value.

측정 결과 도 2에 나타내었다.The measurement results are shown in FIG. 2.

도 2를 통해 본 발명의 고분자젤 전해질 조성물이 우수한 전류 밀도 특성을 가짐을 알 수 있다.
2 shows that the polymer gel electrolyte composition of the present invention has excellent current density characteristics.

실험예 2: 본 발명 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지의 성능 변화 조사Experimental Example 2: Investigation of the performance change of the dye-sensitized solar cell comprising the polymer gel electrolyte composition of the present invention

고분자젤 전해질 조성물을 포함하는 염료감응 태양전지의 시간에 따른 성능 변화 중요한 요소이므로, 본 실험예에서는 종래 액체전해질을 이용하여 제작된 염료감응태양전지의 시간에 따른 성능(태양전지 효율) 변화를 상기 실시예 5에서 제작한 본 발명의 고분자젤 전해질 조성물을 이용한 염료감응태양전지의 시간에 따른 성능(태양전지 효율) 변화와 비교하였다.Since the performance change with time of the dye-sensitized solar cell including the polymer gel electrolyte composition is an important factor, in the present experimental example, the performance (solar cell efficiency) change with time of the dye-sensitized solar cell manufactured using the conventional liquid electrolyte was It was compared with the performance (solar cell efficiency) change with time of the dye-sensitized solar cell using the polymer gel electrolyte composition of the present invention prepared in Example 5.

실험 방법은 상기 실험예 1에서 사용한 방법을 사용하였으며, 시간이 경과함에 따른 태양전지의 특성을 비교하였고 이를 도 4에 나타내었다. 단, 본 발명에서 제조된 고분자젤기반 전해질 조성물과의 비교를 위하여, 액체전해질기반 태양전지는 surlyn tape를 이용하여 소자를 보호(sealing) 함으로써 액체전해질 기반 태양전지 소자의 최대 단점인 누액을 방지하였다. 그러나 본원 발명에서 발명된 고분자젤 전해질 조성물은 액체전해질과는 달리 흐름성이 거의 없으므로 sealing을 하지 않고 상기 실시예 5에서 제작된 태양전지 소자를 그대로 사용하여 시간의 경과에 따른 특성변화를 조사하였다.
Experimental method was used the method used in Experimental Example 1, and compared the characteristics of the solar cell over time and shown in FIG. However, for comparison with the polymer gel-based electrolyte composition prepared in the present invention, the liquid electrolyte-based solar cell prevented leakage, which is the biggest disadvantage of the liquid electrolyte-based solar cell device by sealing the device using a surlyn tape. . However, the polymer gel electrolyte composition invented in the present invention has almost no flow unlike the liquid electrolyte, and thus the properties of the polymer gel electrolyte were investigated without changing the characteristics of the polymer gel electrolyte.

Claims (10)

하기 단계를 포함하는 고분자젤 전해질 조성물의 제조방법:
1) 가교제로서 폴리(멜라민-코-포름알데히드) 메틸레이티드를 사용하여 폴리(4-비닐페놀)(PVP)을 가교결합시켜 가교된 PVP를 제조하는 단계; 및
2) 상기 단계의 가교된 PVP에 전해질을 흡착시키는 단계.
Method for producing a polymer gel electrolyte composition comprising the following steps:
1) crosslinking poly (4-vinylphenol) (PVP) using poly (melamine-co-formaldehyde) methylated as crosslinking agent to produce crosslinked PVP; And
2) adsorbing the electrolyte to the crosslinked PVP of the step;
제1항에 있어서, 3) 아세토니트릴, 프로필렌 카보네이트, 4-터트-부틸 피리딘, 구아니디늄 티오시아네이트, 1-메틸-3-프로필이미다졸리움 아이오다이드, 발레로니트릴 또는 이들의 조합인 첨가제를 첨가하는 단계를 추가로 포함하는 고분자젤 전해질 조성물의 제조방법.
3) Acetonitrile, propylene carbonate, 4-tert-butyl pyridine, guanidinium thiocyanate, 1-methyl-3-propylimidazolium iodide, valeronitrile or combinations thereof Method for producing a polymer gel electrolyte composition further comprising the step of adding an additive.
제1항에 있어서, 상기 가교결합의 반응온도는 130~160 ℃의 온도 범위인 고분자젤 전해질 조성물의 제조방법.
According to claim 1, wherein the reaction temperature of the crosslinking method of producing a polymer gel electrolyte composition is a temperature range of 130 ~ 160 ℃.
제1항에 있어서, 상기 가교결합의 반응시간은 0.5시간 내지 4시간인 고분자젤 전해질 조성물의 제조방법.
The method of claim 1, wherein the reaction time of the crosslinking is 0.5 hours to 4 hours.
제1항에 있어서, 상기 가교제의 첨가량은 폴리(4-비닐페놀) 100 중량부에 대해 50~100 중량부인 고분자젤 전해질 조성물의 제조방법.
The method of claim 1, wherein the amount of the crosslinking agent added is 50 to 100 parts by weight based on 100 parts by weight of poly (4-vinylphenol).
제1항에 있어서, 상기 전해질은 ⅰ) LiI 및 I2, ⅱ) NaI 및 I2, ⅲ) KI 및 I2, ⅳ) CsI 및 I2, 또는 ⅴ) 이미다졸륨 아이오다이드 및 I2인 고분자젤 전해질 조성물의 제조방법.
The method of claim 1, wherein the electrolyte comprises: i) LiI and I 2 , ii) NaI and I 2 , i) KI and I 2 , i) CsI and I 2 , Or iii) a method for producing a polymer gel electrolyte composition which is imidazolium iodide and I 2 .
제1항에 있어서, 상기 전해질의 함량은 전체 고분자젤 전해질 조성물의 중량을 기준으로 5 내지 40 중량%인 고분자젤 전해질 조성물의 제조방법.
The method of claim 1, wherein the content of the electrolyte is 5 to 40% by weight based on the total weight of the polymer gel electrolyte composition.
삭제delete 제1항 내지 제7항 중 어느 한 항의 제조방법으로 제조된 고분자젤 전해질 조성물.
A polymer gel electrolyte composition prepared by the method of any one of claims 1 to 7.
제9항 기재의 고분자젤 전해질 조성물을 포함하는 염료감응 태양전지.

A dye-sensitized solar cell comprising the polymer gel electrolyte composition of claim 9.

KR1020100111162A 2010-11-09 2010-11-09 A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same KR101208852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100111162A KR101208852B1 (en) 2010-11-09 2010-11-09 A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100111162A KR101208852B1 (en) 2010-11-09 2010-11-09 A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same

Publications (2)

Publication Number Publication Date
KR20120049748A KR20120049748A (en) 2012-05-17
KR101208852B1 true KR101208852B1 (en) 2012-12-05

Family

ID=46267473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100111162A KR101208852B1 (en) 2010-11-09 2010-11-09 A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same

Country Status (1)

Country Link
KR (1) KR101208852B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019134226A (en) * 2019-10-25 2021-04-26 Общество с ограниченной ответственностью "Комберри" TRANSPARENT GEL-POLYMER ELECTROLYTES OF INCREASED CONDUCTIVITY BASED ON TRIAZINE COPOLYMERS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070256731A1 (en) 2004-08-17 2007-11-08 National University Corporation Kyushu Institute Of Technology Gel Electrolyte Precursor for Use in a Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell
US20090272934A1 (en) 2002-01-25 2009-11-05 Kethinni Chittibabu Gel electrolytes for dye sensitized solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272934A1 (en) 2002-01-25 2009-11-05 Kethinni Chittibabu Gel electrolytes for dye sensitized solar cells
US20070256731A1 (en) 2004-08-17 2007-11-08 National University Corporation Kyushu Institute Of Technology Gel Electrolyte Precursor for Use in a Dye-Sensitized Solar Cell and Dye-Sensitized Solar Cell

Also Published As

Publication number Publication date
KR20120049748A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Dong et al. A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells
KR101166018B1 (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
Ileperuma Gel polymer electrolytes for dye sensitised solar cells: a review
KR101437046B1 (en) Electrodes for dye-sensitized solar cells, preparation method thereof, and solar cells using the same
KR100696636B1 (en) Photosensitizer for photovoltaic cell and photovoltaic cell prepared from the same
KR100825730B1 (en) Die-sensitized solar cells including polymer electrolyte containing conductive particles suspended therein and method for manufacturing the same
Lin et al. Multifunctional iodide-free polymeric ionic liquid for quasi-solid-state dye-sensitized solar cells with a high open-circuit voltage
Jiao et al. Development of rapid curing SiO2 aerogel composite-based quasi-solid-state dye-sensitized solar cells through screen-printing technology
CA2878406C (en) Photoelectrically convertible composition comprising an anionic polymer, a laminate, and processes therefor
Lee et al. Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
Arsyad et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte
JP2022501807A (en) Dye-increasing photosensitive battery
TWI577073B (en) Composition for photoelectric conversion layer and photoelectric conversion element
KR101208852B1 (en) A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same
Chuang et al. A novel gel electrolyte based on polyurethane for highly efficient in dye-sensitized solar cells
Rokesh et al. Polymer electrolytes in dye sensitized solar cells
Jiang et al. Plastic–polymer composite electrolytes for solid state dye-sensitized solar cells
Vijayakumar et al. New liquid crystal-embedded PVdF-co-HFP-based polymer electrolytes for dye-sensitized solar cell applications
KR101131055B1 (en) Dye sensitized solar cell comprising counter electrode having mesoporous carbon electrode deposited on transparent substrate and preparation method thereof
KR20130043709A (en) Electrode composite ink for ink-jet printing and manufacturing method of electrode for dye-sensitized solar cell using thereof
CN206076058U (en) A kind of solaode of electronics point and ruthenium dye composite sensitization
KR101381103B1 (en) Preparation method of porous polymer based solid electrolyte and dye-sensitized solar cells employing the same
CN109545561B (en) Photoinitiated irreversible gel electrolyte and preparation method and application thereof
TWI833810B (en) Dye-sensitized photovoltaic cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee